2013
OREGON’S
HISTORIC BRIDGE
FIELD GUIDE
Acknowledgments

This book could not have been written if were not for the help of many people, only some of whom it has been possible to note here. In alphabetical order, we would like to thank:

Chittirat Amawattana
Mike Bezner
Ray Bottenberg
Teresa Brasfield
Bridgehunter.com
James Burford
Erick Cain
Bill Cockrell
Chad Crockett
Sam Dunnivant
Michael Goff
Bob Hadlow
Mats Halvardson
Historic American Engineering Record (HAER)
Sarah Jalving
Bruce Johnson
George Kramer
Mike Kuntz
Gary Larson
Frank Nelson
Jim Norman
ODOT Photo and Video Services
Tom Ohren
Oregon Association of County Engineers and Surveyors (OACES)
Katie Pritchard
Howard Postovit
Larissa Rudnicki
Ben Tang
Rod Thompson
Jerry Vogt
Laura Wilt
Sharon Wood Wortman
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Preface</td>
<td>vi</td>
</tr>
<tr>
<td>Introduction</td>
<td>viii</td>
</tr>
<tr>
<td>Historic Perspectives</td>
<td>xi</td>
</tr>
<tr>
<td>Glossary of Bridge Types</td>
<td>xvi</td>
</tr>
<tr>
<td>Preservation Methods</td>
<td>xxiii</td>
</tr>
<tr>
<td>Methodology</td>
<td>xxvi</td>
</tr>
<tr>
<td>How to use the book</td>
<td>xxix</td>
</tr>
<tr>
<td>Bridges Pages</td>
<td>1</td>
</tr>
<tr>
<td>Bibliography</td>
<td>304</td>
</tr>
<tr>
<td>Photography Credits</td>
<td>305</td>
</tr>
<tr>
<td>Index by Structure Type</td>
<td>306</td>
</tr>
<tr>
<td>Index by Structure Name</td>
<td>320</td>
</tr>
<tr>
<td>Index by Structure Number</td>
<td>331</td>
</tr>
</tbody>
</table>
The publication of this volume marks the culmination of two years of work, identifying and researching the historic highway bridges of Oregon, resulting in a list of 334 bridges that the Oregon Department of Transportation (ODOT) considers to be historic. These bridges are located throughout the state, with examples in 34 of the 36 counties, and represent nearly 80 years of bridge construction, from 1894 to 1973. Together, the collection tells the story of bridge building in Oregon.

Though this is a book about the history of Oregon, its value is in its ability to guide our future in a number of ways:

- Prioritizing preservation spending by allowing ODOT to focus preservation efforts on those bridges that are most significant, and eliminate time and energy that might be spent on those that are not.

- Categorizing previously unidentified bridges with historic value that could only be identified through a state-wide view. This was especially effective among the more common structure types, where the traditional bridge inventory is not specific regarding bridge type.

- Simplifying the permit process for bridge projects on bridges without historic value, as they can now be confidently identified as not-historic early in the planning process.

- Improving in the evaluation of future bridges by providing a state-wide context in which to compare an unevaluated bridge.
Guiding on-going preservation and bridge maintenance efforts by indicating which aspects of bridges have significant historic value that require extra care and giving examples of how maintenance actions have been successfully managed in the past.

Publicizing ODOT’s bridge preservation program and highlighting the many historic bridges in the state to the public.

By compiling this field guide, ODOT has taken a significant step forward in the stewardship of our historic bridges. These bridges, both the well-loved and the virtually unknown, represent a vital part of our culture, as well as our transportation network, and this guide represents one of the first steps toward a fully developed plan for their preservation and maintenance.

Bruce V. Johnson
State Bridge Engineer
Nearly 30 years ago, the Oregon Department of Transportation (ODOT) prepared a study of the historic highway bridges in the state called the Engineering Antiquities Inventory (EAI). Out of the EAI came Historic Highway Bridges of Oregon, a book that has guided bridge preservation in the state since its initial publication in 1985, but has become increasingly outdated since its publication. This field guide brings that study up to date, allows for it to be more regularly updated, and presents the data in a new, more accessible form.

ODOT undertook both the EAI and the current study in response to public interest in bridges as historic resources worthy of recognition and preservation. Old bridges are an important part of our cultural heritage. Even the smallest bridge has significance to the people who depend upon it every day. But most of these bridges are rarely noticed, and, for the most part, they are indistinguishable to the general public. Within this bridge population, though, are some truly noteworthy structures. These bridges gain in importance for going beyond being a simple crossing, either through the significance of their architectural or engineering design, or for their role in a major episode in Oregon’s history.

Bridges create a sense of passage, open up wide vistas, and frame views. The appearance of an old bridge can suggest a sense of place, harking back to an earlier era. A bridge may also appear as a monumental landmark,
the mark of a city or town, or as a simple, understated and elegant testimonial to good design and engineering. These designs of the past often reveal an exceptional sensitivity to their surroundings. Today, they are also rich in educational and symbolic meaning.

The significance of bridges goes hand in hand with their functionality, a feature that requires on-going maintenance and adaptations to meet the evolving needs of the travelling public. For those bridges that are historically significant, a balance must be struck through advance planning, public outreach, and knowing what is significant about that bridge.

With more than 5000 bridges built before 1970, Oregon is constantly attempting to find this balance. These bridges are of a wide array of types, ranging from the simple single-span timber bridge to the massive steel and concrete structures over major rivers and estuaries. Early bridge designers could not have predicted the ever increasing demands of today's traffic and heavy trucking, and many of their bridges must carry loads far in excess of the original design specifications. While some bridges can carry the modern loads due to conservative design, others must either be brought up to modern standards or left restricted to certain kinds of traffic.

In recent years, the amount of funding available for bridge work has decreased, resulting in an increased emphasis on maintenance and preservation. While this has reduced the risk of complete replacement for historic bridges, there is still the need to bring them up to modern standards, but without the funding required to do so in a sensitive manner. To ensure that the most significant of these bridges are rehabilitated properly, ODOT must prioritize funding.
It is for this reason that ODOT has produced this field guide and historic bridge inventory. The book will serve as a tool for guiding the preservation of Oregon’s historically significant bridges. It can do this in multiple ways, including: aiding in field scoping to identify the significant elements of a historic bridge; enabling the comparison of bridges to help guide preservation funding to where it is most needed; and by serving as a quick reference for baseline data on a bridge’s history and historic status.

To meet all of these goals, the field guide has been organized around the central principle of usability. The first section of the book covers background information, including a very brief history of bridge building in Oregon, a glossary of terms important to the various structure types, a description of some common preservation methods, and a methodology for the historic bridge inventory. The last piece of this section is a guide on how to locate specific bridges within the book and how to read the bridge pages.

The second section of the book presents the list of historic bridges. Each bridge, or grouping of bridges, is given a page and at least one photo, with the pages being organized by county. This is followed by a set of indexes to the bridges evaluated in the study. The first index is organized by structure type, the second by bridge name and the final index by bridge number.

This field guide is intended to be a work-in-progress. It will continue to evolve to keep up-to-date with the status of bridges in the field. To that end, we hope that you will not only use this book on your projects, but also provide what information you find back to the authors. We welcome your finds, your comments, and your support.
Historic Perspective

Bridge building is a rich and fascinating chapter in the history of technology and engineering. In Oregon, bridge construction also contributed to the general growth and development of the state. An examination of the general history of bridge design and construction and of that tradition in Oregon provides a context for the understanding and appreciation of historic bridges.

The earliest bridges in the state were likely just logs placed across small streams. For larger rivers, transport relied on ferries, many of which were private operations. The earliest known ferry operation in the state began service in 1844 across the Willamette River just north of Salem at the Willamette Mission. Today, only three ferries remain in operation in Oregon. These are all county-owned and ply the Willamette River at Buena Vista, Wheatland and Canby.

As the population of the state increased in the late 1840s, the need for roads and bridges became apparent, and, in a provision of the territorial government in 1849, bridge construction was placed under the aegis of county governments. Rapidly, these construction costs became a major portion of the county budgets. Though few records exist, it is likely that the first county built bridges were smaller structures, with ferries continuing to serve the major crossings.

The earliest recorded bridges date to the mid-1840s in Oregon City. Subsequent bridges were built spanning Dairy Creek in Washington County in 1846, the Yamhill River at Lafayette in 1851, Marys River near Corvallis in 1856, and across the Tualatin River near Moore’s Mill in 1859. One of the first referenced covered bridges in the state was constructed over South Mill Creek on Commercial Street in Salem in 1862. None of these bridges have survived.
The earliest bridges extant in the state date to the railroad era. The rapid expansion of the railroads in the 1870s and ’80s required bridges that could withstand high loads, but could also be built cheaply and quickly. Initially, many railroad bridges were timber trusses or trestles, but soon metal was introduced due to the structural limitations and flammability of wood. The oldest surviving bridge in Oregon is the wrought iron McKenzie River (Booth-Kelly or Hayden) Bridge in Springfield, built in 1882 and moved to its current location from Utah in 1900. The first major steel bridge in the state was the original Steel Bridge, built across the Willamette River in Portland in 1888. A comprehensive survey of other historic railroad bridges in the state has not been completed to date.

At the same time that the need for better bridges was growing in the late 19th century, flooding was taking a toll on the existing bridges of the state. Catastrophic floods in 1881 and 1890 took out dozens of structures, especially those made of timber. This hastened the trend toward metal bridges, especially the prefabricated iron and steel trusses from catalogs of standard types, often sold to the county courts by bridge salesmen. The use of these catalog bridges lasted until the mid-1910s and the creation of the state highway commission.

Also beginning in the 1890s was the Good Roads movement, which demanded smooth-surfaced, all-weather roads. As a result, the federal Office of Road Inquiry was created in the United States Department of Agriculture in 1893 to investigate, educate, and distribute information on road building. (In 1916, this agency became the United States Bureau of Public Roads, the antecedent of the current Federal Highway Administration.) In Oregon, the efforts of this movement
were evidenced by the rapid construction of a number of major highway spans, especially in the Portland area.

The need for such bridges became even more apparent in the early 20th century with the arrival of the automobile. To meet the increasing demands of these vehicles, the state created the State Highway Commission and State Highway Department in 1913. The State Highway Department set up a system whereby counties and cities could obtain bridge design services from the state. They also published a set of standard bridge designs that could be easily adapted to a given site. These standards emphasized the use of reinforced concrete beams and steel pony trusses, resulting in a rapid increase in these types.

In 1916, the United States Congress passed the Federal Aid Act, providing matching funds to the states for road and bridge construction. To provide the state’s portion of this match, Oregon adopted a gasoline tax in 1919, the first state to do so. This additional funding enabled a surge of bridge and road construction in the state, including the development of the first state highways, the first highway bridge across the Columbia River between Oregon and Washington, and a number of additional Willamette River crossings.

The post-war boom of the 1920s and the continued availability of federal matching funds allowed the continued expansion of transportation facilities across the state. This enabled the State Highway Department to complete a number of highways, including the Columbia River Highway (1922), the Pacific Highway (1923), and The Dalles-California Highway (1926). The Coast Highway, which was also begun during this period, was not truly completed until the construction of the Astoria-Megler Bridge in 1966.
The design and construction of bridges in the state during this period was dominated by bridge engineer Conde B. McCullough. McCullough’s distinguished career with the State Highway Department spanned over 25 years and he was responsible for hundreds of bridges in Oregon. He left a legacy of fine structures, and his arch bridges, in particular, have achieved acclaim and recognition, primarily because of their beauty. Due to McCullough’s influence, Oregon was at the forefront of bridge technology, constructing both the first reinforced concrete tied-arch and the first prestressed concrete arch in the US, both in 1931. Much of this construction happened in spite of the economic effects of the Great Depression thanks to the continued federal aid of Works Progress Administration (WPA) and Public Works Administration (PWA) funding. McCullough’s era peaked with the completion of the five major coast highway bridges in 1936. The bridges - Coos Bay (North Bend), Umpqua River (Reedsport), Siuslaw River (Florence), Yaquina Bay (Newport), and Alsea Bay (Waldport, replaced in 1991) - were all partially funded by the depression-era funding programs.

At the same time as the construction of these major spans, the state was also building an ever larger number of simple crossings. As the number of bridges increased, the aesthetic detailing on these structures decreased especially in rural areas. This trend escalated after McCullough left the role of State Bridge Engineer, resulting in ever greater numbers of generally uninteresting bridges. With the arrival of the austerity measures of WWII, this loss of aesthetic interest became even more pronounced. During the war years, the state generally resorted to earlier technology, with more than half of the bridges built during this period being timber. Also common during this period was the reuse of materials, including railroad rails as reinforcement and railcars as girders.
After WWII, construction money remained scarce, but the need for better highways increased, emphasizing the need for simplicity, utility and cost-effectiveness. While the bridges of this period are less attractive, they reflect the transition to what is now considered to be modern bridge design. The developments of this period include the interstate highways, prestressed concrete, and widespread precasting of bridge members. Though most bridges built in the interstate era were of reinforced or prestressed concrete, major spans were often built of steel, encompassing deck trusses, steel cantilevers and steel through arches. Even the largest of these, though, were lacking the decorative elements of the earlier McCullough designs.

