

## **Exhibit H**

### **Geologic and Soil Stability**

### **Umatilla-Morrow County Connect Project**



**750 West Elm Avenue  
PO Box 1148  
Hermiston, OR 97838**

Cole Bode  
Vice President of Engineering  
541-567-6414  
[UMCCproject@umatillaelectric.com](mailto:UMCCproject@umatillaelectric.com)

*Application for Site Certificate*

*May 2025*

*This page intentionally left blank.*

## TABLE OF CONTENTS

|            |                                               |           |
|------------|-----------------------------------------------|-----------|
| <b>1.0</b> | <b>INTRODUCTION.....</b>                      | <b>1</b>  |
| <b>2.0</b> | <b>ANALYSIS.....</b>                          | <b>1</b>  |
| 2.1        | Analysis Area.....                            | 1         |
| 2.2        | Methods.....                                  | 1         |
| 2.3        | Geologic Report.....                          | 1         |
| 2.3.1      | Topographic Setting.....                      | 2         |
| 2.3.2      | Geologic Setting .....                        | 2         |
| 2.4        | Consultation with DOGAMI .....                | 3         |
| 2.5        | Site Specific Geotechnical Investigation..... | 3         |
| 2.6        | Geotechnical Investigation Locations.....     | 4         |
| 2.7        | Seismic Hazards.....                          | 4         |
| 2.7.1      | Earthquake Sources .....                      | 5         |
| 2.7.2      | Liquefaction and Lateral Spread .....         | 6         |
| 2.8        | Non-Seismic Soil and Geologic Hazards.....    | 6         |
| 2.8.1      | Mass Wasting and Landslides .....             | 7         |
| 2.8.2      | Flooding.....                                 | 7         |
| 2.8.3      | Soil Erosion .....                            | 7         |
| 2.8.4      | Soil Expansion and Collapse .....             | 8         |
| 2.9        | Disaster Resilience .....                     | 9         |
| 2.10       | Climate Change .....                          | 10        |
| <b>3.0</b> | <b>CONCLUSIONS.....</b>                       | <b>11</b> |
| <b>4.0</b> | <b>COMPLIANCE CROSS-REFERENCES .....</b>      | <b>11</b> |
| <b>5.0</b> | <b>REFERENCES.....</b>                        | <b>13</b> |

## TABLES

|            |                                                            |    |
|------------|------------------------------------------------------------|----|
| TABLE H-1. | COMPLIANCE REQUIREMENTS AND RELEVANT CROSS-REFERENCES..... | 11 |
|------------|------------------------------------------------------------|----|

## FIGURES

|            |                                           |
|------------|-------------------------------------------|
| FIGURE H-1 | GEOLOGIC LANDSCAPE                        |
| FIGURE H-2 | HISTORIC SEISMICITY AND QUATERNARY FAULTS |
| FIGURE H-3 | SPECIAL FLOOD HAZARD AREAS                |

## ATTACHMENTS

|                |                                                      |
|----------------|------------------------------------------------------|
| ATTACHMENT H-1 | RECORD OF CONSULTATION WITH DOGAMI                   |
| ATTACHMENT H-2 | EARTHQUAKES WITHIN 50 MILES OF PROJECT SITE BOUNDARY |

## ACRONYMS AND ABBREVIATIONS

|               |                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CSZ           | Cascadia Subduction Zone                                                                                                                                     |
| DOGAMI        | Oregon Department of Geology and Mineral Industries                                                                                                          |
| NESC          | National Electric Safety Code                                                                                                                                |
| NRCS          | Natural Resources Conservation Service                                                                                                                       |
| OAR           | Oregon Administrative Rule                                                                                                                                   |
| OSBGE         | Oregon State Board of Geologist Examiners                                                                                                                    |
| ODOE          | Oregon Department of Energy                                                                                                                                  |
| OWRD          | Oregon Water Resources Department                                                                                                                            |
| Project       | Umatilla-Morrow County Connect Project                                                                                                                       |
| Project Order | Administrative Rules, and Other Requirements Applicable to the Proposed Umatilla-Morrow County Connect Project (First Amended Project Order; April 04, 2024) |
| ROW           | Right-of-way                                                                                                                                                 |
| USDA          | United States Department of Agriculture                                                                                                                      |
| USGS          | United States Geologic Survey                                                                                                                                |
| WEG           | Wind Erodibility Group                                                                                                                                       |

## 1.0 INTRODUCTION

Exhibit H provides information regarding geologic hazards and soil stability for the Umatilla-Morrow County Connect Project (Project) as required by Oregon Administrative Rule (OAR) 345-021-0010(1)(h). The information provided in Exhibit H demonstrates that Umatilla Electric Cooperative can design, engineer, and construct the Project to avoid dangers to human safety presented by seismic, geologic, and soil hazards.

## 2.0 ANALYSIS

### 2.1 Analysis Area

As noted in Table 7 of the Project Order (Oregon Department of Energy [ODOE] 2024), the analysis area for Exhibit H includes the Project site boundary, except for seismic hazards which are analyzed within 50 miles from the Project site boundary. The Project site boundary encompasses a typical 500-foot-wide corridor that includes the applicant-proposed transmission line alternative routes, new and improved access, and temporary work areas. Note that the Project site boundary has been widened in areas where Project features may extend outside of the right-of-way (ROW). The Project features are fully described in Exhibit B, and the Project site boundary for each Project feature is described in Exhibit C. The location of the Project features and the Project site boundary is provided in Exhibit C.

### 2.2 Methods

To complete the requirements of OAR 345-021-0010(1)(h), a detailed desktop study was completed to characterize the geologic setting and soil conditions within the Project analysis area and identify the extent of geologic and soil-related hazards that could affect the Project. The study consisted of collecting, reviewing, and analyzing available data from the Oregon Department of Geology and Mineral Industries (DOGAMI), the Oregon Water Resources Department (OWRD), the United States Geologic Survey (USGS), and the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). Findings of the desktop study contained herein will inform the scope of the Project geotechnical exploration program, final route selection, and necessary mitigation measures required to design, construct, and operate the proposed facility.

### 2.3 Geologic Report

OAR 345-021-0010(1)(h): Information from reasonably available sources regarding the geological and soil stability within the analysis area, providing evidence to support findings by the Council as required by OAR 345-022-0020, including: (A) A geologic report meeting the Oregon State Board of Geologist Examiners geologic report guidelines. Current guidelines shall be determined based on consultation with the Oregon Department of Geology and Mineral Industries, as per (B).

OAR 345-021-0010(1)(h)(A) requires submission of a geological report meeting the Oregon State Board of Geologist Examiners (OSBGE) geologic report guidelines. Following consultation with the DOGAMI on April 24, 2024 (McClaughry and Guerrero 2024), the current OSBGE report guidelines were determined to be the Second Edition, May 30, 2014, OSBGE, Guideline[s] for Preparing Engineering Geologic Reports. Reporting from site-specific geotechnical explorations meeting the 2014 guidelines will be submitted to ODOE and DOGAMI following completion.

### **2.3.1 Topographic Setting**

The Project is in northeastern Oregon about five miles south of the Columbia River. The site is relatively flat with elevations ranging from about 400 to 600 feet above sea level, generally grading downwards to the Columbia River (USGS 2020). Based on NRCS soil survey data for Morrow and Umatilla Counties, slopes within the Project site boundary range from 0 to 20 percent gradient and are on average about six percent (USDA 2023a and 2023b).

### **2.3.2 Geologic Setting**

The Project is located within the Deschutes-Columbia Plateau geologic province, bounded by the Blue Mountains to the south and High Cascades to the west (DOGAMI 2009). The Columbia Plateau is underlain by volcanic basalt left behind from lava flows 14 to 16 million years ago as the Yellowstone hot spot migrated across the region. Approximately 15,000 to 20,000 years ago, basalts across the Project analysis area were carved out by glacial outburst floods which left behind deposits of silt, sand, and gravel.

Figure H-1 (at the end of this report) is a surficial geology map of the Project analysis area, based on DOGAMI geologic mapping published by Madin and Geitgey in 2007. Unconsolidated quaternary age deposits are mapped across the entire Project site boundary. Missoula Flood deposits (Qmf) cover approximately four miles of the eastern site boundary, consisting of mixed silt, sand, gravel, and occasional boulders. The remaining Project site boundary is comprised of eolian sand and ash (Qe), consisting of primarily windblown sand, silt, and volcanic ash.

Based on OWRD well reporting, groundwater depths across the Project range from 10 to 80 feet below ground surface. Groundwater depths are generally expected to be shallower across the western side of the Project site boundary as terrain slopes gently down to the banks of the Columbia River. Well logs in the Project analysis area indicate lithology is generally comprised of about 50 feet or more of sands and gravels overlying varying thicknesses of mixed fine-grained silt and clay deposits. Basalt bedrock is anticipated to be greater than 100 feet below grade across most of the Project, although could be encountered at shallower depths near the Highway 730 Switchyard.

## 2.4 Consultation with DOGAMI

OAR 345-021-00010(1)(h)(B): A summary of consultation with the Oregon Department of Geology and Mineral Industries regarding the appropriate methodology and scope of the seismic hazards and geology and soil-related hazards assessments, and the appropriate site-specific geotechnical work that must be performed before submitting the application for the Department to determine that the application is complete.

In addition to consulting DOGAMI publications, a geotechnical engineer from POWER Engineers, Inc. met with DOGAMI's Geology Hazard Specialist Lalo Guerrero and Jason D. McClaughry, registered geologist and Program Manager of DOGAMI, to discuss the Project. Meeting minutes and correspondence for the April 24, 2024, Microsoft Teams call are included in Attachment H-1. General discussion topics are summarized below:

1. Project background and information including structure types, foundations, and proposed construction access.
2. Scope of geologic and soil stability desktop analyses and best available data sources.
3. Scope and status of the Project geotechnical investigation program and geologic report requirements.
4. Summary of mitigation measures and transmission line design methodologies proposed to reduce foreseeable impacts from area geologic hazards.

## 2.5 Site Specific Geotechnical Investigation

OAR 345-021-00010(1)(h)(C): A description and schedule of site-specific geotechnical work that will be performed before construction for inclusion in the site certificate as conditions.

Based on the anticipated subsurface characteristics along the proposed Project alternative routes gained through desktop reconnaissance, site-specific geotechnical field investigations are expected to consist of field reconnaissance, advancing borings, and obtaining suitable soil and rock samples for laboratory analysis. In accordance with the 2014 OSBGE guidelines, reporting for geotechnical field investigations will contain, at minimum:

- » A description of the Project, physiographic setting, geologic region, and soils encountered during the investigation.
- » Recommendations regarding appropriate foundation types and any unusual subsurface characteristics which could adversely affect foundations.
- » Analysis and discussion of regional seismicity and geologic hazards which may pose risk for the Project development, including site specific seismic design parameters.
- » Results of all field explorations including a map of field-testing locations, boring logs, soil resistivity testing results, laboratory test results, and foundation design parameters for the proposed transmission structures.

A qualified engineer and geologist will provide oversight throughout the investigation. Based on the results of the site-specific geotechnical investigation, structures will be sited to avoid or minimize geologic hazards and areas of poor foundation conditions. If these areas cannot be sited around or spanned, foundations will be designed to appropriate factors of safety for the anticipated conditions.

The Phase I geotechnical site investigation was completed by GN Northern, Inc. in February 2024 along approximately eight miles of the eastern portion of the proposed Project ROW, where all alternative routes are shared (Route A), and landowner right of entry was available. Following final route determination and receipt of right of entry along the remaining portions of the Project alignment, the Phase II geotechnical investigation will be conducted to inform final engineering design and construction.

The Phase I geotechnical report dated March 2024 (GN Northern 2024) meets the 2014 OSBGE guidelines for geologic reports, as required by OAR 345-021-0010(1)(h)(A) and was submitted electronically to DOGAMI in January, 2025 prior to submitting the Application for Site Certificate to ODOE. As required due to alignment or structure shifts within the final approved ROW, the Phase II geotechnical program will include supplemental explorations along the previously investigated areas covered within the Phase I report.

## 2.6 Geotechnical Investigation Locations

OAR 345-021-00010(1)(h)(D): For all transmission lines, and for all pipelines that would carry explosive, flammable or hazardous materials, a description of locations along the proposed route where the applicant proposes to perform site specific geotechnical work, including but not limited to railroad crossings, major road crossings, river crossings, dead ends (for transmission lines), corners (for transmission lines), and portions of the proposed route where geologic reconnaissance and other site specific studies provide evidence of existing landslides, marginally stable slopes or potentially liquefiable soils that could be made unstable by the planned construction or experience impacts during the facility's operation.

At minimum, geotechnical investigations will be conducted to characterize subsurface conditions at the following locations:

- » Dead-end structures and at points-of-inflection (angle changes).
- » Crossings of highways, major roadways, railroads, and bodies of water.
- » Foreseeable changes in lithology.
- » Areas of anticipated geologic hazards or poor soils.

On straight portions of alignment absent of any of the above listed features or locations, distance between borings will typically be 0.5 mile, but will not exceed 1.0 mile. These criteria were shared with DOGAMI during the consultation documented in Attachment H-1.

## 2.7 Seismic Hazards

OAR 345-021-00010(1)(h)(E): An assessment of seismic hazards, in accordance with

standard-of-practice methods and best practices, that address all issues relating to the consultation with the Oregon Department of Geology and Mineral Industries under (B), and an explanation of how the applicant will design, engineer, construct, and operate the facility to avoid dangers to human safety and the environment from these seismic hazards. Furthermore, an explanation of how the applicant will design, engineer, construct and operate the facility to integrate disaster resilience design to ensure recovery of operations after major disasters. The applicant shall include proposed design and engineering features, applicable construction codes, and any monitoring and emergency measures for seismic hazards, including tsunami safety measures if the site is located in the DOGAMI-defined tsunami evacuation zone.

Seismic sources in Oregon generally include earthquakes, tsunamis, and volcanoes. Based on DOGAMI's tsunami data compilation contained within the Oregon statewide geohazards Viewer, HazVu (DOGAMI 2023), the Project is not located in or near a tsunami or volcanic hazard area. Following consultation with DOGAMI, the desktop review of seismic hazards for the Project analysis area will address earthquakes, fault displacement, and liquefaction potential.

### 2.7.1 Earthquake Sources

Earthquakes result from ground shaking produced by fault rupture and movement of rocks along the fault line (DOGAMI 2010). Earthquakes in northeast Oregon are predicted to originate from two primary sources, including continental plate movement along the Cascadia Subduction Zone (CSZ), or crustal faults surrounding the Project analysis area (Madin and Mabey 1996). Along the CSZ, continental plates converging and subducting under the coast of Oregon and Washington have the potential to trigger a magnitude 9.0 earthquake once every 230 to 540 years (Madin et al. 2021). Relatively shallow crustal faults are the most common causes of earthquakes across Oregon, some of which have potential to produce a magnitude 6.0 to 7.0 earthquake.

Active quaternary faults which have moved in the last 1.6 million years are shown within the Project 50-mile seismic hazards buffer area in Figure H-2 (at the end of this report). Based on consultation with DOGAMI, the mapping includes the most current available data from the 2018 USGS quaternary fault and fold database and more recent fault mapping updates for Washington State (Angster et al. 2020). Aeromagnetic survey results for the Pasco Area of Washington and Oregon (Blakely et al. 2020) were also reviewed to determine the potential presence of additional faults across the Project analysis area. Although the aeromagnetic data do not appear to show abrupt signal variations indicating recently active faults across the Project ROW, a review by a qualified geophysicist would be required to verify, which is outside of the scope of this analysis.

According to the Oregon Seismic Hazards Database, perceived shaking across the Project analysis area resulting from a magnitude 9.0 earthquake along the CSZ would range from light to moderate, or a range of IV to V on the Modified Mercalli Intensity Scale (USGS 1989), resulting in very little to no damage (Madin et al. 2021). More severe shaking is anticipated in the Project analysis area resulting from crustal fault rupture along the Horse Heaven Fault system, which is estimated to be capable of producing a magnitude 7.1 earthquake (Williams et al. 2024). The Horse Heaven Hills structure includes northeast and northwest trending faults in Washington's Klickitat, Yakima, and Benton Counties, located at nearest about 25 miles north of the proposed Project (USGS 2018).

The Wallula Fault system is also notable within the analysis area, trending generally northwest from the Milton-Freewater area in northeast Umatilla County and across the Columbia River. In 1936, a magnitude 6.0 known as the State Line earthquake occurred between Milton-Freewater and Walla Walla, becoming the largest historical earthquake in northeastern Oregon (Seismological Society of America 2018). Historic earthquakes magnitude 2.5 or greater within the Project analysis area are summarized on Figure H-2 and in Attachment H-2. Although there are multiple faults within the 50-mile Project seismic analysis area, no active faults are mapped across the proposed Project ROW. Given the nearest mapped fault is about eight miles away from the nearest proposed alignment, the probability of fault displacement impacting the Project is considered low.

If evidence of active faults crossing the Project alignment is documented during the remaining geotechnical field explorations, a site-specific fault study may be required to understand the depth, extent, age, and probability of movement. Although faults cannot always be avoided by transmission lines, structures can be sited to avoid and span if the fault location is well understood. Where avoidance and spanning are not anticipated to be sufficient, additional design measures would be implemented to appropriately size foundations for the estimated forces associated with fault rupture. Additional discussion on seismic design of transmission structures is provided in Section 2.9.

## 2.7.2 Liquefaction and Lateral Spread

Liquefaction is a seismic-related phenomenon which occurs in saturated soils subjected to ground vibrations. If a soil cannot drain rapidly enough, the decrease in volume results in an increase in pore pressures, resulting in a complete loss of shear strength, liquefied soil state, and ground settlement. If liquefaction occurs on slopes, typically unarmored banks adjacent to water bodies, lateral soil movement (lateral spread) may occur as soil flows downhill. In general, two conditions must exist for liquefaction to occur: (1) the soil must be susceptible to liquefaction (typically loose, water-saturated silty and/or sandy soil); and (2) ground shaking (seismic event) must be strong enough to induce liquefaction of the soil.

Based on Oregon Seismic Hazards Database mapping, liquefaction susceptibility across the Project site boundary is moderate (Madin et al. 2021). However, based on OWRD well logs in the Project analysis area, as well as findings of the Phase I geotechnical investigation, the relative depth of groundwater and density of near surface soils is not conducive of liquefaction. Although liquefaction potential is generally considered low across the Project, findings and recommendations of the Phase II geotechnical investigation will confirm if soils along the western portion of the Project are susceptible to liquefaction or lateral spread. As required, transmission structure foundations will be designed to sustain the additional forces resulting from liquefaction settlement.

## 2.8 Non-Seismic Soil and Geologic Hazards

OAR 345-021-00010(1)(h)(F): An assessment of geology and soil-related hazards which could, in the absence of a seismic event, adversely affect or be aggravated by the construction or operation of the facility, in accordance with standard-of-practice methods and best practices, that addresses all issues relating to the consultation with the Oregon

Department of Geology and Mineral Industries under (B). An explanation of how the applicant will design, engineer, construct and operate the facility to adequately avoid dangers to human safety and the environment presented by these hazards.

### **2.8.1 Mass Wasting and Landslides**

Based on a review of DOGAMI's Statewide Landslide Information Database, no landslide features are mapped within the Project site boundary. As shown on the attached Geologic Landscape map (Figure H-1 at the end of this report), one historic landslide feature is located within the map boundary along Interstate 84, reported by the Federal Highway Administration in 1996. The accuracy of the mapped landslide point was not verified but is suspected to be associated with roadway construction and poses no risk to the Project.

Landslide susceptibility mapping developed by DOGAMI documents perceived landslide susceptibility based on mapped shallow- and deep-seated landslides, as well as regional susceptibility based on state LiDAR data. No deep or shallow landslide susceptibility data were available within the Project analysis area. However, based on regional susceptibility mapping the Project analysis area is predominately low risk for landslides, with a few areas of moderate susceptibility related to moderately steep terrain along isolated embankments and drainages.

Due to the relatively flat terrain across the analysis area, the overall risk of landslides impacting the Project development is considered low. Areas of steeper terrain will be avoided by transmission structures to the extent possible by structure spotting and spanning. If slope stability issues are identified during the remaining field investigations or at the time of construction, structures will either be relocated, or slopes remediated to mitigate future slope stability problems. If areas of slope instability cannot be avoided, appropriate soil improvement, site drainage, and foundation design measures would be implemented to mitigate foreseeable slope instabilities.

### **2.8.2 Flooding**

To assess flood risk in the Project site boundary, Federal Emergency Management Agency National Flood Hazards data were reviewed (FEMA 2024). Based on the latest flood mapping, no regulatory floodways, 100-year or 500-year floodplains are within the Project analysis area. The nearest mapped floodplain to the Project site boundary is about 0.75 mile east of Ordnance Switchyard. To the extent possible, grading would be minimized, and existing ground elevations would be maintained throughout design and construction to prevent the introduction of flood risk on the Project.

### **2.8.3 Soil Erosion**

Soil erosion is a naturally occurring process primarily tied to water runoff and wind forces. While all natural landscapes are subject to varying levels of water- and wind-related erosion, the processes can be accelerated by construction disturbance. Many properties contribute to a soil's erosion potential including particle size distribution, moisture content, density, and vegetation cover. In general, unvegetated areas of dry, fine-grained, and loosely packed soils are at the highest risk for wind and water erosion. Ground slope and hydraulic conductivity are also tied closely to water erosion.

As described in Exhibit I, the USDA has developed multiple factors and criteria to characterize soil erosion potential for cultivated areas due to wind and water. As documented in the National Soil Survey Handbook (USDA 2019), wind erosion susceptibility is represented by the Wind Erodibility Group (WEG) and susceptibility to water erosion is represented by the K factor. WEG ranges from **1** (high wind erosion risk) to **8** (low wind erosion risk) based on soil composition, while K factors range from 0.02 (low water erosion risk) to 0.64 (high water erosion risk) based on soil composition as well as hydraulic conductivity.

In addition to WEG and K factor, NRCS soil survey data provide an “erosion hazard rating” intended to inform the design and implementation of new forest roads and trails. As defined in the USDA Soil Survey Manual, the erosion hazard rating is the possibility of erosion damage occurring as a result of site preparation and clearing (USDA 2018). The USDA erosion hazard rating system ranges from slight to very severe based on a wide range of factors including soil composition, slope, estimated K factor, and area climate.

The NRCS soil survey data (USDA 2023a and 2023b) predict an average WEG of about **2** (moderately high wind erosion risk) for soils within the Project site boundary, with isolated areas of **1** (high risk) and **7** (low risk). The average K factor within the Project site boundary is about 0.23 (moderate water erosion risk), with isolated areas of 0.49 (high risk) associated with slopes up to about 20 percent. Overall, a moderate erosion hazard rating is assigned by the NRCS for all soil units within the Project site boundary, indicating some erosion is expected and erosion control measures will be required for Project access roads and temporary work areas.

To the extent possible, existing roads will be used for construction and maintenance. Existing roads would not be widened but improved as required to mitigate existing soil erosion hazards and prevent sediment transport from wind or water. The extent of new access developments is expected to be minimal due to the number of existing access routes within the proposed Project site boundary. Where existing access is not available for construction access, overland (drive and crush) access would be utilized to the extent possible to reduce erosion impacts associated with clearing and blading new roads.

Soil erosion impacts associated with proposed access routes and temporary work areas are expected to be temporary and will be minimized through the use of Best Management Practices including, but not limited to, preserving and restoring vegetation, dust control, silt fence and straw wattles, and surface armoring as necessary. Any grading required for structures and access roads would be restored to pre-construction condition in accordance with the Project revegetation plan (Exhibit P, Attachment P-3). A site-specific Erosion and Sediment Control Plan will be prepared to meet the requirements of the Project’s National Pollutant Discharge Elimination System Construction Stormwater 1200-C permit, which will be submitted to ODOE prior to construction based on the final Project design; a preliminary National Pollutant Discharge Elimination System 1200-C permit has been submitted with this Application (see Exhibit E, Attachment E-1).

## **2.8.4      Soil Expansion and Collapse**

The causes of soil expansion or collapse are related to the type of deposit including soil type, structure, and density. Soils form in-place by weathering of rocks, or they can be transported and deposited by gravity, water, or wind. Significant changes in soil moisture content can cause soils to swell or to lose strength and consolidate. Soil collapse occurs when the land surface is

saturated at depths greater than those reached by typical rain events. This saturation eliminates the bond holding the soil grains together.

The presence of expansive and collapsible soils can be detected by direct observation and laboratory testing. Polygonal soil cracking (mud cracks) or popcorn texture in exposures is indicative of shrink/swell clayey soils. The phenomenon of hydro-compaction or collapsible soils often consist of loose, dry, low-density materials that collapse and compact under the addition of water or excessive loading. These soils are typically found in areas of young alluvial fans, debris flow sediments, loess (wind-blown sediment), and playa lake deposits.

Soil expansion and collapse is most common near the ground surface when dry soils are inundated with moisture, thus posing the greatest risk to shallow slab foundation types. Transmission structure foundations are typically embedded sufficiently below the zone of seasonal moisture fluctuation, further reducing the risk of soil instabilities resulting from moisture change. Moreover, the anticipated Project structures are primarily moment-type, meaning the downward axial load from the structure is relatively small compared to the lateral load the structures will be designed to withstand. In general, laterally controlled structures rely primarily on skin friction along the sides of the embedded foundations, which further limits the risk of bearing failure due to soil expansion or collapse.

Soil collapse is a potential concern for wind-blown silts and loess in some locations across the Project region. However, based on the desktop research and Phase I geotechnical investigation (GN Northern 2024) performed to date, the eolian and Missoula flood deposits across the Project are well drained, contain major parts sand and gravel, and become dense at relatively shallow depths. Given the available soil properties and proposed structure types, the risk of soil collapse or expansion impacting the proposed Project development is considered low. Although subsurface conditions are not anticipated to vary significantly across the remaining Project analysis area, field sampling and laboratory testing associated with the Phase II geotechnical investigation will confirm if design or construction measures are required to mitigate soil instability.

## 2.9 Disaster Resilience

OAR 345-021-00010(1)(h)(F)(i): An explanation of how the applicant will design, engineer, construct and operate the facility to integrate disaster resilience design to ensure recovery of operations after major disasters.

The proposed Project will be designed and constructed to meet or exceed the requirements of all applicable design codes pertaining to transmission facilities. The prevailing structural code for Oregon includes the 2022 Oregon Structural Specialty Code, which is based on the 2021 International Building Code. Additional codes governing the design and construction of transmission structures to be followed include all applicable requirements set forth by the Institute of Electrical and Electronics Engineers, National Electric Safety Code (NESC) and American Society of Civil Engineers. Structural concrete for transmission structure foundations will be designed and constructed in accordance with American Concrete Institute codes.

The Project will be designed to withstand extreme wind and ice loading as required by the 2023 NESC, which mandates structure loading based on statistical weather models for specific

Project regions. Appropriate factors of safety will also be applied to extreme weather, construction, and maintenance loading to account for uncertainties. As specified by NESC Section 250.A.4, the structural capacity provided by meeting the extreme wind and ice loading requirements of the NESC code provide sufficient capability to resist earthquake ground motions. Similar provisions are documented by Wong and Miller in the 2010 American Society of Civil Engineers 74 manual of practice, which states:

*Transmission structures need not be designed for ground-induced vibrations caused by earthquake motion because historically, transmission structures have performed well under earthquake events, and transmission structure loadings caused by wind/ice combinations and broken wire forces exceed earthquake loads. This may not be the case if the transmission structure is partially erected or if the foundations fail due to earth fracture or liquefaction.*

*Transmission structures are designed to resist large, horizontal loads of wind blowing on the wires and structures. These loads and the resulting strengths provide ample resistance to the largely transverse motions of the majority of earthquakes. Decades of experience with lines of all sizes has shown that very infrequent line damages have resulted from soil liquefaction or when earth failures affect the structural capacity of the foundation.*

As required based on the results and recommendations from the site-specific geotechnical investigations, design and construction requirements will be modified for resilience against foreseeable seismic, geologic, and soil hazards which would exceed the requirements of the governing structural design codes. A qualified engineer has assessed and reviewed the seismic, geologic, and soil hazards associated with the Project facilities, and will provide oversight for the duration of the remaining geotechnical investigations, Project design, and construction.

The applicant maintains comprehensive operations plans and programs to ensure their facilities are designed, constructed, and maintained to mitigate the threat of natural disasters. Throughout construction and prior to energization, qualified engineers and inspectors will provide oversight to verify the Project has been built according to the design specifications. Once in service, detailed line inspections will be conducted annually and following any significant geologic or climate-related event. High-resolution aerial imagery and ground surveys collected during inspections will identify structural damage, broken hardware, or conductor clearance issues, which will be addressed in order of severity.

While the design, construction, and maintenance measures detailed above have historically proven to be effective at preventing unplanned outages, the applicant also maintains an “Emergency Response and Disaster Recovery Plan” documenting their response protocol in the event of outages caused by natural disasters. The applicant will coordinate with local emergency response offices and mobilize response crews as soon as safely possible to isolate, inspect, and repair damages. Emergency structures and line hardware will be staged locally to expedite repairs and service restoration following any disaster-related structure damages.

## 2.10 Climate Change

OAR 345-021-00010(1)(h)(F)(i)(ii) An assessment of future climate conditions for the expected life span of the proposed facility and the potential impacts of those conditions on the

proposed facility.

As outlined in Section 2.9, the Project will be designed, constructed, and maintained for disaster resilience and extreme weather events. Furthermore, one of the primary objectives of the Project is to provide energy resilience to the grid in northeast Oregon and expand the capability of delivering power generated from an expanding number of local generation sources. The Project is intended to support the projected increase in electric demands due to extreme temperatures, as well as reinforce the grid in the event of outages on older electric infrastructure due to climate-related events.

## 3.0 CONCLUSIONS

In accordance with the Structural Standard set forth by OAR 345-022-0020, Exhibit H includes the application information provided for in OAR 345-021-0010(1)(h). Based on the assessment of regional geologic information contained herein, the risk of geologic and soil hazards impacting the Project implementation is considered low. Furthermore, this exhibit demonstrates the applicant can design, engineer, and construct the Project to avoid dangers to human safety and can recover quickly if a natural disaster occurred.

## 4.0 COMPLIANCE CROSS-REFERENCES

Table H-1 identifies the location within the application for site certificate of the information responsive to the application submittal requirements OAR 345-021-0010(1)(h), the Structural Standard at OAR 345-022-0020, and the relevant Project Order provisions.

TABLE H-1. COMPLIANCE REQUIREMENTS AND RELEVANT CROSS-REFERENCES

| REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                        | LOCATION                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| <b>OAR 345-021-0010(1)(h) Exhibit H. Information from reasonably available sources regarding the geological and soil stability within the analysis area, providing evidence to support findings by the Council as required by OAR 345-022-0020, including:</b>                                                                                                                                     |                                           |
| (A) A geologic report meeting the Oregon State Board of Geologist Examiners geologic report guidelines. Current guidelines shall be determined based on consultation with the Oregon Department of Geology and Mineral Industries, as per (B).                                                                                                                                                     | Exhibit H, Section 2.3                    |
| (B) A summary of consultation with the Oregon Department of Geology and Mineral Industries regarding the appropriate methodology and scope of the seismic hazards and geology and soil-related hazards assessments, and the appropriate site-specific geotechnical work that must be performed before submitting the application for the Department to determine that the application is complete. | Exhibit H, Section 2.4;<br>Attachment H-1 |
| (C) A description and schedule of site-specific geotechnical work that will be performed before construction for inclusion in the site certificate as conditions.                                                                                                                                                                                                                                  | Exhibit H, Section 2.5                    |

| REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOCATION                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| (D) For all transmission lines, and for all pipelines that would carry explosive, flammable or hazardous materials, a description of locations along the proposed route where the applicant proposes to perform site specific geotechnical work, including but not limited to railroad crossings, major road crossings, river crossings, dead ends (for transmission lines), corners (for transmission lines), and portions of the proposed route where geologic reconnaissance and other site specific studies provide evidence of existing landslides, marginally stable slopes or potentially liquefiable soils that could be made unstable by the planned construction or experience impacts during the facility's operation.                                                                                                                                                                                 | Exhibit H, Section 2.6                        |
| (E) An assessment of seismic hazards, in accordance with standard-of-practice methods and best practices, that address all issues relating to the consultation with the Oregon Department of Geology and Mineral Industries under (B), and an explanation of how the applicant will design, engineer, construct, and operate the facility to avoid dangers to human safety and the environment from these seismic hazards. Furthermore, an explanation of how the applicant will design, engineer, construct and operate the facility to integrate disaster resilience design to ensure recovery of operations after major disasters. The applicant shall include proposed design and engineering features, applicable construction codes, and any monitoring and emergency measures for seismic hazards, including tsunami safety measures if the site is located in the DOGAMI-defined tsunami evacuation zone. | Exhibit H, Section 2.7 and 2.9;<br>Figure H-2 |
| (F) An assessment of geology and soil-related hazards which could, in the absence of a seismic event, adversely affect or be aggravated by the construction or operation of the facility, in accordance with standard-of-practice methods and best practices, that addresses all issues relating to the consultation with the Oregon Department of Geology and Mineral Industries under (B). An explanation of how the applicant will design, engineer, construct and operate the facility to adequately avoid dangers to human safety and the environment presented by these hazards, as well as:                                                                                                                                                                                                                                                                                                                | Exhibit H, Section 2.8 and 2.9;<br>Figure H-3 |
| (F)(i) An explanation of how the applicant will design, engineer, construct and operate the facility to integrate disaster resilience design to ensure recovery of operations after major disasters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exhibit H, Section 2.9                        |
| (F)(ii) An assessment of future climate conditions for the expected life span of the proposed facility and the potential impacts of those conditions on the proposed facility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exhibit H, Section 2.10                       |

## 5.0 REFERENCES

Angster, S.J., Sherrod, B., Barnett, E., Brethauer, J.L., and Anderson, M.L. 2020. *2020 Update to the Quaternary Fault and Fold Database for Washington State*. U.S. Geological Survey data release available at <https://www.usgs.gov/data/2020-update-quaternary-fault-and-fold-database-washington-state>. Accessed April 2024.

Blakely, R.J., Sherrod, B.L., and Weaver, C.S. 2020. *High-Resolution Aeromagnetic Survey of the Pasco Area, Washington and Oregon*. U.S. Geological Survey data release available at <https://doi.org/10.5066/P96U1HY0>. Accessed April 2024.

Federal Emergency Management Agency (FEMA). 2024. National Flood Hazard Layer (NFHL). Flood Data Viewers and Geospatial Data available at <https://www.fema.gov/flood-maps/national-flood-hazard-layer>. Accessed April 2024.

GN Northern, Inc. 2024. [Phase I] Geotechnical Site Investigation Report, Highway 730 to Ordnance 230 kV Transmission Line, Morrow and Umatilla County, Oregon. March 2024.

McClaughry, Jason and Guerrero, Lalo. 2024. Personal communication with Ross, Henry. April 24. Microsoft Teams Meeting.

Madin, I.P. and Geitgey, R.P. 2007. Preliminary geologic map of the Umatilla Basin, Morrow and Umatilla Counties, Oregon. Oregon Dept. of Geology and Mineral Industries, scale 1:100,000.

Madin, I.P. and Mabey, M.M. 1996. Earthquake Hazard Maps for Oregon, GMS-100, Earthquake Sources. Oregon Department of Geology and Mineral Industries.

Madin I.P., Jon J. Franczyk, John M. Bauer, and Carlie J.M. Azzopardi. 2021. Oregon Department of Geology and Mineral Industries, Oregon Seismic Hazard Database (OSHD), release 1.0 (OSHD-1). DOGAMI Digital Data Series available at <https://pubs.oregon.gov/dogami/dds/p-OSHD-1.htm>. Accessed April 2024.

Oregon Department of Energy (ODOE). 2024. Energy Facility Siting Council of the State of Oregon, Umatilla-Morrow County Connect Project Order.

Oregon Department of Geology and Mineral Industries (DOGAMI). 2024. Statewide Landslide Information Database for Oregon (SLIDO) v4.5. Geospatial data and web map available <https://www.oregon.gov/dogami/slido/Pages/index.aspx>. Accessed April 2024.

\_\_\_\_\_. 2023. Oregon HazVu: Statewide Geohazards Viewer. Available online at [Oregon HazVu: Statewide Geohazards Viewer](https://www.oregon.gov/dogami/hazvu/Pages/index.aspx). Accessed April 2024.

\_\_\_\_\_. 2020. Oregon Geologic Digital Compilation, release 7 (OGDC-7). Available online at <https://www.oregon.gov/dogami/geologicmap/pages/index.aspx>. Accessed April 2024.

\_\_\_\_\_. 2010. Cascadia, Oregon's Earthquake Risk and Resiliency, Creating a Culture of Preparedness.

\_\_\_\_\_. 2009. Geologic Provinces, Oregon: A Geologic History. Available at [Oregon Department of Geology and Mineral Industries : Geologic Provinces : Learn more : State of Oregon](https://geology.stateoforegon.gov/geologic_provinces.html). Accessed April 2024.

Oregon State Board of Geologist Examiners (OSBGE). 2014. Guideline for Preparing Engineering Geologic Reports, 2<sup>nd</sup> Ed., May 30, 2014. Available at [engineeringgeologicreports 5.2014.pdf \(oregon.gov\)](https://engineeringgeologicreports.oregon.gov/5.2014.pdf).

Oregon Water Resources Department (OWRD). 2024. Groundwater & Wells, Well Report Mapping Tool. Available at [Water Resources Department: OWRD: State of Oregon](https://waterresources.oregon.gov/groundwater-wells/well-report-mapping-tool). Accessed April 2024.

Seismological Society of America. 2018. Intensities, aftershock sequences, and the location of the 1936 Milton-Freewater earthquake near the Oregon–Washington border, U.S.A. Journal article available on the USGS Publication Warehouse at <https://pubs.usgs.gov/publication/70199756>. Accessed May 2024.

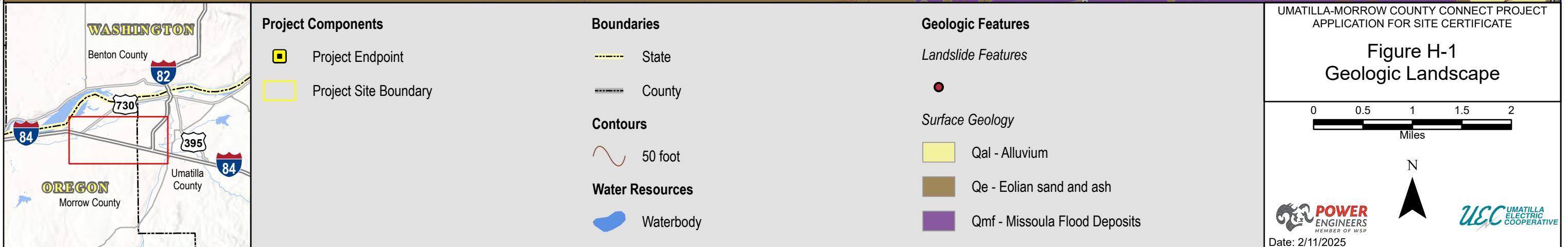
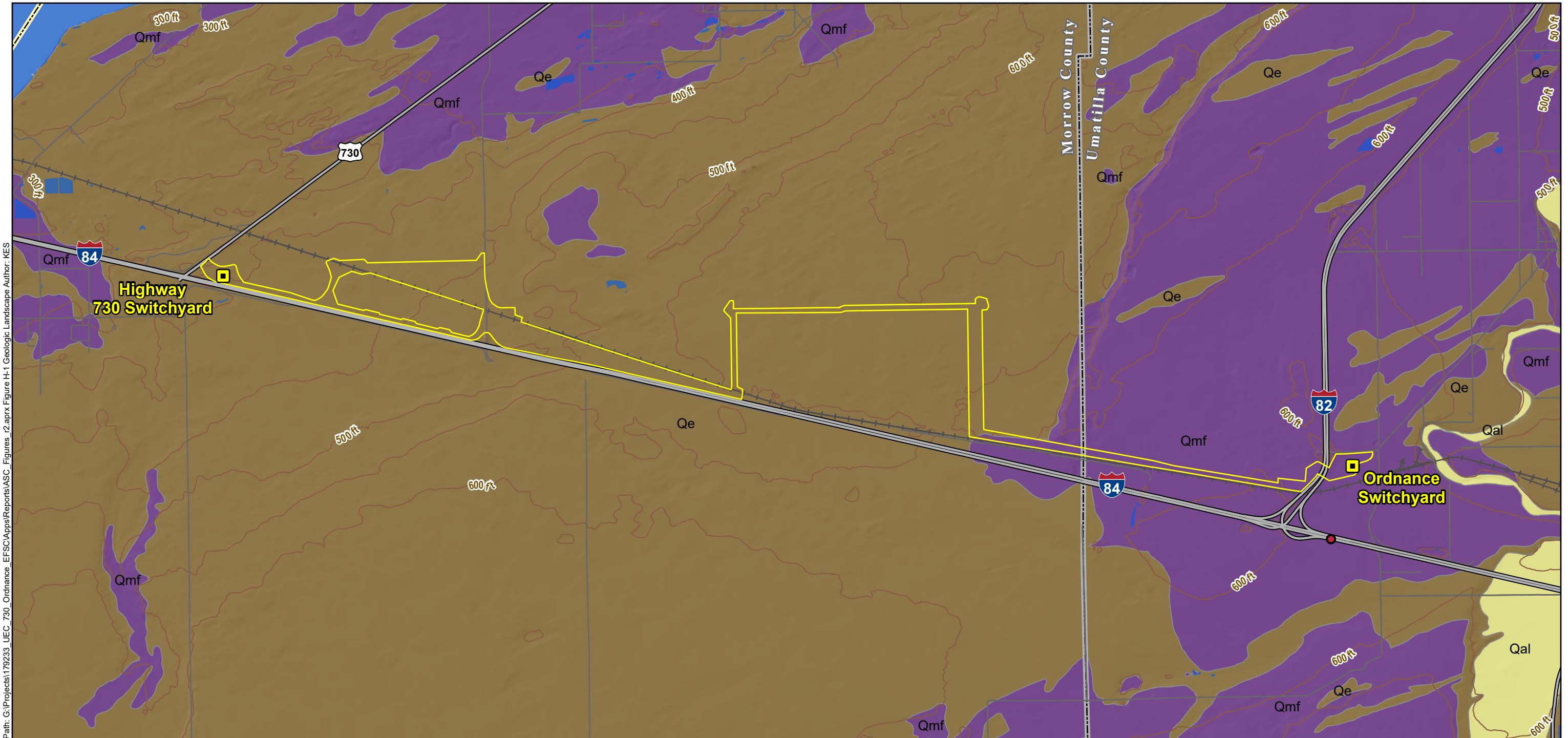
United States Department of Agriculture (USDA). 2023a. NRCS Web Soil Survey. Soil Survey of Morrow County, Oregon. Survey area symbol OR648. Available at <https://websoilsurvey.nrcs.usda.gov/app/>. Accessed April 2024.

\_\_\_\_\_. 2023b. NRCS Web Soil Survey. Soil Survey of Umatilla County, Oregon. Survey area symbol OR667. Available at <https://websoilsurvey.nrcs.usda.gov/app/>. Accessed April 2024.

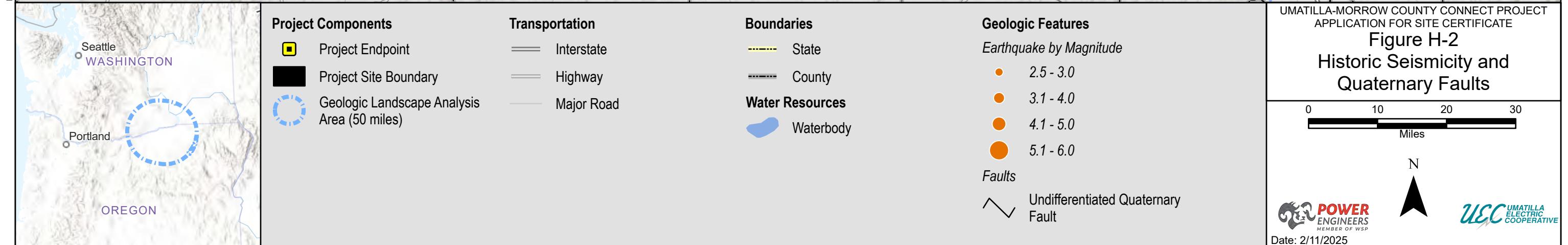
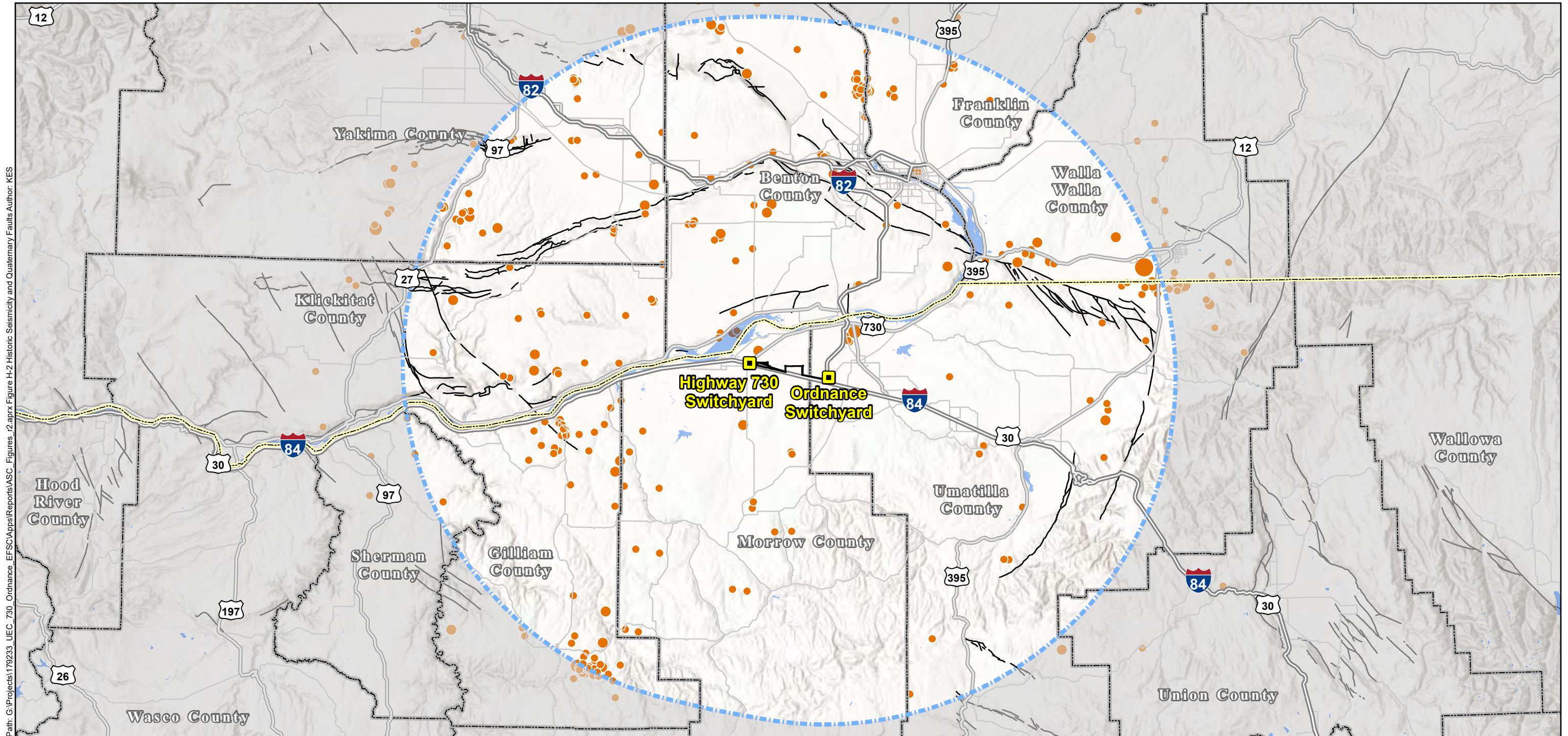
\_\_\_\_\_. 2019. NRCS Title 430 - National Soil Survey Handbook. Available at <https://www.nrcs.usda.gov/resources/guides-and-instructions/national-soil-survey-handbook>. Accessed May 2024.

\_\_\_\_\_. 2018. Soil Survey Manual, Soil Science Division Staff, Agriculture Handbook No. 18. Available at <https://www.nrcs.usda.gov/sites/default/files/2022-09/The-Soil-Survey-Manual.pdf>. Accessed May 2024.

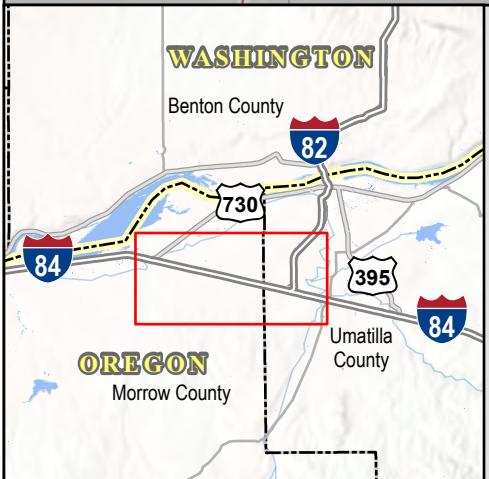
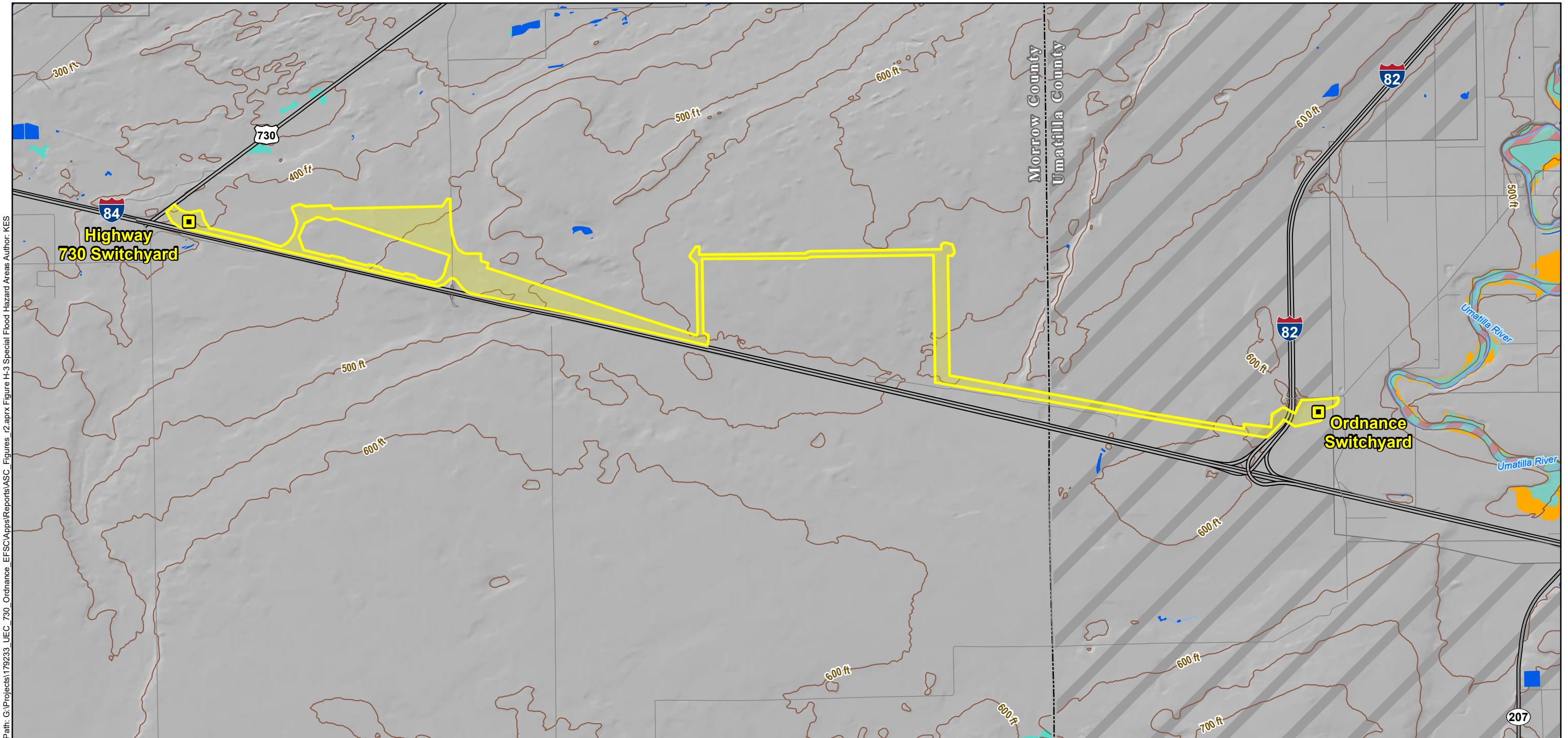
United States Geological Survey (USGS). 2020. Clarke Quadrangle, Oregon – Morrow County. National Elevation Dataset (NED), 7.5 Minute Elevation Data. NED 10 Meter Contours. Available from [The National Map | U.S. Geological Survey \(usgs.gov\)](https://nationalmap.usgs.gov/). Accessed April 2024.



\_\_\_\_\_. 2018. U.S. Quaternary Fault and Fold Database of the United States. Geospatial data available at [Faults | U.S. Geological Survey \(usgs.gov\)](https://faults.usgs.gov/). Accessed April 2024.

\_\_\_\_\_. 1989. Modified Mercalli Intensity Scale, The Intensity of an Earthquake. USGS General Interest Publication. Available at <https://www.usgs.gov/programs/earthquake-hazards/modified-mercalli-intensity-scale>. Accessed April 20204.



Williams, M.C., Calhoun, N.C., and McClaughry, J.D. 2024. Oregon Department of Geology and Mineral Industries, Multi-Hazard Risk Report for Morrow County, Oregon. Publication available at <https://www.oregon.gov/dogami/pubs/Pages/ofr/p-O-24-01.aspx>. Accessed May 2024.

Wong, J.C. and Miller, M.D. 2010. ASCE Manuals and Reports on Engineering Practice No. 74, Guidelines for Electrical Transmission Line Structural Loading, Third Edition.



**FIGURE H-1 GEOLOGIC LANDSCAPE**



**FIGURE H-2 HISTORIC SEISMICITY AND QUATERNARY FAULTS**



## FIGURE H-3 SPECIAL FLOOD HAZARD AREAS



**Project Components**

- Project Endpoint
- Project Site Boundary

**Boundaries**

County

**Contours**

50 foot

**Water Resources**

Waterbody

**Flood Hazards**

Regulatory Floodway

1% Annual Chance Flood Hazard

Area of Undetermined Flood Hazard

0.2% Annual Chance Flood Hazard

UMATILLA-MORROW COUNTY CONNECT PROJECT  
APPLICATION FOR SITE CERTIFICATE

**Figure H-3**  
**Special Flood Hazard Areas**

0 0.5 1 1.5 2  
Miles

N

## ATTACHMENT H-1 RECORD OF CONSULTATION WITH DOGAMI



## MEETING MINUTES

|                      |                                                    |                        |             |
|----------------------|----------------------------------------------------|------------------------|-------------|
| <u>DATE:</u>         | April 24, 2024                                     | <u>TIME OF CALL:</u>   | 3:00 PM MDT |
| <u>ATTENDEES:</u>    | Jason McClaughry & Lalo Guerrero (DOGAMI)          | <u>PHONE NUMBER:</u>   | MS Teams    |
| <u>TYPED BY:</u>     | Henry Ross (POWER Engineers)                       | <u>PROJECT NUMBER:</u> | 0179233     |
| <u>CLIENT:</u>       | Umatilla Electric Cooperative (UEC)                |                        |             |
| <u>PROJECT NAME:</u> | Umatilla-Morrow County Connect (UMCC)              |                        |             |
| <u>SUBJECT:</u>      | UMCC Application for Site Certificate Consultation |                        |             |

### MESSAGE

#### 1) Background:

- a) POWER Engineers is preparing an application for site certificate (ASC) for UEC for a new transmission line between Boardman and Hermiston in Morrow and Umatilla counties.
- b) Oregon Department of Energy (ODOE) Energy Facilities Citing Council (EFSC) application rules require proof of consultation with DOGAMI per OAR 345-021-0010(1)(h)(C).
- c) Notice of Intent (NOI) submitted to ODOE September 2023; Public NOI submitted October 2023
- d) ODOE issued Project Order February 2024; First Amended Project Order April 2024
- e) Planning to submit the ASC by September 2024.

#### 2) Project Info:

- a) Double-circuit 230-kV alternating current (AC) transmission line from the existing UEC Highway 730 Switchyard to the existing UEC Ordnance Switchyard.
  - i) The purpose of the proposed transmission project is to connect existing lines, improve grid reliability, and allow for area growth.
- b) Existing substations will not be expanded.
- c) Three (3) route alternatives under review as of 4/17/24 (previously 4)
- d) Approximately 14 to 15 miles long depending on route.
- e) Approximately 120 to 130 structures total (600-foot structure spans)
- f) 100 to 150-foot ROW width (varies along route)
- g) Structure Types:
  - i) Steel monopole and 2 Pole structures
  - ii) Typically, 90 to 120-foot tall
- h) Foundation Types:
  - i) Directly embedded native, aggregate, or concrete backfill.
  - ii) Reinforced concrete drilled piers for deadend/angle structures.
- i) Construction facilities:
  - i) Construction yards and staging areas will utilize previously disturbed areas.
  - ii) Access via existing roads where possible; new temporary and permanent access roads as required (typically 14 feet wide)

# MEETING MINUTES

## 3) Scope of Geologic and Soil Stability Exhibit:

- a) Seismic Hazards within 50-miles of the project (per DOGAMI comments in the Project Order)
  - i) Seismic shaking and liquefaction: [DOGAMI Oregon Seismic Hazards Database \(OSHD-1\)](#)
  - ii) Historic Earthquakes: USGS Earthquake Catalog
  - iii) Fault Displacement: USGS Quaternary Faults
    - (1) Most notably the Walulla Fault zone near Milton-Freewater
    - (2) USGS database hasn't been updated since 2016. Oregon Geologic Database Compilation (interactive DOGAMI website map) and Washington Geologic Survey Quaternary Faults database may contain more up-to-date info.
    - (3) Aeromagnetic data from USGS ([Pasco Area Data](#)) is a potential dataset for interpreting unmapped faults in the area. However, data is absent of age and potentially difficult to interpret for the project's design.
- b) Non-seismic Hazards within the project site boundary (500-foot-wide corridor including proposed lines, access, and work areas)
  - i) Landslides: [SLIDO](#) and [Oregon HazVu](#)
    - (1) Historic points or deposits - none within site boundary
    - (2) Susceptibility - appears to be isolated and small-scale across the site (HazVu)
    - (3) SLIDO v4.5 Released April 2024
  - ii) Flooding: FEMA
    - (1) Floodways, 100- and 500-year floodplain – none within site boundary
  - iii) Soil Stability (erosion, expansion, and collapse potential): USDA NRCS Soil Survey

## 4) Geotechnical Investigations:

- a) Phase I geotechnical investigation completed February 2024 for about 8 miles of the proposed alignment where all route alternatives are shared, and right-of-entry (ROE) was available.
- b) Phase II geotechnical investigations will be conducted to capture remaining alignment once the final route is determined, and ROE is granted (dates unknown currently).
- c) Geotechnical program requirements:
  - i) Borings at heavy angles, HWY/Road/RR crossings, lithology changes
  - ii) Typically, 0.5- to 1.0-mile max. between borings
    - (1) POWER to confirm investigation locations w/ DOGAMI Engineering Geologist
  - iii) Boring depths 30 feet to 60 feet typically.
  - iv) Evaluation of seismic and non-seismic hazards based on the investigation.
    - (1) Site specific seismic design parameters will be provided in project geotechnical report.
- d) Geotechnical report will inform final foundation designs and construction methods.

## 5) Geologic Report Requirements:

- a) Current Oregon State Board of Geologist Examiners (OSBGE) report guidelines:
  - i) Second Edition, May 30, 2014, Oregon State Board of Engineering Geology Reports Guidelines, available at: [engineeringgeologicreports\\_5.2014.pdf \(oregon.gov\)](#)
  - ii) Phase I geotechnical report is in accordance with the 2014 OSBGE guidelines.
    - (1) Report will be included with ASC submittal and ODOE will forward to DOGAMI for review.
    - (2) Phase II report will be provided once investigation is completed.

# MEETING MINUTES

## 6) Summary of Mitigation:

- a) To the extent possible, structures and line routes will be sited to avoid foreseeable geologic and soil hazards.
- b) Engineering Design Codes: Oregon Structural Specialty Code and International Building Code.
- c) Transmission structure/foundation design codes, standards, manuals: NESC 2023, ASCE 7-22, ASCE 74, ACI 318-22, ACI 336.
- d) Standard seismic design approach for transmission line structures:
  - i) NESC 2023, Rule 250.A.4. states the structural capacity provided by meeting the extreme loading and strength requirements of the code provides sufficient capability to resist earthquake ground motions.
  - ii) ASCE 74 states "Transmission structures need not be designed for ground-induced vibrations caused by earthquake motion because historically, transmission structures have performed well under earthquake events, and transmission structure loadings caused by wind/ice combinations and broken wire forces exceed earthquake loads."
- e) If geologic and seismic hazards cannot be avoided (e.g. known faults crossed, liquefiable soils, lateral spread) structures and their foundations will be designed according to the project geotechnical report recommendations.

## ATTACHMENT H-2 EARTHQUAKES WITHIN 50 MILES OF PROJECT SITE BOUNDARY

EARTHQUAKES WITHIN 50 MILES OF THE PROJECT BOUNDARY

| MAGNITUDE | LOCATION                               | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|----------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 3.0     | 21 km NW of Bickleton, Washington      | 8/13/2022  | 21 km | 46.13149 | -120.50165 | 47.1                        |
| M 2.9     | 14 km NW of Bickleton, Washington      | 10/9/2018  | 14 km | 46.10316 | -120.42065 | 42.8                        |
| M 2.7     | 25 km NW of Bickleton, Washington      | 12/30/2017 | 25 km | 46.15399 | -120.54265 | 49.6                        |
| M 3.4     | 25 km NW of Bickleton, Washington      | 10/12/2017 | 25 km | 46.15583 | -120.54015 | 49.5                        |
| M 2.9     | 3 km WSW of Adams, Oregon              | 2/15/2017  | 3 km  | 45.75283 | -118.59532 | 37.8                        |
| M 3.5     | 3 km N of Cayuse, Oregon               | 1/23/2015  | 3 km  | 45.71099 | -118.55032 | 40.3                        |
| M 2.7     | 3 km S of Finley, Washington           | 4/7/2014   | 3 km  | 46.12233 | -119.02549 | 27.5                        |
| M 3.2     | 13 km NNE of West Richland, Washington | 11/17/2013 | 13 km | 46.41149 | -119.27082 | 41.2                        |
| M 2.5     | 5 km SSW of West Richland, Washington  | 10/26/2012 | 5 km  | 46.25966 | -119.38399 | 29.9                        |
| M 3.2     | 3 km WNW of Touchet, Washington        | 4/10/2012  | 3 km  | 46.04549 | -118.71232 | 35.9                        |
| M 2.6     | 5 km NW of Highland, Washington        | 3/12/2012  | 5 km  | 46.16483 | -119.17115 | 26.6                        |
| M 2.7     | 22 km NNW of West Richland, Washington | 2/22/2012  | 22 km | 46.49199 | -119.47299 | 45.5                        |
| M 3.4     | 13 km N of Richland, Washington        | 10/15/2011 | 13 km | 46.40833 | -119.26232 | 41.0                        |
| M 2.8     | 13 km N of Richland, Washington        | 9/5/2011   | 13 km | 46.40716 | -119.26599 | 40.9                        |
| M 3.7     | 14 km N of Richland, Washington        | 9/4/2011   | 14 km | 46.41083 | -119.25999 | 41.2                        |
| M 2.5     | 13 km N of Richland, Washington        | 8/27/2011  | 13 km | 46.40733 | -119.26182 | 41.0                        |
| M 3.3     | 13 km N of Richland, Washington        | 5/1/2011   | 13 km | 46.40449 | -119.25532 | 40.9                        |
| M 2.5     | 21 km NW of Bickleton, Washington      | 1/12/2011  | 21 km | 46.14733 | -120.47765 | 46.6                        |
| M 2.5     | 8 km SSE of Bickleton, Washington      | 10/27/2010 | 8 km  | 45.93466 | -120.24215 | 30.8                        |
| M 2.6     | 7 km SE of Bickleton, Washington       | 10/19/2010 | 7 km  | 45.94049 | -120.24482 | 31.0                        |
| M 2.7     | 11 km SE of Arlington, Oregon          | 7/29/2010  | 11 km | 45.64849 | -120.09532 | 26.4                        |
| M 2.8     | 4 km SSE of Adams, Oregon              | 5/16/2010  | 4 km  | 45.73233 | -118.54249 | 40.5                        |
| M 2.7     | 2 km SSE of Adams, Oregon              | 5/15/2010  | 2 km  | 45.74616 | -118.54565 | 40.2                        |
| M 2.5     | 8 km S of Bickleton, Washington        | 3/31/2010  | 8 km  | 45.92466 | -120.31049 | 33.9                        |
| M 2.5     | 2 km WSW of Arlington, Oregon          | 3/1/2010   | 2 km  | 45.70866 | -120.22782 | 30.6                        |
| M 2.7     | 11 km NNE of West Richland, Washington | 2/4/2010   | 11 km | 46.39933 | -119.29599 | 40.1                        |
| M 2.5     | 14 km NNE of West Richland, Washington | 12/22/2009 | 14 km | 46.41499 | -119.26349 | 41.5                        |

| MAGNITUDE | LOCATION                               | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|----------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 2.6     | 1 km SE of Arlington, Oregon           | 11/30/2009 | 1 km  | 45.70616 | -120.18515 | 28.7                        |
| M 2.8     | 14 km NNE of West Richland, Washington | 9/11/2009  | 14 km | 46.41549 | -119.27165 | 41.4                        |
| M 2.8     | 16 km ESE of Bickleton, Washington     | 8/16/2009  | 16 km | 45.93299 | -120.10432 | 24.3                        |
| M 2.6     | 24 km WNW of Boardman, Oregon          | 8/11/2009  | 24 km | 45.93299 | -119.98799 | 19.0                        |
| M 2.5     | 14 km NNE of West Richland, Washington | 7/23/2009  | 14 km | 46.41333 | -119.26749 | 41.3                        |
| M 2.5     | 7 km SSW of Arlington, Oregon          | 7/20/2009  | 7 km  | 45.65899 | -120.23749 | 32.2                        |
| M 2.5     | 4 km SSW of West Richland, Washington  | 6/4/2009   | 4 km  | 46.27016 | -119.38332 | 30.6                        |
| M 2.8     | 8 km SW of Umapine, Oregon             | 5/29/2009  | 8 km  | 45.91549 | -118.55699 | 40.1                        |
| M 2.7     | 11 km NNE of West Richland, Washington | 5/16/2009  | 11 km | 46.39466 | -119.29432 | 39.8                        |
| M 2.7     | 14 km ESE of Wasco, Oregon             | 5/15/2009  | 14 km | 45.53833 | -120.52882 | 48.5                        |
| M 2.8     | 12 km NNE of West Richland, Washington | 5/13/2009  | 12 km | 46.40349 | -119.28915 | 40.5                        |
| M 2.9     | 12 km NNE of West Richland, Washington | 5/13/2009  | 12 km | 46.40733 | -119.28732 | 40.7                        |
| M 2.5     | 12 km NE of Roosevelt, Washington      | 5/10/2009  | 12 km | 45.83299 | -120.11015 | 23.7                        |
| M 2.5     | 11 km N of Richland, Washington        | 5/5/2009   | 11 km | 46.38666 | -119.26949 | 39.5                        |
| M 3.0     | 13 km NNE of West Richland, Washington | 5/4/2009   | 13 km | 46.41349 | -119.27282 | 41.3                        |
| M 2.6     | 11 km NNE of West Richland, Washington | 4/14/2009  | 11 km | 46.39566 | -119.29332 | 39.9                        |
| M 2.6     | 13 km N of Richland, Washington        | 4/8/2009   | 13 km | 46.40499 | -119.26482 | 40.8                        |
| M 2.7     | 11 km NNE of West Richland, Washington | 4/7/2009   | 11 km | 46.40149 | -119.29699 | 40.2                        |
| M 2.5     | 12 km NNE of West Richland, Washington | 4/7/2009   | 12 km | 46.41099 | -119.29315 | 40.9                        |
| M 2.5     | 13 km NNE of West Richland, Washington | 4/7/2009   | 13 km | 46.41099 | -119.29149 | 40.9                        |
| M 2.7     | 11 km N of Richland, Washington        | 4/4/2009   | 11 km | 46.38599 | -119.26699 | 39.5                        |
| M 2.7     | Washington                             | 4/4/2009   | 0 km  | 46.39583 | -119.29232 | 39.9                        |
| M 2.7     | 12 km NNE of West Richland, Washington | 4/3/2009   | 12 km | 46.40733 | -119.28849 | 40.7                        |
| M 2.9     | 13 km N of Richland, Washington        | 3/18/2009  | 13 km | 46.40566 | -119.26499 | 40.8                        |
| M 2.9     | 13 km NNE of West Richland, Washington | 3/18/2009  | 13 km | 46.40399 | -119.27032 | 40.7                        |
| M 2.6     | 12 km NNE of West Richland, Washington | 3/16/2009  | 12 km | 46.39966 | -119.28482 | 40.2                        |
| M 2.8     | 12 km NNE of West Richland, Washington | 3/12/2009  | 12 km | 46.40316 | -119.27132 | 40.6                        |
| M 2.9     | 13 km NNE of West Richland, Washington | 3/8/2009   | 13 km | 46.40999 | -119.27732 | 41.0                        |
| M 2.9     | 12 km NNE of West Richland, Washington | 2/21/2009  | 12 km | 46.40766 | -119.29165 | 40.7                        |
| M 2.5     | 13 km NNE of West Richland, Washington | 2/10/2009  | 13 km | 46.40783 | -119.28015 | 40.8                        |
| M 2.5     | 9 km ENE of Zillah, Washington         | 6/10/2008  | 9 km  | 46.42099 | -120.14465 | 47.6                        |

| MAGNITUDE | LOCATION                               | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|----------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 3.7     | 11 km SSW of Benton City, Washington   | 5/18/2008  | 11 km | 46.16766 | -119.55015 | 22.9                        |
| M 2.6     | 7 km WNW of Touchet, Washington        | 5/2/2008   | 7 km  | 46.05883 | -118.76815 | 34.0                        |
| M 2.5     | 5 km WSW of Arlington, Oregon          | 4/10/2008  | 5 km  | 45.68916 | -120.25999 | 32.5                        |
| M 2.8     | 3 km SE of Arlington, Oregon           | 3/31/2008  | 3 km  | 45.69683 | -120.16965 | 28.2                        |
| M 2.7     | 9 km ENE of Zillah, Washington         | 12/7/2007  | 9 km  | 46.42416 | -120.13782 | 47.6                        |
| M 2.8     | 1 km ESE of Arlington, Oregon          | 11/30/2007 | 1 km  | 45.71383 | -120.18215 | 28.4                        |
| M 2.6     | 11 km NW of Roosevelt, Washington      | 5/2/2007   | 11 km | 45.79999 | -120.33365 | 34.5                        |
| M 2.7     | 10 km NNW of West Richland, Washington | 4/16/2007  | 10 km | 46.39699 | -119.39282 | 39.3                        |
| M 2.5     | 4 km SSW of West Richland, Washington  | 1/31/2007  | 4 km  | 46.26699 | -119.38532 | 30.4                        |
| M 2.7     | 4 km SE of Arlington, Oregon           | 1/8/2007   | 4 km  | 45.68549 | -120.16199 | 28.2                        |
| M 3.4     | 9 km WNW of Garret, Washington         | 12/20/2006 | 9 km  | 46.09483 | -118.51299 | 46.0                        |
| M 2.6     | 12 km WNW of Roosevelt, Washington     | 8/21/2006  | 12 km | 45.80349 | -120.35332 | 35.5                        |
| M 2.5     | 9 km SSE of Mabton, Washington         | 11/10/2005 | 9 km  | 46.14633 | -119.93099 | 26.2                        |
| M 2.5     | 4 km SSW of West Richland, Washington  | 7/18/2005  | 4 km  | 46.26699 | -119.39115 | 30.4                        |
| M 2.5     | 4 km WNW of Benton City, Washington    | 2/1/2005   | 4 km  | 46.27683 | -119.54599 | 30.4                        |
| M 2.6     | 3 km SE of Arlington, Oregon           | 3/31/2004  | 3 km  | 45.69416 | -120.16715 | 28.2                        |
| M 2.5     | 8 km S of Arlington, Oregon            | 3/8/2004   | 8 km  | 45.64233 | -120.20049 | 31.1                        |
| M 3.3     | 10 km WSW of Wallula, Washington       | 2/28/2004  | 10 km | 46.03633 | -119.02049 | 23.3                        |
| M 2.5     | Oregon                                 | 12/1/2003  | 16 km | 45.42133 | -118.85732 | 36.5                        |
| M 2.6     | 9 km ENE of Zillah, Washington         | 11/10/2003 | 9 km  | 46.43066 | -120.15115 | 48.4                        |
| M 2.5     | 6 km SSW of Milton-Freewater, Oregon   | 10/16/2003 | 6 km  | 45.87699 | -118.42665 | 46.0                        |
| M 2.8     | 7 km S of Pilot Rock, Oregon           | 9/12/2003  | 7 km  | 45.42066 | -118.84215 | 37.0                        |
| M 2.6     | 11 km SSW of Arlington, Oregon         | 5/16/2003  | 11 km | 45.62783 | -120.27482 | 34.8                        |
| M 2.6     | 9 km WNW of Touchet, Washington        | 2/23/2003  | 9 km  | 46.06216 | -118.78599 | 33.4                        |
| M 2.7     | 5 km SSW of West Richland, WA          | 1/24/2003  | 5 km  | 46.26166 | -119.38499 | 30.1                        |
| M 2.9     | 4 km SSE of Arlington, Oregon          | 1/17/2003  | 4 km  | 45.68016 | -120.17749 | 29.0                        |
| M 2.7     | 4 km SW of West Richland, Washington   | 12/30/2002 | 4 km  | 46.27299 | -119.40199 | 30.8                        |
| M 2.5     | 10 km ESE of Condon, Oregon            | 10/25/2002 | 10 km | 45.18433 | -120.06499 | 49.8                        |
| M 2.7     | 8 km ESE of Condon, Oregon             | 10/25/2002 | 8 km  | 45.19266 | -120.09365 | 49.9                        |
| M 2.7     | 4 km SE of Arlington, Oregon           | 1/31/2002  | 4 km  | 45.68516 | -120.16599 | 28.4                        |
| M 2.5     | 7 km ESE of Condon, Oregon             | 6/15/2001  | 7 km  | 45.20166 | -120.10765 | 49.7                        |

