SECTION FIVE: Draft 2nd Grade Standards

5A: Introduction

Critical Areas for Grade 2 Mathematics

In Grade 2, instructional time should focus on four critical areas: (1) extending understanding of base-ten notation; (2) building fluency with addition and subtraction; (3) using standard units of measure; and (4) describing and analyzing shapes.

1. Students extend their understanding of the base-ten system. This includes ideas of counting in fives, tens, and multiples of hundreds, tens, and ones, as well as number relationships involving these units, including comparing. Students understand multi-digit numbers (up to 1000) written in base-ten notation, recognizing that the digits in each place represent amounts of thousands, hundreds, tens, or ones (e.g., 853 is 8 hundreds + 5 tens + 3 ones).

2. Students use their understanding of addition to develop fluency with addition and subtraction within 100. They solve problems within 1000 by applying their understanding of models for addition and subtraction, and they develop, discuss, and use efficient, accurate, and generalizable methods to compute sums and differences of whole numbers in base-ten notation, using their understanding of place value and the properties of operations. They select and accurately apply methods that are appropriate for the context and the numbers involved to mentally calculate sums and differences for numbers with only tens or only hundreds.

3. Students recognize the need for standard units of measure (centimeter and inch) and they use rulers and other measurement tools with the understanding that linear measure involves an iteration of units. They recognize that the smaller the unit, the more iterations they need to cover a given length.

4. Students describe and analyze shapes by examining their sides and angles. Students investigate, describe, and reason about decomposing and combining shapes to make other shapes. Through building, drawing, and analyzing two- and three-dimensional shapes, students develop a foundation for understanding area, volume, congruence, similarity, and symmetry in later grades.
Grade 2 Overview

Operations and Algebraic Thinking
- Represent and solve problems involving addition and subtraction.
- Add and subtract within 20.
- Work with equal groups of objects to gain foundations for multiplication.

Number and Operations in Base Ten
- Understand place value.
- Use place value understanding and properties of operations to add and subtract.

Measurement and Data
- Measure and estimate lengths in standard units.
- Relate addition and subtraction to length.
- Work with time and money.
- Represent and interpret data.

Geometry
- Reason with shapes and their attributes.

Mathematical Practices
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Highlights of Major Work in Grades K-8
- K-2: Addition and subtraction – concepts, skills, and problem solving; place value
- 3-5: Multiplication and division of whole numbers and fractions – concepts, skills, and problem solving
- 6: Ratios and proportional relationships; early expressions and equations
- 7: Ratios and proportional relationships; arithmetic of rational numbers
- 8: Linear algebra and linear functions

Grade 2 Fluency Standard(s)
- 2.OA.B.2 Single-digit sums and differences (sums from memory by end of Grade 2)
- 2.NBT.B.5 Add/subtract within 100
5B: Draft Standards Statements – Grade 2

The standards listed in the tables below list both core standards statements and cluster prioritization for K-8 mathematics. Not all content in a given grade is emphasized equally in the Standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. (Link to Focus by Grade Level documents)

Students should spend the large majority of their time on the major work of the grade (orange). Supporting work (blue) and, where appropriate, additional work (green) can engage students in the major work of the grade.

2.OA - Operations & Algebraic Thinking

2.OA.A - Represent and solve problems involving addition and subtraction

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.OA.A.1</td>
<td>Use addition and subtraction within 100 to solve one- and two-step word problems in authentic contexts by using drawings and equations with a symbol for the unknown number to represent the problem.</td>
</tr>
</tbody>
</table>

2.OA.B - Add and subtract within 20

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.OA.B.2</td>
<td>Demonstrate fluency with addition and subtraction within 20 using accurate, efficient, and flexible mental strategies. By the end of Grade 2, know from memory all sums of two one-digit numbers.</td>
</tr>
</tbody>
</table>

2.OA.C - Work with equal groups of objects to gain foundations for multiplication

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.OA.C.3</td>
<td>Determine whether a set within 20 has an odd or even number by pairing objects or counting them by 2s, and record using drawings and equations.</td>
</tr>
<tr>
<td>2.OA.C.4</td>
<td>Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.</td>
</tr>
</tbody>
</table>

