
Doc 4.10 

 

 

Comparability of 
English and 
Spanish/English 
Mathematics Tests: 
Measurement 
Invariance 

Oregon Department of Education 
October 2010 



2 

 

Introduction 

In international testing, the goal is to develop translated and adapted tests for use in different languages 

that have comparable factor structures (see Hambleton, 1994).  Similarly, a reasonable requirement for 

any side-by-side translation used as a test accommodation is that the scores produced by the translated 

test have a comparable factor structure and demonstrate measurement equivalence with the test 

scores produced by the standard administration.  If the ultimate goal is to make meaningful and 

comparable decisions with the scores produced by the side-by-side accommodation and the scores 

obtained from the standardized administration, one needs to examine both the structural and metric 

equivalence of the scores produced by the different administrative practices.   

Oregon utilizes the Rasch or one-parameter model to score and scale its tests (Wright & Stone, 1979).  

Rasch models a latent variable that predicts a score based on the items that comprise the test and the 

number of correct item responses.  Since the Oregon Knowledge and Skills Tests are adaptive, the items 

that comprise the test are often very different from one person to the next.  When the test is 

unidimensional and the local independence assumption holds, items are combined additively to 

operationalize the underlying construct.  Two research questions are investigated:  Will different 

conditions for administering and scoring mathematics achievement yield an invariant factor structure 

measuring a single attribute or construct?  And, relatedly, will the metric of latent scores be invariant 

across administrative conditions? 

The added challenge of fairly presenting items in different languages to produce comparable scores is 

not made without evaluating the structural equivalence of the test given the decisions being made with 

the scores.  Using a common factor framework, confirmatory factor analysis is used to test the 

measurement equivalence or invariance of the side-by-side scores of the test compared to scores 

produced using standardized administrations of the Oregon test (Sireci & Allalouf, 2003; Wu, Li, & 

Zumbo, 2007).  The common factor model for the two-group comparisons is represented below: 

  iy1  =   i1  +  i1   +  i1  

  … 

  jy2 =   j2  +  j2   +  j2    (1) 

 

A set of five strand scores or subscales summarize mathematical categories of content taught to 

students, including:  1. computation and estimation, 2. measurement, 3. statistics and probability, 4. 

algebraic relations, 5. geometry.  The side-by-side and standard-administrative groups each received 

scores for the iy1 to jy2 subscales shown above.  These subscores were employed as manifest or 

observed variables in the multigroup framework of the common factor model.  Each   represents a 

subscale’s factor loading for each group (1 or 2) on the latent variable,  , that is found in the vector of 

regression slopes.  Each   symbolizes individual regression intercepts for each group on each manifest 

variable that is placed within the vector of regression intercepts.  Finally, an error term,  , refers to a 

vector of unique variances whose correlation is assumed to be 0 with  , the latent variable. Because a 



3 

 

Rasch model for dichotomous variables assumes unidimensionality, one hypothesizes a single latent or 

hypothetical construct of interest, , whose variation signals concomitant variation in the five manifest 

or observed scores received by individuals within each group. 

Joreskog’s fundamental covariance equation shown below is next used to estimate the implied 

variance/covariance matrices for each group (see Joreskog and Sorbom, 1993). 

     Σ 1  =Λ
1

y  Φ 1  Λ
1

y  +θ 1

   

           … 

     Σ 2  =Λ
2

y  Φ 2  Λ
2

y +θ 2

      (2) 

 

Where Σ is the implied variance/covariance matrix for each group, and Λ is the matrix of subscale factor 

loadings for each group.  While the Φ matrix summarizes the variances and covariances of the latent 

variable,  , for each group, the θ matrix represents the unique variances associated with each subscore 

and group’s respective error term.  These equations are primarily employed to produce the fit statistics 

and indices used in the analysis. 