In recent years, there has been a revival of interest in the aesthetic of the older bridges, though with a modern twist. A number of attractive arch structures have been built, combining modern prestressing and precasting technology with the form so beloved of McCullough. It is intended that these spans, along with the preserved historic bridges, will allow the bridges of Oregon to tell a story about the evolution of both the engineering world and the history of the state.
Glossary

General Terms

Simple Spans

Continuous

Beam Bridge (Longitudinal Only)

Girder Bridge (Longitudinal and Transverse Members)

Truss Terms

Pin-Connected Joint

Riveted Joint

Partially Bolted Joint

Welded Joint
Arch Terms

- Pony Truss
- Through Truss
- Deck Truss
- Cantilever Truss
- Reinforced Concrete Through Arch
- Steel Through Arch
- Open Spandrel Deck Arch
- Closed Spandrel Deck Arch
 Covered Bridge Terms

Outlookers supporting decorative barge rafters

Steel U-bolt truss chord connectors and cast iron cruciform packing (spacer) blocks

Interlocking timber fish plate connection for truss chords

Bolted steel fish plate connection for truss chords

External clamped steel channels with tie rod connectors

Bolted steel fish plate connection for truss chords
Upper bracing and diagonals framed into cast iron angle blocks

Diagonals framed into timber angle blocks

Diagonals dapped into chord

Ogee bearing washers for tension rods

Triple riveted bearing plate for hanger rods
Glossary

Slab, Beams, and Girder Terms

Reinforced Concrete Slab (With Masonry Substructure and Railing)

Reinforced Concrete Girders (Arched Haunches)

Reinforced Concrete Girders (Flared Haunches)

Reinforced Concrete Girders (Standard)

Steel Deck Girders

Steel Through Girders
Standard Railing Types

Type A Rail

Old Type B Rail

Type C Rail

Type D Rail

Gothic Rail

Picket Rail
Truss Types

Preservation Methods

The following methods for bridge preservation are commonly used in Oregon:

Cathodic Protection

Cathodic Protection (CP) is a system that has been used in Oregon since the 1980s to preserve reinforced concrete bridges by controlling the corrosion of the steel reinforcing bars. Two main methods are used: an active method, where an applied current is used; and a passive method. In the active method, the outside surface of the concrete structure is sprayed with a sacrificial zinc coating. This coating corrodes preferentially to the reinforcement, elongating the life of the bridge. For the passive method, the zinc is embedded in repairs, acting sacrificially without any applied current.

Stealth Rail

Stealth Rail is a type of bridge railing that has been used in Oregon to replace sub-standard or damaged ornamental bridge rails. In most cases, stealth rail utilizes a structural steel skeleton surrounded by ornamental concrete posts that replicate the original decorative details. To meet modern code requirements, the stealth rails also include slight alterations to geometry, raising the rail to the required pedestrian height and blocking large openings. The goal of stealth rail is to produce a crash-worthy replica bridge rail, while maintaining visual accuracy with the original rail.

Pack Rust Removal

Pack rust is rust that builds up between steel members, especially on the gusset plates of steel trusses. It can result in the deformation of the steel, and eventually in the loss of connectors at those joints. Hydro-blasting, where a high pressure water jet is used to remove the rust, is commonly used prior to repainting the steel. Adding extra connectors can help to prevent the build-up in the future.

FRP Repair

Fiber Reinforced Polymer (FRP) is a material that can be used to externally strengthen concrete bridges. These strengthening systems use fabric, laminate strips or bars bonded onto the existing concrete to increase the strength. In the field, this repair commonly appears as a darker material in discrete locations on a bridge. When bars are used, they may be imbedded in concrete and not be visible.
FRP Decks
FRP decks use a similar material to FRP repairs. In this case the material is formed into panels, which can be used as lightweight, corrosion-resistant, replacement bridge decks. It is commonly used on movable bridges where weight is an issue. ODOT has had difficulties with attaching the panels to some moveable bridge spans, but new technology may address these issues.

Moveable Bridge Machinery Upgrades
When they were built, Oregon’s moveable bridges used the best technology of their day for their machinery. Over the years, though, that machinery has become obsolete and unreliable. As a result, ODOT has been upgrading the bridges by adding electrical control systems and replacing the motors with more efficient models. Most of these changes are only visible from inside the machinery houses.

Truss Relocation/Reuse
From the early days, one of the values of steel trusses was the lightweight design that enabled them to be relocated. As a result, relocation of steel trusses is one of the available options for their preservation. Often these projects also involve the conversion to a pedestrian crossing, reducing the loading and increasing the lifespan of the structure.

Glulam Beam Replacement
In cases where large timber beams need to be replaced, one option is to use glued laminated timber beams (glulam). Consisting of timber layers bonded together with moisture-resistant adhesive, these beams provide higher strength than the original solid timber beams. This is especially useful where the original sizes of timber are no longer available due to mill limitations. For the last 20 years, glulam has been commonly used below the deck on covered bridges, where it cannot be readily noticed.

External Post-Tensioning
Post-tensioning is a technique that can be used to strengthen an existing bridge whereby steel tendons or bars are attached to the structure and then tensioned. This enables the cables to take some of the loading from the original members. The method has been used to rehabilitate a variety of bridge types, including steel trusses, covered bridges, and concrete girder bridges.
Bridge Deck Widening
For many historic bridges, the main restriction to remaining in highway service is limited deck width. Larger modern vehicles and higher speeds require increased lane width. To accommodate wider lanes, one option on some bridges is to widen the deck. This increases the overhang on the edges of the structure, but retains the main superstructure elements. If the railing is considered to be a character defining feature, it is replicated on the edge of the new deck. ODOT has completed this procedure on a number of concrete arch bridges and is considering applying it to deck trusses.

Cathodic Protection

Glulam
Developed over the last two years, the 2013 historic bridge inventory pared down a list of nearly 3000 bridges to the set of 333 historic bridges documented in this volume. With a few exceptions, the bridges in the study were limited to those built before 1971 with an overall length over 20 feet. The list is further restricted to only those bridges in ODOT or local agency ownership, though the book includes a handful of bridges in other ownership that ODOT has some responsibility for, either through inspection or maintenance expenses. The final restriction on the inventory is that it only evaluated bridges that have carried vehicular traffic at some point, whether or not they do so currently. There are certainly bridges that do not meet these requirements that are nevertheless historic, but they will have to be evaluated on a case-by-case basis by the responsible agency.

The process of evaluating the highway bridges of Oregon began with the creation of a database of bridges meeting the requirements above. In most cases, the inventory drew the initial information from the National Bridge Inventory (NBI), with supplementary information from the EAI and other such studies. The next step verified the status of the non-NBI bridges and pared the list down by eliminating simple bridges of common types. This reduced the list to approximately 1000 bridges requiring more in-depth study. For each of these bridges, the evaluation involved consulting drawings, photos, maps, biennial reports, inspection reports, and, where required, historic newspapers. This generated a significance score based on the National Register Criteria for Evaluation.

The National Register Criteria identify four conditions under which a property might be eligible for the National Register of Historic Places. Only two of these criteria (A and C) are commonly applied to bridges.
Criterion A addresses those structures that are significant for their association with an event, trend or pattern in our history. Criterion C applies to those bridges that are the best representation of a type, period or method of construction, or the work of a master, or that possess high artistic value.

Those bridges that appeared to meet one or both of these criteria following the desk-based assessment were then field assessed. This step involved visiting approximately 425 bridges to verify the data collected in the previous step and to evaluate the historic integrity of the structure. Only those bridges with high integrity of significant features are generally considered to be historic.

Following this step, the evaluation team met and sorted the bridges into four categories: I, II, III and Not Historic. The evaluation team did not formally affirm eligibility for the National Register. Instead, the team simply identified those bridges that had integrity and significance, the two elements that would make a positive determination of eligibility likely.

Both categories I and II consist of bridges that are likely to be eligible, meaning they meet the National Register Criteria and retain historic integrity. The Category I bridges are the premier bridges in the state, including both the major, well-known historic bridges, and extremely rare or early structures. Category II bridges are still considered historic but are generally of more common types. In some cases they are bridges with high levels of significance that have received unsympathetic rehabilitations. Other Category II’s bridges are significant solely for their association with a grouping.
Category III includes those bridges that have historic value but are not yet considered likely to be eligible for the National Register. Some of these are bridges that have not yet reached fifty years old, or have alterations that adversely affect their integrity. This often applies to relocated steel trusses, which may become more significant as the total population shrinks. In addition, Category III includes those bridges where the available information is insufficient for proper evaluation.

The bridges that were found to be Not Historic have either been heavily altered or are not distinctive. A list of all bridges categorized by the evaluation team appears in the “Index by Structure Type” near the end of the field guide.

It is inevitable that significant bridges were missed in this process. The records that serve the needs of load rating and inspection are not ideally suited to identifying historic value. A statewide survey is also not well equipped to identifying local significance. As a result, it is still important to follow proper procedures for the evaluation of those bridges that are not documented here. In those evaluations, this book can serve as a guide, providing examples of features that elevate a historic bridge above the general population.
How to use the book

Locating a bridge within the book

The bridge pages in this book are organized by county, and then by year built, with the counties organized alphabetically. If you know the county where a bridge is located, you can flip directly to the first page of that set using the following county codes, which appear on the marginal tabs:

<table>
<thead>
<tr>
<th>County</th>
<th>2 Letter Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker</td>
<td>BA</td>
</tr>
<tr>
<td>Benton</td>
<td>BE</td>
</tr>
<tr>
<td>Clackamas</td>
<td>CK</td>
</tr>
<tr>
<td>Clatsop</td>
<td>CP</td>
</tr>
<tr>
<td>Columbia</td>
<td>CA</td>
</tr>
<tr>
<td>Coos</td>
<td>CO</td>
</tr>
<tr>
<td>Crook</td>
<td>CR</td>
</tr>
<tr>
<td>Curry</td>
<td>CU</td>
</tr>
<tr>
<td>Deschutes</td>
<td>DE</td>
</tr>
<tr>
<td>Douglas</td>
<td>DO</td>
</tr>
<tr>
<td>Gilliam</td>
<td>GI</td>
</tr>
<tr>
<td>Grant</td>
<td>GR</td>
</tr>
<tr>
<td>Harney</td>
<td>HA</td>
</tr>
<tr>
<td>Hood River</td>
<td>HO</td>
</tr>
<tr>
<td>Jackson</td>
<td>JA</td>
</tr>
<tr>
<td>Jefferson</td>
<td>JE</td>
</tr>
<tr>
<td>Josephine</td>
<td>JO</td>
</tr>
<tr>
<td>Klamath</td>
<td>KL</td>
</tr>
<tr>
<td>Lake</td>
<td>LK</td>
</tr>
<tr>
<td>Lane</td>
<td>LA</td>
</tr>
<tr>
<td>Lincoln</td>
<td>LC</td>
</tr>
<tr>
<td>Linn</td>
<td>LN</td>
</tr>
<tr>
<td>Malheur</td>
<td>MH</td>
</tr>
<tr>
<td>Marion</td>
<td>MN</td>
</tr>
<tr>
<td>Morrow</td>
<td>MO</td>
</tr>
<tr>
<td>Multnomah</td>
<td>MU</td>
</tr>
<tr>
<td>Polk</td>
<td>PO</td>
</tr>
<tr>
<td>Sherman</td>
<td>SH</td>
</tr>
<tr>
<td>Tillamook</td>
<td>TI</td>
</tr>
<tr>
<td>Umatilla</td>
<td>UM</td>
</tr>
<tr>
<td>Union</td>
<td>UN</td>
</tr>
<tr>
<td>Wallowa</td>
<td>WL</td>
</tr>
<tr>
<td>Wasco</td>
<td>WO</td>
</tr>
<tr>
<td>Washington</td>
<td>WN</td>
</tr>
<tr>
<td>Wheeler</td>
<td>WH</td>
</tr>
<tr>
<td>Yamhill</td>
<td>YA</td>
</tr>
</tbody>
</table>

On the first page(s) of each county, you will find a map of the county, locating all of the bridges by structure number, along with a table with structure names and page numbers for each of those bridges. Following the county sections are a couple of pages, titled “In Memoriam,” documenting the bridges that were found to be historic in the inventory but which have been replaced recently or which will be replaced in the near future. If you do not know in which county a bridge is located, or if you are unsure whether a given bridge is historic, there are three indexes.