2.NBT - Number & Operations in Base Ten

2.NBT.A - Understand place value

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.NBT.A.1</td>
<td>Understand 100 as a bundle of ten tens and that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.</td>
</tr>
<tr>
<td>2.NBT.A.2</td>
<td>Count within 1000; skip-count by 5's, 10's, and 100's.</td>
</tr>
<tr>
<td>2.NBT.A.3</td>
<td>Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.</td>
</tr>
<tr>
<td>2.NBT.A.4</td>
<td>Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.</td>
</tr>
</tbody>
</table>
2.NBT.B - Use place value understanding and properties of operations to add and subtract.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.NBT.B.5</td>
<td>Demonstrate fluency of addition and subtraction within 100 with accurate, efficient, and flexible strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.</td>
</tr>
<tr>
<td>2.NBT.B.6</td>
<td>Add up to four two-digit numbers using strategies based on place value and properties of operations and describe how two different strategies result in the same sum.</td>
</tr>
<tr>
<td>2.NBT.B.7</td>
<td>Add and subtract within 1000 using concrete or visual representations and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. Relate the strategy to a written method and explain why sometimes it is necessary to compose or decompose tens or hundreds.</td>
</tr>
<tr>
<td>2.NBT.B.8</td>
<td>Add and subtract within 1000 using properties of operations and/or the relationship between addition and subtraction, including mentally adding or subtracting 10 or 100 to a given number.</td>
</tr>
<tr>
<td>2.NBT.B.9</td>
<td>Explain why strategies to add and subtract using properties of operations and the relationship between addition and subtraction work.</td>
</tr>
</tbody>
</table>

2.MD - Measurement & Data

2.MD.A - Measure and estimate lengths in standard units.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.MD.A.1</td>
<td>Measure the length of an object by selecting and using appropriate measurement tools.</td>
</tr>
<tr>
<td>2.MD.A.2</td>
<td>Measure the length of an object using two different length units and describe how the unit lengths relate to the size of the object.</td>
</tr>
<tr>
<td>2.MD.A.3</td>
<td>Estimate lengths using units of inches, feet, centimeters, and meters.</td>
</tr>
<tr>
<td>2.MD.A.4</td>
<td>Measure two objects to determine the length difference in terms of a standard length unit.</td>
</tr>
</tbody>
</table>

2.MD.B - Relate addition and subtraction to length.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.MD.B.5</td>
<td>Use addition and subtraction within 100 to solve word problems in authentic contexts involving lengths that are given in the same units.</td>
</tr>
<tr>
<td>2.MD.B.6</td>
<td>Represent whole number lengths on a number line diagram; use number lines to find sums and differences within 100.</td>
</tr>
</tbody>
</table>

2.MD.C - Work with time and money.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.MD.C.7</td>
<td>Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.</td>
</tr>
</tbody>
</table>
2.MD.C.8
Solve word problems in authentic contexts involving dollar bills, quarters, dimes, nickels, and pennies, using $ (dollars) and ¢ (cents) symbols appropriately.

2.MD.D - Represent and interpret data.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.MD.D.9</td>
<td>Generate measurement data and display the data on a line plot using whole-number units.</td>
</tr>
<tr>
<td>2.MD.D.10</td>
<td>Create a picture graph and a bar graph with a single-unit scale and solve simple problems using information.</td>
</tr>
</tbody>
</table>

2.G - Geometry

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standards Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.G.A.1</td>
<td>Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces.</td>
</tr>
<tr>
<td>2.G.A.2</td>
<td>Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.</td>
</tr>
<tr>
<td>2.G.A.3</td>
<td>Partition circles and rectangles into two, three, or four equal parts. Recognize that equal parts of identical wholes need not have the same shape.</td>
</tr>
</tbody>
</table>
5C: Grade 2 Crosswalk with Clarifying Guidance

CLUSTER: 2.OA.A - Represent and solve problems involving addition and subtraction.

STANDARD: 2.OA.A

DRAFT Standards Statement (JAN 2021):
Use addition and subtraction within 100 to solve one- and two-step word problems in authentic contexts by using drawings and equations with a symbol for the unknown number to represent the problem.

