SECTION FOUR: Draft 1st Grade Standards

4A: Introduction

Critical Areas for Grade 1 Mathematics

In Grade 1, instructional time should focus on four critical areas: (1) developing understanding of addition, subtraction, and strategies for addition and subtraction within 20; (2) developing understanding of whole number relationships and place value, including grouping in tens and ones; (3) developing understanding of linear measurement and measuring lengths as iterating length units; and (4) reasoning about attributes of, and composing and decomposing geometric shapes.

1. Students develop strategies for adding and subtracting whole numbers based on their prior work with small numbers. They use a variety of models, including discrete objects and length-based models (e.g., cubes connected to form lengths), to model add-to, take-from, put-together, take-apart, and compare situations to develop meaning for the operations of addition and subtraction, and to develop strategies to solve arithmetic problems with these operations. Students understand connections between counting and addition and subtraction (e.g., adding two is the same as counting on two). They use properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these properties (e.g., “making tens”) to solve addition and subtraction problems within 20. By comparing a variety of solution strategies, children build their understanding of the relationship between addition and subtraction.

2. Students develop, discuss, and use efficient, accurate, and generalizable methods to add within 100 and subtract multiples of 10. They compare whole numbers (at least to 100) to develop understanding of and solve problems involving their relative sizes. They think of whole numbers between 10 and 100 in terms of tens and ones (especially recognizing the numbers 11 to 19 as composed of a ten and some ones). Through activities that build number sense, they understand the order of the counting numbers and their relative magnitudes.

3. Students develop an understanding of the meaning and processes of measurement, including underlying concepts such as iterating (the mental activity of building up the length of an object with equal-sized units) and the transitivity principle for indirect measurement.¹

4. Students compose and decompose plane or solid figures (e.g., put two triangles together to make a quadrilateral) and build understanding of part-whole relationships as well as the properties of the original and composite shapes. As they combine shapes, they recognize them from different perspectives and orientations, describe their geometric attributes, and determine how they are alike and different, to develop the background for measurement and for initial understandings of properties such as congruence and symmetry.
Grade 1 Overview

Operations and Algebraic Thinking
- Represent and solve problems involving addition and subtraction.
- Understand and apply properties of operations and the relationship between addition and subtraction.
- Add and subtract within 20.
- Work with addition and subtraction equations.

Number and Operations in Base Ten
- Extend the counting sequence.
- Understand place value.
- Use place value understanding and properties of operations to add and subtract.

Measurement and Data
- Measure lengths indirectly and by iterating length units.
- Tell and write time.
- Represent and interpret data.

Geometry
- Reason with shapes and their attributes.

Mathematical Practices
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Highlights of Major Work in Grades K-8

- **K-2:** Addition and subtraction – concepts, skills, and problem solving; place value
- **3-5:** Multiplication and division of whole numbers and fractions – concepts, skills, and problem solving
- **6:** Ratios and proportional relationships; early expressions and equations
- **7:** Ratios and proportional relationships; arithmetic of rational numbers
- **8:** Linear algebra and linear functions

Grade 1 Fluency Standard(s)
1.OA.C.6 Add/subtract within 10
4B: Draft Standards Statements – Grade 1

The standards listed in the tables below list both core standards statements and cluster prioritization for K-8 mathematics. Not all content in a given grade is emphasized equally in the Standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. (Link to Focus by Grade Level documents)

Students should spend the large majority of their time on the major work of the grade (Ⅲ). Supporting work (Ⅰ) and, where appropriate, additional work (Ⅱ) can engage students in the major work of the grade.

