

ORS 327.372 & 326.500 Combined Biennial Oregon Department of Education and Annual STEM Investment Council Report

**Distribution of Funds for Science, Technology,
Engineering and Math, and Career and Technical
Education**

December 2025

OREGON
DEPARTMENT OF
EDUCATION
Oregon achieves . . . together!

Executive Summary.....	3
Background and Legislative Directive	5
STEM Investment Council Goals and Investments	5
Regional STEM Hub Backbone Funding	6
STEM Innovation Grants	6
Impacts of Funded STEM Hub Activities	9
Reach of STEM Hubs by the Numbers, 2024-2025	9
STEM Hub Stories of Impact	12
Strengthening Oregon's Math Education Through Strategic Investment.....	12
STEM Access and Student Belonging through Strategic STEM Hub Initiatives.....	13
Connecting Students to Careers Through Strategic Workforce Partnerships	14
Delivering Returns that Strengthen Oregon's Economy	14
Career and Technical Education (CTE) Investments	15
CTE Revitalization Grants Program	16
Gervais HS Culinary	16
Elgin SD Ultrasound	16
McMinnville HS Cosmetology	17
Willamette ESD Dental Assisting Program	17
Secondary Career Pathways.....	17
Student Leadership	18
Conclusion: Building Oregon's Future Through Strategic STEM and CTE Investment	19
Appendix A: STEM Projects During 2023-2025 Biennium	20
Appendix B: Reach of STEM Hubs Detailed Metrics	22
Appendix C: Number of STEM Awards	26
Appendix D: STEM Hub One-pagers and Videos	27

Executive Summary

STEM education is more critical today than ever before. Rapid technological advancements have created opportunities that were once unimaginable, while simultaneously exposing the limitations of outdated education systems. To meet this challenge, Oregon has made strategic investments to reimagine how regional communities engage in STEM learning, preparing students with the skills essential for success in an evolving technological era. This work aligns with a global movement for educational transformation through the STEM Learning Ecosystems initiative. By connecting classroom learning to real-world applications, these efforts strengthen workforce readiness and position Oregon to enhance its economic competitiveness.

In 2015, House Bill 3072 established Oregon's commitment to strengthening science, technology, engineering, & mathematics (STEM) and Career and Technical Education (CTE) as pathways to ensure Oregonians achieve success in high-wage, high-demand careers. Oregon Revised Statutes [327.372](#) and [326.500](#), established both the Oregon STEM Hub Network and a competitive CTE Revitalization Grant program. These statutes are designed on a regional model aligning STEM education and career connected learning with workforce and economic development. The legislation also requires the Oregon Department of Education (ODE), the STEM Investment Council ([326.500](#)), and the CTE Grants Advisory Committee ([ORS 344.075](#)) to report progress on these goals to the Legislature. These reporting requirements are met through this combined report.

The legislation advances three interconnected statewide goals:

1. Improve student outcomes in Science, Technology, Engineering, and Mathematics,
2. Increase participation in post-secondary STEM fields of study,
3. and increase the number of Oregon youth who enter high-wage, high-demand STEM professions.

The strategies to achieve these goals include providing funding for a network of Regional STEM Hubs, establishing a grant program to revitalize CTE programs and pathways in K-12 schools, and creating a dedicated STEM grants program. Together, these investments aim to remove barriers to opportunity and build community-based support structures, particularly in rural areas, that advance Oregon's STEM vision: ensuring every student, regardless of background, has access to integrated, transformative learning experiences that lead to meaningful careers and economic mobility.

During the 2023-2025 biennium, STEM investments supported:

- The operations of the 13 Regional STEM Hubs (\$6.74M) and STEM Network Infrastructure leveraging an additional \$5.2M from external sources.
- STEM Innovation Grants across four strategic areas (\$5.5M).
- Thirty-one new CTE Revitalization Grants (\$7.63M),
- Expansion and support of 21 new Career and Technical Student Organizations (\$789,645); and
- More than 749 CTE Programs of Study through the Secondary Career Pathways grants (\$8.01M).

These investments yielded strong results, including **99% utilization of CTE Revitalization Grants** across diverse sectors, such as impactful local projects aligned to regional workforce needs. STEM Hubs provided **professional development for 2,603 educators** and delivered more than **13,000 hours of programming to over 92,000 students**, with initiatives that broaden access to high-demand career pathways. See [CTE Investments Section](#) and [Reaching our Communities: STEM Hub Stories of Impact](#).

This report highlights how targeted CTE and STEM investments enable communities to build sustainable pathways that align with workforce needs. These programs increase STEM outcomes for students and strengthen connections between education, industry, and local communities. In doing so, they help foster long-term economic resilience. Through detailed expenditure data and compelling examples of impact projects, the report demonstrates how strategic investments translate into meaningful opportunities, preparing students for high-demand careers while supporting community sustainability.

Background and Legislative Directive

STEM and CTE skills are essential for high-wage, high-demand careers and Oregon's economic sustainability, especially in this digital era. In 2015, HB 3072 (ORS 327.372 & 326.500) authorized funding for statewide STEM and CTE programs. This led to the creation of the Oregon's Regional STEM Hub Network, as well as the CTE Revitalization Grants, Student Leadership Grants, and funds for developing Secondary Career Pathways. The STEM Hub network uses collective impact as its theory of change, uniting education, industry and community partners around STEM access and equity through common agendas, shared measurement and coordinated activities. This approach creates sustainable, systemic improvements in STEM outcomes & community partnership, and thus workforce development statewide.

ORS 326.500 requires the STEM Investment Council to submit an annual report on the distribution of funds under the STEM Investment Grant Program and the progress made toward achieving the following goals:

- Having a specified percentage of students in 4th and 8th grades who are proficient or advanced in mathematics and science; and
- Having a specified number of students who earn a post-secondary degree requiring proficiency in science, technology, engineering, or mathematics.

The strategies identified in ORS 327.372 (3) to achieve these goals are:

- Funding a network of Regional STEM Hubs;
- Establishing a grants program to revitalize CTE programs and pathways in K-12 schools to expose students to CTE programs that lead to high-demand and high-wage careers;
- Establishing a STEM grants program¹ that creates innovative and effective STEM experiences for teachers and students; and
- Developing a systematic survey of facility use to determine how savings for science, technology, engineering, and mathematics education can be achieved.

Approximately 40% of the funds were allocated for STEM education, and roughly 60% were allocated for CTE programs and activities. The legislative report, *Collaboration by State Agencies on Issues Related to Career and Technical Education*, provides detailed information on the broader recommendations for CTE fund disbursement guided by the CTE Grants Advisory Committee, as directed by ORS 344.075.

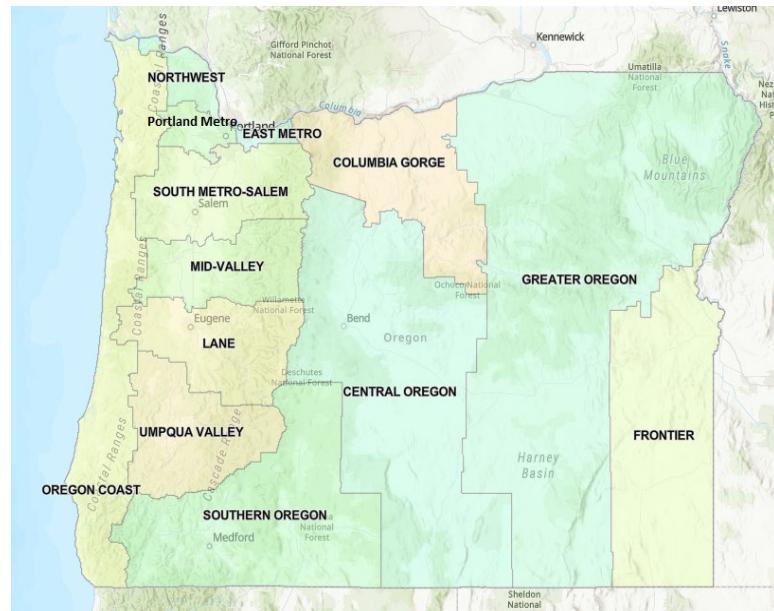
Moreover, ORS 327.372 requires ODE and the STEM Investment Council to submit a biennial report that includes metrics demonstrating how funds distributed under this statute contribute to developing a skilled workforce prepared for high-wage, high-demand jobs. These requirements are fulfilled through this combined report.