DRAFT Clarifying Guidance (JAN 2021):
Opportunities to engage with problem types should include adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions. Equations should use a symbol for the unknown number to represent the problem. (See Problem Type Table in Glossary)

Original CCSS Text (2010):
Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.

CLUSTER: 2.OA.B - Add and subtract within 20.

STANDARD: 2.OA.B.2

DRAFT Standards Statement (JAN 2021):
Demonstrate fluency with addition and subtraction within 20 using accurate, efficient, and flexible mental strategies. By the end of Grade 2, know from memory all sums of two one-digit numbers.

DRAFT Clarifying Guidance (JAN 2021):
Students bring mental strategies and fluency within 10 from first grade to build towards fluency to 20. This standard does not require timed assessments. Ample opportunity to develop efficient, accurate, and flexible understanding is essential for operating with larger numbers.

Original CCSS Text (2010):
Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.
CLUSTER: 2.OA.C - Work with equal groups of objects to gain foundations for multiplication.

STANDARD: 2.OA.C.3

DRAFT Standards Statement (JAN 2021):
Determine whether a set within 20 has an odd or even number by pairing objects or counting them by 2s, and record using drawings and equations.

DRAFT Clarifying Guidance (JAN 2021):
Students should explore strategies such as pairing objects, counting by 2s, and drawing arrays to express doubles. Students should write an equation to express an even number as a sum of equal addends and as a sum of repeated pairings.

For example, 12 is even because 6+6=12 and also because 2+2+2+2+2+2=12 so that 12 is being represented as two groups of six or six groups of two.

Original CCSS Text (2010):
Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2s; write an equation to express an even number as a sum of two equal addends.

STANDARD: 2.OA.C.4

DRAFT Standards Statement (JAN 2021):
Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

DRAFT Clarifying Guidance (JAN 2021):
Students should have the opportunity to recognize that the total in the array is the same whether adding by row or adding by column. For example, an array with 5 rows and 4 columns could be represented as 5+5+5+5 and 4+4+4+4+4 and results in the same total of 20.

The intent of the standard is to provide students the opportunities to work with arrays and connect them to repeated addition and equal groupings as a foundation to multiplication.

Original CCSS Text (2010):
Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.
CLUSTER: 2.NBT.A - Understand place value.

STANDARD: 2.NBT.A.1

DRAFT Standards Statement (JAN 2021):
Understand 100 as a bundle of ten tens and that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.

DRAFT Clarifying Guidance (JAN 2021):
Students should be given the opportunity to discover base-ten units can be broken down and built back up in different ways. For example, understand the number 706 can be represented as:
- 7 hundreds, 0 tens, and 6 ones where a 0 is used as a placeholder.
- 70 tens and 6 ones.
- 706 ones.

Original CCSS Text (2010):
Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases:

- **2.NBT.A.1a** 100 can be thought of as a bundle of ten tens — called a “hundred.”
- **2.NBT.A.1b** The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).

STANDARD: 2.NBT.A.2

DRAFT Standards Statement (JAN 2021):
Count within 1000; skip-count by 5's, 10's, and 100's.

DRAFT Clarifying Guidance (JAN 2021):
Students need to be provided the opportunity to count and skip count both forward and backward starting from any number within 1000 to notice patterns within the number system.

Original CCSS Text (2010):
Count within 1000; skip-count by 5s, 10s, and 100s.

STANDARD: 2.NBT.A.3

DRAFT Standards Statement (JAN 2021):
Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.

DRAFT Clarifying Guidance (JAN 2021):
For example, the number 706 in base-ten numerals is represented as 7 hundreds, 0 tens, and 6 ones, in number names is represented as "seven hundred six" and in expanded form is represented as 700 + 6.

Original CCSS Text (2010):
Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.
STANDARD: 2.NBT.A.4

DRAFT Standards Statement (JAN 2021):
Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.

DRAFT Clarifying Guidance (JAN 2021):
Students should be given the opportunity to provide explanations of their results based on their understanding of place value.

For example:
-2 hundreds + 3 ones > 5 tens + 9 ones
-9 tens + 2 hundreds + 4 ones < 924
-456 < 5 hundreds

Original CCSS Text (2010):
Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.