1.OA - Operations & Algebraic Thinking

1.OA.A - Represent and solve problems involving addition and subtraction

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.A.1</td>
<td>Use addition and subtraction within 20 to solve and represent word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions.</td>
</tr>
<tr>
<td>1.OA.A.2</td>
<td>Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20.</td>
</tr>
</tbody>
</table>

1.OA.B - Understand and apply properties of operations and the relationship between addition and subtraction

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.B.3</td>
<td>Apply properties of operations as strategies to add and subtract.</td>
</tr>
<tr>
<td>1.OA.B.4</td>
<td>Understand subtraction as an unknown-addend problem.</td>
</tr>
</tbody>
</table>

1.OA.C - Add and subtract within 20

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.C.5</td>
<td>Relate counting to addition and subtraction.</td>
</tr>
<tr>
<td>1.OA.C.6</td>
<td>Add and subtract within 20, demonstrating fluency for addition and subtraction within 10 with accurate, efficient, and flexible strategies.</td>
</tr>
</tbody>
</table>

1.OA.D - Work with addition and subtraction equations

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.D.7</td>
<td>Understand the meaning of the equal sign, and determine if equations involving numbers and operations typical for first grade are true or false.</td>
</tr>
<tr>
<td>1.OA.D.8</td>
<td>Determine the unknown whole number in an addition or subtraction equation containing three whole numbers.</td>
</tr>
</tbody>
</table>
1.NBT - Number & Operations in Base Ten

1.NBT.A - Extend the counting sequence.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.NBT.A.1</td>
<td>Count on from any number less than 120. Read, write, and represent any number 0-120.</td>
</tr>
</tbody>
</table>

1.NBT.B - Understand place value.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.NBT.B.2</td>
<td>Understand that the two digits of a two-digit number represent amounts of tens and ones.</td>
</tr>
<tr>
<td>1.NBT.B.3</td>
<td>Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.</td>
</tr>
</tbody>
</table>

1.NBT.C - Use place value understanding and properties of operations to add and subtract.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.NBT.C.4</td>
<td>Add within 100 using concrete models or drawings based on place value properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.</td>
</tr>
<tr>
<td>1.NBT.C.5</td>
<td>Without having to count, mentally find 10 more or 10 less than a two-digit number and explain the reasoning used.</td>
</tr>
<tr>
<td>1.NBT.C.6</td>
<td>Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences) using various strategies. Relate the strategy and model used to a written method and explain the reasoning used.</td>
</tr>
</tbody>
</table>

1.MD - Measurement & Data

1.MD.A - Measure lengths indirectly and by iterating length units.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MD.A.1</td>
<td>Order three objects by length; compare the lengths of two objects indirectly by using a third object.</td>
</tr>
<tr>
<td>1.MD.A.2</td>
<td>Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end.</td>
</tr>
</tbody>
</table>

1.MD.B - Measure lengths indirectly and by iterating length units.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MD.B.3</td>
<td>Tell and write time in hours and half-hours using analog and digital clocks.</td>
</tr>
</tbody>
</table>
1.MD.C - Measure lengths indirectly and by iterating length units.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.MD.C.4</td>
<td>Organize, represent, and interpret data with up to three categories. Ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.</td>
</tr>
</tbody>
</table>

1.G - Geometry

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard Statements (Jan 2021 Draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.G.A.1</td>
<td>Distinguish between defining attributes versus non-defining attributes for a wide variety of shapes. Build and draw shapes to possess defining attributes.</td>
</tr>
<tr>
<td>1.G.A.2</td>
<td>Compose two-dimensional shapes or three-dimensional shapes to create a composite shape, and compose new shapes from the composite shape.</td>
</tr>
<tr>
<td>1.G.A.3</td>
<td>Partition circles and rectangles into and describe two and four equal shares. Understand for these examples that decomposing into more equal shares creates smaller shares and vice versa.</td>
</tr>
</tbody>
</table>
4C: Grade 1 Crosswalk with Clarifying Guidance

CLUSTER: 1.OA.A - Represent and solve problems involving addition and subtraction.

STANDARD: 1.OA.A.1

DRAFT Standards Statement (JAN 2021):
Use addition and subtraction within 20 to solve and represent word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions.

DRAFT Clarifying Guidance (JAN 2021):
Represent addition and subtraction word problems using objects, drawings, and equations. Write an addition or subtraction equation with a symbol for the unknown number in different positions. For example,

\[13 + 5 = n, \quad 13 - 5 = n, \quad 13 + n = 18, \quad 18 - n = 13. \]

Recognize and represent adding to and putting together situations as addition.