STEM Investment Council Goals and Investments

The STEM Investment Council was established through ORS 326.500 and is also responsible for developing a STEM Education Plan with goals and activities based on statewide STEM and career connected learning goals. The [2021-2025 STEM Education Plan](#) goals focused on equity and empowerment by ensuring all students gain the knowledge, skills, and mindsets needed to thrive in a rapidly changing, technology-driven world. It aimed to provide a roadmap for equitable access to STEM opportunities, strengthen and support P-20 educators, and establish sustainable funding and policies for STEM and CTE programs.

¹ The STEM grants program is referred to as the STEM Innovation Grants.

The current council, under new leadership, is revising the plan to prioritize direct alignment with legislative requirements for mathematics and science proficiency and STEM postsecondary trajectories. The updated plan, expected in spring 2026, will feature focused strategies and measurable targets connecting STEM Hub activities to statutory goals, enabling better progress, tracking and accountability. Specific performance metrics for the 2023-25 biennium were not established due to Council transitions, structural changes at ODE and HECC, and misalignment between the broad 2021-2025 STEM Education Plan and statutory goals.


The sections below outline how ODE allocated and distributed funds during the 2023-2025 biennium to support the operational infrastructure and innovative programming of the Regional STEM Hub Network Grant and the STEM Innovation Grants.

Regional STEM Hub Backbone Funding

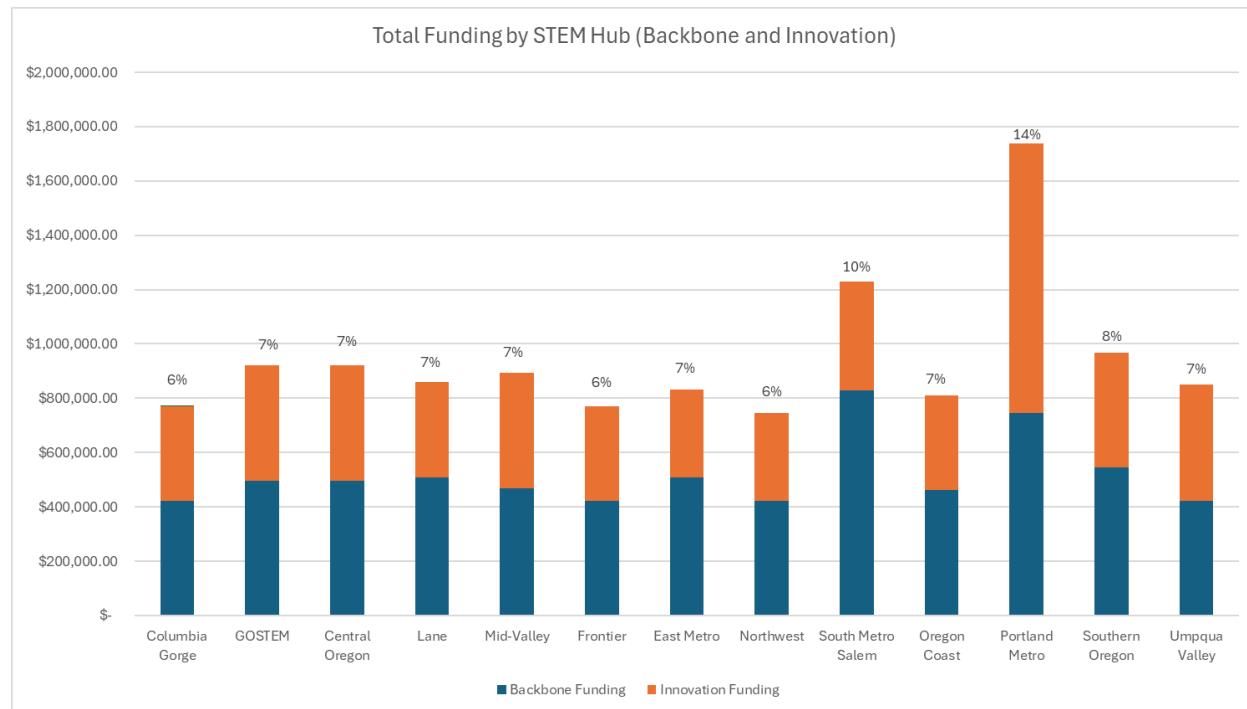
In the 2023-2025 biennium, funding from ORS 327.372 and 326.500 supported the operations ("backbone") of the Regional STEM Hub Network. This ensures STEM Hub operational capacity, enabling them to provide ongoing coordination and collaboration across regional partners, schools, and industries.

During the 2023-2025 biennium, the State of Oregon invested approximately **\$6.7 million** in the Regional STEM Hubs to support backbone operations. However, due to procurement delays, grant agreements were not fully executed until July 2024, which delayed spending during the first year of the biennium. Despite this delay, the investment has enabled Regional STEM Hubs to expand their programs by leveraging additional funds and resources from partners. In the first year of the biennium, **STEM Hubs secured approximately \$8,568,120** of in-kind and financial support, and in the second year of the biennium the STEM Hubs secured **approximately \$5,200,142** of direct financial support.

Figure 1: 2022 Map of the Oregon Regional STEM

While this report focuses on the expenditures under ORS 327.372 & 326.500, it is important to note that Regional STEM Hubs work synergistically with other funding sources and have in the past also received funding through various other state and federal initiatives, including the [Well-Rounded Access Program \(WRAP\) Grants](#), the [Governor's Computer Science Initiative Grants](#), and the [Math 2+1 Project](#) (Mathways) Grant in secondary education.

STEM Innovation Grants


STEM Innovation Grants are designed to expand the implementation of effective programs related to STEM education. In the 2023-25 biennium, **\$5,569,559** was allocated to the STEM Hubs Innovation

effort. For the 2023-25 biennium, the STEM Investment Council recommended two criteria for awarding grants:

- Projects must impact a considerable number of students from historically underserved and underrepresented communities.
- The awards must involve collaboration across two or more Regional STEM Hubs to promote regional and cross-regional partnerships.

During this biennium, ODE awarded 13 STEM Innovation Grants to Regional STEM Hubs to expand and enhance regional STEM programming organized around four areas of work: **Core STEM, Pathways to STEM / Career Connected Learning, Early STEM, and Community STEM**. These four areas are described in greater detail in [Appendix A](#) and additional detail on each area can be found on the ODE's [website](#). Innovation Grant funding encourages creative solutions to local and statewide challenges, fostering the development and scaling of new initiatives that enhance STEM and CTE pathways for students across Oregon. Together, these funds aim to strengthen the infrastructure and impact of STEM education throughout the state. Figure 2 and Tables 1 and 2 summarize how the funding was distributed between Backbone and Innovation, as well as how they were allocated across the Network.

Figure 2: Amount & Percentage of Allocations by STEM Hub (2023-2025 Backbone + Innovation Funds)

Table 1: Summary of Backbone and Innovation Grant Allocations and Number of Students Served

STEM Hub	Total Backbone Allocation (%)	Total Innovation Allocation (%)	Students in Region	Number of Districts	All Students (%)	Total Funding (%)
Columbia Gorge	6	6	10,426	10	2	6
Frontier	6	6	5,095	11	1	6
Northwest	6	6	15,073	13	3	6
Central	7	8	32,859	14	6	7
Greater Oregon	7	8	29,134	42	5	7
Coast	7	6	26,322	20	5	7
Umpqua Valley	6	8	12,760	13	2	7
Lane	8	6	41,922	15	8	7
East Metro	8	6	38,710	6	7	7
Mid-Valley	7	8	30,892	11	6	7
Southern	8	8	48,126	13	9	8
South Metro-Salem	12	7	145,428	32	27	10
Portland	11	18	111,804	5	20	14

Table 2: Summary of Innovation Grant Allocations

Area of Work	% of Total Innovation Grant Allocation	Budget Across All Proposals
Core STEM	31%	\$1,434,802
Pathways to STEM	28%	\$1,302,384
Community STEM	22%	\$1,040,117
Early Learning	19%	\$881,40

For the 2025-2027 biennium, innovation allocations have been refined by the STEM Investment Council to even better align with the priorities identified in ORS 326.500. The allocations for the **2025-2027**

biennium will focus specifically on Middle School Math, Elementary Science, K-8 Computer Science, and Career Connected Learning, allowing STEM Hubs to target state resources where they can have the greatest impact on student outcomes.

