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Introduction 
 
The first state to bring its statewide testing on line, Oregon came to electronic testing 
with a history of adaptive tests on paper.  For years, the Oregon state assessment system 
included multiple forms of each test, each targeting a different proficiency level. These 
tests were placed on a common scale, allowing educators a developmental approach to 
testing—they could administer tests at a comfortable difficulty level for students that 
would yield an informative result. When Oregon moved to on-line testing, it was natural 
that the test would be adaptive. 
 
The move to a more standards-based environment brought changes in Oregon’s testing 
program.  Clear articulation of curricular content standards provided a stronger 
framework for the content of the test. Opportunities to test below grade-level were 
abandoned in favor of requiring grade-level tests that clearly tested the curriculum.  
 
Currently, Oregon is redesigning the adaptive algorithm used for selecting items to be 
administered to examinees with the goals of  
 

• improving fidelity to the content standards; 
• improving fidelity to the test blueprint; and 
• providing as much diagnostic information from the test as possible; 

 
This document outlines an adaptive algorithm designed to meet these goals. 
 
The algorithm described here is under development for implementation in the 2007-08 
operational testing window. Additional revisions are underway that may introduce a 
significant simplification and provide improvements in efficiency; future versions of the 
algorithm may change to reflect these improvements. 

Specific objectives 
 
The item selection algorithm seeks to meet five objectives: 
 

1. Ensure an appropriate distribution across content strands, or Score Reporting 
Categories (SRCs); 

2. Ensure an appropriate distribution across common curriculum goals (CCGs); 
3. Ensure an appropriate distribution across depth of knowledge categories; 
4. Optimize the classification of proficient/not proficient on content strands; and 
5. Optimize the measurement variance. 

 
The first three objectives ensure the alignment of the test administered. The fourth 
objective targets instructionally relevant information from the test. The fifth seeks an 
optimally reliable score for each student. 
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In addition, the algorithm must prevent students taking the test on multiple opportunities 
from receiving the same items. 
 

Objectives 1-3: Alignment  
 
The first three objectives are required to meet the blueprint of the test.  These 
characteristics of a test’s correspondence with its blueprint are evaluated by federal peer-
review committees.  The typical evaluation requires an independent review, commonly 
drawing on the methods proposed by Webb (1997) and implemented in the Web 
Alignment Tool (WAT, http://www.wcer.wisc.edu/WAT). The tool measures: 
 

• The alignment of items to the content standards that they are designed to measure 
(Categorical Concurrence) and whether the difficulty of the item stems from that 
knowledge (Source of Challenge); 

• The range of knowledge required by the test and relative emphasis on content 
within a standard (Range of Knowledge Correspondence and Balance of 
Representation); and 

• The degree to which the items require knowledge or skills at the complexity level 
identified in the standards (Depth of Knowledge Consistency). 

 
Meeting these criteria, and demonstrating that they have been met in an adaptive test, 
requires a three step process: 
 

• First, the items in the item pool must each be identified in terms of content and 
depth of knowledge categories, and these classifications must be shown to be 
accurate and the source of difficulty of the items.  

• Second, the test blueprint must require that the items administered be distributed 
appropriately across content and depth of knowledge categories; and  

• Third, the algorithm must ensure that the items administered match the blueprint. 
 

Objective 4: Instructionally Relevant Feedback  
 
Students and educators devote substantial time and energy into testing.  They would like 
to receive some actionable information back from the test.  While psychometric practice 
has traditionally shied away from providing diagnostic feedback from a summative test, 
the formative and summative assessment are not necessarily at odds. A criterion-
referenced test designed to meet the alignment objectives outlined above can often hold 
useful information at the content strand level. 
 
Psychometricians note that content-strand level scores from a summative assessment 
typically entail substantial measurement error. In most cases, the true correlations among 
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strand scores is high enough and the measurement error large enough that cross-strand 
differences that may exist are obscured by measurement error.  
 
Large measurement error and high correlations among strands combine to create a risk of 
misinterpretation. The measurement error will lead to scores that look different, even 
when there is no real difference in proficiency across content strands.   The high 
correlations among content strands ensures that there will be few real differences. 
Combined, these factors can lead to many “false positives,” where educators may believe 
that students have a particular strength or weakness that is not really supported by the 
data. 
 
Reports from the tests can guard against these misinterpretations while still providing 
content-strand level information.  Rather than report scores for content strands, we 
recommend reporting content-strand-level information in three categories: 
 

• Clearly above proficient; 
• Too close to proficient to tell whether the examinee has met the mark or not; and 
• Clearly below proficient. 

 
Examinees can be categorized as clearly above proficient or below proficient if it is 
highly improbable that their observed vector of item responses would result if their true 
scores were exactly at the threshold value. Failure to reach the pre-established confidence 
level places the examinee in the middle, indeterminate category.  Readers of the report 
can validly contrast performance on “clearly above” strands to “clearly below” strands. 
Careful wording can lead them to undertake further evaluation and assessment before 
drawing any conclusions about the content strands in the middle category. 
 
An adaptive algorithm can select items to minimize the probability of an examinee falling 
into the middle category, thereby maximizing the diagnostic value of the assessment. 

Objective 5: Measurement Variance 
 
Minimization of measurement variance is the classic application of an adaptive 
algorithm. Typical algorithms seek to select the item that maximizes the information 
about an examinee’s score. Using the current estimate of the examinee’s score, the 
information is maximized by the item with the difficulty closest to the examinee’s score. 
 
Typically, a graph of the standard error of measurement of adaptive tests is relatively flat 
across a wide range of ability, while a static test will take on a “U” shape, indicating less 
information near the ends of the scale. 
 
Scores known more precisely yield fewer classification errors, and provide a more stable 
basis for growth estimates. 
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Objective Function 
 
The item selection algorithm is designed to meet these multiple objectives.  We begin by 
defining an objective function.  Each time an item is selected, it is selected to maximize 
the objective function.  Depending on the size and constitution of the item pool, it may be 
desirable to select randomly from among the highest-scoring items, rather than selecting 
the highest scoring item with certainty. 
 
 
The objective function is given by 
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where ijtf   is the value of the item j for examinee i for selection number t, and 
i={1,2,…,N}, j={1,2,…J}, and t={1,2,…,T}. The content strands are indexed by k for 
k={0,1,2…K} content strands, with Strand 0 as the overall score.  The value function for 
the reduction of measurement variance is represented as u, and v represents the value of 
the item for the purpose of optimizing strand-level classification.  
 
The variable ijtd indicates the number of minimum requirements that the item contributes 
to satisfying. In the early iterations, this will be a constant because every item will meet 
at least requirements on every dimension that requirements exist; later it will be a mix. 
Inclusion of this term will cause the algorithm to favor items that are required for the 
blueprint. Once all of the minimums have been met, this term drops out. 
 
The weights, w, serve a dual role 1) establishing the relative importance of the two value 
functions and 2) enforcing the alignment objectives. Below, we will define u, v and w to 
be greater than or equal to zero. 

Alignment Objectives 
 
Alignment objectives seek to administer a test that matches the blueprint. A blueprint can 
be specified as a collection of constraint sets. A constraint set is a set of exhaustive, 
mutually exclusive classifications of items. For example, if a subject consists of four 
content strands and each item measures one and only one of the strands, the content 
strand classifications constitute a constraint set. Each category is associated with a 
minimum and maximum number of allowable items. 
 
The alignment objectives as specified in the blueprints are enforced through a 
combination of weights and the term ijkd : 
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• Setting weights to zero eliminates items that would exceed the maximum 
allowable number of items with a given characteristic; 

• The final term in Equation 1, ijtijtk dw )1( + , causes to the algorithm to favor items 
needed to meet minimum requirements. 

 
In addition, the weights also serve to establish the relative importance of the objectives.   
 
Begin by defining a set of constraints c, which consists of cR  exhaustive, mutually 
exclusive categories.  Each category r={1,2,… cR } represents a feature or classification of 
an item, and the constraint takes the form of a required minimum number of items with 
the characteristic administered, and a maximum allowable number of items to be 
administered with the characteristic. Designate the required minimum number of items in 
category r in constraint set c as )(crn  and the maximum for the same category as )(crm .  
Let 
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and ∑= cjcit rr represent the number of items with characteristic cr  already administered 

to examinee i, where the summation is over items administered to examinee i through 
time t. The weights are then given by 
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where mγ is an empirically derived constants that captures the relative importance of the 
objectives for m={0,1,…K+1}. 
 

To value the alignment objectives, define ∑
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requirements that are not yet met. The constant added to the sum ensures that the third 
term remains substantial unless 0=ijtw , which occurs when the item contains a 
characteristic that has hit the maximum. 
 