Recognize and represent taking from, taking apart, and comparing situations as either subtraction or addition with a missing addend.

Original CCSS Text (2010):
Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

STANDARD: 1.OA.A.2

DRAFT Standards Statement (JAN 2021):
Use addition and subtraction within 20 to solve and represent word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions.

DRAFT Clarifying Guidance (JAN 2021):
Represent addition and subtraction word problems using objects, drawings, and equations. Write an addition or subtraction equation with a symbol for the unknown number in different positions. For example,

\[13 + 5 = n, \quad 13 - 5 = n, \quad 13 + n = 18, \quad 18 - n = 13. \]

Recognize and represent adding to and putting together situations as addition.

Recognize and represent taking from, taking apart, and comparing situations as either subtraction or addition with a missing addend.

Original CCSS Text (2010):
Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
CLUSTER: 1.OA.B - Understand and apply properties of operations and the relationship between addition and subtraction.

STANDARD: 1.OA.B.3

DRAFT Standards Statement (JAN 2021):
Apply properties of operations as strategies to add and subtract.

DRAFT Clarifying Guidance (JAN 2021):
If \(8 + 3 = 11\) is known, then \(3 + 8 = 11\) is also known. (Commutative property of addition)

To add \(2 + 6 + 4\), the second two numbers can be added to make a ten, so \(2 + 6 + 4 = 2 + 10 = 12\). (Associative property of addition.) (Students need not use formal terms for these properties.)

Understand that numbers can be added flexibly.

Original CCSS Text (2010):
Apply properties of operations as strategies to add and subtract. Examples: If \(8 + 3 = 11\) is known, then \(3 + 8 = 11\) is also known. (Commutative property of addition.) To add \(2 + 6 + 4\), the second two numbers can be added to make a ten, so \(2 + 6 + 4 = 2 + 10 = 12\). (Associative property of addition.) (Students need not use formal terms for these properties.)

STANDARD: 1.OA.B.4

DRAFT Standards Statement (JAN 2021):
Understand subtraction as an unknown-addend problem.

DRAFT Clarifying Guidance (JAN 2021):
For example, subtract \(10 - 8\) by finding the number that makes 10 when added to 8.

Understand that subtraction is equivalent to an unknown-addend problem because both ask for the unknown part in a situation where the total and another part are known.

Original CCSS Text (2010):
Understand subtraction as an unknown-addend problem. For example, subtract \(10 - 8\) by finding the number that makes 10 when added to 8.
CLUSTER: 1.OA.C - Add and subtract within 20.

STANDARD: 1.OA.C.5

DRAFT Standards Statement (JAN 2021):
Relate counting to addition and subtraction.

DRAFT Clarifying Guidance (JAN 2021):
Relate counting on to addition. For example, recognize counting on two after 15 as solving 15+2.
Relate counting back to subtraction. For example, recognize counting back two from 15 as solving 15-2
Relate counting between two numbers finds their difference. For example, recognize counting two number between 15 and 17 as solving 17-15.

Original CCSS Text (2010):
Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

STANDARD: 1.OA.C.6

DRAFT Standards Statement (JAN 2021):
Add and subtract within 20, demonstrating fluency for addition and subtraction within 10 with accurate, efficient, and flexible strategies.

DRAFT Clarifying Guidance (JAN 2021):
Use strategies such as counting on; making ten, for example 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14; decomposing a number leading to a ten for example, 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9; using the relationship between addition and subtraction, for example, knowing that 8 + 4 = 12, one knows 12 – 8 = 4; and creating equivalent but easier or known sums, for example, adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13.

Original CCSS Text (2010):
Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a number leading to a ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using the relationship between addition and subtraction (e.g., knowing that 8 + 4 = 12, one knows 12 – 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).
CLUSTER: 1.OA.D - Work with addition and subtraction equations.

STANDARD: 1.OA.D.7

DRAFT Standards Statement (JAN 2021):
Understand the meaning of the equal sign, and determine if equations involving numbers and operations typical for first grade are true or false.