CLUSTER: 2.NBT.B - Use place value understanding and properties of operations to add and subtract.

STANDARD: 2.NBT.B.5

DRAFT Standards Statement (JAN 2021):
Demonstrate fluency of addition and subtraction within 100 with accurate, efficient, and flexible strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.

DRAFT Clarifying Guidance (JAN 2021):
Students should move from count all toward strategies that are efficient, accurate, and flexible based on the math situation presented.

For example: -56+48=50+40+6+8=90+14=104 -56+48=54+2+48=54+50=104

-56-48 can be thought of as 48+x=56

Original CCSS Text (2010):
Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.
STANDARD: 2.NBT.B.6

DRAFT Standards Statement (JAN 2021):
Add up to four two-digit numbers using strategies based on place value and properties of operations and describe how two different strategies result in the same sum.

DRAFT Clarifying Guidance (JAN 2021):
Students should be given the opportunity to connect representations.

Examples:
-42 + 31 + 12 + 83 may be decomposed into tens and ones to add 40 + 30 + 10 + 80 and then 2 + 1 + 2 + 3.
-42+31= 73 and 12+83= 95 so 73+95= 168.

Original CCSS Text (2010):
Add up to four two-digit numbers using strategies based on place value and properties of operations.

STANDARD: 2.NBT.B.7

DRAFT Standards Statement (JAN 2021):
Add and subtract within 1000 using concrete or visual representations and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. Relate the strategy to a written method and explain why sometimes it is necessary to compose or decompose tens or hundreds.

DRAFT Clarifying Guidance (JAN 2021):
Students should be encouraged to use place value language such as hundreds, tens and ones, when connecting their representation to their explanation.

Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.

Original CCSS Text (2010):
Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.
STANDARD: 2.NBT.B.8
DRAFT Standards Statement (JAN 2021):
Add and subtract within 1000 using properties of operations and/or the relationship between addition and subtraction, including mentally adding or subtracting 10 or 100 to a given number.

DRAFT Clarifying Guidance (JAN 2021):
Add and subtract within 1000 using properties of operations and/or the relationship between addition and subtraction, including mentally adding or subtracting 10 or 100 to a given number; relate the strategy to a written method.

Original CCSS Text (2010):
Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.

STANDARD: 2.NBT.B.9
DRAFT Standards Statement (JAN 2021):
Explain why strategies to add and subtract using properties of operations and the relationship between addition and subtraction work.

DRAFT Clarifying Guidance (JAN 2021):
Explanations may be supported by drawings or objects.

Original CCSS Text (2010):
Explain why addition and subtraction strategies work, using place value and the properties of operations. (Explanations may be supported by drawings or objects.)

CLUSTER: 2.MD.A - Describe and compare measurable attributes.

STANDARD: 2.MD.A.1
Original CCSS Text (2010):
Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.

DRAFT Standards Statement (JAN 2021):
Measure the length of an object by selecting and using appropriate measurement tools.

DRAFT Clarifying Guidance (JAN 2021):
Appropriate standardized measurement tools include rulers, yardsticks, meter sticks, and measuring tapes. Students should determine which measuring tool is appropriate for a given object.
STANDARD: 2.MD.A.2

DRAFT Standards Statement (JAN 2021):
Measure the length of an object using two different length units and describe how the unit lengths relate to the size of the object.

DRAFT Clarifying Guidance (JAN 2021):
Students may use objects but tools from different systems of measurement, such as inches and centimeters, will allow them to begin to compare these systems.

Original CCSS Text (2010):
Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.

STANDARD: 2.MD.A.3

DRAFT Standards Statement (JAN 2021):
Estimate lengths using units of inches, feet, centimeters, and meters.

DRAFT Clarifying Guidance (JAN 2021):
Students should be encouraged to use real world objects and body benchmarks for estimations.

Original CCSS Text (2010):
Estimate lengths using units of inches, feet, centimeters, and meters.

STANDARD: 2.MD.A.4

DRAFT Standards Statement (JAN 2021):
Measure two objects to determine the length difference in terms of a standard length unit.