Impacts of Funded STEM Hub Activities

This section illustrates the scope of STEM Hub impacts during the 2024-2025 school year. The narrative data provides valuable context about how state investments were utilized and what types of STEM and career connected experiences were created for students, educators, and communities. The ongoing revision of the STEM Education Plan by the STEM Investment Council under new leadership will establish the quantitative metrics and targets necessary for future reports to demonstrate even clearer progress toward statutory STEM Investment goals.

Reach of STEM Hubs by the Numbers, 2024-2025

The Regional STEM Hubs' impact across Oregon demonstrates both the breadth and depth of their work in supporting educators and engaging students in STEM learning experiences. For more detail and a comparison to previous years, refer to [Appendix B: Reach of STEM Hubs Detailed Metrics](#). Figure 3 illustrates the larger impact the STEM Hubs have had in 2024-25 in providing professional development for educators.


Figure 3: Support Requests for Professional Development

Support Requests for Professional Development

STEM Hubs supported educators through personalized support, responding to specific requests in mathematics, science, and integrated instruction. Most requests focused on mathematics

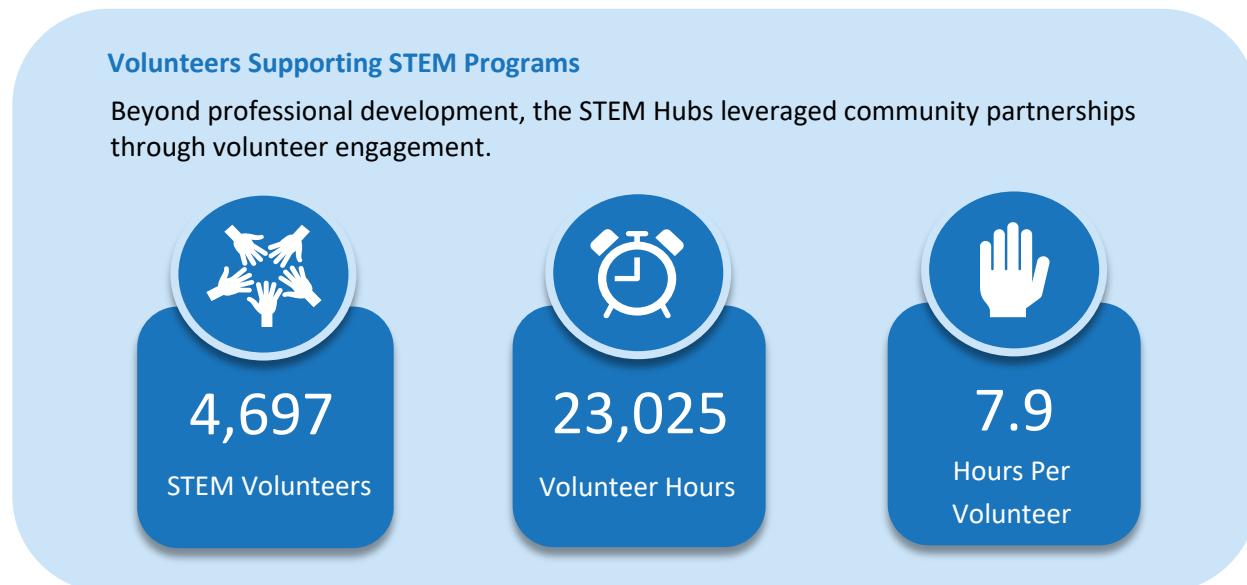
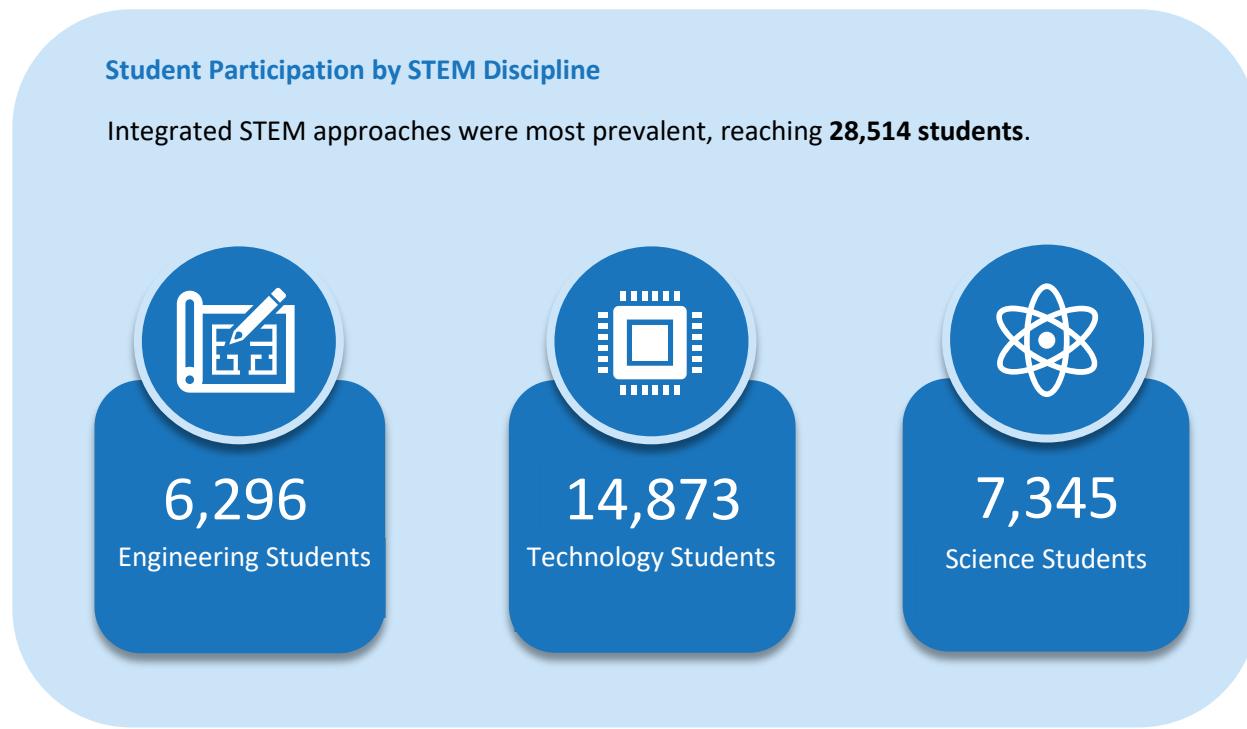


Figure 4: Professional Development Reach

Beyond professional development, STEM Hubs leveraged community partnerships through volunteer engagement. It should be noted that beginning in 2024-2025, this category expanded to include all volunteers rather than solely industry partners, reflecting the STEM Hubs' broadening partnership base. Figure 5 illustrates the impact of the STEM Hubs' outreach to volunteers over the 2024-25 school year.


Figure 5: Volunteers Supporting STEM Programs

The figures in Table B1 ([Appendix B](#)) reflects a change implemented in 2024-2025 in which STEM Hubs began counting lending library loans as student hours of STEM Hub-directed programs, substantially contributing to the large number of student hours in STEM Hub-directed programs reported totals. When examining direct hours of programming specifically, excluding lending library usage, the Hubs delivered **13,162 hours of instruction to 92,463 PK-12 students** across the state. This programming served diverse student populations, with White students representing the largest demographic group (35,490 students), followed by Hispanic/Latino students (16,031 students). Gender participation remained relatively balanced, with 31,148 male students, 29,156 female students, and 250 nonbinary students engaged in programming.