DRAFT Clarifying Guidance (JAN 2021):
Use the meaning of the equal sign ("is the same as") to determine if two expressions involving a whole number and/or addition or subtraction expressions are equivalent. In other words, determine if the equation is true or false, for example determining that 3-1 = 2+3 is false because the expressions do not have equal values.

Original CCSS Text (2010):
Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 + 1 = 5 + 2.

STANDARD: 1.OA.D.8

DRAFT Standards Statement (JAN 2021):
Determine the unknown whole number in an addition or subtraction equation containing three whole numbers.

DRAFT Clarifying Guidance (JAN 2021):
Students should be given the opportunity to find missing part given a known part and total, such as:
- A missing addend in an addition equation, for example 3+_=5.
- A missing subtrahend in a subtraction equation, for example 5-_=2.
- A missing difference in a subtraction equation, for example 5-3=_

Students should be given the opportunity to find missing totals given known parts, such as:
- A missing sum in an addition equation, for example 3+2=_.
- A missing minuend in a subtraction equation, for example _-2=3.

Original CCSS Text (2010):
Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 +?= 11, 5 = __ – 3, 6 + 6 = __.
CLUSTER: 1.NBT.A - Extend the counting sequence.

STANDARD: 1.NBT.A.1
DRAFT Standards Statement (JAN 2021):
Count to 120, starting at any number less than 120. Read, write, and represent any number in this range.

DRAFT Clarifying Guidance (JAN 2021):
Understand that two digit numbers are composed of tens and ones.

DRAFT Clarifying Guidance (JAN 2021):
Understand that 3 digit numbers are composed of hundreds, tens, and ones.

DRAFT Clarifying Guidance (JAN 2021):
Understand that numbers increase in consistent patterns because of the place value system.

Original CCSS Text (2010):
Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

CLUSTER: 1.NBT.B - Understand place value.

STANDARD: 1.NBT.B.2
DRAFT Standards Statement (JAN 2021):
Understand that the two digits of a two-digit number represent amounts of tens and ones.

DRAFT Clarifying Guidance (JAN 2021):
Understand the following as special cases:

10 can be thought of as a bundle of ten ones — called a “ten.”

The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.

The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).

Original CCSS Text (2010):
Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:

1.NBT.B.2a 10 can be thought of as a bundle of ten ones — called a “ten.”
1.NBT.B.2b The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.
1.NBT.B.2c The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).
STANDARD: 1.NBT.B.3

DRAFT Standards Statement (JAN 2021):
Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

DRAFT Clarifying Guidance (JAN 2021):
Students should be given the opportunity to provide explanations of their results based on their understanding of place value.

For example:
- 2 tens + 9 ones < 3 tens + 2 ones
- 2 tens and 9 ones < 92

Understand that a greater value in a given place supersedes any amount in a place with a smaller value.

Original CCSS Text (2010):
Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.

CLUSTER: 1.NBT.C - Use place value understanding and properties of operations to add and subtract.

STANDARD: 1.NBT.C.4

DRAFT Standards Statement (JAN 2021):
Add within 100 using concrete models or drawings based on place value properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

DRAFT Clarifying Guidance (JAN 2021):
Includes:

- Adding a two-digit number and a one-digit number
- Adding a two-digit number and a multiple of 10
- Adding two two-digit numbers.

Original CCSS Text (2010):
Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.
STANDARD: 1.NBT.C.5

DRAFT Standards Statement (JAN 2021):
Without having to count, mentally find 10 more or 10 less than a two-digit number and explain the reasoning used.

DRAFT Clarifying Guidance (JAN 2021):
Find 10 more than a given two digit number, for example $34 + 10$.

Find 10 less than a given two digit number, for example $34 - 10$.

Understand that adding or subtracting multiples of 10 from a number changes only the tens digit because the addition or subtraction changes only the quantity of tens.

Original CCSS Text (2010):
Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.

STANDARD: 1.NBT.C.6

DRAFT Standards Statement (JAN 2021):
Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences) using various strategies. Relate the strategy and model used to a written method and explain the reasoning used.