The first index is organized by structure type and then by inventory category. This is the only place in the book to find a record of those bridges that were field assessed but found to be Not Historic or Category 3. These bridges are listed both to provide context for planning decisions and to facilitate evaluation of those bridges in the future. The second index is by structure name, and includes all known common names for the bridges documented in the field guide. The final index is organized by bridge number. If you do not see a bridge in any of these indexes, it was not chosen for field assessment, and may need to be evaluated if future work is planned.
Reading the Bridge Pages

There are two types of bridge pages used in this book, individual and grouping. The grouping pages present those bridges where their primary significance is their association with a highway, region, or distinct era in highway building. The individual pages are used to document those bridges which are not associated with any of the groups identified in the inventory. Both types of pages present the same types of information; the difference is that the groupings share a common significance, resulting in a different page layout.

The information presented on all bridge pages is as follows:

- **Bridge Name:** In almost all cases it is [feature crossed], [roadway crossing]. The roadway numbers used are the ODOT highway numbers, which may not correlate with the publicly used numbers. In order to be accurate and consistent, the names do not always match those recorded in the National Bridge Inventory (NBI) or in Historic Highway Bridges of Oregon.

- **Bridge Number:** Where available this is the number given in the NBI.

- **Common Name(s):** Where such names differ from the official bridge name.

- **Year Built:** The year built is based on the initial erection of the structure. Other dates, shown in parentheses, reflect relocations or major alterations.

- **Location:** A descriptive location using map designated highway numbers.

- **Lat/Long:** The GPS position for the bridge, as [deg] [min] [sec].

- **Description:** A detailed structure type description for the main span and any other significant spans. The number and length of other approach spans are usually noted. On grouping pages, this field may also contain additional significance information.

- **Designer/Builder:** Where known.

- **Significance:** This field provides a brief discussion of the history of each bridge or grouping, and why it is significant. It is not intended to be a comprehensive discussion, but will provide some background and guidance for further evaluation.

- **Character Defining Features:** Provides a general list of the features of the bridge that are important to the bridge's integrity. The list may not be comprehensive and a preservation professional should still be consulted prior to making alterations to the structure.

- **Alterations:** Notes all known changes to the structure that may affect the historic value of the bridge. This does not generally include maintenance actions.
Symbology

A set of symbols are used on each bridge page to provide a quick reference to information about the bridge’s status.

The symbols used are as follows:

- **Owner:** The current owner of the bridge. Where it is “Other”, a separate call-out is provided in the text to specify.

<table>
<thead>
<tr>
<th>ST</th>
<th>CO</th>
<th>CT</th>
<th>OT</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>County</td>
<td>City</td>
<td>Other</td>
</tr>
</tbody>
</table>

Traffic Status: The status of the bridge at the time of this inventory.

- Open to all Traffic
- Pedestrian Only
- Closed to all Traffic

Category: Category 1 is used to distinguish the premier historic bridges in the state and Category 2 identifies other potentially historic bridges. The categories and how the bridges were sorted is described more fully in the Methodology chapter.

- Category 1
- Category 2

Eligibility Status: Notes the result of any known historic determinations. These may no longer apply, and do not necessarily reflect the outcome of this inventory.

- National Historic Landmark
- Listed in National Register
- Determined Eligible Previously
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01122A</td>
<td>Eagle Creek, Hwy 12</td>
<td>2</td>
</tr>
<tr>
<td>00661</td>
<td>North Powder River, Bidwell Rd</td>
<td>3</td>
</tr>
<tr>
<td>01409</td>
<td>Alder Creek, County Rd 539 (Old US 30)</td>
<td>4</td>
</tr>
</tbody>
</table>
Eagle Creek, Hwy 12

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01122A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1925 (1957)</td>
</tr>
<tr>
<td>Location</td>
<td>Just west of Richland</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>44 45 45, -117 10 43</td>
</tr>
<tr>
<td>Description</td>
<td>One 100-ft riveted steel polygonal Warren pony truss</td>
</tr>
<tr>
<td>Designer</td>
<td>Oregon State Highway Department under C.B. McCullough</td>
</tr>
<tr>
<td>Significance</td>
<td>The Eagle Creek bridge is an example of a state standard pony truss that was altered to accommodate changing traffic demands. Rather than the far more common relocation and replacement, this truss was widened in 1957. In order to do this, the abutments were widened, one truss panel moved outward and new floorbeams installed. The choice to widen the bridge likely reflects the difficulties of building in such a remote location.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type</td>
</tr>
</tbody>
</table>
North Powder River, Bidwell Rd

Bridge Number: 00661

Year Built: 1929

Location: Just south of North Powder

Lat/Long: 45 01 27, -117 55 09

Description: One 55-ft riveted steel Pratt pony truss

Designer: Oregon State Highway Department under C.B. McCullough

Builder: Rudolf K. Krausse

Significance: The Bidwell Road bridge is the last extant example of a Pratt pony truss in the state. It was designed by the state to serve on the Old Oregon Trail Highway (US 30), which was bypassed when I-84 was constructed, with the old route transferred to the county. As a result, the bridge has retained many of its original features, including its lattice railing and riveted joints.

Character Defining Features: Structure type, Railing, Location on old US 30
Alder Creek, County Rd 539 (Old US 30)

Bridge Number: 01409

Year Built: 1929

Location: 2.4 mi. east of the Oxman Overcrossing of I-84

Lat/Long: 44 36 11, -117 29 06

Description: One 45-ft reinforced concrete beam span

Designer: Oregon State Highway Department under C.B. McCullough

Significance: This bridge is one of the few remaining from the original construction of the Old Oregon Trail Highway, or US 30, as it had been numbered by the time of this bridge's construction. The construction of I-84 resulted in the replacement or alteration of old US 30 and most of its bridges, leaving the Alder Creek Bridge isolated. The Alder Creek Bridge showcases an earlier era of OSHD bridge building with low-arched railing and simple undecorated beams.

Character Defining Features: Location on old US 30, Railing, Structure type
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>02728</td>
<td>Willamette River, Van Buren Ave</td>
<td>6</td>
</tr>
<tr>
<td>14538</td>
<td>Alsea River, Hayden Rd</td>
<td>7</td>
</tr>
<tr>
<td>00420A</td>
<td>Jackson Creek, Hwy 1W</td>
<td>8</td>
</tr>
<tr>
<td>01025D</td>
<td>Willamette River, Hwy 31 EB</td>
<td>9</td>
</tr>
<tr>
<td>14135</td>
<td>Muddy Creek, McFarland Rd at MP 5.30</td>
<td>10</td>
</tr>
<tr>
<td>14160</td>
<td>Steamboat Channel, Bundy Rd</td>
<td>10</td>
</tr>
<tr>
<td>01204</td>
<td>North Fork Alsea River, Hwy 27</td>
<td>11</td>
</tr>
<tr>
<td>00706</td>
<td>Marys River, Hwy 1W NB</td>
<td>12</td>
</tr>
<tr>
<td>01441</td>
<td>Marys River, Harris Rd</td>
<td>13</td>
</tr>
<tr>
<td>02305</td>
<td>North Fork Alsea River, Hwy 201</td>
<td>14</td>
</tr>
<tr>
<td>02625A</td>
<td>Marys River, Hwy 191</td>
<td>15</td>
</tr>
<tr>
<td>14169</td>
<td>Oak Creek, Pedestrian</td>
<td>16</td>
</tr>
</tbody>
</table>
Willamette River, Van Buren Ave

Bridge Number 02728

Year Built 1913

Common Name: Van Buren Bridge

Location: In Corvallis, on OR 34

Lat/Long: 44 33 56, -123 15 24

Description: One 249-ft combination pin-connected and riveted steel Pratt through truss swing span with a 171-ft pin-connected Parker through truss and a 57-ft riveted pony truss secondary spans and timber trestle approaches

Designer: Coast Bridge Company

Significance: The Van Buren Bridge is a late representative of a bygone era of bridge construction for its use of both pin-connected trusses and a swing span style movable span. It is the only remaining pin-connected truss in state ownership, and one of only two swing spans remaining in the state. The state took ownership from Benton County in 1938. It no longer operates as a swing span — it last opened in 1960.

Character Defining Features: Structure type, Connection types, Location in Corvallis

Alterations: A recent rehab project repainted and replaced a number of members in kind. Earlier projects include: the 1940 replacement of the deck and east approach; the fixing in place of the swing span in 1960; and the removal of the west pony truss following the Columbus Day Storm of 1962.
Alsea River, Hayden Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>14538</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1918 (1945)</td>
</tr>
</tbody>
</table>

Common Name: Hayden Covered Bridge
Location: 2 mi. west of Alsea on Hayden Rd
Lat/Long: 44 22 59, -123 37 50
Description: Covered 91-ft timber through Howe truss

Significance: The Hayden Bridge is one of the oldest covered bridges in the state and the oldest of Benton County’s three covered bridges. Original features include: battered board & batten siding similar to Lincoln County spans; ribbon openings below the eaves; outlookers supporting the barge rafters; two-member chords with dapped timber blocks between them; connections using external clamped steel channels with tie rods; and upper bracing with timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Siding, Openings, Outlookers, Chords, Connection type, Bracing

Alterations: Original rounded portal openings were altered to allow higher loads and bolted steel straps were installed across the joints on the top and bottom of the lower chord for added strength at some point. It is unknown the extent of the 1945 rehabilitation. An additional rehabilitation in 2003 added a synthetic roof, glue laminated floor beams and stringers, a steel backed timber rail, and new steel vertical tension rods.
Bridge Number: 00420A
Year Built: 1919 (1942)
Location: On OR 99W, 0.4 mi. north of Corvallis
Lat/Long: 44 36 51, -123 14 41
Description: Two reinforced concrete slab spans, with a 1942 in-kind widening
Significance: This bridge is one of the original West Side Highway bridges, now significant for its connection to Camp Adair, a WWII Army Base. Built in 1942 to serve as temporary housing for nearly 40,000 military personnel, Camp Adair became the second largest city in Oregon at the time. In order to meet the increased capacity, the OSHD rapidly widened 99W with limited resources. As a result, the Jackson Creek bridge, as well as two bridges in Polk County north of the camp, were widened using reused railroad rails cut in half as the primary reinforcement. The workmanship was much cruder than that normally used on state bridges, and the difference in quality is readily apparent next to the original, much older, bridge. The widening used a railing type that roughly replicated the original Type A rail, though it was cast-in-place, rather than precast.
Character Defining Features: Structure type, Workmanship, Railing, Connection with Camp Adair and West Side Highway
Alterations: Thrie-beam rail was added in front of the 1942 railing.
Willamette River, Hwy 31 EB

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01025D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1925</td>
</tr>
<tr>
<td>Common Name:</td>
<td>Ellsworth Street Bridge</td>
</tr>
<tr>
<td>Location:</td>
<td>In Albany, on US 20 Eastbound</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>44 38 21, -123 06 24</td>
</tr>
<tr>
<td>Description:</td>
<td>Four 200-ft riveted steel Parker through truss spans with five 32-ft reinforced concrete deck girder approach spans on the east approach and replacement prestressed concrete beam approaches on the west</td>
</tr>
<tr>
<td>Designer:</td>
<td>O.A. Chase under C.B. McCullough</td>
</tr>
<tr>
<td>Builder:</td>
<td>Union Bridge Company of Portland</td>
</tr>
<tr>
<td>Significance:</td>
<td>The OSHD constructed the Ellsworth bridge to replace an inadequate 1887 bridge, enabling the route to be designated as US 20 in 1926. It is significant both as a crossing of a major river and as one of the few remaining multiple truss bridges in the state. In recognition of the bridge's importance and proximity to Albany it has several notable decorative features, including entry pylons, which are a rarity for truss bridges of that era.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Location on US 20, Decorative elements</td>
</tr>
<tr>
<td>Alterations:</td>
<td>In 1971, a second bridge was built downstream and this bridge was converted to carry only eastbound traffic. At this time, the west approaches were replaced. In addition, a new traffic railing was added on the inside of the trusses.</td>
</tr>
</tbody>
</table>
Muddy Creek, McFarland Rd at MP 5.30

Bridge Number: 14135
Year Built: ca. 1925 (1963)
Location: NW of Monroe
Lat/Long: 44 19 59, -123 19 52

Steamboat Channel, Bundy Rd

Bridge Number: 14160
Year Built: ca. 1925 (1962)
Location: 1 mi south of Eureka Rd
Lat/Long: 44 22 49, -123 14 57

Description: Each bridge is a 100-ft riveted steel polygonal Warren pony truss
Designer: Bureau of Public Roads and Benton County
Significance: Both of these trusses were originally built by the Bureau of Public Roads in southern Oregon and later purchased by Benton County and relocated to their current sites. They are both examples of the same standard design and include buttress angles to add lateral stability.
Character Defining Features: Structure type, Railings
Alterations: Both bridges have had thrie-beam rail added in front of their original lacing rail.
North Fork Alsea River, Hwy 27

Bridge Number: 01204
Year Built: 1927
Location: On OR 34, 3.2 mi. east of Alsea
Lat/Long: 44 24 57, -123 33 45
Description: One 100-ft riveted steel polygonal Warren pony truss with reinforced concrete deck girder approaches
Builder: Stephens and Bolderston, Contractors
Significance: The North Fork Alsea River Bridge is a relatively untouched example of a standard state designed truss bridge. While many bridges of this type were built in the 1920s, very few of them remain, and even fewer retain integrity of their original design and location. This bridge retains its original lattice railing on the truss span and Type A railing on the approaches. It was originally built by the state for Benton County, but has since been acquired by the state as part of OR 34.
Character Defining Features: Structure type, Railings, Nameplate
Marys River, Hwy 1W NB

Bridge Number: 00706
Year Built: 1933

Location: In Corvallis, on OR 99W Northbound
Lat/Long: 44 33 24, -123 15 53
Description: One 150-ft riveted steel Parker through truss with timber trestle approaches on the south end and a modern precast concrete approach on the north
Designer: Oregon State Highway Department under Conde B. McCullough
Builder: Lindstrom and Feigenson

Significance: The Mary’s River Bridge, constructed in cooperation with the Bureau of Public Roads, increased the capacity and improved the alignment of the West Side Highway at the southern edge of Corvallis. Due to its urban location, despite its standard steel truss design, the bridge has a number of decorative treatments. These include the timber and concrete handrail, decorative entry pylons with wooden inserts and ornate lanterns, and the nameplate.