Objectives 1-3 require three constraint sets: content strands, benchmarks, and depth of 
knowledge classifications.   
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Content Strand Classification Objective 
 
The value of an item on a content strand is defined as the change in the certainty with 
which a student can be classified as above or below proficient on the content strand. 
The chi-square statistic yields an estimate of the confidence with which we can say a 
student is at a score ( ikθ ) on a content strand rather than right at the cutscore ( *

kθ ). The 
value function, therefore, is expected change in confidence that student is not at the cut-
score on the content strand from administering the item. 
 
This value function corresponds to a likelihood ratio test in which *

kik θθ =  is taken as the 
null hypothesis.  For each item, we calculate the expected change in the likelihood from 
administering the item, and transform that to a probability value based on the 2χ  

distribution with a single degree of freedom. Letting θθ −+
= be

bp
1

1),( , the probability of 

a correct response under a Rasch model,  
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Hence, the value is given by the expected change in the probability of the observed 
response vector having been generated by a value of kitθ  rather than *

kθ .  Maximizing this 
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difference in probability minimizes the probability of a student score landing in the 
indeterminate range in the middle of the scale. 
 
The working value of iktθ  is given in a subsequent section. 

Minimum Variance Objective 
 
Minimizing the measurement variance is the typical objective of a computer adaptive 
test.  Minimizing the variance is the same as maximizing the information (the inverse of 
the variance). For the Rasch model, this is given by 
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For this multiple-objective application, the value of the smaller measurement variance 
diminishes as the with the measurement variance. When the measurement variance is 
very large, it is important to reduce it. If the measurement error is very small, increased 
information may make a trivial difference. Using the information function directly would 
yield a value measure that was constant across these two different conditions. 
 

Instead, we propose to use  
ijtit

ijt
ijt II

I
u

+
= , which bears a monotonic relationship to the 

information function, but which diminishes as the total information increases (i.e., as the 
measurement variance decreases).  This function will place diminishing value on 
reducing measurement error as the measurement error diminishes. 
 

Calculating Scores 
 
The algorithm requires scores for the overall test as well as each content strand.  The 
working θ ’s will be known with little precision, especially for content strands and for the 
overall score early in the test. Therefore, we will use expected a posteriori  (EAP) scores 
as working scores in the calculations.  The priors will be different for the overall θ ’s and 
the strand scores.  
 
At the conclusion of the test, the final overall score assigned to the student will be the 
MLE score. On each content strand, each student will receive a classification and 
associated probability, rather than a score. 
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The estimates can be obtained by taking Newton steps towards the optimum. Each step in 
the Newton algorithm is given by 
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where the summation is over the set of items tat examinee i has taken through time t.  
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The functions g(.) and h(.) represent the first and second derivatives of the prior 

respectively, which we will take as normally distributed.  Hence, 2
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Overall Score 
For the overall score, the prior μ  and σ  can be taken as the population mean and 
standard deviation from the prior year, or be based in some way on the student’s 
performance on an earlier test. 
 

Content Strand Scores 

For the content strand scores we propose to use )1,(~~ 2
10

it
kitkkikt I

aaN ++ σθθ , where the 

coefficients a and the standard deviations derive from a linear regression based on a 
previous year’s data and appear to the algorithm as known constants.  
 
It may be possible to achieve a close approximation with only a single step, or it may be 
necessary to take multiple steps of this algorithm. This can be determined empirically. 
 

Item Bank Management 
 
The Item bank contains all possible items from which operational item pools will be 
selected from. While this is not part of the adaptive algorithm, a brief summary of the 
rules for selecting item pools from the bank may be helpful.  
 
These rules include the following:  
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1. An item exposure parameter, such that the number of times an item has been 
presented during testing can be monitored and over-exposure can be 
prevented. 

2. Item bank management will ensure that 50% of the items in an operational 
item pool will not have been exposed on the previous two year’s tests 

3. When an item is exposed 50,000 times, it is retired from the pool 
  

A Few Comments about the Algorithm 
 

Sets of Items Following Common a Stimulus 
Sets of passages pose no particular problem for this algorithm.  Each passage with its 
attendant items are considered as a set, with the value function equal to the sum of the 
values of each item included.  It may happen that passages contain items that push over 
the maximum. 
 

Reduction to Common Algorithm 
This algorithm selects the same items as the traditional minimum variance algorithm if 

0=kγ  for all 0>k . 
 

Content Strand Calculations and Reporting 
 
The value function for the content strand classification is a likelihood ratio test testing the 
null hypothesis that the examinee is at the cut-score. As such, it is exactly the calculation 
needed to coordinate with the recommended content-strand reporting approach (clearly 
above, indeterminate, clearly below). 
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