DRAFT Clarifying Guidance (JAN 2021):
Represent subtraction of multiples of 10 with concrete and/or visual models based on place value. For example, represent 30 as 3 groups of ten and no ones.

Understand that the inverse relationship between subtraction and addition exists because both are different representations of the same part-part-whole relationship. For example, understand that both $20+30=50$ and $50-20=30$ represent the same parts and whole.

Original CCSS Text (2010):
Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
CLUSTER: 1.MD.A - Measure lengths indirectly and by iterating length units.

STANDARD: 1.MD.A.1

DRAFT Standards Statement (JAN 2021):
Order three objects by length; compare the lengths of two objects indirectly by using a third object.

DRAFT Clarifying Guidance (JAN 2021):
Determine when an object is longer or shorter than another object.
Compare two objects to a third and use those comparisons against the third object to compare the two objects.

Original CCSS Text (2010):
Order three objects by length; compare the lengths of two objects indirectly by using a third object.

STANDARD: 1.MD.A.2

DRAFT Standards Statement (JAN 2021):
Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end.

DRAFT Clarifying Guidance (JAN 2021):
Use a shorter object to measure the length of a longer object.
Record the length of an object as the total number of shorter objects it takes to span the longer object without gaps or overlaps.
Limited to contexts that result in a whole number length.

Original CCSS Text (2010):
Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.

CLUSTER: 1.MD.B - Tell and write time.

STANDARD: 1.MD.B.3

DRAFT Standards Statement (JAN 2021):
Tell and write time in hours and half-hours using analog and digital clocks.

DRAFT Clarifying Guidance (JAN 2021):
Tell time in hours and half-hours using an analog clock.
Tell time in hours and half hours using a digital clock.
Write time in hours and half-hours.

Original CCSS Text (2010):
Tell and write time in hours and half-hours using analog and digital clocks.
CLUSTER: 1.MD.C - Represent and interpret data.

STANDARD: 1.MD.C.4

DRAFT Standards Statement (JAN 2021):
Organize, represent, and interpret data with up to three categories. Ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

DRAFT Clarifying Guidance (JAN 2021):
Understand that the sum of the data points in all categories is the total number of data points.
Understand that data representations make data points easier to read, count, and compare.
Understand that the number of data points in different categories can be compared using subtraction, counting on, or counting back between the quantities.

Original CCSS Text (2010):
Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

STANDARD: 1.G.A.1

DRAFT Standards Statement (JAN 2021):
Distinguish between defining attributes versus non-defining attributes for a wide variety of shapes. Build and draw shapes to possess defining attributes.

DRAFT Clarifying Guidance (JAN 2021):
For example, defining attributes are sides, angles, and faces (triangles are closed and three-sided). For example, non-defining attributes color, orientation, and overall size.

Original CCSS Text (2010):
Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); for a wide variety of shapes; build and draw shapes to possess defining attributes.
STANDARD: 1.G.A.2

DRAFT Standards Statement (JAN 2021):
Compose two-dimensional shapes or three-dimensional shapes to create a composite shape, and compose new shapes from the composite shape.

DRAFT Clarifying Guidance (JAN 2021):
Identify & compose two-dimensional shapes: rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles

Identify & compose three-dimensional shapes: cubes, right rectangular prisms, right circular cones, and right circular cylinders. Keep in mind that students do not need to learn formal names such as “right rectangular prism”.

Original CCSS Text (2010):
Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. (Students do not need to learn formal names such as “right rectangular prism.”)

STANDARD: 1.G.A.3

DRAFT Standards Statement (JAN 2021):
Partition circles and rectangles into and describe two and four equal shares. Understand for these examples that decomposing into more equal shares creates smaller shares and vice versa.

DRAFT Clarifying Guidance (JAN 2021):
Describe the equal shares created using the words halves, fourths, and quarters. Relate the equal shares to the whole using the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand that halves and fourths are equal parts of a partitioned whole.

Original CCSS Text (2010):
Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares.