

Pacific Northwest National Laboratory: Introduction and Environmental Management Overview

October 10, 2023

**Tom Brouns** Sector Manager Environmental Management



PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-190912





## PNNL was born out of the Manhattan Project at Hanford







# Today: DOE's 17 national laboratories tackle critical scientific challenges





### PNNL is one of DOE's **most diversified** national laboratories



5,700 Staff





**1,905** Peer-reviewed Publications\*





FY 2022 Spending

\*Available peer-reviewed publication data are from FY 2021

### Energy & Environment 24%





PNNL is advancing scientific frontiers and providing solutions to critical national needs





## PNNL's distinguishing strengths enable **mission impact**





### PNNL's **Science** mission advances understanding of the world around us















# PNNL's National Security mission is reducing the threat from weapons of mass effect















# PNNL's **Energy and Environment** mission delivers innovations for our energy future















## Investing \$1 billion over 10 years to modernize PNNL facilities and infrastructure



Radiochemical NNSA-SC MOA



# PNNL's Energy and Environment mission

# 000 1,300 Staff

More than 230 Energy and Environment staff support PNNL's National Security mission

### **Mission Sponsors Environment**

- **Environmental Management**
- **Nuclear Regulatory Commission**

### Energy

- Energy Efficiency & Renewable Energy
- Office of Electricity
- Cybersecurity & Energy Security
- Nuclear Energy
- Fossil Energy & Carbon Management
- ARPA-E





# **PNNL** has a long history and strong commitment to supporting remediation of the Hanford site

- PNNL delivers S&T continuity for the Hanford Site
  - Five decades of objective scientific data to DOE, regional, and community stakeholders
  - Enabling technology innovations to support the cleanup mission
  - Approx. \$40M annual EM business volume, ~50% DOE-direct
- Core capabilities:
  - Waste Processing
  - Subsurface Remediation



PNNL uses its Radiochemical Processing Laboratory to receive and analyze radioactive samples and conduct groundbreaking nuclear science. RPL is a Hazard Category II non-reactor nuclear research facility located on the edge of the Hanford Site.



# Key Historic PNNL Contributions to Tank Waste Processing

- Invented, matured, and transferred Joule Heated Ceramic Melter technology
  - Baseline for West Valley, Savannah River (SRS), and Hanford
  - Enhanced glass formulations, waste loading for SRS
- Developed and maturated tank waste pretreatment technologies
  - Filtration, cesium ion exchange, sludge washing and settling
  - Baseline for West Valley, technology selection for SRS, Hanford flowsheets from early baseline to WTP and now DFLAW
- Led EM national tank waste technology development program (1995-2002) technical team
  - Safety, waste mobilization/retrieval, characterization, pretreatment, immobilization, and tank closure
- Mitigated Hanford tank hydrogen flammable gas issues
  - Hanford's burping tank (SY-101)
  - Deep sludge mixing (C-farm waste transfer to AN-farm)



PNNL helped pioneer nuclear waste vitrification efforts starting in the late 1960s. Our research now includes a variety of activities related to commercial glass and materials science, including grout, metals, and ceramics.



# **PNNL** provides technical foundation for key waste processing technologies and approaches

Leader in tank waste chemistry, processing, and waste forms



### **Primary clients**

- DOE Office of River Protection
- DOE-EM
- Tank operations and waste treatment contractors:
  - ✓ Washington River Protection Solutions
  - ✓ Bechtel National Inc.











- Waste sampling and characterization
- Tank life extension
- Tank integrity
- On-line monitoring
- Tank vapors
- Retrieval technologies
- Chemical speciation
- Slurry mixing and transfer
- Flammable gas safety







- Filtration
- Ion exchange
  - H<sub>2</sub> generation
- Evaporation
- I-129/Tc-99/Hg management
- Sludge leaching and washing
- On-line monitoring





### Immobilization



- Glass and grout waste form
  development
- Waste form design, testing, and qualification
- Process control and system planning models
- Melter dynamics and cold cap behavior
- Tc, I, Hg partitioning
- On-line monitoring









- Waste form development and qualification
- Long-term waste form evolution and corrosion
- PA data inputs and modeling
- Long term disposal facility and subsurface transport modeling
- Alternate Disposal Scenario Evaluation
- Regulatory Support