Character Defining Features: Structure type, Railings, Decorative features, Nameplate

Alterations: In 1997, the northern approach was replaced with precast concrete channel beams and in 2011 the portals of the truss were raised and the lamps relit.
Marys River, Harris Rd

Bridge Number: 01441

Year Built: 1936

Common Name: Harris Covered Bridge

Location: 2 mi. west of Wren on Harris Rd

Lat/Long: 44 34 48, -123 27 37

Description: Covered 75-ft timber through Howe truss

Builder: H. W. Fiedler

Significance: This bridge is one of only three covered bridges remaining in Benton County. The design was based on an ODOT standard drawing from 1936 and it retains many of the features of that design, including: board & batten siding; semi-elliptical portal shape; a ribbon opening below the eaves; dapped connections between the top chord and diagonal compression members; framing with timber angle blocks at interior diagonals; and upper bracing using timber laterals and cross members. The workmanship of this bridge is quite apparent, with the hand-hewn bottom chord showing adz marks from its construction.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Openings, Chords, Workmanship, Connections, Upper bracing

Alterations: A rehabilitation in 2006 included a synthetic shake roof, glulam floor beams, running boards, and a steel backed timber rail.
North Fork Alsea River, Hwy 201

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>02305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1937</td>
</tr>
</tbody>
</table>

Location: On the Alsea-Deadwood Highway, just south of Alsea
Lat/Long: 44 22 49, -123 35 55
Description: One 100-ft riveted steel polygonal Warren pony truss main span with timber stringer approaches
Designer: Oregon State Highway Department under G.S. Paxson
Builder: Sig Ash

Significance: This bridge is one of the last pony trusses built before the type became obsolete. In order to accommodate the larger loads of the time, the truss uses much larger steel sections than was standard for earlier state designed pony trusses. As was common under Paxson, the bridge has no notable decorative features.

Character Defining Features: Structure type, Railing
Marys River, Hwy 191

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>02625A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1950</td>
</tr>
<tr>
<td>Location:</td>
<td>On OR 233, just north of Wren</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>44 35 47, -123 25 32</td>
</tr>
<tr>
<td>Description:</td>
<td>Four 70-ft reinforced concrete deck girder spans on a 63-degree skew</td>
</tr>
<tr>
<td>Description:</td>
<td>Oregon State Highway Department under G.S. Paxson</td>
</tr>
<tr>
<td>Significance:</td>
<td>This bridge is significant for the extremely high skew angle between the piers and the girders. High skew puts extra stress on the structure and, as a result, is more difficult to design. Along with the added difficulty of the skew, this bridge also has a high span-length, adding to the complexity. The bridge has no notable decorative features, as was common for the era.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Railing</td>
</tr>
</tbody>
</table>
Oak Creek, Pedestrian Bridge Number 14169

Year Built 1954 (1989)

Common Name: Irish Bend Covered Bridge

Location: On the OSU campus between 35th St. and 53rd St. on a walking path through the research farm

Owner: Oregon State University

Lat/Long: 44 33 60, -123 18 03

Description: Covered 60-ft timber through Howe truss

Significance: This bridge appears to be based on a 1920s era state standard design but the records for its construction date it to 1954, leading to some controversy about its construction year. If the 1954 construction date is accurate then this bridge may have been the last covered bridge in the US to have been built for purely economic reasons. The design features include: a cedar roof; battered board & batten siding similar to the Lincoln County designs; ribbon openings below the eaves; two-member chords; external clamped steel channels with tie rods for the chord connections; cast steel angle blocks for the diagonal members; and timber upper bracing laterals and cross members. The portal shape does not match the design, but it is unknown when it was altered.

Character Defining Features: Covered bridge, Truss type, Siding, Openings, Roof, Chords, Connection type, Bracing

Alterations: The county and a community organization worked together to relocate the bridge to its current location in 1989 from its previous location on Irish Bend Rd across the Willamette Slough. Due to advanced degradation, the relocation also involved the replacement of some timbers.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>06571</td>
<td>Bull Run River, Bull Run Rd</td>
<td>18</td>
</tr>
<tr>
<td>06580</td>
<td>Sandy River, Lusted Rd</td>
<td>18</td>
</tr>
<tr>
<td>06574</td>
<td>Salmon River, Elk Park Rd</td>
<td>19</td>
</tr>
<tr>
<td>01617</td>
<td>Clackamas River, Hwy 1E</td>
<td>20</td>
</tr>
<tr>
<td>00357</td>
<td>Willamette River and Hwy 1E, Hwy 3</td>
<td>21</td>
</tr>
<tr>
<td>02061</td>
<td>Molalla River, Hwy 1E NB</td>
<td>21</td>
</tr>
<tr>
<td>01438</td>
<td>Salmon River, Brightwood Loop Rd</td>
<td>23</td>
</tr>
<tr>
<td>06217</td>
<td>Abernethy Creek, Holly Ln</td>
<td>24</td>
</tr>
<tr>
<td>02208</td>
<td>Clackamas River, Hwy 161</td>
<td>25</td>
</tr>
<tr>
<td>02743</td>
<td>Pudding River, Hwy 1E</td>
<td>26</td>
</tr>
<tr>
<td>08988</td>
<td>Clackamas River, Hwy 171 at MP 38.77</td>
<td>27</td>
</tr>
<tr>
<td>08989</td>
<td>Clackamas River, Hwy 171 at MP 39.16</td>
<td>27</td>
</tr>
<tr>
<td>08991</td>
<td>Clackamas River, Hwy 171 at MP 44.88</td>
<td>27</td>
</tr>
<tr>
<td>08990</td>
<td>Clackamas River, Hwy 171 at MP 45.83</td>
<td>27</td>
</tr>
<tr>
<td>01214</td>
<td>Abernethy Creek, Redland Rd (West)</td>
<td>29</td>
</tr>
<tr>
<td>01215</td>
<td>Abernethy Creek, Redland Rd (East)</td>
<td>29</td>
</tr>
</tbody>
</table>
Bull Run River, Bull Run Rd

Bridge Number: 06571
Location: 0.7 mi. east of Ten Eyck Rd
Lat/Long: 45 25 41, -122 13 57
Description: One 240-ft pin-connected iron and steel Pennsylvania-Petit through truss

Year Built: 1894 (1926)
Designer: W.B. Chase (Chief Engineer, 1894 Burnside Bridge)
Builder: Bullen Bridge Company

Significance: These two pin-connected trusses were originally constructed in Portland flanking the swing span of the original (1894) Burnside Bridge. When that bridge was replaced in 1926, these trusses were relocated to Clackamas County. Based on their construction date, these are the earliest known highway bridges in Oregon. They are also the only known highway bridges to use wrought iron elements. They feature very few original decorative elements aside from small nautical wheels in the portal frames.

Character Defining Features: Structure type, Decorative elements, Material

Alterations: The Sandy River Bridge received a seismic retrofit and rehab with a replica sidewalk in 1998.

Sandy River, Lusted Rd

Bridge Number: 06580
Location: 2 mi. south of County Line
Lat/Long: 45 26 42, -122 15 13
Description: One 300-ft pin-connected iron and steel Pennsylvania-Petit through truss
Salmon River, Elk Park Rd

Bridge Number: 06574

Year Built: 1912 (1965)

Location: 1.2 mi. south of US 26 at Welches

Lat/Long: 45 19 42, -121 57 44

Description: One 100-ft riveted steel polygonal Warren pony truss

Designer: Coast Bridge Company

Significance: This bridge is one of the few remaining Coast Bridge Company trusses in the state. The Coast Bridge Company acted as a bridge broker, selling fabricated steel trusses to county commissions between 1911 and 1916. For efficiency, most of these bridges were extremely lightweight, and well suited to being relocated. The Elk Park Rd bridge is no exception, having been moved to its current site in 1965. Based on the Coast Bridge Company contract files, the bridge was likely originally constructed for Clackamas County near Viola. The original bridge railing was lost, likely at the time of the relocation.

Character Defining Features: Structure type, Coast Bridge Company

Alterations: The bridge was relocated to this location in 1965.
Location: On the remaining segments of the old Pacific Highway in Clackamas County. Bridges are discussed from north to south.

Designer: Oregon State Highway Department under C.B. McCullough

Date Range: 1919-1936

Significance: When Oregon dedicated the Pacific Highway in 1923, it became the first highway to cross an entire state west of the Mississippi. Since that time it has remained an important transportation corridor, with constant realignments and renumbering. As the alignment evolved, new bridges were built and old ones abandoned, typically into county ownership. As a result, the bridges associated with the Pacific Highway come with a wide date range. The bridges vary widely in type, scale and age but all retain an important link to the Pacific Highway in all of its iterations. Many of the bridges also represented the cutting edge in technology of the day, and so have additional significance beyond the highway.

Character Defining Features: Location on old Pacific Highway, Decorative features and railings, Nameplates, Structure type

Alterations: Due to the waves of improvements to the Pacific Highway, the route has had many major changes, including rerouting and widening. Many of the bridges have also required significant rehabilitation, including replaced railings and widening.

Clackamas River, Hwy 1E

Bridge Number: 01617

Year Built: 1933

Common Name: McLoughlin Bridge

Location: 2 mi. south of County Line

Lat/Long: 45 22 24, -122 36 06

Description: Three steel tied through arch spans with a total length of 720-ft

Builder: Lindstrom and Feigenson

Additional Significance: This bridge won an Award for Merit in 1933 from the American Institute of Steel Construction and is the largest crossing built as part of the major realignment of the Pacific Highway between Oregon City and Portland. The design includes decorative entry pylons. The bridge was dedicated to Dr. John McLoughlin, a leading figure in the development of the modern Pacific Northwest.
Willamette River and Hwy 1E, Hwy 3

Bridge Number: 00357
Year Built: 1922
Common Name: Oregon City Arch
Lat/Long: 45 21 32, -122 36 34
Description: One 360-ft steel partial-through arch with sprayed-on concrete coating main span with eleven concrete deck girder approach spans
Builder: A. Guthrie and Company, Portland
Additional Significance: The Oregon City Arch is one of Conde B. McCullough's early masterpieces. A number of features make this bridge unique including the asymmetrical partial-through arch design to fit the differing heights of the banks of the river, and the use of concrete-coated steel to protect against the corrosive fumes from the nearby paper mills. The decorative features of the bridge include pylons, an ornate bridge railing, arched fascia curtain walls, fluted Art-Deco main piers and bush hammered panels. The bridge replaced an 1888 suspension bridge which McCullough used to help in the construction of the current span. Original bathrooms under the approaches, which included river viewing, still exist but have long since been decommissioned. The bridge was rehabbed in 2012, including replacement of the concrete coating and installation of a stealth rail.