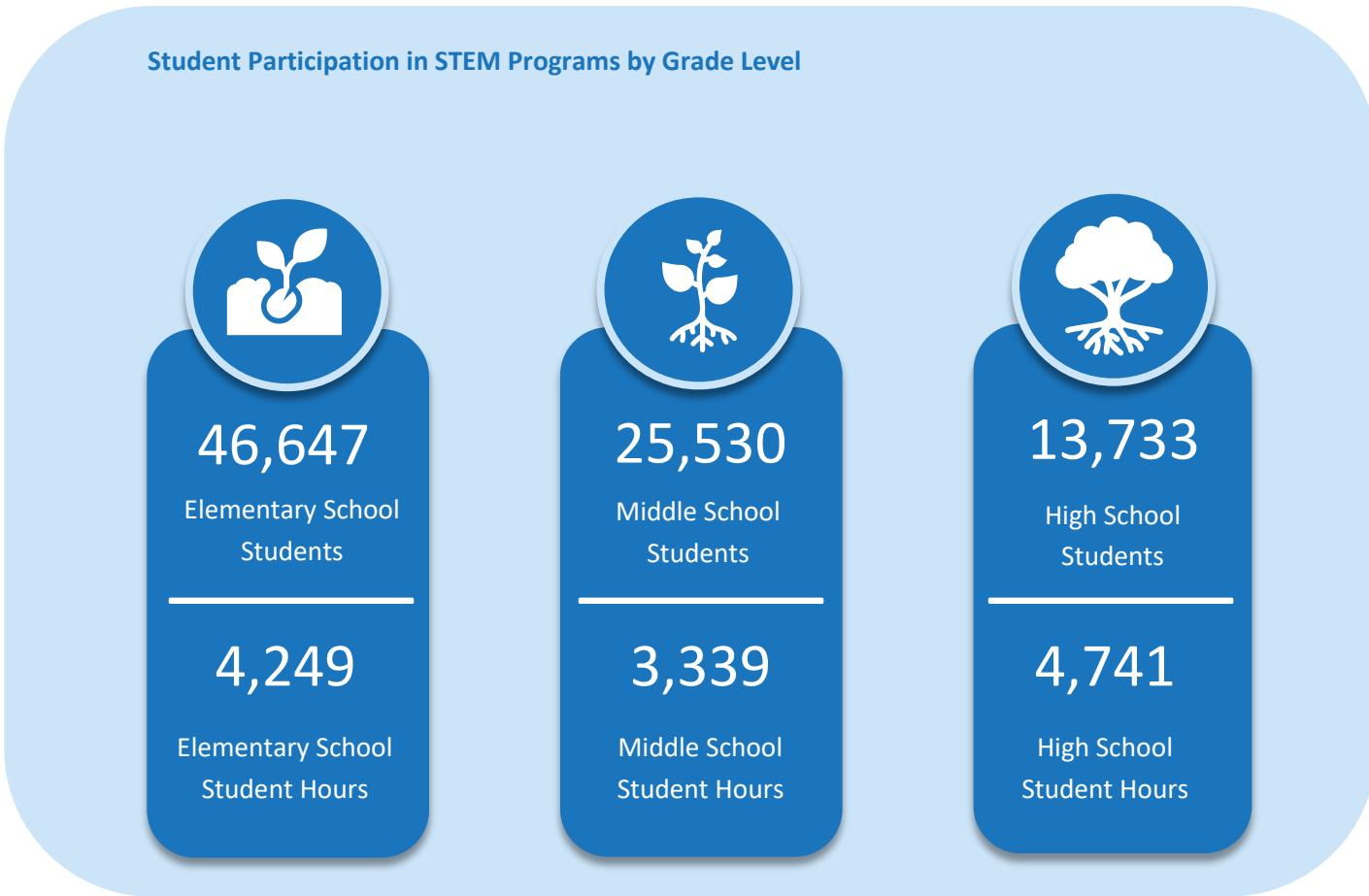

As illustrated in Figure 6 Student Participation by STEM Discipline Integrated approaches were most prevalent, **reaching 28,514 students**, though significant numbers also participated in discipline-specific programs focused on engineering (6,296 students), technology (14,873 students), and science (7,345 students).

Figure 6: Students Participation by STEM Discipline

As illustrated in Figure 7 below, STEM program offerings and participation across STEM disciplines spanned all grade levels. Elementary school shows the highest enrollment with **46,647 students contributing to 4,249 student hours**, suggesting widespread early engagement in STEM education. Middle school participation decreases to **25,530 students with 3,339 student hours**, reflecting a common trend of declining STEM interest during the transition to adolescence. High school enrollment further drops to **13,733 students**, though these students demonstrate sustained engagement with **4,741 student hours**, the highest per-student time commitment among the three levels. The data reveals that while absolute participation numbers decline as students' progress through grade levels, those who remain engaged in high school dedicate considerably more time to STEM activities, indicating deeper specialization and commitment among older students.

Figure 7: Student Participation in STEM Programs by Grade Level

It is important to note that with the intent for more thorough data transparency, the transition to a new data collection system beginning in 2023-2024 affected the reliability of that year's data, which showed notably lower numbers across most categories. While year-to-year fluctuations reflect both external factors and evolving measurement approaches, the five-year trend demonstrates the STEM Hubs' sustained capacity to serve educators, leverage volunteer partnerships, and provide direct student programming across Oregon's regional networks. Detailed breakdowns of these metrics by region, demographics, and program type can be found in [Appendix B: Reach of STEM Hubs Detailed Metrics](#).

Lastly, the number of STEM credentials awarded over the past decade **increased by 21%**. As illustrated in [Appendix C: Number of STEM Awards](#), the most significant increases were in the number of bachelor's degrees and graduate degrees/certificates awarded. There was a **31% increase** in the number of bachelor's degrees between 2015 to 2025. Plus, there was a **56% increase** in the number of graduate degrees awarded increased between 2015 and 2025.

STEM Hub Stories of Impact

Strengthening Oregon's Math Education Through Strategic Investment

Oregon's STEM Hub Network has shown emerging progress in transforming mathematics instruction across the state, through blending and braiding of STEM Hub funds with Mathways funding. The STEM Hubs have reached thousands of educators and students in communities from the coast to Eastern

Oregon. This section provides just some examples of the quality work of Oregon's Regional STEM Hub Network, especially in their efforts to provide access to opportunities for Oregon's most underserved students. The Network's coordinated approach to professional development has reached **2,603 educators statewide** through intensive, research-based training programs.

The STEM Hubs' work with Mathways and the [Math 2+1 Project](#), Modernized Precalculus, eliminates the year-long Algebra 2 prerequisite and directly supports de-tracking efforts and opens pathways to advanced mathematics for more students. This work advances Oregon's broader vision for math education to ensure all students attain mathematical proficiency through equitable, coherent, and supportive pathways that connect learning to real-world opportunities and student goals. Similarly, Portland Metro's Middle School Math in Real Life curriculum is designed to connect

students to abstract concepts in math through authentic contexts and has **reached over 2,000 students across 19 schools**.

Educators consistently report that professional development motivates them to make math more joyful, inclusive, and relevant for all students, often a transformation that extends far beyond individual classrooms to reshape Oregon's entire mathematics educational ecosystem.

Experiences like these demonstrate that thoughtful strategic investment in Oregon's STEM Hub Network produces both immediate classroom impact and long-term systemic change, aiming to ensure that every student, regardless of zip code or background, has access to high-quality mathematics instruction that prepares them for future success.

STEM Access and Student Belonging through Strategic STEM Hub Initiatives

In rural communities, geographic isolation often limits instructional quality as teachers work in one-person departments. STEM Hubs address this challenge by building collaborative support networks. Frontier STEM Hub partners with Eastern Oregon's Regional Educator Network to form Rural Math Learning Collaboratives, connecting educators across the region to share best practices and access STEM expertise. These initiatives have improved student achievement and benchmark scores while fostering strong professional communities. Teachers describe these collaboratives as essential, ensuring isolation no longer dictates instructional quality or student outcomes.

Over the years, the STEM Hub Network has built adaptive approaches that are engaging students previously disconnected from STEM pathways. East Metro STEAM Partnership's Esports League is just one example of how a STEM Hub's innovative programming can create belonging for students who often may not have believed they belonged in STEM. Students participating in traditional Esports teams are now building computational thinking, system analysis, and leadership skills through competitive gaming. Meanwhile, Lane STEM's partnership with University of Oregon graduate students has brought scientists specializing in bioengineering, quantum optics, and computational genetics directly to six rural schools, helping students build STEM Identity by envisioning themselves in scientific careers they previously could not access.

Connecting Students to Careers Through Strategic Workforce Partnerships

In addition, in regions where geographic isolation limits career access, STEM Hubs are also opening doors to economic mobility. Frontier STEM Hub's Malheur Works Internship Program has served **28 recent graduates** with **360 hours of paid work experience**, equipping participants with both technical skills and essential employability competencies. Greater Oregon STEM Hub delivers hands-on labs like

the Basic Drone Lab for middle and high schoolers and a Magnetics Lab for elementary students. Both labs help engage students who might otherwise be hesitant to participate in STEM, demonstrating how well-designed STEM activities can overcome typical reluctance and spark genuine excitement. Like the Greater Oregon Mobile Maker Lab, the Umpqua Valley STEAM Hub also works to bring STEM to students through

their new STEAM Van, which transports specialized STEM equipment directly to schools, offering hands-on experiences that connect to career pathways.

Oregon's STEM Hub Network serves as a vital link between education and industry, connecting students, especially in rural and underserved communities, to high-demand careers while addressing statewide workforce shortages. In the Frontier STEM Hub region, one example is *Destination Dream Job*, a four-day career camp serving over **60 middle school students** annually. In partnership with Treasure Valley Community College, CTE programs, OSU Extension, and local employers, students engage in hands-on exploration of 10+ career pathways, including construction, automotive, entrepreneurship, healthcare, and agriculture. Similarly, the Oregon Coast Renewable Energy Challenge engaged nearly **275 students with 50 industry volunteers** from energy companies, engineering firms, and research labs, building clear pathways into the blue and green economies driving coastal economic development.

The network's strategic partnerships are also producing results in sectors like healthcare that are facing acute talent shortages. The IGNITE Healthcare initiative demonstrates exceptional outcomes: **93–100% student retention**, **85–95% of participants** pursuing healthcare education or careers, and over **90% reporting a sense of belonging**, all while serving populations historically underrepresented in healthcare, such as 75% Hispanic/Latinx and 63% first-generation college students. Targeted

interventions like these and others are aiming to continue building the diverse, skilled workforce Oregon's healthcare system urgently needs.

Delivering Returns that Strengthen Oregon's Economy

Furthermore, the Network is working tirelessly to create a comprehensive career exposure system that establishes clear pathways for students to see their future in Oregon in areas like Computer Science and other key fields. Central Oregon STEM Hub is an excellent example of this work, where rural middle school students are paired with OSU-Cascades computer science students for a Make-A-Thon challenge that includes hands-on technology activities. Similarly, they also pair students with professional engineers to design Rube Goldberg machines.

Another example can be seen with Southern Oregon's Eco-Explorers program where they pair 3rd through 8th grade teachers with industry and community

"I could directly imagine my students in these roles—this made the experience especially meaningful." -

professionals to design hands-on classroom projects that align with Next Generation Science Standards, address local community needs, and provide authentic career-aligned activities. This last school year they were able to reach **9,000 students**. Mid-Valley STEM-CTE Hub is also contributing to building career pathways by building their Educator Externship Program by **engaging 21 educators from 17 schools** in a program that matched them with industry partners including Hewlett Packard and Northwest Natural. This partnership allowed teachers to align high quality curriculum with workforce insights that provide real-world and timely experience to classrooms today.

The STEM Hub Network amplifies state investments by convening partners to drive economic development and workforce alignment. For example, the Columbia Gorge STEM Hub engages over **60 education, industry, and workforce partners** through its biannual Regional CTE Advisory Committee, coordinating efforts in advanced manufacturing, health sciences, and technical trades. Participating youth gain exposure through CTE lab tours, labor market insights, industry presentations,

and hands-on experiences. Similarly, Northwest STEM Hub collaborates with Portland Community College's Oregon Manufacturing Innovation Center to provide competitive internships and reduce access barriers with transportation support. These partnerships ensure resources reach students efficiently while building lasting connections between schools and regional employers.

These initiatives deliver value beyond individual student outcomes by aligning education with workforce needs identified through Local Needs Index data. STEM Hubs help reduce employer recruitment costs, shorten training time, and build talent pipelines in critical sectors. Many Hubs partner with CTE programs and districts to implement YouScience, an aptitude-based tool that aligns student strengths with career pathways. To date, over **40,000 Oregon students have engaged with YouScience**, gaining data-driven insights to inform career decisions before high school, supporting efficient development of Oregon's future workforce.

During 2024–2025, the Oregon STEM Hub Network launched a statewide video project to highlight the collective impact of all 13 Regional STEM Hubs. Partnering with Nick Alexander Films, each Hub highlighted its unique regional strategies and shared mission to expand STEM opportunities for students, families, and communities. These videos illustrate diverse approaches to ensuring equitable access to STEM education, advancing career-connected learning, and addressing workforce priorities throughout all of Oregon. They also underscore aligned efforts to strengthen Oregon's economic competitiveness by providing underserved students with high-quality STEM experiences that build pathways to high-wage, high-demand careers. Videos links can be found in [Appendix D: STEM Hub One-pagers and Videos](#).

Career and Technical Education (CTE) Investments

[ORS 327.372](#) and [326.500](#) also established funding for key CTE investments: the CTE Revitalization Grants, Student Leadership Grants, and funds for developing Secondary Career Pathways. This section outlines each of these programs.

CTE Revitalization Grants Program

The Oregon Legislature established a competitive grant program entitled the CTE Revitalization Grant program which strengthens the alignment of Career and Technical Education, workforce development, and economic development through ORS 327.372 & 326.500. The CTE Revitalization Grant program is designed to support student engagement and success, completion leading to career and college preparation, and boost local and regional economic development.

For the 2023-2025 biennium, 31 CTE Programs, reaching more than 36,000 students, received funding through CTE Revitalization Grants totaling **\$7,628,849**.² The [2023-2025 CTE Revitalization Grant Project Abstracts](#) provide more detailed information about the projects funded through the CTE Revitalization Grant program. At the end of the 2023-25 biennium, grant recipients claimed a total of \$7,556,149 through reimbursement within the CTE Revitalization Grant Program (**a 99% utilization rate**), demonstrating the need and value of the grant funds being utilized to revitalize Career and Technical Education.

CTE Revitalization Grant funds serve diverse communities around the state, with programs focused on advanced manufacturing, engineering, health science, agricultural science, residential construction, robotics, digital media, broadcasting, firefighting, and hospitality/tourism. Projects funded through the CTE Revitalization Grants benefit students as well as their communities. The following examples of impact projects highlight the links between these vital education programs and their local talent needs.

Gervais HS Culinary

Through collaborations with the local community and industry partners, Gervais High School leveraged its CTE Revitalization Grant to develop and launch a thoughtfully constructed culinary program emphasizing both critical food industry skills and an entrepreneurship component. The centerpiece of the new program is a fully-functional food truck that provides a real-world learning lab that supports all aspects of culinary practice, prep, safety, hygiene, customer service, inventory tracking, event planning, and small business operations. Hungry customers can be seen engaging in the program at Gervais High and at community events around the area.

Elgin SD Ultrasound

CTE Programs of Study lead to living-wage careers in in-demand fields that typically require learners to develop a solid technical foundation and an understanding of the education and training needed to advance. The Elgin Revit Project does all these things. The area of Precision Agriculture leverages modern technologies to increase profitability and streamline processes. The Elgin and Imbler school districts collaborated on a successful grant around two emerging Precision Agriculture areas: animal ultrasound and precision irrigation/chemigation.

Certified ultrasound technicians harness technology to help ensure the quality and health of animals in a non-invasive manner. There are fewer than 5 certified animal ultrasound technicians in Oregon, and most full-time technicians can earn \$30,000-\$67,000 based on business booked (this exceeds the Oregon Employment Department [OED] median hourly wage conversion from \$17.51/hour). In Union, Baker, and Wallowa Counties, the beef industry accounts for \$80 million in gross annual sales, so creating learning opportunities in this emerging area has the promise of addressing regional needs and providing learners with work-based learning experiences and a “deep dive” into a new field that has a huge impact on farms, ranches, businesses, families, and the learners who will become earners in the local economy.

² There were a total of 68 applications requesting \$16,067,541.

McMinnville HS Cosmetology

Cosmetology is a field with a growing demand for practitioners (+19% projected, 2023-33, per QualityInfo.org) and opportunities for entrepreneurship. McMinnville High School partnered with local businesses to build a program that aligns with industry standards, adheres to Oregon Health Authority Board of Cosmetology competencies, and supports learners as they develop the technical and professional skills and practices necessary to thrive in this field. The grant provided significant support for program development, and the McMinnville School District has developed a multi-tiered plan, leveraging Secondary Career Pathways and Measure 98/High School Success funds to sustain and expand this exciting program into the future.