# PNNL provides technical foundation for key soil and groundwater remediation approaches

### Experts in subsurface science, geochemistry, and environmental remediation



### Primary clients

- DOE Richland Operations
- DOE-EM, DOE-LM
- Plateau remediation contractor: Central Plateau Cleanup Company



96 Staff; >600 Pubs DOE-EM, EPA, NRC



## **CERCLA/RCRA Process Support**





## **Site CSM and Remediation Challenges**

### Vadose Zone

### Groundwater

Complicated contaminant behavior

> Recalcitrant and co-mingled contaminants & continuing sources

> > Large-scale contamination & uncertain amount and distribution

Significant inventory of contaminants in the deep vadose zone soil column

Geologic heterogeneity and complexity



Management of uncertainty

Implementation and integration of exit strategies



**Technical reviews** 

- Advance geophysical monitoring technologies through integration of predictive analysis to quantify contaminant flux to groundwater
- Provide technologies for streamlined and long-term monitoring for

|                                                                | DOE/RL-2020-60<br>Revision 0 |
|----------------------------------------------------------------|------------------------------|
| Site Groundwater Monit                                         | oring Report for             |
|                                                                |                              |
|                                                                |                              |
|                                                                |                              |
|                                                                |                              |
| U.S. Department of Energy<br>tary for Environmental Management |                              |
| 201 ( January                                                  |                              |
| hington 99362                                                  |                              |
|                                                                |                              |
|                                                                |                              |
|                                                                |                              |
|                                                                |                              |
|                                                                |                              |
|                                                                |                              |
| Approved for Public Relator;<br>Farther Discoverance Universit |                              |



## **PNNL's Core Capabilities**

Molecular-

Scale

(no peak)

Cr6+ peak

- Wide range of analytical site characterization capabilities
- Expertise to interrogate, evaluate, and interpret data



**Bench-Scale** 

**Contaminant Mobility** 

**Geochemical Reactions and** 

Scanning Electron Microscopy



EXAFS/XANES



X-Ray Fluorescence (micron scale) \_







Remedy-

Scale



### Remedy Implementation and Performance Monitoring

### Advanced Geophysics and Deep Learning



### **CERCLA Remedy Screening/Treatability Study: DV-1 OU** Northwest



Goals/Objectives of technology pre-screening :

- Identify potentially applicable technologies that may require further evaluation through treatability studies and/or additional analyses
- Technologies demonstrated/proven as viable and do not require additional evaluation during RI is carried forward to FS.



Adopted from Guidance For Conducting Treatability Studies Under CERCLA (EPA/540/R-92/071a)

Pacific



Recommended laboratory studies by the TTER (reproduced from DOE/RL-2017-58; DOE/RL-2019-28)



## **DV-1** Treatability **Study**

- Laboratory treatability study for the testing of eight selected technologies was recommended for DV-1 OU
  - In situ technologies relying on biochemical manipulation of contaminants to enhance and control the attenuation processes such as:
    - ✓ Reduction of redox sensitive contaminants to enhance precipitation
    - ✓ Sequestration of precipitated contaminants by coating
- A test plan was developed in 2019 and the study was initiated in FY22
  - Four-year effort, initiated in FY22
  - Final deliverable to Ecology in 2026 per M-015-110E due 02/28/2026

| Technology Process<br>Option                                                                                      | COI to Study         | Examples of Potentially<br>Applicable 200-DV-1 Waste<br>Sites | Examples of Other<br>Potentially Applicable Waste<br>Sites          |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Technologies for Unsaturated Zone Applications                                                                    |                      |                                                               |                                                                     |  |  |
| Gas-phase combined<br>bioreduction and<br>chemical sequestration                                                  | Тс-99                | BY Cribs                                                      | BC Cribs and Trenches                                               |  |  |
| Gas-phase bioremediation                                                                                          | Nitrate              | Unknown                                                       | Unknown                                                             |  |  |
|                                                                                                                   | CN                   | BY Cribs                                                      | Unknown                                                             |  |  |
|                                                                                                                   | Cr(VI)               | Unknown                                                       | 216-S-10, 216-S-8, 216-T-4                                          |  |  |
| Gas-phase chemical sequestration                                                                                  | I-129                | Unknown                                                       | 216-A-10, 216-A-5, 216-S-7                                          |  |  |
| Technologies for the 200-DV-1 Perched Water and Use as a Horizontal Permeable Reactive Barrier at the Water Table |                      |                                                               |                                                                     |  |  |
| Particulate-phase<br>chemical<br>sequestration                                                                    | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
|                                                                                                                   | Cr(VI)               | Unknown                                                       | 216-S-10, 216-S-8, 216-T-4                                          |  |  |
|                                                                                                                   | I-129                | Unknown                                                       | 216-A-10, 216-A-5, 216-S-7                                          |  |  |
| Particulate-phase combined<br>chemical reduction and<br>sequestration                                             | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
| Liquid-phase chemical sequestration                                                                               | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
|                                                                                                                   | Cr(VI)               | Unknown                                                       | 216-S-10, 216-S-8, 216-T-4                                          |  |  |
|                                                                                                                   | I-129                | Unknown                                                       | 216-A-10, 216-A-5, 216-S-7                                          |  |  |
| Liquid-phase combined<br>chemical reduction and<br>sequestration                                                  | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
| Liquid-phase combined<br>bioreduction and chemical<br>sequestration                                               | U, Tc-99,<br>nitrate | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
|                                                                                                                   | CN                   | BY Cribs                                                      | Unknown                                                             |  |  |