 

Comparing the factor structure and measurement invariance of the observed scores may be defined 

with varying degrees of stringency by constraining different parameters at various stages of the analysis 

(see Vandenberg and Lance, 2000).  Employing the above two-group model, several hypotheses are 

tested within an hierarchical framework in an effort to answer the research questions.  First, a separate 

unidimensional model is separately fit to each group’s observed scores to examine their dimensionality 

and structure.  Second, an omnibus test of the equality of implied variance/covariances , Σ , across 

groups determines whether the latent trait measures the same conceptual framework  or factor 

structure. Third, by constraining the  ’s associated with each observed score to be equal across strand 

scores and groups, one may test whether the regression slopes linking manifest variables, iy1 to jy2 , to 

the latent variable are metric invariant.  Here, metric invariance implies that the scales are equivalently 

applied and comparable. Fourth, by constraining the  ’s associated for each observed score to be equal 

across strand scores and groups, one may test the scalar equivalence of the measurement scale.  Here, 

scalar equivalence implies that latent scores are not unit consistent across test administration 

conditions and this difference in the latent means favors lower performers (see Wu, Li, and Zumbo, 

2007).  Finally, fifth, by constraining the  ’s to be equal across strand scores and groups, one may test 

whether the unique variances are equal across groups.  This final test would imply that the latent trait is 

being measured with the same level of reliability. 

Sample 

A sample of 750 student records is randomly selected from both the side-by-side examinee file and the 

standard examinee file for each of the seven grade levels (i.e., 3, 4, 5, 6, 7, 8, and 10) tested.  Since there 

was one sample from each of the 7 grades studied, there were 7 samples from the standard examinee 
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files and 7 samples from the side-by-side examinee files.  Student records were only selected when they 

completed all 40 items presented during the test.  Since students who take the Spanish Side-by-Side test 

in mathematics are largely self selected, it is difficult to evaluate their comparability in an even handed 

fashion.  For this reason, successive tests of equivalence are applied to evaluate varying degrees of scale 

comparability. 

 

Significance Tests and Fit Indices 

An array of chi square significance testing is first performed test for group differences in test scores 

generated using the standard test administrative procedures and the side-by-side accommodation.  The 

first step is separately fit a unidimensional model to the data sampled from the examinee file.  Applying 

Confirmatory Factor Analysis (CFA) to single groups, the fit of the one factor model is evaluated by 

examining the overall chi-square tests for both the standard administration and the Spanish 

accommodated mathematics tests.  The test of the null maintains that each model is a one factor model, 

yielding an obtained  2 value for each test and evaluating each result using the obtained significance 

levels (P-value > 0.05). When a probability value of greater than 0.05 is obtained for both overall chi 

square tests, one fails to reject the null designating that the model sufficiently reproduces the sample 

variance/covariance matrix. 

A Goodness of Fit (GFI) index and the Root Mean Square Approximation (RMSEA) are next applied to 

test data to model fit.  The GFI predicts the percentage of the variance/covariance in the sample 

variance/covariance (S) that is reproduced by the predicted variance/covariance matrix (Σ), given the 

one factor model.  A GFI that is greater than or equal to 0.90 is typically accepted as displaying good fit 

and this index works better with parsimonious models having few parameters.  The RMSEA is a “badness 

of fit” index that employs a non-central chi square distribution and produces a confidence interval.     

RMSEA takes into account errors in approximation by asking, “How well would a model, with unknown 

but optimally chosen parameters values, fit the population variance/covariance matrix if it were 

available? “(see Browne and Cudek,  1993).  A noncentrality parameter is estimated from a an 

approximate noncentral chi-square distribution, designated as  .   The value of  increases as the null 

becomes more false.  Using Cheung and Resvold’s (2002) recommendations, reasonable errors in 

approximation would be equal to or less than 0.05, but these recommendations are considered 

conservative.  Others suggest that RMSEA values between 0.05 and 0.08 are moderately acceptable 

(MacCallum, Browne and Sugawara, 1996).  A confidence band of 90% is presented and there is a greater 

potential for misfit at the higher end of the scale.  

 

The multigroup strategy utilizing a hierarchical strategy is next employed to test the null hypotheses 

(H 0 ) that 1 = 2 , where  is the population variance-covariance matrix for the two groups.  Rejection 

of the null thus provides evidence of the nonequivalence of the factor structure attributed to each 



5 

 

group’s subscores.  Acceptance of the null hypothesis provides evidence that the factor structure 

produced by both models possess structural or “configural” equivalence (see Wu, Li, & Zumbo, 2007).   

 

Subsequent chi-square difference tests are next performed to test the increasingly more restrictive 

assumptions associated with multigroup equivalence tests that were previously discussed.  Statistical 

Tests are applied by constraining parameters in a restrictively increasing fashion and by observing 

changes in the chi-square likelihood test ( 2 ).   Each time one tests the differences in the likelihood 

chi-square statistics ( Δ 2 )  in the augmented model minus the more compact model.  A p-value is 

computed for each change in the chi-square statistic with respect to the appropriate degrees of 

freedom.  A good fitting comparative model will have a Δ  2 p-value greater than 0.05, demonstrating 

that the differences in the likelihood square statistic are negligible. 