Willamette ESD Dental Assisting Program

Willamette Career Academy (WCA) is directly addressing Oregon's statewide dental assistant shortage through its new dental assisting program, funded partly by a 2023-2025 CTE Revitalization Grant. During the 2024-25 school year, at least 30 high school students from Marion and Polk Counties gained hands-on experience with courses in dental anatomy, infection control, and patient interactions in their first year, progressing to fieldwork in actual dental offices during year two. WCA plans to expand the dental program to 60 students for the 2025-2026 school year.

As quoted in an August 2024 article by the Salem Reporter, Joe Morelock, Superintendent of the Willamette Education Service District, shared that local dental practices are already expressing interest in hiring graduates to help offset the shortage, which was fueled in part by the COVID pandemic; according to the Oregon Health Authority, dental offices in the state lost 56% of their staff during the first year.³

Secondary Career Pathways

The Secondary Career Pathway Funding is intended to incentivize quality CTE Programs of Study that lead to high-wage and high-demand occupations. OCE-recognized CTE Programs of Study across the state are eligible if they offer at least three credits⁴. The funds are distributed by a formula based on the following criteria: 1) the number of students who complete at least three credits in the CTE program, 2) the number of students who earn an approved Industry Recognized Credential, and 3) the number of historically underrepresented students earning three credits in the approved CTE program. The grant provides a funding floor of \$2,000 and caps awards at \$45,000 per CTE Program of Study. **\$8,005,863 was funded in the 2023-2025 biennium.**

Over **749 CTE Programs of Study benefited annually from the more than \$8 million dedicated to Secondary Career Pathways.** CTE teachers have leveraged these funds to supplement their CTE Programs of Study and create engaging opportunities for students to pursue knowledge and skills that lead to high-wage careers. Secondary Career Pathways provide direct support to specific CTE Programs of Study and allow for greater flexibility for schools as to how to invest the funds as determined by the

³ "Dental assisting program for Salem-area high schoolers opens at Willamette Career Academy," Rachel Alexander, Salem Reporter (https://www.salemsreporter.com/2024/08/30/dental-assisting-program-for-salem-area-high-schoolers-opens-at-willamette-career-academy/?utm_medium=email&utm_source=govdelivery).

⁴ When this legislation was enacted CTE Programs of Study were only required to offer 2 credits. Starting in June 2024 all approved CTE Programs of Study must offer 3 full credits in High Schools. This means that now all CTE programs will be eligible.

teachers, administrators, and local industry partners. These funds support teacher professional development in current industry standards, provide equipment and technology that allows students industry-level experiences in the classroom, and fund student participation in leadership opportunities and membership in Career and Technical Student Organizations. Included below are three examples of among hundreds of stories from CTE educators on the impact these funds have on their programs:

South Ridge High School, Beaverton School District- Health Sciences: “Over the past two years, we have been able to purchase better AED/Dummies for our American Heart BLS. We have also been able to get further along with curriculum by having more supplies where students do not have to share with 5 or more kids. As we continue to grow as a program, my goal is to continue to have multiple pieces of equipment so that students can master skills in a much more efficient way.”

Phoenix High School, Phoenix-Talent School District-Automotive Service Technology: “Pro-Cut test stands allow students to get hands-on practice using vehicle brake lathe more frequently. Having a full set of Micrometers allows every student hands-on use and training during micrometer training. Adding quality Fluke DMM's allow students to use industry standard tools during DMM testing and training. Having proper Radiator bleed tools to show industry standard when servicing coolant in vehicle.”

Pendleton High School, Pendleton School District- Digital Arts, General: “We have had participation in work-based learning projects with software and equipment purchased from pathway funds, such as Wacom tablets that allowed students to better use Adobe software in poster and billboard competition designs. Our purchase of a kiln has allowed our ceramic and 3D design curriculum flourish and meet industry standards in production.”

Student Leadership

Student leadership opportunities are one of the components of a high-quality CTE Program of Study. All CTE Programs of Study must provide student leadership opportunities, although, for some career areas, there is no formal Career and Technical Student Organization with which to affiliate. Oregon currently has eight State Board-recognized Career and Technical Student Organizations. The Career and Technical Student Organizations prepare students for careers in healthcare, technology, agriculture, education, business, marketing, and human services. Each Technical Student Organization prepares its members through leadership, career development events (competitions), hands-on experiences, scholarship opportunities, and industry exposure to develop the skills needed to secure high-wage and high-demand jobs.

Oregon received **\$789,645 for student leadership** from the Legislature for the 2023-2025 biennium. ODE passes those funds through to the Oregon Career and Technical Education Student Leadership Foundation, a non-profit organization set up to manage student leadership funds, as all funds go to the Career and Technical Student Organizations. In 2024-2025, the Career and Technical Student Organizations used \$401,363.16 of those funds, in the second year of the biennium. Each year, \$32,500 is distributed to the chartered Career and Technical Student Organizations for statewide administration, with FFA choosing to opt out. A total of \$57,500 is allocated each year for joint activities shared by the organization, such as joint student training, and the remainder of funds (\$85,000) each year is set to be distributed to individual chapters of the Career and Technical Student Organizations through a “Chapter Grant” process. In the 2024-2025 school year, **9,546 students** were impacted by these funds spread over 127 chapters of our Student Leadership Organizations.

Conclusion: Building Oregon's Future Through Strategic STEM and CTE Investment

During the 2023–2025 biennium, investments through ORS 327.372 and 326.500 reaffirm Oregon's commitment to preparing students for high-wage, high-demand careers via STEM and CTE education. The 13 Regional STEM Hubs reached tens of thousands of students and thousands of educators, strengthening workforce-aligned infrastructures. In 2024–2025 alone, **92,463 students** participated in Hub programming, alongside growing educator engagement. Concurrently, CTE investments expanded opportunities through Revitalization Grants, Career and Technical Student Organizations, and Secondary Career Pathways.

STEM Innovation Grants broadened in-school and out-of-school STEM/STEAM programs statewide, engaging P–20 learners in experiential, career-connected learning aligned with the 2021–2025 Oregon STEM Education Plan. These efforts emphasize equity, teacher development, and collaboration with industry. STEM programming equipped students with durable skills such as creativity, adaptability, problem-solving, and technical literacy, all competencies identified within [Oregon's Employability skills](#). CTE funding further advanced integrated pathways, extending Career Connected Learning to elementary levels and supporting equitable access and sustainable systems.

Looking ahead, the STEM Education Plan is being revised for 2026–2030 to build on successes and lessons learned in previous biennia. In alignment with Oregon's focus on Accountability, the STEM Investment Council, in partnership with the HECC and ODE, is refining strategies and metrics to strengthen math and science achievement, expand career-connected learning, and improve coordination across Oregon's education and industry ecosystem. The updated plan will feature measurable goals to enhance student outcomes in math & science, increase STEM identities, and identify strategies to prepare students for high-wage, high-demand careers in Oregon's technologically evolving workforce.

The funds authorized by ORS 327.372 & 326.500 have proven their value in building equitable access to high-wage high-demand careers for Oregon's students. Continued investment in STEM and CTE remains essential not only for strengthening individual student trajectories, but also for ensuring Oregon's economic competitiveness. Furthermore, investments in STEM and Career Technical Education ensure that as a state we remain focused on meeting the growing demand for skilled workers in technology, healthcare, engineering, advanced manufacturing, and other critical sectors that drive Oregon's economy.

Appendix A: STEM Projects During 2023-2025 Biennium

Core STEM

Central to the Network's charge of increasing access to STEM/STEAM learning opportunities, the Core STEM projects connected core subjects and standards by articulating alignment between best practices in engaging STEM learning and Oregon's adopted academic content standards. **Activities to support Core STEM included:**

- Providing professional development aligned to Oregon's academic standards to educators.
- Supporting K-12 STEM program delivery.
- Developing leadership skills for educators to integrate content area standards development opportunities for educators with emphasis on integration.
- Creating and disseminating existing STEM integration efforts.