DRAFT Clarifying Guidance (JAN 2021):
Comparisons in length are recorded in standard length units such as inches, feet or yards, as well as metric length units such as meters, centimeters, or millimeters.

Original CCSS Text (2010):
Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.
CLUSTER: 2.MD.B - Relate addition and subtraction to length.

STANDARD: 2.MD.B.5

DRAFT Standards Statement (JAN 2021):
Use addition and subtraction within 100 to solve word problems in authentic contexts involving lengths that are given in the same units.

DRAFT Clarifying Guidance (JAN 2021):
Students should represent the problem using drawings and equations with a symbol for the unknown number.

Original CCSS Text (2010):
Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.

STANDARD: 2.MD.B.6

DRAFT Standards Statement (JAN 2021):
Represent whole number lengths on a number line diagram; use number lines to find sums and differences within 100.

DRAFT Clarifying Guidance (JAN 2021):
Students should understand length as the distance on a number line where equally spaced points correspond to the numbers 0, 1, 2 and so on. The length of an object is the amount of space on this diagram. Students will use a number line to show how to move up and down the number system while representing sums and difference (100-28 means you would jump down 20 and 8 to land on 72).

Original CCSS Text (2010):
Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2, ..., and represent whole-number sums and differences within 100 on a number line diagram.

CLUSTER: 2.MD.C - Work with time and money.

STANDARD: 2.MD.C.7

DRAFT Standards Statement (JAN 2021):
Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.

DRAFT Clarifying Guidance (JAN 2021):
[no additional guidance proposed at this time]

Original CCSS Text (2010):
Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.
STANDARD: 2.MD.C.8

DRAFT Standards Statement (JAN 2021):
Solve word problems in authentic contexts involving dollar bills, quarters, dimes, nickels, and pennies, using $ (dollars) and ¢ (cents) symbols appropriately.

DRAFT Clarifying Guidance (JAN 2021):
For example, if you have 2 dimes and 3 pennies, how many cents do you have?

Original CCSS Text (2010):
Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $ (dollars) and ¢ (cents) symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?

CLUSTER: 2.MD.D - Represent and interpret data.

STANDARD: 2.MD.D.9

DRAFT Standards Statement (JAN 2021):
Generate measurement data and display the data on a line plot using whole-number units.

DRAFT Clarifying Guidance (JAN 2021):
Measurement data is collected by measuring several objects to the nearest whole unit, or by making repeated measurements of the same object.

Students should display data set with up to four categories and solve problems that put-together, take-apart, and compare the information presented in the graph.

Original CCSS Text (2010):
Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. SHOW THE MEASUREMENTS BY MAKING A LINE PLOT, WHERE THE HORIZONTAL SCALE IS MARKED OFF IN WHOLE-NUMBER UNITS.

STANDARD: 2.MD.D.10

DRAFT Standards Statement (JAN 2021):
Create a picture graph and a bar graph with a single-unit scale and solve simple problems using information.

DRAFT Clarifying Guidance (JAN 2021):
Students should display data set with up to four categories and solve problems that put-together, take-apart, and compare the information presented in the graph.

Original CCSS Text (2010):
Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
CLUSTER: 2.G.A - Relate addition and subtraction to length.

STANDARD: 2.G.A.1

DRAFT Standards Statement (JAN 2021):
Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces.

DRAFT Clarifying Guidance (JAN 2021):
Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. Sizes are compared directly or visually, not compared by measuring.

Original CCSS Text (2010):
Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. (Sizes are compared directly or visually, not compared by measuring.)

STANDARD: 2.G.A.2

DRAFT Standards Statement (JAN 2021):
Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

DRAFT Clarifying Guidance (JAN 2021):
As a foundation for multiplication and meaning of area, students should draw and build these arrays.

Original CCSS Text (2010):
Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.

STANDARD: 2.G.A.3

DRAFT Standards Statement (JAN 2021):
Partition circles and rectangles into two, three, or four equal parts. Recognize that equal parts of identical wholes need not have the same shape.

DRAFT Clarifying Guidance (JAN 2021):
As a foundation of the meaning of fractions, student should describe the shares using the words halves, thirds, fourths, half of, a third of, a fourth of and describe the whole as two halves, three thirds, four fourths.

Original CCSS Text (2010):
Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.