Molalla River, Hwy 1E NB

Bridge Number: 02061
Year Built: 1919 (1936)
Lat/Long: 45 15 19, -122 42 28
Description: Three 80-ft riveted steel Warren deck truss spans with reinforced concrete deck girder approach spans
Additional Significance: The original truss spans of this bridge were constructed in 1919 with the initial construction of the Pacific Highway, but received significant alterations as part of a widening in 1936. An additional truss panel was added and concrete girders used to replace the timber approaches. The widening also included the addition of a new decorative concrete railing and concrete entry pylons. When the OSHD added a parallel bridge in 1963, two of the pylons were lost.
Salmon River, Brightwood Loop Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01438</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1929</td>
</tr>
<tr>
<td>Location:</td>
<td>0.25 mi. north of US 26</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>45 22 31, -122 01 26</td>
</tr>
<tr>
<td>Description:</td>
<td>One 100-ft riveted steel Warren deck truss with reinforced concrete girder approaches</td>
</tr>
<tr>
<td>Designer:</td>
<td>Oregon State Highway Department under C.B. McCullough</td>
</tr>
<tr>
<td>Builder:</td>
<td>King Brothers (Steel Fabricator), Rigdon Brothers (Contractors)</td>
</tr>
<tr>
<td>Significance:</td>
<td>This bridge, built in cooperation with the Bureau of Public Roads, is located on a bypassed portion of US 26 which provides access from Portland to the Mt. Hood National Forest. It is one of eight remaining deck trusses of this standard type in the state. Despite the remote location, bush-hammered panels were added on the approaches to increase the decorative appeal of the structure.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Railings, Decorative features, Nameplate</td>
</tr>
</tbody>
</table>
Abernethy Creek, Holly Ln

Bridge Number: 06217

Year Built: 1933 (1967)

Location: Just south of Redland Rd. east of OR 213

Lat/Long: 45 21 35, -122 34 15

Description: One 100-ft riveted steel polygonal Warren pony truss with vertical members dividing the lower chord

Designer: Bureau of Public Roads

Significance: This bridge is a Bureau of Public Roads design for use in a National Forest — later sold to Clackamas County and relocated to its current site in 1967. At the current site, piers that once held a narrower truss have been reused by adding additional concrete. Due to its origin as a Forest Service bridge, the truss design uses heavier members than were common in Oregon State Highway Department designs of the same era. The bridge includes a cantilevered sidewalk on only the downstream side requiring the two truss panels to be of different strengths. The original steel lattice pedestrian railing has been altered, and the traffic railing replaced.

Character Defining Features: Structure type, Pedestrian railing

Alterations: In addition to the 1967 relocation, the bridge has been recently rehabbed, including painting the trusses and adding a thrie-beam guardrail along the roadway.
Clackamas River, Hwy 161

Bridge Number: 02208
Year Built: 1936

Common Name: Estacada Bridge
Location: In Estacada, on OR 211
Lat/Long: 45 16 58, -122 19 55

Description: One 140-ft reinforced concrete open-spandrel rib-type deck arch with reinforced concrete deck girder approaches

Designer: Oregon State Highway Department under G.S. Paxson
Builder: Mountain States Construction Company

Significance: This was one of the first major bridges designed by the state during G.S. Paxson’s tenure as Acting State Bridge Engineer while McCullough worked on the Pan American Highway for the Bureau of Public Roads. It still reflects some of the decorative features that characterize the McCullough era, including decorative soffit brackets and ornate incised arch abutment columns. From an engineering perspective, this bridge is also significant for the curving roadway above the arch. This results in off-center loading on the arch ribs, greatly complicating the design.

Character Defining Features: Structure type, Roadway layout, Railing, Nameplate, Decorative features
Pudding River, Hwy 1E

Bridge Number: 02743

Year Built: 1947

Location: 2.7 mi. south of Canby on OR 99E

Lat/Long: 45 14 01, -122 44 59

Description: One 121-ft riveted steel tied through arch with reinforced concrete deck girder approach spans

Designer: Oregon State Highway Department under G.S. Paxson

Significance: This bridge, which displaced a narrow Parker through truss from 1922 (#47C37), enabled greater traffic capacity on the Pacific Highway. To reduce impacts to traffic on this major highway, OSHD built the arch next to the old bridge and slid it into place in the same manner as modern accelerated bridge construction. As a part of the same process, the approaches and piers were all widened, resulting in a wider roadway with sidewalks cantilevered from both sides of the arch. The bridge has no notable decorative features aside from the picket rail.

Character Defining Features: Structure type, Railing, Piers and approaches
Clackamas River Bridges

Location: On OR 244 in Mt. Hood National Forest. Bridges are listed from north to south.

Designer: Public Roads Administration under H.R. Angwin

Date Range: 1950-1952

Significance: In 1947 the Oregon State Highway Commission designated OR 244 as a new state highway starting at the edge of the “Forest Service Upper Clackamas Construction and Maintenance Project” near Estacada. Part of this project included four large truss bridges built to enable the crossing of the Clackamas River. In 1961, this upper portion of the highway transferred to state ownership, extending the end of OR 244 as far as Ripplebrook within the National Forest. All four bridges represent a standard truss from the Public Roads Administration (formerly BPR) that make them the four longest single span Parker through trusses identified in this inventory.

Character Defining Features: Location on Clackamas Hwy, Structure type

Alterations: In 1970, the portals were raised on all four bridges. They have also all had minor repairs due to impacts over the years.

Clackamas River, Hwy 171 at MP 38.77

Bridge Number: 08988

Common Name: Carter Bridge

Lat/Long: 45 10 01, -122 09 21

Description: One 240-ft riveted steel Parker through truss with reinforced concrete deck girder approaches

Clackamas River, Hwy 171 at MP 39.16

Bridge Number: 08989

Common Name: Armstrong Bridge

Lat/Long: 45 09 44, -122 09 05

Description: One 240-ft riveted steel Parker through truss with reinforced concrete deck girder approaches

Clackamas River, Hwy 171 at MP 44.88

Bridge Number: 08991

Common Name: Whitewater Bridge

Lat/Long: 45 07 32, -122 04 41

Description: One 240-ft riveted steel Parker through truss with reinforced concrete deck girder approaches

Clackamas River, Hwy 171 at MP 45.83

Bridge Number: 08990

Common Name: Cripple Creek Bridge

Lat/Long: 45 06 58, -122 04 31

Description: One 240-ft riveted steel Parker through truss with reinforced concrete deck girder approaches. Relocated slightly in 1965.
Clackamas River Bridges

Br 08988

Br 08989

Br 08990
Abernethy Creek, Redland Rd (West)

Bridge Number: 01214
Year Built: 1956
Location: 1.3 mi. east of OR 213
Lat/Long: 45° 21' 38", -122° 34' 25"

Abernethy Creek, Redland Rd (East)

Bridge Number: 01215
Year Built: 1956
Location: 1.3 mi. east of OR 213
Lat/Long: 45° 21' 38", -122° 34' 20"

Description: Multiple 32-ft prestressed concrete beam spans on timber piles piers
Designer: Clackamas County Road Department
Significance: These two simple bridges were the first prestressed bridges to be designed by a county. Rather than the more common prestressing wire, these beams were stressed using “Stressteel” bars. It is unknown why Clackamas County decided to test this new design, but they did have it checked and revised by the State Highway Department before construction. The beams were precast and stressed prior to construction.
Character Defining Features: Structure type
Alterations: Both bridges were widened with PCPS box beams in 1967, at which time the bridge rails were replaced.
See next page for Clatsop’s bridge list
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>02418</td>
<td>Beltline Overcrossing</td>
<td>32</td>
</tr>
<tr>
<td>00330</td>
<td>Young’s Bay, Hwy 105</td>
<td>32</td>
</tr>
<tr>
<td>00711</td>
<td>Lewis and Clark River, Hwy 105</td>
<td>32</td>
</tr>
<tr>
<td>01400</td>
<td>Skipanon River, Hwy 104 Spur</td>
<td>34</td>
</tr>
<tr>
<td>01468</td>
<td>Glenwood Private Rd, Hwy 9</td>
<td>34</td>
</tr>
<tr>
<td>01305</td>
<td>Neawanna Creek, Hwy 9</td>
<td>34</td>
</tr>
<tr>
<td>01481</td>
<td>Necanicum River, Hwy 9</td>
<td>34</td>
</tr>
<tr>
<td>01319</td>
<td>Soapstone Creek, Hwy 46</td>
<td>34</td>
</tr>
<tr>
<td>02319</td>
<td>North Fork Nehalem River, Hwy 46 at MP 7.74</td>
<td>34</td>
</tr>
<tr>
<td>01878</td>
<td>Austins Point Half Viaduct</td>
<td>36</td>
</tr>
<tr>
<td>01797</td>
<td>Arch Cape Creek and Webb Ave, Hwy 9</td>
<td>36</td>
</tr>
<tr>
<td>07C13</td>
<td>Bear Creek, Old Hwy 30</td>
<td>37</td>
</tr>
<tr>
<td>07C11</td>
<td>Necanicum River, W Broadway</td>
<td>38</td>
</tr>
<tr>
<td>01832</td>
<td>East Fork Humbug Creek, Hwy 47</td>
<td>39</td>
</tr>
<tr>
<td>01831</td>
<td>West Humbug Creek, Hwy 47</td>
<td>39</td>
</tr>
<tr>
<td>02165</td>
<td>Nehalem River & Hwy 103, Hwy 47</td>
<td>40</td>
</tr>
<tr>
<td>06524</td>
<td>North Fork Necanicum River, Hwy 47 at MP 7.07</td>
<td>41</td>
</tr>
<tr>
<td>07949</td>
<td>Columbia River (Astoria)</td>
<td>42</td>
</tr>
<tr>
<td>08306</td>
<td>Youngs Bay, Hwy 9</td>
<td>42</td>
</tr>
</tbody>
</table>
Roosevelt Coast Highway
In Clatsop County

Location: Along the Pacific coast, constructed along US 101 in Clatsop County. Bridges are listed from north to south.

Designer: Oregon State Highway Department under C.B. McCullough (through 1936) and G.S. Paxson (after 1936)

Date Range: 1921-1940

Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. The section in Clatsop County is notable for the active waterways it crosses, resulting in the three extant movable span bridges.

Character Defining Features: Location on Coast Highway, Decorative railings, Structure types

Beltline Overcrossing

Bridge Number: 02418

Year Built: 1921

Lat/Long: 46 10 18, -123 50 18

Description: Two 18-ft reinforced concrete arched slab spans with ornate detailing located over an abandoned railway on the approach to the Old Young's Bay bridge.

Young's Bay, Hwy 105

Bridge Number: 00330

Common Name: Old Young's Bay

Lat/Long: 46 10 08, -123 50 17

Description: One 150-ft clear span steel double-leaf bascule main span with long timber pile approaches on both sides. It was the first moveable span designed under C.B. McCullough. The approaches were replaced in 1933 and the bridge received a complete rehab in 2000, including rail and deck replacement.

Lewis and Clark River, Hwy 105

Bridge Number: 00711

Year Built: 1924

Lat/Long: 46 09 09, -123 51 37

Description: One 112-ft steel single-leaf bascule main span with 716-ft of timber pile approaches. It is the last remaining single-leaf bascule in the state. In 2003, an extensive rehab project was completed, including adding an FRP deck to the bascule and replacing the rails with steel backed timber.
Roosevelt Coast Highway
In Clatsop County

Br 02418

Br 00330

Br 00711
Roosevelt Coast Highway

In Clatsop County

Skipanon River, Hwy 104 Spur

Bridge Number: 01400
Common Name: Old Skipanon River Bridge
Year Built: 1929
Lat/Long: 46 08 58, -123 55 27
Description: Three span girder bridge, with the outer spans being reinforced concrete and the center span steel beams that were designed to be removable using a crane. The addition of utilities later has made this no longer a functional movable span.

Glenwood Private Rd, Hwy 9

Bridge Number: 01468
Year Built: 1930
Lat/Long: 46 06 34, -123 55 19
Description: One 30-ft simple reinforced concrete beam span

Neawanna Creek, Hwy 9

Bridge Number: 01305
Year Built: 1930
Lat/Long: 46 00 39, -123 54 41
Description: Four 52-ft concrete continuous girder spans, one of the first to be designed using the Hardy-Cross method

Necanicum River, Hwy 9

Bridge Number: 01481
Common Name: Skiberene Bridge
Year Built: 1930
Lat/Long: 45 57 11, -123 55 36
Description: Three span reinforced concrete girder bridge with arched girders

Soapstone Creek, Hwy 46

Bridge Number: 01319
Year Built: 1928
Lat/Long: 45 49 38, -123 46 52
Description: One 108-ft reinforced concrete open-spandrel rib-type deck arch on a former alignment of Coast Highway

North Fork Nehalem River, Hwy 46 at MP 7.74

Bridge Number: 02319
Year Built: 1937
Lat/Long: 45 48 49, -123 46 13
Description: One 100-ft riveted steel Warren deck truss on a former alignment of Coast Highway
Roosevelt Coast Highway
In Clatsop County
Roosevelt Coast Highway
In Clatsop County

Austins Point Half Viaduct

Bridge Number: 01878
Year Built: 1933
Lat/Long: 45 49 31, -123 57 40
Description: Six span timber frame trestle half-viaduct with some timbers replaced by steel piles.

Arch Cape Creek and Webb Ave, Hwy 9

Bridge Number: 01797
Year Built: 1937
Lat/Long: 45 48 12, -123 57 53
Description: Six span timber trestle bridge with steel helper piles added and a steel 2 tube rail added in front of its original rail.
Lower Columbia River Highway
In Clatsop County

Location: Along the western portion of the old Columbia River Highway
Designer: Oregon State Highway Department under C.B. McCullough
Date Range: 1923

Significance: Extending from Portland to Astoria, the Lower Columbia River Highway provided the first automobile access to the Oregon coast for the people of Portland. This route, named US 30 in 1926, remained an important tourism route until the Sunset Highway was constructed in the 1930s and ‘40s. The only bridge remaining in Clatsop County from the historic route was bypassed from the main highway in 1967.

Character Defining Features: Location, Railing, Structure type

Bear Creek, Old Hwy 30

Bridge Number: 07C13
Year Built: 1923
Lat/Long: 46 09 47, -123 39 58

Description: Two 32-ft reinforced concrete beam spans
Necanicum River, W Broadway

Bridge Number: 07C11
Year Built: 1924

Common Name: Broadway Bridge, Seaside Bridge
Location: In Seaside
Lat/Long: 45 59 35, -123 55 27
Description: Three 41-ft filled-spandrel, barrel-type deck arch spans
Designers: G.R. Edwards and Daniel B. Luten
Builder: W.A. Webster and J.H. Tillman

Significance: The Broadway Bridge in Seaside is one of the few remaining patented Luten arches in Oregon, and was the last one to be built. The Luten design, which was chosen due to its aesthetic appeal, was protested by both state and federal engineers for being inadequate. To complement the decorative nature of the arches, the bridge was also given a number of decorative finishes, including urn-shaped balustrade railings, light posts and a pair of bronze bas-relief castings by noted Oregon sculptor Avard Fairbanks.

Character Defining Features: Structure type, Luten design, Decorative railing and light posts, Bronze castings
East Fork Humbug Creek, Hwy 47

Bridge Number: 01832
Location: 2.2 mi. northwest of Elsie on US 26
Lat/Long: 45 53 20, -123 37 15

West Humbug Creek, Hwy 47

Bridge Number: 01831
Location: 2.5 mi. southwest of the Summit of the Coast Range on US 26
Lat/Long: 45 53 38, -123 38 31

Year Built: 1934
Description: Each bridge is a standard three span timber frame trestle
Designers: Oregon State Highway Department under C.B. McCullough
Significance: These two bridges are the last remaining original pieces of the Wolf Creek (now Sunset) Highway which was built in the 1930s to facilitate access to the coast for Portland residents. The highway was largely funded through WPA programs, as a source of employment during the Depression. Though simple structures, these bridges utilize the combination timber-concrete railing that is more commonly found on larger structures or in scenic locations.
Character Defining Features: Location on US 26, Structure type, Railing
Alterations: Over the years some of the timber framing has been replaced with steel members.
Nehalem River & Hwy 103, Hwy 47

Bridge Number: 02165

Year Built: 1939

Location: Just northwest of Jewell Junction on US 26

Lat/Long: 45 51 32, -123 33 19

Description: One 231-ft reinforced concrete open-spandrel, rib-type deck arch with reinforced concrete deck girder approaches and arched façades on the exterior girders

Designer: Oregon State Highway Department under G.S. Paxson

Builder: Mountain States Construction Co.

Significance: One of the few major concrete deck arches built under G.S. Paxson, the Nehalem River bridge clearly reflects the lingering influence of McCullough on the design of major state highway bridges. While the bridge has few overt decorative elements, such as the pylons and obelisks of the coast bridges, it does have an overall design that emphasizes the graceful Roman arch form. These rounded arches appear on both the approach girders and spandrel walls, and on the floorbeams throughout the bridge. The bridge also features a unique arched railing and sidewalk bump outs on all four corners of the bridge.

Character Defining Features: Structure type, Railing, Decorative details
North Fork Necanicum River, Hwy 47 at MP 7.07

Bridge Number 06524
Year Built 1942

Common Name: Fish Hatchery Bridge
Location: On US 26, 7.1 mi. southeast of junction with US 101
Lat/Long: 45 54 29, -123 48 24

Description: One 57-ft reinforced concrete girder and floorbeam system span with one 22-ft enclosed deck girder approach span on each side. Girders have the appearance of a deck arch.

Designer: Oregon State Highway Department under G.S. Paxson

Significance: This bridge is notable both for being one of the few bridges built in Oregon during WWII and for its ornate detailing. It is likely that it was selected for wartime construction due to the need for quick troop movement to the coast, and the unique decorative design likely reflect the reuse of a bridge design from the Pacific Highway in Albany. These replicated elements include the arched shape of the girders and the art deco motif on the piers.

Character Defining Features: Structure type, Railing, Decorative details
Alterations: Steel 2-tube rail was added in front of the original picket rail in 2006.
Late Coast Highway Construction

In Clatsop County

Location: Near Astoria on US 101. Bridges are listed from north to south.

Date Range: 1964-1966

Significance: Even though, from 1936, one could drive from Brookings to Astoria without leaving US 101, there remained one giant gap to be bridged before the Coast Highway could be truly considered complete. This gap was the Columbia River, where, until 1966, one still needed to board a ferry to continue the journey into Washington. In 1962, work began to close this gap with the construction of the Astoria-Megler bridge. To link the new bridge more effectively to US 101, the OSHD rerouted the approach to Astoria, which required an additional major crossing at Young's Bay. As both of these bridges are major crossings in difficult locations, their construction required the use of new technology, like precast prestressed concrete piles, alongside the older proven methods, such as riveting. Despite their importance to transportation, no notable decorative features were included, consistent with the norm for most bridges in the 1960s.

Character Defining Features: Location, Structure types

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>Location</th>
<th>Year Built</th>
<th>Common Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia River (Astoria)</td>
<td>07949</td>
<td>1966</td>
<td>Astoria-Megler Bridge</td>
<td>One 2468-ft riveted steel continuous fixed span cantilever truss main span with five steel deck trusses, one-hundred-forty 80-ft prestressed concrete deck girder spans and seven 350-ft steel parker through truss spans. The bridge is owned jointly by ODOT and WashDOT.</td>
</tr>
<tr>
<td>Youngs Bay, Hwy 9</td>
<td>08306</td>
<td>1962</td>
<td>New Young's Bay</td>
<td>One 153-ft steel Warren pony truss main lift span with one 148-ft steel Warren pony truss fixed secondary span and fifty prestressed concrete deck girder approach spans on especially long precast prestressed piles</td>
</tr>
</tbody>
</table>
Late Coast Highway Construction
In Clatsop County

Br 07949

Br 08306
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>09C01</td>
<td>Nice Creek, C St West</td>
<td>45</td>
</tr>
<tr>
<td>00338</td>
<td>Tide Creek Bridge</td>
<td>46</td>
</tr>
<tr>
<td>09C57</td>
<td>Beaver Creek, Old Hwy 30</td>
<td>46</td>
</tr>
<tr>
<td>00144</td>
<td>Beaver Creek, Old Hwy 30 at MP 8.48</td>
<td>46</td>
</tr>
<tr>
<td>00142</td>
<td>Beaver Creek, Old Hwy 30 at MP 9.28</td>
<td>46</td>
</tr>
<tr>
<td>01508</td>
<td>Rock Creek, Hwy 102</td>
<td>48</td>
</tr>
<tr>
<td>02046</td>
<td>Columbia River, Hwy 2W Conn</td>
<td>49</td>
</tr>
<tr>
<td>02323</td>
<td>Nehalem River, Hwy 102 at MP 61.28</td>
<td>50</td>
</tr>
</tbody>
</table>
Nice Creek, C St West

Bridge Number: 09C01

Year Built: 1911

Common Name: Nice Creek Viaduct

Location: In Rainier

Lat/Long: 46 05 22, -122 56 34

Description: Six 40-ft reinforced concrete deck girder spans with curved haunches at the ends of the beams

Designer: Orrin Backus

Builder: The LeDoux Ehrman Co.

Significance: The Nice Creek Viaduct is the earliest extant and unaltered reinforced concrete girder bridge in the state. It retains much of its original iron pipe handrail, including the four endposts, each of which is inscribed with a different message, including the name of the builder, the names of the county officials involved in its construction, the name of the bridge, and the year built. Based on these nameplates, Columbia County built the bridge, though it is currently in city ownership.

Character Defining Features: Structure type, Railings, Endposts

Alterations: A chain link fence has been added in front of the original railing.
Lower Columbia River Highway Bridges

Location: On the historic Columbia River Highway along the Columbia River in Columbia county. Bridges are listed in order from east to west.

Date Range: 1918-1920

Designers: C.H. Purcell (Through 1918), C.B. McCullough (After 1919)

Significance: Building the Columbia River Highway was the first concerted highway building effort of the newly created Oregon State Highway Department in cooperation with the counties through which it passed. While the portion of the highway east of Portland is the best known, the highway was also constructed west from Portland, enabling the first highway access to the Pacific coast. Due to the flatter terrain, the Lower Columbia River Highway lacks the drama of the structures along the Upper highway. Instead, the bridges were short, simple reinforced concrete beams spans with little to distinguish one from another. Only short segments of this early road survived the widening of the highway following its designation as US 30 in 1926. The few original bridges which remain have been transferred to county ownership.

Character Defining Features: Location on Lower Columbia River Highway, Railings, Structure type

Alterations: The original Lower Columbia River Highway in Columbia County only exists in short segments, with few bridges, but those presented here are mostly unaltered.

Tide Creek Bridge

Bridge Number: 00338
Lat/Long: 45 57 37, -122 52 04
Description: Three 30-ft reinforced concrete deck girder spans

Beaver Creek, Old Hwy 30

Bridge Number: 09C57
Lat/Long: 46 05 33, -122 59 55
Description: One 35-ft reinforced concrete deck girder span

Beaver Creek, Old Hwy 30 at MP 8.48

Bridge Number: 00144
Lat/Long: 46 05 55, -123 04 34
Description: Two 29-ft reinforced concrete through girder spans on a 33-degree skew

Beaver Creek, Old Hwy 30 at MP 9.28

Bridge Number: 00142
Lat/Long: 46 05 56, -123 04 49
Description: Two 35-ft reinforced concrete deck girder spans
Lower Columbia River Highway Bridges
In Columbia County

Br 00144

Br 00338
Rock Creek, Hwy 102

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01508</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1930</td>
</tr>
<tr>
<td>Location</td>
<td>On OR 47, in Vernonia</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>45 51 31, -123 11 32</td>
</tr>
<tr>
<td>Description</td>
<td>Three span reinforced concrete continuous girder bridge with angular haunches on all girders</td>
</tr>
<tr>
<td>Designer</td>
<td>Oregon State Highway Department under C.B. McCullough</td>
</tr>
<tr>
<td>Significance</td>
<td>The Rock Creek Bridge is a good example of the standard sort of concrete continuous bridge built by the OSHD during the 1930s. It features a standard Type C railing with added decorative light posts to fit into the downtown setting.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type, Railings, Light posts</td>
</tr>
</tbody>
</table>
Columbia River, Hwy 2W Conn

Bridge Number: 02046
Year Built: 1930

Common Name: Lewis and Clark Bridge, Longview Bridge
Owner: WashDOT
Location: Between Rainier, Oregon and Longview, Washington
Lat/Long: 46 05 59, -122 57 59

Description: Riveted steel cantilever through truss with 1200-ft center span and 2722-ft overall length main span. Approaches are a mixture of Warren deck trusses and steel trestle.

Designers: Joseph Strauss
Builder: Bethlehem Steel Company

Significance: When completed, the Longview bridge stood as the longest cantilever truss in the world. The designers chose its large scale design to satisfy requirements from the Port of Portland that were intended to block completion of the bridge. Originally constructed by the private Columbia River-Longview Company, it functioned as a toll bridge until the Washington Department of Transportation purchased it in 1947. They renamed it the Lewis and Clark bridge in 1980 in honor of the Lewis and Clark Expedition.

Character Defining Features: Structure type, Location
Nehalem River, Hwy 102 at MP 61.28

Bridge Number: 02323

Year Built: 1938

Location: On OR 47, in Vernonia

Lat/Long: 45 51 29, -123 10 22

Description: One 120-ft riveted steel Parker through truss with timber pile trestle approaches

Designer: Oregon State Highway Department under G.S. Paxson

Significance: This bridge is a particularly intact example of a state standard Parker truss. Its main feature is the steel handrail, which is similar to the standard picket rail, though with slightly less detail. The bridge has previously been identified as a historic resource by the Nehalem Highway Corridor Study.