 

The Comparative Fit Index (CFI) provides additional quality information about fit when evaluating two 

competing models. Values of the CFI range from 0 to 1 and are derived from a comparison made 

between the hypothesized or implied model and an independence model.  The CFI is not sensitive to 

large sample sizes and is derived by a comparison of the hypothesized model to an independence model 

– a model in which the variables are assumed to be uncorrelated.  In short, the CFI represents a ratio of 

the discrepancy of the implied model to the independence model.  Again using Cheung and Resvold’s 

(2002) recommendations, the change in CFI (ΔCFI) should be less than or equal to -0.01, which is a more 

robust test than the commonly used standard of accepting model fit for any CFI greater than 0.95.  

However, this recommendation respresents a “gold” standard that is more readily attained in large 

samples with well specified models that have very precise parameter estimates.  RMSEA fit statistics are 

finally applied to note how well these more restrictively fitting models exhibit “bad” fit to the 

hypothesized model. 

 

Single Group Results 

Because there were seven grade levels studied, a single group analysis fit a unidimensional model to all 

7 samples from the standard test and all 7 samples from the side-by-side test.  The grade level results of 

each separate analysis for each single group are presented in Tables 1 through 7.  A case can be made 

that each group’s scores fit a unidimensional model, but the side-by-side scores generally fit a 

unidimensional model better than scores produced by the standard administration.  The overall chi-

squares for the side-by-side scores suggests that a unidimensional model fits the data at every grade 

level, while the standard test scores strictly fit a unidimensional model at grades 4, 6, 7, and 10.  Test 

scores analyzed at grades 3, 5, and 8 come close to fitting, but the geometry and algebra strands 

appears to produce a larger residual for these samples. The goodness of fit index is over 0.99 each time 

it was employed, and the GFI close to 1 predicts that the fit the sample to the modeled 

variance/covariance is good. The RMSEA’s fit the data in all cases but two models – the grades 3 and 5 

standard or regular administration.  However, even in these two cases, the RMSEA came within 
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Single Group Analysis Model Fit  

Table 1 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 1.218 5 .943 0.000 (0.00, 0.009) 0.999 

Mathematics 15.11 5 .001 0.052 (0.023, 0.083) .992 

        N=750        Grade 3 

 

 

Single Group Analysis Model Fit  

Table 2 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 5.548 5 .353 0.012 (0.00, 0.053) 0.997 

Mathematics 5.67 5 .345 0.013 (0.00, 0.054) 0.997 

        N=750        Grade 4 

 

 

Single Group Analysis Model Fit  

Table 3 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 0.962 5 .996 0.00 (0.000, 0.000) 0.999 

Mathematics 14.753 5 .001 0.051 (0.022, 0.082) 0.993 

        N=750        Grade 5 
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Single Group Analysis Model Fit  

Table 4 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 3.33 5 .649 0.000 (0.000, 0.041) 0.998 

Mathematics 5.943 5 .312 0.016 (0.000, 0.055) 0.997 

        N=750        Grade 6 

Single Group Analysis Model Fit  

Table 5 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 5.961 5 .310 0.016 (0.00, 0.055) 0.997 

Mathematics 5.17 5 .395 0.007 (0.00, 0.052) 0.997 

        N=750        Grade 7 

Single Group Analysis Model Fit  

Table 6 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 4.63 5 .463 0.00 (0.00, 0.049) 0.998 

Mathematics 13.147 5 .022 0.047 (0.016, 0.078) 0.993 

        N=750        Grade 8 

Single Group Analysis Model Fit  

Table 7 

Model Fit  2  df P-Value RMSEA GFI 

Side-by-Side 
Mathematics 5.279 5 .383 0.009 (0.00, 0.052) 0.997 

Mathematics 10.834 5 .055 0.039 (0.000, 0.072) 0.994 

        N=750        Grade 10 
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thousandths of “closely” fitting the model, and these values are still considered a “fair” fit by some 

experts (see MacCallum, Browne and Sugawara, 1996).  The RMSEA further suggested that much of the 

misfit occurred at the higher end of the scale, where the .90 confidence interval often included values 

greater than 0.05. This pattern of results may be explained by larger numbers of students taking the 

more difficult questions in the standard pools – particularly for content associated with the strands 

algebraic relations and geometry.  Patterns of misfit in the residuals were more likely observed in the 

algebra and geometry subscales compared to other subscales.  The more challenging items used to 

score these subscales are more likely to be administered to the higher ability populations of test takers 

in the standard pools.  Success on these more complex items may be relatively more influenced by a 

small second factor not measured by the other subscores -- e.g., spatial or abstract reasoning. 

 

Multigroup Analysis Results 

Using CFA, one evaluates measurement equivalence using a hierarchical procedure that compares a 

number of increasingly more restrictive models using a likelihood ratio goodness of fit difference test 

along with a comparative fit index. Since most models are either slightly misspecified or do not account 

for all measurement error, when sample sizes are large, a nonsignificant chi-square test is rarely 

obtained.  Because a researcher’s model is so frequently rejected in large samples, other measures of fit 

have been developed to assess the congruence of model fit to the data.  A better fitting model does not 

always mean a more correct model. 

The Rasch model attempts to estimate person and item points of estimation along a line using joint 

maximum likelihood. When constructing comparable measures, one attempts to isolate the trait of 

interest and build an additive measure that is invariant across language groups.  CFA employs alternative 

forms of maximum likelihood estimation to produce parameter estimates describing the relationship 

between scores of the two samples shown in Tables 8 through 14 to follow.  A multigroup strategy is 

next employed to test the null hypotheses (H 0 ) that 1 = 2 , where  is the population variance-

covariance matrix for the two groups.  Rejection of the null thus provides evidence of the 

nonequivalence of the factor structure of the two sets of subscores produced by these administration 

groups at grade 3.  For example, Table 8 on page 9 provides a chi-square value of 17.854 for the test of 

configural invariance.  This result fails to reject the null that the factor structure for the two groups is 

equal.  This result suggests that the side-by-side and standard tests measure the same conceptual 

framework.  Tests of configural invariance demonstrate little difference in the factor structure of the 

two models.   

In Table 8 on page 9, the weak invariance tests of equal factor loadings are next displayed for the 

standard and adapted or side-by-side tests in mathematics.  Statistical Tests are applied by constraining 

parameters in a restrictively increasing fashion and by observing changes in the chi-square likelihood 

test ( 2 ).   Constraining the factor loadings implies that they are equal both within and between 

language groups, meaning that the underlying metric in the latent variable is similar for both the 
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standard and side-by-side assessments at grade 3.  To apply the tests of weak invariance, one examines 

the chi-square difference tests (  2  in the Tables).   Each time one tests the differences in the 

likelihood chi-square statistics ( Δ 2 )  in the augmented model minus the more compact model.  A p-

value is computed for each change in the chi-square statistic.  A good fitting comparative model will 

have a Δ 2 p-value greater than 0.05, demonstrating that the differences in the likelihood square 

statistic are negligible.  This result suggests that the latent scale’s metric is “invariant” across the 

different administration conditions. 

Changes in the comparative fit indices (CFI ) are appreciably small when subtracting the  CFI of the 

configural model from the CFI of the weak invariance model.  In addition, the RMSEA provides additional 

support that the restrictions on the factor loadings are having little “bad effect” on model fit.   A change 

in the CFI (CFI) ranging between 0 than -0.01 provides alternative evidence of little or no differences 

attributed to the factor loadings, while a small RMSEA of .015 with the 90% confidence interval of 0.00 

and 0.03 demonstrates that the null hypothesis of close approximation is not rejected. 

Tests of strong and strict invariance are similarly applied in Table 8.  To test for strong invariance, 

changes in the chi-square value (  2 ) and the comparative fit index (CFI) is similarly evaluated 

after constraining the intercepts to be equal (
i1
=

i2
…

j1 = j2 ).  Likewise, to test the strict variance 

assumptions (θ 1

 = θ 2

 ), changes in the chi-square values and the comparative fit index are evaluated 

after constraining the unique variances associated with each manifest variable to be equal.  Neither 

strong nor strict invariance are not observed in Table 8.  The regression intercepts or subscale means 

linking the observed variables (
iy1
to jy2 in equation 1) to the latent construct, , are very different 

across groups, suggesting that the ability distributions of the two groups are very different. Moreover, 

the unique variances are not evaluated since the strong invariance model does fit the data. 

 

The results observed in Tables 8 are similar in Tables 9 and 10 on page 9 and Table 11 on page 10, 

suggesting that the factored subscales possess both structural and metric equivalence across the 

conditions of the assessment.  However, Tables 12 through 14 on pages 10 and 11 present some small 

aberrations that need more clarification.   As one moves up grade levels into middle school, the 

mathematics items become increasingly challenging to more and more students.  One begins to observe 

that more and more students are challenged to perform more complex mathematics that demands 

abstract thinking – particularly when the more difficult items are classified as assessing algebraic 

relations and geometry content.  Moreover, by blue print specification and adaptively applied content 

constraints, there are proportionately more of these challenging items presented at the higher grade 

levels.  As the adaptive engine adjusts to any increasing mathematics ability, it begins to select items 

that demand more abstract thinking.   These differences in the algebraic and geometry items may be 

introducing secondary factors not measured by a unidimensional, latent scale, and these differences are 

believed to be more at the top of the scale. 
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Multiple Group Analysis Model Fit  

Table 8 

Model Fit  2  df P-Value RMSEA CFI  
2  

P-Value 

 
2  CFI 

Configural Invariance 17.8524 11 0.085 0.021 (0.00, 0.038) 0.998 -- -- -- 

Weak Invariance 19.8883 15 0.176 0.015 (0.00, 0.030) 0.998 1.7832 0.87826 0.00 

Strong Invariance 112.57 20 0.00 0.056 (0.046, 0.066) 0.970 92.682 0.00 -0.028 

Strict Invariance 124.646 25 0.00 0.052  (0.043, 0.061) 0.968 12.076 0.00 -.002 

N=750 per group tested                                            Grade 3 

 

Multiple Group Analysis Model Fit  

Table 9 

Model Fit  2  df P-Value RMSEA CFI   2  
P-Value 

 
2  

CFI 

Configural Invariance 11.78 11 0.38 0.007 (0.000, 0.028) 1.00 --  -- 

Weak Invariance 13.49 15 0.564 0.000 (0.000, 0.022) 1.00 1.71 0.88764 0.00 

Strong Invariance 134.59 20 0.00 0.062 (0.052, 0.072) 0.959 121.1 0.00 -0.041 

Strict Invariance 146.28 25 0.00 0.057 (0.048, 0.066) 0.956 11.69 0.00 -0.003 

N=750 per group tested                                               Grade 4 

 

Multiple Group Analysis Model Fit  

Table 10 

Model Fit  2  df P-Value RMSEA CFI   2  
P-Value 

 
2  

CFI 

Configural Invariance 21.82 11 0.026 0.026 (0.009, 0.041) 0.996 --  -- 

Weak Invariance 27.858 15 0.022 0.028 (0.015, 0.041) 0.995 6.08 0.2985 -0.001 

Strong Invariance 106.54 20 0.000 0.054 (0.044, 0.064) 0.967 78.682 0.00 -0.028 

Strict Invariance 110.56 25 0.00 0.048 (0.039, 0.057) 0.967 4.02 0.00 0.00 

N=750 per group tested                                               Grade 5 
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Multiple Group Analysis Model Fit 

Table 11 

Model Fit  2  df P-Value RMSEA CFI   2  
P-Value 

 
2  

CFI 

Configural Invariance 10.745 11 0.465 0.00 (0.00, 0.027) 1.00 --  -- 

Weak Invariance 13.83 15 0.539 0.00 (0.000, 0.023) 1.00 3.085 0.6869 0.00 

Strong Invariance 82.67 20 0.00 0.046 ( 0.036, 0.056) 0.977 68.84 0.00 -0.023 

Strict Invariance 85.62 25 0.00 0.041 (0.031, 0.05) 0.978 2.95 0.00 -0.001 

N=750 per group tested                                            Grade 6 

 

Multiple Group Analysis Model Fit  

Table 12 

Model Fit  2  df P-Value RMSEA CFI   2  
P-Value 

 
2  

CFI 

Configural Invariance 12.126 11 0.354 0.008 (0.00, 0.029) 0.999 --  -- 

Weak Invariance 48.119 15 0.00 0.038 (0.027, 0.051) 0.985 35.992 0.00 -0.014 

Strong Invariance 232.35 20 0.00 0.085 (0.076, 0.095) 0.903 184.23 0.00 -0.082 

Strict Invariance 237.57 25 0.00 0.075 (0.067, 0.084) 0.903 5.217 0.00 0.000 

N=750 per group tested                                               Grade 7 

 

Multiple Group Analysis Model Fit  

Table 13 

Model Fit  2  df P-Value RMSEA CFI   2  
P-Value 

 
2  

CFI 

Configural Invariance 22.63 11 0.02 0.023 (0.003, 0.039) 0.996 --  -- 

Weak Invariance 34.706 15 0.003 0.03 (0.017, 0.043) 0.992 12.076 0.0338 -0.004 

Strong Invariance 211.43 20 0.00 0.081 (0.071, 0.091) 0.926 176.72 0.00 -0.066 

Strict Invariance 215.28 25 0.00 0.071 (0.063, 0.080) 0.926 3.846 0.00 0.00 

N=750 per group tested                                               Grade 8 
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Multiple Group Analysis Model Fit 

Table 14 

Model Fit  2  df P-Value RMSEA CFI   2  
P-Value 

 
2  

CFI 

Configural Invariance 16.801 11 0.114 0.019 (0.000, 0.036) 0.996 --  -- 

Weak Invariance 58.582 15 0.00 0.044 (0.033, 0.056) 0.971 41.78 0.00 -0.025 

Strong Invariance 340.93 20 0.00 0.103 (0.094, 0.113) 0.784 282.35 0.00 -0.187 

Strict Invariance 346.05 25 0.00 0.111 (0.084, 0.101) 0.784 5.12 0.00 0.00 

N=750 per group tested                                               Grade 10 

 

In Tables 12 through 14, the structural results suggested by the configural model demonstrates that the 

model fits the data, providing empirical evidence for the structural equivalence of the conceptual 

framework being used.  But the metric equivalence of the latent variable is relatively less invariant at 

higher grade levels.  For example, when examining the weak invariance tests, the chi-square difference 

tests (  2 ) and the change in the comparative fit index (CFI) is slightly larger for the higher grades 

(see Tables 12 through 14) when compared to the lower grades (see Tables 8 through 11).  All three chi-

square tests associated with the weak invariance tests suggest that the measurement equivalent 

assumption does not hold, while the comparative fit indices associated with each test range from highly 

acceptable to moderately acceptable fit. However, these differences are borderline and small, and most 

experts would quarrel about whether they are meaningful.  The RMSEA for each test of weak invariance 

or scale equivalence indicate superior fit at all grade levels, with confidence values only slightly 

exceeding good ft at the higher end.   

 

As in the example presented in Table 8, the strict invariance conditions of measurement equivalence are 

not met for all of Tables 9 through 14.  This result implies that there is no consistency in the scaling units 

of the calibrated latent scale.  In fact, the differences in the   regression intercepts are a product of the 

higher average scores earned by the higher achieving groups taking the standard assessment.  There is 

little chance that these scalar differences in the latent metric can be remedied without subsequent 

increases in achievement from the lower achieving group taking the side-by-side accommodation. 
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Conclusions 

 

The establishment of measurement invariance across accommodated conditions of a test’s 

administration is a logical prerequisite for establishing the comparability of the scale.  This study 

attempts a hierarchical analysis to answer the following two research questions regarding the 

comparability of the latent scale:  Will different conditions for administering and scoring mathematics 

achievement yield an invariant factor structure measuring a single attribute or construct?  And, 

relatedly, will the metric of latent scores be invariant across administrative conditions? 

 In all the cases studied, both in the single group and multiple groups analyses, the factorial structure of 

the latent variable fit the unidimensional model and the conceptual equivalence of the underlying 

theoretical variable was comparable under both administrative conditions.   In both single group and 

multiple group analyses, the precision of the omnibus chi square test was sometimes affected by larger 

residuals observed for the algebraic and geometric strands in the standard test, but the fit indices 

always confirmed a properly fitting model.   

Likewise, when scale equivalence was evaluated using a weak invariance test previously described, chi-

square difference tests rejected the null hypothesis that state that the slopes of the factor loadings were 

invariant across administrative conditions for grades 3 through 6.  The chi-square tests for grades 7 

through 10 suggested that model no longer fit, but the CFI and the RMSEA’s suggested otherwise.  In 

large samples, it is well understood that chi-square difference tests are more likely to demonstrate 

significant differences.  For this reason, most experts suggest using the fit indices to supplement the 

decisions during this hierarchical analysis.  
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