| MAGNITUDE | LOCATION                             | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|--------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 2.6     | 5 km N of Boardman, Oregon           | 12/29/2000 | 5 km  | 45.88683 | -119.70832 | 5.5                         |
| M 3.2     | 14 km NE of Condon, Oregon           | 8/17/2000  | 14 km | 45.31199 | -120.04149 | 41.5                        |
| M 2.8     | 9 km ESE of Condon, Oregon           | 8/3/2000   | 9 km  | 45.20866 | -120.07332 | 48.5                        |
| M 2.5     | 7 km ESE of Arlington, Oregon        | 2/21/2000  | 7 km  | 45.68283 | -120.12482 | 26.6                        |
| M 2.6     | 10 km ESE of Arlington, Oregon       | 2/15/2000  | 10 km | 45.68766 | -120.07915 | 24.4                        |
| M 2.6     | 20 km E of Arlington, Oregon         | 1/13/2000  | 20 km | 45.69083 | -119.93465 | 18.2                        |
| M 2.8     | 11 km E of Arlington, Oregon         | 1/5/2000   | 11 km | 45.70416 | -120.04949 | 22.6                        |
| M 2.7     | 16 km ENE of Arlington, Oregon       | 12/21/1999 | 16 km | 45.75449 | -120.00015 | 19.2                        |
| M 3.1     | 22 km NNW of Benton City, Washington | 9/19/1999  | 22 km | 46.44133 | -119.62582 | 41.8                        |
| M 2.9     | 6 km NE of Granger, Washington       | 9/19/1999  | 6 km  | 46.38683 | -120.13849 | 45.5                        |
| M 2.6     | 10 km E of Umatilla, Oregon          | 7/24/1999  | 10 km | 45.92816 | -119.21365 | 11.4                        |
| M 2.9     | 13 km ESE of Condon, Oregon          | 3/21/1999  | 13 km | 45.18033 | -120.03232 | 49.4                        |
| M 2.6     | 2 km NNE of Umapine, Oregon          | 3/10/1999  | 2 km  | 45.99916 | -118.48049 | 45.1                        |
| M 2.9     | 25 km WSW of Echo, Oregon            | 9/5/1998   | 25 km | 45.64816 | -119.49082 | 11.2                        |
| M 2.6     | 11 km ENE of Lexington, Oregon       | 4/14/1998  | 11 km | 45.48033 | -119.53949 | 23.0                        |
| M 2.7     | 22 km NNE of Burbank, Washington     | 3/23/1998  | 22 km | 46.38383 | -118.88965 | 46.2                        |
| M 2.6     | 7 km NNE of Grandview, Washington    | 3/1/1998   | 7 km  | 46.31733 | -119.88182 | 35.5                        |
| M 3.1     | 8 km NNE of Roosevelt, Washington    | 2/3/1998   | 8 km  | 45.81383 | -120.19215 | 27.7                        |
| M 2.7     | 20 km NW of Bickleton, Washington    | 1/21/1998  | 20 km | 46.14883 | -120.45832 | 45.8                        |
| M 3.3     | 19 km NW of Bickleton, Washington    | 11/18/1997 | 19 km | 46.13699 | -120.46099 | 45.5                        |
| M 3.9     | 20 km NW of Bickleton, Washington    | 11/18/1997 | 20 km | 46.14316 | -120.47082 | 46.1                        |
| M 2.5     | 21 km NW of Bickleton, Washington    | 11/18/1997 | 21 km | 46.14449 | -120.48232 | 46.7                        |
| M 2.8     | 20 km E of Goldendale, Washington    | 11/11/1997 | 20 km | 45.85099 | -120.56465 | 45.6                        |
| M 2.7     | 22 km SE of Desert Aire, Washington  | 11/9/1997  | 22 km | 46.53849 | -119.70382 | 48.7                        |
| M 3.4     | 22 km SE of Desert Aire, Washington  | 11/6/1997  | 22 km | 46.53299 | -119.70832 | 48.3                        |
| M 3.1     | 14 km NNW of Bickleton, Washington   | 10/13/1997 | 14 km | 46.11399 | -120.37615 | 41.2                        |
| M 2.7     | 6 km S of Arlington, Oregon          | 9/10/1997  | 6 km  | 45.65433 | -120.19799 | 30.6                        |
| M 2.8     | 7 km S of Arlington, Oregon          | 8/17/1997  | 7 km  | 45.64833 | -120.18632 | 30.3                        |
| M 2.7     | 1 km N of Umapine, Oregon            | 7/23/1997  | 1 km  | 45.99233 | -118.49715 | 44.2                        |
| M 2.7     | 12 km NNE of Lexington, Oregon       | 5/13/1997  | 12 km | 45.54316 | -119.60332 | 19.4                        |
| M 3.2     | 9 km ESE of Condon, Oregon           | 4/17/1997  | 9 km  | 45.18849 | -120.08199 | 49.9                        |

| MAGNITUDE | LOCATION                              | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|---------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 2.6     | 10 km ESE of Condon, Oregon           | 3/28/1997  | 10 km | 45.20049 | -120.05615 | 48.6                        |
| M 3.1     | 10 km E of Condon, Oregon             | 3/23/1997  | 10 km | 45.24633 | -120.04932 | 45.6                        |
| M 3.1     | 11 km ESE of Condon, Oregon           | 3/23/1997  | 11 km | 45.19516 | -120.05082 | 48.8                        |
| M 3.9     | 10 km ESE of Condon, Oregon           | 3/22/1997  | 10 km | 45.19733 | -120.06715 | 49.1                        |
| M 2.7     | 9 km ESE of Condon, Oregon            | 3/22/1997  | 9 km  | 45.21399 | -120.07365 | 48.2                        |
| M 2.5     | 25 km WSW of Echo, Oregon             | 3/21/1997  | 25 km | 45.64349 | -119.48799 | 11.5                        |
| M 2.9     | 11 km NNE of Lexington, Oregon        | 2/13/1996  | 11 km | 45.52999 | -119.60649 | 20.3                        |
| M 3.1     | 13 km SSW of Benton City, Washington  | 11/2/1995  | 13 km | 46.14999 | -119.56432 | 21.6                        |
| M 3.1     | 4 km S of Grandview, Washington       | 8/29/1995  | 4 km  | 46.20816 | -119.90549 | 29.1                        |
| M 3.3     | 13 km N of Richland, Washington       | 6/12/1995  | 13 km | 46.40449 | -119.26282 | 40.8                        |
| M 2.7     | 2 km SE of Arlington, Oregon          | 11/17/1994 | 2 km  | 45.70116 | -120.17749 | 28.5                        |
| M 2.6     | 3 km SE of Arlington, Oregon          | 11/3/1994  | 3 km  | 45.69399 | -120.17182 | 28.4                        |
| M 2.7     | 4 km SE of Arlington, Oregon          | 10/6/1994  | 4 km  | 45.68066 | -120.16349 | 28.4                        |
| M 2.6     | 5 km NNE of Pilot Rock, Oregon        | 9/25/1994  | 5 km  | 45.53049 | -118.80032 | 33.6                        |
| M 2.9     | 4 km SE of Arlington, Oregon          | 9/22/1994  | 4 km  | 45.69149 | -120.16332 | 28.1                        |
| M 2.6     | 7 km NNE of Roosevelt, Washington     | 5/24/1994  | 7 km  | 45.80983 | -120.18849 | 27.5                        |
| M 2.9     | 9 km ESE of Condon, Oregon            | 12/18/1993 | 9 km  | 45.19183 | -120.07315 | 49.5                        |
| M 3.0     | 8 km ESE of Condon, Oregon            | 12/16/1993 | 8 km  | 45.19583 | -120.08982 | 49.6                        |
| M 2.8     | 4 km N of Milton-Freewater, Oregon    | 9/23/1992  | 4 km  | 45.97499 | -118.38965 | 48.9                        |
| M 3.9     | 8 km WSW of Irrigon, Oregon           | 8/7/1992   | 8 km  | 45.86033 | -119.58949 | 1.6                         |
| M 2.8     | 5 km SSW of College Place, Washington | 8/6/1992   | 5 km  | 46.00283 | -118.40582 | 48.6                        |
| M 2.8     | 12 km NNE of Condon, Oregon           | 4/20/1991  | 12 km | 45.34449 | -120.13782 | 42.1                        |
| M 2.5     | 5 km E of Wallula, Washington         | 4/4/1991   | 5 km  | 46.08183 | -118.83349 | 32.3                        |
| M 2.5     | 9 km SSW of Prosser, Washington       | 3/25/1991  | 9 km  | 46.12483 | -119.80099 | 21.8                        |
| M 2.5     | 4 km NW of Bickleton, Washington      | 12/17/1990 | 4 km  | 46.03183 | -120.33649 | 37.1                        |
| M 2.5     | 4 km NW of Bickleton, Washington      | 11/2/1990  | 4 km  | 46.03183 | -120.33799 | 37.2                        |
| M 2.6     | 17 km NW of Ukiah, Oregon             | 8/15/1990  | 17 km | 45.25549 | -119.07165 | 40.6                        |
| M 3.3     | 20 km SE of Desert Aire, Washington   | 4/22/1990  | 20 km | 46.54399 | -119.73415 | 49.2                        |
| M 2.8     | 11 km WSW of Pendleton, Oregon        | 3/2/1990   | 11 km | 45.64266 | -118.92832 | 24.3                        |
| M 2.5     | 15 km NNE of Heppner, Oregon          | 12/28/1989 | 15 km | 45.48166 | -119.48915 | 22.5                        |
| M 2.7     | 16 km ENE of Condon, Oregon           | 8/18/1989  | 16 km | 45.27449 | -119.98265 | 42.5                        |

| MAGNITUDE | LOCATION                           | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 2.5     | 14 km SW of Basin City, Washington | 4/3/1989   | 14 km | 46.48683 | -119.26099 | 46.4                        |
| M 3.1     | 8 km NNW of Roosevelt, Washington  | 3/27/1989  | 8 km  | 45.81583 | -120.26149 | 31.0                        |
| M 2.6     | 13 km E of Arlington, Oregon       | 2/21/1989  | 13 km | 45.73883 | -120.03082 | 20.9                        |
| M 2.6     | 11 km S of Mabton, Washington      | 2/10/1989  | 11 km | 46.11383 | -120.02449 | 27.4                        |
| M 2.8     | 2 km W of Touchet, Washington      | 1/27/1989  | 2 km  | 46.04033 | -118.70015 | 36.3                        |
| M 2.5     | 19 km ENE of Condon, Oregon        | 11/21/1988 | 19 km | 45.26966 | -119.94415 | 42.0                        |
| M 2.6     | 16 km W of Ukiah, Oregon           | 10/19/1988 | 16 km | 45.13966 | -119.13865 | 47.2                        |
| M 3.5     | 12 km NNW of Roosevelt, Washington | 9/29/1988  | 12 km | 45.84983 | -120.25965 | 30.9                        |
| M 2.8     | 8 km WNW of Touchet, Washington    | 8/26/1988  | 8 km  | 46.07049 | -118.76899 | 34.4                        |
| M 2.7     | 6 km E of Condon, Oregon           | 8/18/1988  | 6 km  | 45.22399 | -120.09949 | 48.1                        |
| M 2.5     | 8 km SSW of Ione, Oregon           | 8/6/1988   | 8 km  | 45.43499 | -119.88232 | 30.4                        |
| M 2.6     | 5 km NE of Condon, Oregon          | 7/23/1988  | 5 km  | 45.26016 | -120.13282 | 46.8                        |
| M 2.9     | 3 km ENE of Condon, Oregon         | 7/11/1988  | 3 km  | 45.24466 | -120.14215 | 48.0                        |
| M 2.5     | 7 km N of Richland, Washington     | 3/18/1988  | 7 km  | 46.35049 | -119.26815 | 37.1                        |
| M 2.6     | 7 km NNE of Richland, Washington   | 3/18/1988  | 7 km  | 46.35016 | -119.26582 | 37.1                        |
| M 2.6     | 8 km S of Prosser, Washington      | 3/17/1988  | 8 km  | 46.13233 | -119.78299 | 21.9                        |
| M 2.6     | 9 km NNW of Ione, Oregon           | 2/28/1988  | 9 km  | 45.57116 | -119.88465 | 22.2                        |
| M 2.7     | 6 km ESE of Condon, Oregon         | 2/20/1988  | 6 km  | 45.21633 | -120.10565 | 48.8                        |
| M 2.5     | 16 km SSE of Arlington, Oregon     | 2/14/1988  | 16 km | 45.57699 | -120.14932 | 31.2                        |
| M 2.5     | 5 km W of Heppner, Oregon          | 2/7/1988   | 5 km  | 45.35599 | -119.62165 | 32.2                        |
| M 2.5     | 3 km ENE of Prosser, Washington    | 2/3/1988   | 3 km  | 46.22299 | -119.73399 | 27.3                        |
| M 3.1     | 10 km ESE of Condon, Oregon        | 9/8/1987   | 10 km | 45.19116 | -120.07199 | 49.5                        |
| M 2.6     | Oregon                             | 12/8/1986  | 19 km | 45.97666 | -118.95299 | 23.5                        |
| M 2.5     | 15 km NW of Lonerock, Oregon       | 11/10/1986 | 15 km | 45.19966 | -119.99715 | 47.5                        |
| M 2.8     | 11 km NE of Grandview, Washington  | 3/2/1986   | 11 km | 46.31149 | -119.78382 | 33.8                        |
| M 2.8     | 9 km W of Benton City, Washington  | 2/5/1986   | 9 km  | 46.25366 | -119.61632 | 28.8                        |
| M 3.2     | 8 km ESE of Wallula, Washington    | 2/4/1986   | 8 km  | 46.04399 | -118.80999 | 31.8                        |
| M 2.6     | 13 km S of Mesa, Washington        | 2/1/1986   | 13 km | 46.45233 | -118.99699 | 48.2                        |
| M 2.9     | 9 km W of Benton City, Washington  | 1/29/1986  | 9 km  | 46.25399 | -119.61549 | 28.8                        |
| M 2.6     | 12 km S of Mesa, Washington        | 1/22/1986  | 12 km | 46.45949 | -118.99765 | 48.6                        |
| M 3.0     | 10 km W of Benton City, Washington | 1/16/1986  | 10 km | 46.25149 | -119.61799 | 28.6                        |

| MAGNITUDE | LOCATION                            | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|-------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 2.6     | 5 km ENE of Umapine, Oregon         | 12/26/1985 | 5 km  | 45.98849 | -118.42715 | 47.4                        |
| M 2.8     | 9 km W of Benton City, Washington   | 12/19/1985 | 9 km  | 46.24999 | -119.61349 | 28.5                        |
| M 2.6     | 9 km NNE of Granger, Washington     | 12/6/1985  | 9 km  | 46.41816 | -120.14549 | 47.5                        |
| M 2.9     | 13 km ESE of Prosser, Washington    | 12/3/1985  | 13 km | 46.16549 | -119.60332 | 22.7                        |
| M 2.9     | 10 km W of Benton City, Washington  | 11/18/1985 | 10 km | 46.25183 | -119.61832 | 28.7                        |
| M 2.8     | 14 km NNE of Richland, Washington   | 10/27/1985 | 14 km | 46.39883 | -119.19232 | 41.3                        |
| M 2.5     | 15 km NNE of Richland, Washington   | 10/27/1985 | 15 km | 46.40949 | -119.18132 | 42.2                        |
| M 2.6     | 11 km WSW of Lone, Oregon           | 8/2/1985   | 11 km | 45.44299 | -119.95332 | 31.5                        |
| M 2.5     | 8 km SSW of Toppenish, Washington   | 6/21/1985  | 8 km  | 46.30216 | -120.33199 | 47.0                        |
| M 2.5     | 9 km SSW of Toppenish, Washington   | 6/19/1985  | 9 km  | 46.29799 | -120.33815 | 47.0                        |
| M 2.5     | 4 km SSE of Umatilla, Oregon        | 4/30/1985  | 4 km  | 45.88166 | -119.32049 | 5.8                         |
| M 2.6     | 4 km NNW of Hermiston, Oregon       | 4/17/1985  | 4 km  | 45.87899 | -119.31532 | 5.8                         |
| M 2.6     | 15 km ENE of Echo, Oregon           | 3/1/1985   | 15 km | 45.80499 | -119.01599 | 17.3                        |
| M 2.6     | 20 km NW of Boardman, Oregon        | 2/27/1985  | 20 km | 45.96133 | -119.90632 | 16.3                        |
| M 3.9     | 15 km SSE of Boardman, Oregon       | 2/10/1985  | 15 km | 45.70449 | -119.63449 | 8.8                         |
| M 2.7     | 15 km SSE of Wallula, Washington    | 1/31/1985  | 15 km | 45.95449 | -118.83682 | 27.9                        |
| M 2.8     | 20 km NW of Boardman, Oregon        | 1/31/1985  | 20 km | 45.96449 | -119.90249 | 16.3                        |
| M 2.6     | 21 km NW of Boardman, Oregon        | 1/28/1985  | 21 km | 45.96733 | -119.91099 | 16.7                        |
| M 2.6     | 9 km ENE of Zillah, Washington      | 12/6/1984  | 9 km  | 46.42216 | -120.14565 | 47.7                        |
| M 2.9     | 12 km S of Mabton, Washington       | 10/4/1984  | 12 km | 46.10549 | -120.02565 | 27.0                        |
| M 2.5     | 19 km SE of Prosser, Washington     | 9/7/1984   | 19 km | 46.07416 | -119.60699 | 16.4                        |
| M 2.5     | 9 km S of Prosser, Washington       | 8/10/1984  | 9 km  | 46.12516 | -119.78782 | 21.5                        |
| M 2.7     | 4 km E of Umapine, Oregon           | 6/6/1984   | 4 km  | 45.97399 | -118.43649 | 46.7                        |
| M 2.5     | 7 km W of Highland, Washington      | 5/14/1984  | 7 km  | 46.12349 | -119.20465 | 23.4                        |
| M 2.8     | 20 km SSW of Prosser, Washington    | 4/30/1984  | 20 km | 46.04049 | -119.87815 | 18.8                        |
| M 3.3     | 9 km NNE of Umatilla, Oregon        | 3/23/1984  | 9 km  | 45.99599 | -119.29215 | 13.7                        |
| M 2.5     | 8 km W of Heppner, Oregon           | 1/18/1984  | 8 km  | 45.35983 | -119.66482 | 32.4                        |
| M 2.5     | 8 km ENE of Zillah, Washington      | 1/12/1984  | 8 km  | 46.42666 | -120.15149 | 48.1                        |
| M 2.7     | 9 km W of Pendleton, Oregon         | 10/21/1983 | 9 km  | 45.65999 | -118.91565 | 24.3                        |
| M 3.8     | 6 km S of College Place, Washington | 3/22/1983  | 6 km  | 45.99199 | -118.40299 | 48.5                        |
| M 3.2     | 9 km NNE of Umatilla, Oregon        | 11/23/1982 | 9 km  | 45.99733 | -119.28865 | 13.8                        |

| MAGNITUDE | LOCATION                               | DATE       | DEPTH | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|----------------------------------------|------------|-------|----------|------------|-----------------------------|
| M 2.7     | 10 km NNE of Umatilla, Oregon          | 10/30/1982 | 10 km | 45.99899 | -119.28749 | 14.0                        |
| M 2.7     | 24 km NNW of Bickleton, Washington     | 10/19/1982 | 24 km | 46.18549 | -120.46415 | 47.3                        |
| M 2.8     | 9 km NNE of Umatilla, Oregon           | 10/12/1982 | 9 km  | 45.99599 | -119.28815 | 13.8                        |
| M 2.6     | 19 km WNW of Bickleton, Washington     | 8/30/1982  | 19 km | 46.07516 | -120.52715 | 46.7                        |
| M 2.6     | 20 km NW of Bickleton, Washington      | 7/20/1982  | 20 km | 46.12766 | -120.48832 | 46.4                        |
| M 3.2     | 16 km WSW of Bickleton, Washington     | 6/14/1981  | 16 km | 45.96166 | -120.50699 | 43.6                        |
| M 2.8     | 19 km ENE of Roosevelt, Washington     | 12/18/1980 | 19 km | 45.83299 | -120.00732 | 18.7                        |
| M 2.6     | 3 km S of Finley, Washington           | 3/12/1980  | 3 km  | 46.12466 | -119.02565 | 27.7                        |
| M 2.6     | 11 km NNE of Boardman, Oregon          | 3/4/1980   | 11 km | 45.93999 | -119.66399 | 7.5                         |
| M 2.5     | 27 km NNW of Benton City, Washington   | 9/8/1979   | 27 km | 46.48966 | -119.64699 | 45.1                        |
| M 4.3     | 6 km S of College Place, Washington    | 4/8/1979   | 6 km  | 45.99133 | -118.39915 | 48.7                        |
| M 2.7     | 4 km S of Wallula, Washington          | 3/1/1979   | 4 km  | 46.04749 | -118.90565 | 28.1                        |
| M 3.6     | 7 km SE of Mabton, Washington          | 2/17/1979  | 7 km  | 46.16416 | -119.93265 | 27.2                        |
| M 2.6     | 3 km SSE of Umatilla, Oregon           | 12/22/1978 | 3 km  | 45.89133 | -119.32815 | 6.3                         |
| M 2.8     | 4 km SE of Wallula, Washington         | 3/4/1978   | 4 km  | 46.06033 | -118.85549 | 30.5                        |
| M 3.2     | 7 km NNE of Boardman, Oregon           | 2/20/1978  | 7 km  | 45.89649 | -119.64999 | 4.4                         |
| M 2.9     | 7 km NNE of Boardman, Oregon           | 3/31/1977  | 7 km  | 45.90183 | -119.65415 | 4.8                         |
| M 3.1     | 7 km NNE of Boardman, Oregon           | 3/11/1977  | 7 km  | 45.89916 | -119.66565 | 4.9                         |
| M 2.9     | 19 km ESE of Arlington, Oregon         | 7/26/1976  | 19 km | 45.64683 | -119.97382 | 21.5                        |
| M 3.1     | 7 km NW of Touchet, Washington         | 7/23/1976  | 7 km  | 46.08533 | -118.74965 | 35.7                        |
| M 3.5     | 18 km ESE of Arlington, Oregon         | 7/1/1975   | 18 km | 45.62799 | -120.00199 | 23.4                        |
| M 3.6     | 18 km NW of Lone, Oregon               | 7/1/1975   | 18 km | 45.60533 | -120.01615 | 24.9                        |
| M 3.8     | 12 km SSE of Prosser, Washington       | 6/28/1975  | 12 km | 46.09899 | -119.70599 | 18.6                        |
| M 3.3     | 12 km SSE of Prosser, Washington       | 6/28/1975  | 12 km | 46.10533 | -119.70365 | 19.0                        |
| M 2.7     | 13 km SSE of Prosser, Washington       | 6/28/1975  | 13 km | 46.09216 | -119.72215 | 18.3                        |
| M 3.1     | 1 km WSW of Pasco, Washington          | 6/15/1975  | 1 km  | 46.23399 | -119.11315 | 32.1                        |
| M 2.8     | 14 km NE of Richland, Washington       | 5/22/1975  | 14 km | 46.39183 | -119.17899 | 41.1                        |
| M 2.8     | 16 km NNE of West Richland, Washington | 5/9/1975   | 16 km | 46.43099 | -119.25999 | 42.6                        |
| M 2.7     | 4 km S of Cayuse, Oregon               | 5/9/1975   | 4 km  | 45.63299 | -118.55599 | 41.3                        |
| M 2.8     | 19 km SSE of Prosser, Washington       | 12/29/1973 | 19 km | 46.04883 | -119.65799 | 14.8                        |
| M 2.5     | 17 km S of Mesa, Washington            | 12/9/1972  | 17 km | 46.41883 | -119.03065 | 45.4                        |

| MAGNITUDE | LOCATION                               | DATE       | DEPTH   | LATITUDE | LONGITUDE  | MILES FROM PROJECT BOUNDARY |
|-----------|----------------------------------------|------------|---------|----------|------------|-----------------------------|
| M 2.6     | 17 km S of Mesa, Washington            | 12/9/1972  | 17 km   | 46.41883 | -119.03049 | 45.4                        |
| M 2.5     | 15 km WNW of lone, Oregon              | 8/27/1972  | 15 km   | 45.53283 | -120.01615 | 28.3                        |
| M 2.6     | 15 km WNW of lone, Oregon              | 8/21/1972  | 15 km   | 45.57516 | -119.98899 | 25.3                        |
| M 3.1     | 8 km S of West Richland, Washington    | 1/4/1971   | 8 km    | 46.23083 | -119.36315 | 28.1                        |
| M 2.8     | 4 km WNW of Grandview, Washington      | 12/9/1970  | 4 km    | 46.27016 | -119.95115 | 34.0                        |
| M 3.0     | 5 km SSE of Satus, Washington          | 11/29/1970 | 5 km    | 46.22516 | -120.11532 | 35.9                        |
| M 2.9     | 14 km NNE of West Richland, Washington | 11/14/1970 | 14 km   | 46.42983 | -119.29899 | 42.1                        |
| M 2.9     | 16 km NNE of West Richland, Washington | 11/7/1970  | 16 km   | 46.44199 | -119.29149 | 43.0                        |
| M 2.5     | 4 km ENE of Echo, Oregon               | 9/29/1970  | 4 km    | 45.76049 | -119.14549 | 11.5                        |
| M 2.8     | 9 km ENE of Zillah, Washington         | 6/22/1970  | 9 km    | 46.42849 | -120.15099 | 48.2                        |
| M 2.5     | 3 km NNE of Satus, Washington          | 4/29/1970  | 3 km    | 46.29966 | -120.13782 | 40.6                        |
| M 2.6     | 3 km N of Satus, Washington            | 4/22/1970  | 3 km    | 46.29883 | -120.15515 | 41.1                        |
| M 2.7     | 6 km WNW of Mabton, Washington         | 4/4/1970   | 6 km    | 46.22833 | -120.07999 | 35.0                        |
| M 2.5     | 14 km NNE of West Richland, Washington | 8/31/1969  | 14 km   | 46.42916 | -119.29165 | 42.2                        |
| M 2.6     | 14 km NNE of West Richland, Washington | 7/31/1969  | 14 km   | 46.41849 | -119.28449 | 41.5                        |
| M 2.8     | 6 km N of Boardman, Oregon             | 4/19/1969  | 6 km    | 45.89749 | -119.70349 | 5.9                         |
| M 6.0     | 3 km SW of Garrett, Washington         | 7/16/1936  | 3 km    | 46.03099 | -118.42899 | 48.1                        |
| M 4.7     | Near Umatilla, Oregon                  | 3/7/1893   | Unknown | 45.89999 | -119.29999 | 7.4                         |