| Technology Process<br>Option                                                                                      | COI to Study         | Examples of Potentially<br>Applicable 200-DV-1 Waste<br>Sites | Examples of Other<br>Potentially Applicable Waste<br>Sites          |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Technologies for Unsaturated Zone Applications                                                                    |                      |                                                               |                                                                     |  |  |
| Gas-phase combined<br>bioreduction and<br>chemical sequestration                                                  | Tc-99                | BY Cribs                                                      | BC Cribs and Trenches                                               |  |  |
| Gas-phase bioremediation                                                                                          | Nitrate              | Unknown                                                       | Unknown                                                             |  |  |
|                                                                                                                   | CN                   | BY Cribs                                                      | Unknown                                                             |  |  |
|                                                                                                                   | Cr(VI)               | Unknown                                                       | 216-S-10, 216-S-8, 216-T-4                                          |  |  |
| Gas-phase chemical<br>sequestration                                                                               | I-129                | Unknown                                                       | 216-A-10, 216-A-5, 216-S-7                                          |  |  |
| Technologies for the 200-DV-1 Perched Water and Use as a Horizontal Permeable Reactive Barrier at the Water Table |                      |                                                               |                                                                     |  |  |
| Particulate-phase<br>chemical<br>sequestration                                                                    | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
|                                                                                                                   | Cr(VI)               | Unknown                                                       | 216-S-10, 216-S-8, 216-T-4                                          |  |  |
|                                                                                                                   | I-129                | Unknown                                                       | 216-A-10, 216-A-5, 216-S-7                                          |  |  |
| Particulate-phase combined<br>chemical reduction and<br>sequestration                                             | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
| Liquid-phase chemical sequestration                                                                               | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
|                                                                                                                   | Cr(VI)               | Unknown                                                       | 216-S-10, 216-S-8, 216-T-4                                          |  |  |
|                                                                                                                   | I-129                | Unknown                                                       | 216-A-10, 216-A-5, 216-S-7                                          |  |  |
| Liquid-phase combined<br>chemical reduction and<br>sequestration                                                  | U and Tc-99          | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
| Liquid-phase combined<br>bioreduction and chemical<br>sequestration                                               | U, Tc-99,<br>nitrate | Perched Water, below<br>Perched Water, and below BY<br>Cribs  | 216-U-1&2, S-SX Tank<br>Farm, C Tank Farm, BC<br>Cribs and Trenches |  |  |
|                                                                                                                   | CN                   | BY Cribs                                                      | Unknown                                                             |  |  |



# 3D Soil Flushing Monitoring (CPCCo)







## **Soil Flushing 4D Imaging Results: June-July 2022**





# PNNL commitment to enable effective treatment, reduce costs, and accelerate schedules

- PNNL has supported the Hanford mission and cleanup effort since EM inception
  - Maintaining core nuclear capabilities for waste treatment and environmental remediation
  - Drawing upon strong science base and capabilities to underpin technology solutions
  - Key resource for objective data to DOE and stakeholders
  - Direct support to DOE—helping define future technical direction, long-lead strategies for alternate site cleanup paths
  - Partnership with contractors—reducing technical risks, providing enabling technology to meet baseline performance
- Committed to working with DOE and EM's laboratory network to support complexwide challenges





# Thank you