Character Defining Features: Structure type, Railings, Location
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00482</td>
<td>Sandy Creek, Pedestrian</td>
<td>52</td>
</tr>
<tr>
<td>01942A</td>
<td>South Fork Coquille River, Hwy 242 at MP 18.22</td>
<td>53</td>
</tr>
<tr>
<td>01823</td>
<td>Coos Bay, Hwy 9</td>
<td>54</td>
</tr>
<tr>
<td>01950</td>
<td>CBRL, Hwy 9</td>
<td>54</td>
</tr>
<tr>
<td>07176</td>
<td>Coos River, Hwy 241</td>
<td>56</td>
</tr>
<tr>
<td>00949A</td>
<td>Tenmile Creek & CBRL, Hwy 9 & Frontage Rd</td>
<td>57</td>
</tr>
<tr>
<td>Bridge Number</td>
<td>00482</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Year Built</td>
<td>1921</td>
<td></td>
</tr>
</tbody>
</table>

Common Name: Remote Covered Bridge
Location: Adjacent to OR 42 on the west edge of Remote
Lat/Long: 43° 00’ 23”, -123° 53’ 30”
Description: Covered 60-ft timber through Howe truss
Builder: A. Guthrie & Company

Significance: This small covered bridge, which formerly carried traffic on OR 42 until bypassed in 1949, is the last remaining covered bridge in Coos County. It was mainly built to a 1919 state standard with slight differences in the shape of the portals and the use of large framed window openings. This is the only known extant use of these windows outside of Linn County. Other features of the bridge include: a cedar roof; board & batten siding battered at the portals; decorative arched rectangular portal openings; five outlookers supporting decorative barge rafters; triple-member chords; connections using external clamped steel channels and steel tie rods with diagonal compression members framing into cast iron angle blocks; lateral bracing with timber cross members and steel tension roads that frame into cast iron angle blocks; and floor beams resting on the bottom chord straddling the diagonals.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Outlookers, Windows, Chords, Connections, Lateral bracing

Alterations: At some point large timbers were placed along the inside of the window, likely to protect the trusses from traffic. The bridge has been a pedestrian-only covered picnic site since 1984.
South Fork Coquille River, Hwy 242 at MP 18.22

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01942A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1934</td>
</tr>
<tr>
<td>Common Name: Powers Bridge</td>
<td></td>
</tr>
<tr>
<td>Location: On OR 542 in Powers</td>
<td></td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>42 53 04, -124 04 23</td>
</tr>
<tr>
<td>Description: Two 127-ft riveted steel Warren deck truss spans with timber trestle approaches</td>
<td></td>
</tr>
<tr>
<td>Builder: Oregon State Highway Department under C. B. McCullough</td>
<td></td>
</tr>
<tr>
<td>Significance: The Powers Bridge is notable as a rare example of a non-standard truss in Oregon. The OSHD designed each truss to 126’9” in length to accommodate and reuse the existing piers. The bridge is in a very remote location, which is likely why such measures were taken. This bridge is one of the first to use the timber handrail type of railing.</td>
<td></td>
</tr>
<tr>
<td>Character Defining Features: Trusses, Railings</td>
<td></td>
</tr>
<tr>
<td>Alterations: Replacement of the deck with precast concrete deck panels and of the railing with steel angle rail occurred on the approach spans in 1956.</td>
<td></td>
</tr>
</tbody>
</table>
Roosevelt Coast Highway

In Coos County

Location: Along the Pacific coast. On US 101 in Coos County. Bridges are listed from north to south.

Date Range: 1935-36

Designer: Oregon State Highway Department under C.B. McCullough

Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. The section of highway in Coos County was one of the first to be constructed, and as a result, has required many improvements to the route, leaving only two noteworthy bridges from the early phases of building.

Character Defining Features: Location relative to Coast Highway, Decorative features and railings, Structure types, Nameplates

Alterations: Alterations are bridge specific and will be included in the individual entries.

Coos Bay, Hwy 9

Bridge Number: 01823

Year Built: 1936

Common Name: McCullough Memorial Bridge

Lat/Long: 43 25 44, -124 13 19

Description: 1,709-foot steel cantilever through truss main spans with 13 open spandrel concrete deck arches

Additional Significance: As the largest of the five major coast bridges built with federal assistance in 1936 to replace ferry service on US 101, the bridge is known as McCullough’s finest achievement and dedicated posthumously to him in 1947. The bridge and its approaches feature a number of architectural and decorative features, including the curved sway bracing, which give the impression of the Gothic cathedral.

Alterations: The bridge has received a number of rehab projects, including cathodic protection on the concrete approach spans and replacement of the concrete handrails with a stealth rail that replicates the original rail.

CBRL, Hwy 9

Bridge Number: 01950

Year Built: 1935

Lat/Long: 43 24 57, -124 13 26

Description: Three reinforced concrete continuous spans on a 45-degree skew with decorative sidewalk brackets and fluted columns. The bridge deck is especially wide for the era.
Roosevelt Coast Highway
In Coos County
Common Name: Chandler Bridge
Location: 4 mi. east of Coos Bay on the Coos River Hwy
Lat/Long: 43 21 58, -124 09 11
Description: One 70-ft riveted steel plate girder lift span on a 29-degree skew with one 200-ft riveted steel Parker through truss secondary span on each side and reinforced concrete deck girder approach spans
Designer: Oregon State Highway Department under G.S. Paxson
Significance: The Chandler Bridge is significant as the only movable bridge in the state to have a skewed lift span. This skew, which is a result of a skewed navigation channel, also results in a distortion of the secondary truss spans around the lift span. The bridge is bereft of decorative features, increasingly common at the time it was built.
Character Defining Features: Structure type, Layout, Railings
Alternations: The only alterations to this bridge are related to the lift machinery, including housing it in 1965 and replacing the control machinery in 1981.
Tenmile Creek & CBRL, Hwy 9 & Frontage Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>00949A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1954</td>
</tr>
</tbody>
</table>

Common Name: Lakeside Bridge
Location: On US 101 near Lakeside
Lat/Long: 43 34 35, -124 11 32
Description: Eight 60-ft post-tensioned concrete deck girder spans
Designer: Bureau of Public Roads under H.R. Angwin
Significance: This unassuming bridge is the first known in Oregon built using any sort of prestressing technology. In this case, the girders were precast and lifted into place and then tensioned using cables run through conduits and anchored at the ends. It is unknown whether this is the first such bridge to be designed by the BPR. Due to the railroad crossing, one of the pier caps is a plate girder to enable greater clearance for the rail line that runs underneath. Also notable about this bridge is the railing, which is the first known use of a variant of three stripe rail, later used on a large number of interstate bridges in the 1950s and 1960s.
Character Defining Features: Structure type, Railings
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C12</td>
<td>Crooked River, Pedestrian Path</td>
<td>59</td>
</tr>
<tr>
<td>13C12</td>
<td>Canal, Pedestrian Path</td>
<td>59</td>
</tr>
<tr>
<td>16636</td>
<td>Crooked River, Pedestrian (Conant Basin Rd)</td>
<td>60</td>
</tr>
</tbody>
</table>
Crooked River, Pedestrian Path

Bridge Number: N/A (previously 13C12)

Year Built: 1915

Lat/Long: 44° 17' 34", -120° 50' 52"

Description: One 125-ft riveted steel double-intersection Warren through truss

Canal, Pedestrian Path

Bridge Number: N/A (previously 13C12)

Year Built: 1915

Lat/Long: 44° 17' 25", -120° 50' 46"

Description: One 80-ft riveted steel polygonal Warren pony truss

Former Name: Elliott Lane Bridge

Builder: Coast Bridge Company

Significance: The Elliott Lane Bridge (now 2 pieces) was a two span steel truss bridge near Prineville. Though the records are not clear, based on the piers, assembly of the two trusses likely occurred on the Elliott Lane site around 1915 out of two separate Coast Bridge Company contracts. As a result, the bridge is significant both for being an example of a rare bridge type (the double-intersection Warren) and for representing the common reuse of trusses.

Character Defining Features: Truss designs, Riveted joints

Alterations: In 2003, both trusses of the original bridge were relocated to separate sites at parks in Prineville and converted for pedestrian use.
Crooked River, Pedestrian (Conant Basin Rd)

Bridge Number: 16636

Year Built: 1916 (1936, 1984, 2002)

Common Name: Newport Avenue Bridge

Location: Just south of OR 380 near Post

Lat/Long: 44 10 21, -120 32 20

Description: One 110-ft riveted steel polygonal Warren pony truss

Designer: Coast Bridge Company

Significance: This bridge, which is the longest extant riveted pony truss span in the state, was built for Crook County in 1916 for use on Newport Avenue in Bend, part of Crook County at the time. Then, in 1936, after Bend became part of Deschutes County, Crook County purchased the truss for use near its current site. In order to improve the road alignment, the county shifted the bridge slightly to improve the road alignment in 1984 and then moved it to new abutments in 2002 and converted it to pedestrian usage.

Character Defining Features: Structure type

Alterations: This bridge has been relocated a number of times, most recently in 2002, and in the course of these moves has had a number of rivets replaced with bolts and has lost its original railing.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15C31</td>
<td>Euchre Creek, County Rd 510</td>
<td>62</td>
</tr>
<tr>
<td>01172</td>
<td>Rogue River, Hwy 9</td>
<td>62</td>
</tr>
<tr>
<td>15C010</td>
<td>Hunter Creek, Hunter Creek Rd</td>
<td>62</td>
</tr>
<tr>
<td>00955</td>
<td>Myers Creek, Hwy 255</td>
<td>63</td>
</tr>
<tr>
<td>15C29</td>
<td>Foster Creek, County Rd 375</td>
<td>64</td>
</tr>
<tr>
<td>07514</td>
<td>Rinehart Creek, Hwy 9</td>
<td>65</td>
</tr>
<tr>
<td>08459</td>
<td>Thomas Creek, Hwy 9</td>
<td>66</td>
</tr>
</tbody>
</table>
Roosevelt Coast Highway
In Curry County

Location: Along the Pacific coast. On US 101 or bypassed from it in Curry County. Bridges are listed from north to south.
Date Range: 1927-1930
Designer: Oregon State Highway Department under C.B. McCullough
Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. The section of the highway in Curry County has changed many times during the years, and very few original bridges have survived.
Character Defining Features: Location relative to Coast Highway, Decorative railings and features, Nameplate, Structure types
Alterations: Alterations are bridge specific and will be included in the individual entries.

Euchre Creek, County Rd 510
Bridge Number: 15C31
Year Built: 1927
Lat/Long: 42 33 38, -124 22 58
Description: Three 30-ft reinforced concrete deck girder spans on an old alignment

Rogue River, Hwy 9
Bridge Number: 01172
Common Names: Gold Beach Bridge, Isaac Lee Patterson Bridge
Year Built: 1930
Lat/Long: 42 25 39, -124 24 48
Description: Seven 230-ft reinforced concrete open-spandrel rib-type deck arch spans with eighteen reinforced concrete deck girder approach spans. The bridge includes a number of decorative features, including Art-Deco entrance pylons, dentils, fluted spandrel columns and arched fascia curtain walls.
Additional Significance: This bridge was the first in the US to utilize the Freyssinet method of arch decentering, an early method of prestressing.
Alterations: The bridge received a major rehab project in 2001, including concrete repair, cathodic protection and the replacement of the railing with stealth rail.

Hunter Creek, Hunter Creek Rd
Bridge Number: 15C010
Year Built: 1928
Lat/Long: 42 23 24, -124 24 56
Description: Five reinforced concrete deck girder spans on an old alignment
Roosevelt Coast Highway
In Curry County

Myers Creek, Hwy 255

Bridge Number: 00955
Year Built: 1924
Lat/Long: 42° 18' 17", -124° 24' 16"
Description: Three reinforced concrete flared deck girder spans with a high skew
Foster Creek, County Rd 375

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>15C29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1947</td>
</tr>
<tr>
<td>Location</td>
<td>3 mi. north of the Old Agness Store</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>42 38 06, -124 03 18</td>
</tr>
<tr>
<td>Description</td>
<td>Two span continuous reinforced concrete rigid frame structure</td>
</tr>
<tr>
<td>Designer</td>
<td>United States Forest Service</td>
</tr>
<tr>
<td>Significance</td>
<td>This bridge is one of the few examples remaining of the standard bridges being built in the National Forests during the late 1940s in Oregon. It is a low arched rigid frame structure, with one main, full arched, span and one cantilevered span. The choice of a rigid frame for this location most likely reflects the need to reduce the amount of excavation required for abutments. Due to its location in the National Forest, the bridge has no railing besides a small concrete curb, enabling it to blend into its forest setting.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type, Location</td>
</tr>
</tbody>
</table>
Rinehart Creek, Hwy 9

Bridge Number 07514

Year Built 1954

Location: 10.4 mi. south of Port Orford on US 101

Lat/Long: 42 38 11, -124 24 08

Description: One 220-ft riveted steel Warren deck truss with extra diagonals and reinforced concrete deck girder approaches

Designer: Oregon State Highway Department under G.S. Paxson

Significance: This bridge is one of the longest single span deck trusses in the state. It is also notable for being a late usage of steel truss construction and for being the first known usage of one-pipe parapet rail, a common railing type in interstate highway construction.

Character Defining Features: Structure type, Location, Railing
Thomas Creek, Hwy 9

Bridge Number: 08459

Year Built: 1961

Location: 15.3 mi. north of California State Line on US 101

Lat/Long: 42°09'57", -124°21'33"

Description: Three span continuous steel Warren deck truss on steel towers

Designer: Oregon State Highway Department under I.D. Merchant

Fabricator: Bethlehem Steel Corporation

Significance: This bridge is significant for being the highest in Oregon, at 345-ft above the ground. It also has the longest span in a Warren deck truss, at 371-ft. The bridge utilizes a mixture of bolts and rivets in the connections. As is common for bridges from this era, there are no notable decorative features. When built, the bridge was part of a major relocation of the route between Gold Beach and Brookings, drastically reducing the amount of time required to make that journey.