Pathways to STEM/Career Connected Learning

Primary to the Pathways to STEM / Career Connected Learning (CCL) project was to connect classrooms to the world of work through a continuum of experiences across P-20 that would help learners make informed decisions about their educational and career goals. Close alignment with ODE's [Career Connected Learning \(CCL\) framework](#), with considerations for regionally specific partners and needs, informed strategies for the Pathways to STEM / Career Connected Learning project. **Activities to support Pathways to STEM/Career Connected Learning included:**

- Participating in existing and emerging networks to share resources and unify strategies to co-develop efforts in alignment with educational and industry standards.
- Offering student experiences that are relevant and connected to career pathways.
- Providing professional development and shared learning, aligned with career pathways & industry standards.
- Creating intentional industry partnerships that center investment of time and/or funds that support underserved populations through programming and seek diverse representation of their workforce in activities.
- Developing resources and disseminating them to support existing "Pathway" efforts, with emphasis on deeper connections to STEM and/or CTE career opportunities.

Early STEM

Primary to the early STEM project was to connect early educators and childcare providers with tools, resources, and strategies to ensure the youngest learners have equitable access to quality STEM learning experiences. **Activities to support Early STEAM included:**

- Providing professional development for early educators and childcare providers.
- Creating intentional partnerships with the Department of Early Learning and Care and the Early Learning Hubs.
- Delivering PK-5 STEM Programming.
- Developing resources and disseminating them to support existing Early STEM efforts, with emphasis on equitable access to quality STEM learning experiences for both educators and students.

Community STEM

Primary to the Community STEM project was to explore and expand upon strategies to address Community STEM needs through multi-Hub and regionally specific activities. **Activities to support Community STEM included:**

- Providing professional development.
- Building intentional partnerships centered on investing in and empowering communities that directly serve underserved populations.
- Creating and maintenance of networks to share resources, unify strategies, co-develop efforts, and align funding.
- Delivering PK-12 STEM programing.

Appendix B: Reach of STEM Hubs Detailed Metrics

Table B1: Regional STEM Hub Impact Data

Regional STEM Hub Impact Data Category	2019-2020	2021-2022	2022-2023	2023-2024	2024-2025
Number of educators who participated in Hub professional development or programs	5,056	6,375	7,447	2,286	2,603
Number of educator hours spent in STEM Hub professional development and programs	44,448	36,681	35,664	31,688	31,563
Average number of professional development hours per educator	9	6	5	13	12
Number of industry volunteers who participated in STEM Hub activities	2,240	1,673	2,270	1,974	4,597*
Number of industry volunteer hours	14,526	17,475	8,514	1,351	23,025*
Number of students who participated in STEM Hub-directed programs	43,040	69,035	96,160	54,646	92,463^
Number of student hours in STEM Hub-directed programs	190,683	291,264	370,994	28,887	726,134^
Number of teachers who use equipment loaning programs	927	941	673	Not available	Not available

*All volunteers not just Industry. Prior to 2024-2025, the data represented just industry rather than all volunteers.

[^] Note: Data collection methods change between 2023-2024 and 2024-2025

Table B2: Total Number of Students Participating in STEM Activities by Ethnicity Group

Ethnicity Group	State	Central	Gorge	Frontier	GO	Lane*	MV	NW	Coast	Portland	Salem	Southern	Umpqua	East Metro*
American Indian/ Alaska Native	1671	1032	188	30	30		2	4	175	55	20	68	66	1
Asian	1560	206	74	34	5		11	2	56	966	133	16	46	10
Black/African American	637	164	46	35	3		3	2	37	247	31	26	31	12
Hispanic/Latino	16031	4688	3267	2888	188		26	44	822	2793	555	271	459	30
Multi-Racial	3182	930	401	280	41		12	29	450	506	190	117	218	7
Native Hawaiian/ Pacific Islander	337	155	37	4	6		2	1	27	62	18	2	20	2
White	35490	15130	4417	3063	631		98	350	2981	3224	1697	1019	2852	29

*Lane STEM Hub did not provide disaggregated data

Table B3: Total Number of Students Participating in STEM Activities by Gender

Group	State	Central	Gorge	Frontier	GO	Lane	MV	NW	Coast	Portland	Salem	Southern	Umpqua	East Metro
M	31148	11518	4309	3208	462	300	358	220	2382	4010	1384	906	1873	218
F	29156	10770	4051	2963	433	279	329	207	2221	3787	1303	854	1758	201
X	250	99	29	22	4	4	6	2	27	17	18	4	14	3

Table B4: Total Number of Students Participating in STEM Activities by Grade

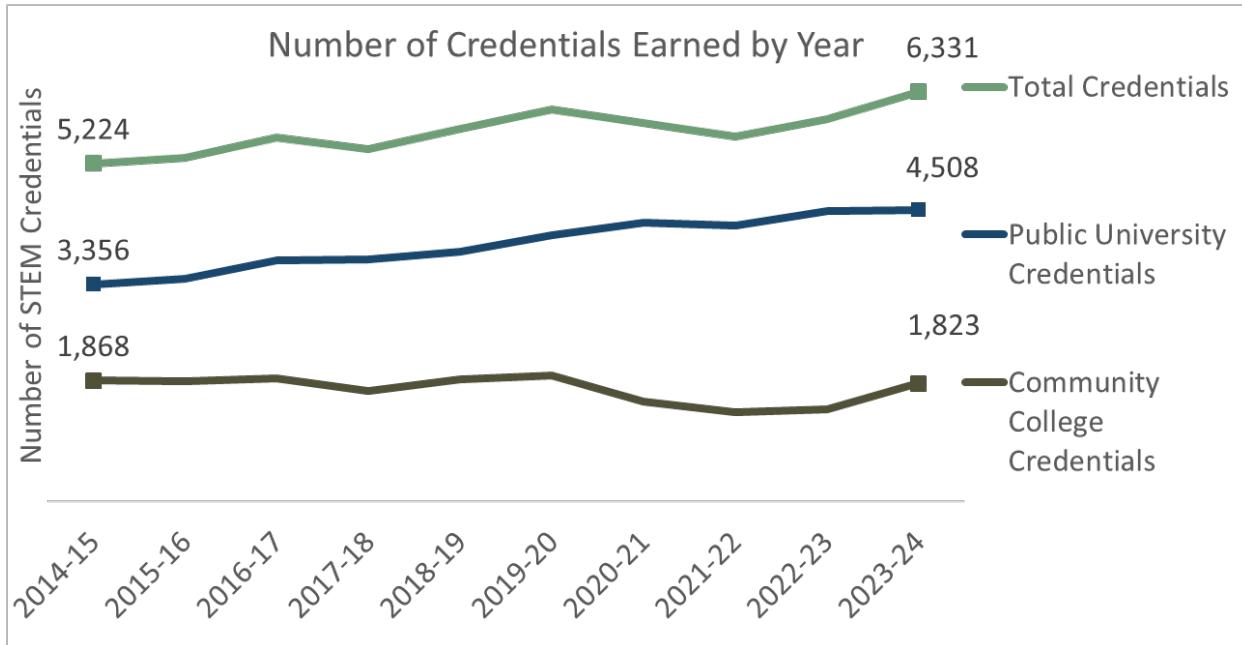
Group	State	Central	Gorge	Frontier	GO	Lane	MV	NW	Coast	Portland	Salem	Southern	Umpqua	East Metro
Pre-K	1162	299	153	82	402	0	0	40	0	0	0	0	186	0
Elementary	46647	10,150	6131	1585	10127	0	0	351	2075	7041	722	6362	2103	0
Middle School	25539	11504	1859	844	2168	460	0	119	0	1542	293	2702	1986	233
High School	13733	3249	1248	2299	559	123	544	212	1013	0	1628	2495	174	189
Multiple Grades	1668	0	0	0	1368	0	0	0	0	0	300	0	0	0

Table B5: Total Number of Students Participating in STEM Activities by Subject

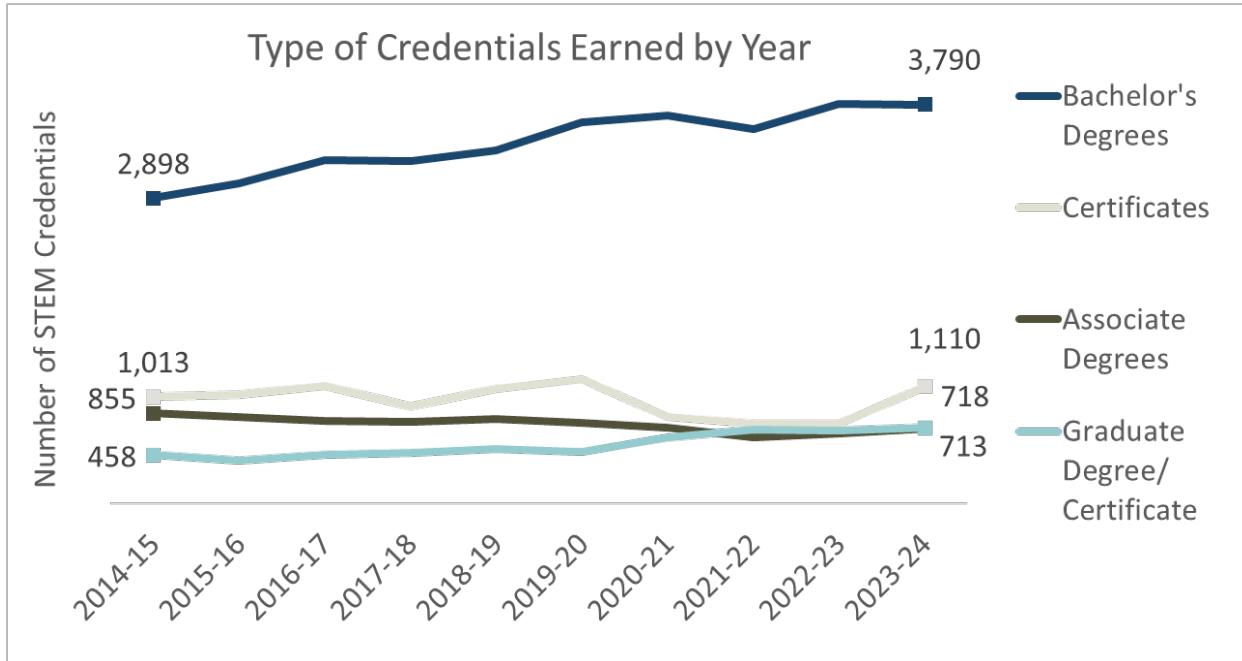
Group	State	Central	Gorge	Frontier	GO	Lane	MV	NW	Coast	Portland	Salem	Southern	Umpqua	East Metro
Career Connected Learning	10867	5737	1293	1551	0	0	264	30	0	0	1681	311	0	0
Engineering	6296	1242	1473	13	0	0	0	110	774	1909	0	0	775	0
Integrated	51348	8538	4114	3322	14745	0	509	182	0	6674	30	11854	1286	94
Mathematics	1070	795	291	0	0	0	0	0	0	0	0	0	0	84
Science	7345	1821	707	1204	81	570	150	237	1893	0	0	25	657	0
Technology	14873	7069	1513	104	0	13	0	163	2299	0	1312	0	2156	244

Table B6: Total Hours of Direct Student Programming Data | *this includes time students may have used lending library equipment.

Group	State	Central	Gorge	Frontier	GO	Lane	MV	NW	Coast	Portland	Salem	Southern	Umpqua	East Metro
In-Person*	13067	2352	2646	789	305	37	55	295	1610	1486	1263	1476	729	29
Virtual	52	0	10	0	0	0	0	0	0	0	0	0	0	42
Hybrid	35	0	35	0	0	0	0	0	0	0	0	0	0	0
Lending Library	3			3	0	0	0	0	0	0	0	0	0	0
Pre-K	188	43	62	1	6	0	0	10	0	0	0	0	66	0
Elementary	4249	923	1384	60	138	0	0	39	198	442	12	652	402	0
Middle School	3339	637	682	180	94	20	6	107	131	1044	22	214	183	20
High School	4741	749	563	430	46	18	14	139	891	0	1219	545	78	51
Multiple Grades	13	0	0	0	5	0	0	0	0	0	8	0	0	0
CCL	2485	949	167	100	0	0	6	6	0	0	1232	26	0	0
Engineering	1426	115	731	1	0	0	0	110	235	77	0	0	157	0
Integrated	6133	481	1515	672	285	0	43	104	0	1409	5	1447	167	5
Mathematics	162	64	74	0	0	0	0	0	0	0	0	0	0	24
Science	1644	237	44	10	17	26	6	40	1214	0	0	3	48	0
Technology	1307	506	161	9	0	11	0	35	161	0	26	0	357	42


Table B7: Total Number of Educator Accessing Professional Development Data

Group	State	Central	Gorge	Frontier	GO	Lane	MV	NW	Coast	Portland	Salem	Southern	Umpqua	East Metro
Experience First Year	93													
Experience 1-5yrs	551	129	174	35	0	33	1	23	57	88	8	0	3	0
Experience 6-10yrs	293	101	57	8	0	3	9	29	38	38	9	0	1	0
Experience 10+yrs	982	326	154	47	0	72	12	42	107	201	21	0	0	0
STEM Participation First Year														
STEM Participation 1-5 yrs	1550	129	174	35	0	33	1	23	57	88	8	0	3	0


STEM Participation 6-10 yrs	180	101	57	8	0	3	9	29	38	38	9	0	1	0
STEM Participation 10+ yrs	38	326	154	47	0	72	12	42	107	201	21	0	0	0
Focus Science	601	114	63	44	43	130	3	23	153	24	4	0	0	0
Focus Technology	347	42	184	38	0	0	8	0	61	0	0	0	11	3
Focus Engineering	170	36	2	3	0	0	0	38	72	18	0	0	0	1
Focus Mathematics	1753	214	109	97	8	511	30	23	172	299	12	236	39	2
Focus Integrated	1555	564	101	156	0	0	34	10	0	436	28	173	53	0
Focus CCL	548	57	93	16	13	24	4		0	0	135	206	0	0
Grade Band Pre-K	257	66	90	6	0	0	0	0	57	25	1	0	12	0
Grade Band Elementary	2046	516	186	193	0	238	15	50	202	235	17	224	38	0
Grade Band Middle School	898	265	77	45	0	33	7	24	69	236	22	85	35	0
Grade Band High School	1333	140	145	49	15	391	9	20	78	53	118	306	4	5
Grade Band Multiple Grades	29	0	0	0	0	0	0	0	1	15	7	0	6	1

Appendix C: Number of STEM Awards

Graph C1: The number of Total STEM awards by Granting Institution from 2014-20245

Graph C2: The Number of STEM Credentials from 2014-201412

⁵ Source: HECC analyses of student data submitted to HECC by Oregon public universities and community colleges. Note: STEM credentials are defined using the federal definition for international students applying for STEM training in the United States, see <https://www.ice.gov/doclib/sevis/pdf/stemList2024.pdf>. Bachelor's degrees include post baccalaureate certificates.

Appendix D: STEM Hub One-pagers and Videos

[Oregon STEM Network Statewide Video](#)

[Central Oregon STEM One-Pager](#)
[Central Oregon STEM Hub Video](#)

[Columbia Gorge STEM One-Pager](#)
[Columbia Gorge STEM Hub Video](#)

[East Metro STEAM Hub One-Pager](#)
[East Metro STEAM Partnership Video](#)

[Frontier STEM One-Pager](#)
[Frontier STEM Hub Video](#)

[Greater Oregon STEM One-Pager](#)
[Greater Oregon STEM Hub Video](#)

[Lane County STEM One-Pager](#)
[Lane ESD STEM Hub Video](#)

[Mid-Valley STEM One-Pager](#)
[Mid-Valley STEM-CTE Hub Video](#)

[Northwest STEM One-Pager](#)
[Northwest STEM Hub Video](#)

[Oregon Coast STEM One-Pager](#)
[Oregon Coast STEM Hub Video](#)

[Portland Metro STEM One-Pager](#)
[Portland Metro STEM Partnership Video](#)

[Southern Oregon STEM One-Pager](#)
[Southern Oregon STE\(A\)M Hub Video](#)

[South Metro Salem STEM One-Pager](#)
[South Metro-Salem STEM Partnership Video](#)

[Umpqua Valley STEAM Hub One-Pager](#)
[Umpqua Valley STEAM Hub Video](#)