Character Defining Features: Structure type, Location
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17C02</td>
<td>Tumalo Irrigation Canal, Sisemore Rd</td>
<td>68</td>
</tr>
<tr>
<td>17M001</td>
<td>North Unit Canal, Coyote Rd</td>
<td>69</td>
</tr>
</tbody>
</table>
Tumalo Irrigation Canal, Sisemore Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>17C02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1914</td>
</tr>
</tbody>
</table>

Common Name: Bull Creek Dam Bridge
Location: At the Upper Tumalo Reservoir on Bull Creek Dam
Lat/Long: 44 08 22, -121 24 55
Designer: Olaf Laurgaard
Description: Five 25-ft reinforced concrete, filled-spandrel, deck arch spans on wall-like concrete piers above the Bull Creek Dam
Significance: Between 1902 and 1915, the state invested in their first reclamation project, the Tumalo Irrigation Project, which included both the Tumalo and Bull Creek Dams. Once completed, the dams were unfortunately unable to hold much water due to rock fissures on the reservoir floor. The Bull Creek Dam at the bridge site still contains a much smaller reservoir than originally planned. To commemorate the significance of the state-sponsored project, the bridge is marked with four panels on the spandrel walls, together reading “State of Oregon, 1914.”
Character Defining Features: Concrete arch form, Location over dam, State of Oregon panels
Alterations: The only notable alteration is the replacement of the railing with a replica of the original pipe railing.
North Unit Canal, Coyote Rd

Bridge Number: 17M001

Year Built: 1960

Owner: Oregon Military Department

Location: 1 mi. south of OR 126

Lat/Long: 44 14 60, -121 07 50

Description: One 60-ft Bailey truss bridge

Significance: Bailey bridges are a type of pre-fabricated, lightweight truss bridge developed during WWII for use by the British and American military. They were designed to be easily portable and are commonly used as temporary spans today. This span is the earliest known permanent usage of a Bailey bridge in Oregon.

Character Defining Features: Structure type, Railing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19C525</td>
<td>North Myrtle Creek, County Park Rd</td>
<td>72</td>
</tr>
<tr>
<td>19C512</td>
<td>Pass Creek, Curtin Rd</td>
<td>73</td>
</tr>
<tr>
<td>19C519</td>
<td>Calapooya Creek & SPRR, Shady Hwy</td>
<td>73</td>
</tr>
<tr>
<td>00839</td>
<td>North Umpqua River, Hwy 234</td>
<td>73</td>
</tr>
<tr>
<td>26T04</td>
<td>Deer Creek, Jackson St</td>
<td>75</td>
</tr>
<tr>
<td>01923</td>
<td>South Umpqua River, Hwy 35 EB</td>
<td>75</td>
</tr>
<tr>
<td>19C513</td>
<td>South Umpqua River, County Rd 386</td>
<td>75</td>
</tr>
<tr>
<td>19C514</td>
<td>Myrtle Creek, County Rd 386</td>
<td>75</td>
</tr>
<tr>
<td>00548A</td>
<td>Canyon Creek, South Main St</td>
<td>75</td>
</tr>
<tr>
<td>19B01</td>
<td>Pass Creek, Pedestrian</td>
<td>77</td>
</tr>
<tr>
<td>01318</td>
<td>Umpqua River, Hwy 45</td>
<td>78</td>
</tr>
<tr>
<td>01602</td>
<td>Tahkenitch Creek, Hwy 9</td>
<td>79</td>
</tr>
<tr>
<td>01822</td>
<td>Umpqua River & McIntosh Slough, Hwy 9</td>
<td>79</td>
</tr>
<tr>
<td>19C487</td>
<td>Calapooya Creek, County Rd 10A</td>
<td>81</td>
</tr>
<tr>
<td>19C480</td>
<td>Elk Creek, County Rd 1</td>
<td>82</td>
</tr>
<tr>
<td>19C220</td>
<td>South Myrtle Creek, County Rd 124</td>
<td>83</td>
</tr>
<tr>
<td>19C018</td>
<td>Little River, Pedestrian</td>
<td>84</td>
</tr>
<tr>
<td>26T05</td>
<td>South Umpqua River, Stewart Park Rd</td>
<td>85</td>
</tr>
<tr>
<td>19C215</td>
<td>Cow Creek, County Rd 39</td>
<td>86</td>
</tr>
<tr>
<td>19C418</td>
<td>Calapooya Creek, Hinkle Creek Rd #281</td>
<td>86</td>
</tr>
</tbody>
</table>
North Myrtle Creek, County Park Rd

Bridge Number: 19C525

Year Built: ca. 1912 (1965)

Location: 6 mi. northeast of Myrtle Creek at North Myrtle Park

Lat/Long: 43 04 46, -123 11 40

Description: One 110-ft pin-connected steel Pratt through truss

Significance: Based on the shape of the portal frames and the lightweight design, this bridge is likely a Columbia Bridge Company design from Jackson County, where it was one of a set of bridges ordered in 1912. It is unknown where specifically the bridge began or why it was relocated to this park in Douglas County. This bridge is significant as one of the few pin-connected trusses remaining in the state.

Character Defining Features: Structure type

Alterations: This bridge was relocated to this site in 1965.
Pacific Highway Bridges

In Douglas County

Location: Along the old Pacific Highway corridor in Douglas County. The bridges are presented from north to south.

Designers: C.B. McCullough

Date Range: 1919-1930

Significance: When Oregon dedicated the Pacific Highway in 1923, it became the first border to border state highway west of the Mississippi. Since that time it has remained an important transportation corridor, with constant realignments and renumbering. As the alignment evolved, new bridges were built and old ones abandoned, typically into county ownership. As a result, the bridges associated with the Pacific Highway come from a wide date range, spanning nearly the entire career of Conde B. McCullough. The bridges may vary widely in type, scale and age but all retain an important link to the Pacific Highway in all of its iterations. Many of the bridges also represented the cutting edge in technology of the day, and so have additional significance beyond the highway. The collection remaining in Douglas County represents a variety of structure types, including concrete girders, concrete deck arches and a steel deck truss.

Character Defining Features: Location on old Pacific Highway, Decorative features and railings, Structure types

Alterations: As the needs of traffic have developed, those bridges in this set that have remained in higher traffic areas have received a large amount of rehabilitation, including widening and railing repair.

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Year Built</th>
<th>Location Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass Creek, Curtin Rd</td>
<td>1919</td>
<td>Two 31-ft reinforced concrete beam spans on a high skew</td>
</tr>
<tr>
<td>Calapooya Creek & SPRR, Shady Hwy</td>
<td>1925</td>
<td>One 100-ft riveted steel deck truss main span with nine reinforced concrete deck girder secondary spans on a large curve</td>
</tr>
<tr>
<td>North Umpqua River, Hwy 234</td>
<td>1923</td>
<td>Seven 112-ft reinforced concrete open-spandrel rib-type deck arches with a gothic motif in the railings, spandrel walls and panels. In 2008, ODOT widened the deck and replaced the railing with a stealth rail.</td>
</tr>
</tbody>
</table>
Pacific Highway Bridges
In Douglas County

Br 19C512

Br 19C519

Br 00839

Br 00839
Pacific Highway Bridges
In Douglas County

Deer Creek, Jackson St

Bridge Number: 26T04
Year Built: 1923
Lat/Long: 43 12 45, -123 20 29
Description: Two 50-ft reinforced concrete girder spans with an arched façade and bush-hammered panels. The state collaborated with the city of Roseburg in its construction.

South Umpqua River, Hwy 35 EB

Bridge Number: 01923
Year Built: 1934
Common Name: Winston Bridge
Lat/Long: 43 08 01, -123 23 56
Description: Three 180-ft steel tied through arch spans with altered portals and a parallel bridge. Due to the parallel bridge, only one sidewalk is accessible. Joplin and Eldon were the contractors.

South Umpqua River, County Rd 386

Bridge Number: 19C513
Year Built: 1922
Common Name: Myrtle Creek Bridge
Lat/Long: 43 01 31, -123 17 45
Description: Three 130-ft reinforced concrete open-spandrel rib-type deck arch spans widened with an additional arch on the south side. The widening also included new railings and replication of decorative features.

Myrtle Creek, County Rd 386

Bridge Number: 19C514
Year Built: 1930
Lat/Long: 43 01 26, -123 17 18
Description: Three span reinforced concrete deck girder bridge with arched girders on a curve.

Canyon Creek, South Main St

Bridge Number: 00548A
Year Built: 1921
Lat/Long: 42 55 30, -123 16 37
Description: Two 45-ft reinforced concrete beam spans with flared haunches at the central pier. A timber sidewalk has been added on the east side.
Pacific Highway Bridges
In Douglas County

Br 01923

Br 19C513

Br 19C514
Pass Creek, Pedestrian

Bridge Number: 19801

Year Built: 1925 (1987)

Common Name: Pass Creek Covered Bridge

Location: South end of West A Ave behind the Civic Center, between S 1st St and OR 99 in the city of Drain

Lat/Long: 43 39 39, -123 18 60

Description: Covered 61-ft timber through Howe truss

Significance: The current bridge, which was relocated in 1987, was originally located adjacent to a nearby railroad bridge, where it replaced an 1870s era covered bridge which served as part of the Overland Stage Route, an important link between the Willamette Valley and Jacksonville. It is possible that some of the timbers are reused pieces of that original bridge. The structure has a number of distinctive features, including: a cedar roof; board siding without battens; chorded semi-circular portal arches; connections with the diagonals dapped into the chords with stepped interfaces; and upper bracing that uses offset timber laterals with timber cross members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Connections, Bracing

Alterations: In 1987, a project relocated the trusses and rebuilt the bridge. At some point the bottom chord was sandwiched between two helper timbers, the end diagonal connections were sandwiched between steel plates, the vehicular rail was removed, the floor planks modified for pedestrian use, and the bottom portion of the siding covered with plywood.
Common Name: Scottsburg Bridge

Location: At the town of Scottsburg on OR 38

Lat/Long: 43 39 15, -123 49 30

Description: One 632-ft three-span continuous humpback Warren through truss with reinforced concrete deck girder approach spans

Designer: Oregon State Highway Department under C.B. McCullough

Builder: Clackamas Construction Company

Significance: In the late 1920s, major technological developments enabled engineers to calculate the loading for continuous frame structures. For bridges, this enabled longer, more graceful spans, both in concrete and in steel. Both the Scottsburg Bridge and the Springfield Bridge (#01223), built in Lane County in the same year, demonstrate how this new technology could be applied to steel truss design. Due to its remote location, this bridge has less decorative treatments than the Springfield Bridge, but it does include some details, such as bush hammered panels on the approach spans and a steel lacing rail on the truss.

Character Defining Features: Structure type, Decorative features and railings

Alterations: The portals were raised in 1976 and a safety railing for inspection and maintenance added to the top chords of the truss.
Roosevelt Coast Highway
In Douglas County

Location: Along the Pacific coast. On US 101 in Douglas County. Bridges are listed from north to south.

Date Range: 1929-1936

Designer: Oregon State Highway Department under C.B. McCullough

Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. The section of the highway in Douglas County has remained mostly along the same route, but only two original bridges have survived.

Character Defining Features: Location relative to Coast Highway, Decorative railings and features, Nameplate, Structure types

Alterations: Alterations are bridge specific and will be included in the individual entries.

Tahkenitch Creek, Hwy 9

Bridge Number: 01602

Year Built: 1929

Lat/Long: 43 48 25, -124 09 09

Description: Five 45-ft reinforced concrete deck girder spans, designed by the Bureau of Public Roads

Umpqua River & McIntosh Slough, Hwy 9

Bridge Number: 01822

Year Built: 1936

Common Name: Reedsport Bridge

Lat/Long: 43 42 30, -124 06 06

Description: One 430-ft riveted steel Parker through truss swing span main span flanked by two 154-ft reinforced concrete tied arch secondary spans on either side with reinforced concrete deck girder approach spans. The bridge has a number of decorative features, including entrance pylons, detailing on the portals of the tied arches, Gothic arched openings in the piers, and a decorative flower panel railing.

Builder: Teufel and Carlson, Seattle
Roosevelt Coast Highway
In Douglas County

Br 01602

Br 01822
Calapooya Creek, County Rd 10A

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>19C487</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1933 (1969)</td>
</tr>
</tbody>
</table>

Common Name: Rochester Covered Bridge
Location: 3 mi. northwest of Sutherlin
Lat/Long: 43 24 07, -123 21 47
Description: Covered 80-ft timber through Howe truss
Builder: Floyd C. Frear
Significance: This bridge is unique among Oregon’s covered bridges for its windows with curved tops. It has long maintained an important position with the community, with locals demanding its protection since the late 1950s. In addition to the windows, the bridge’s features include: board & batten siding that is battered at the portals; five outlookers; hand-hewn chords; connections with the diagonals dapped into the chords with stepped joints; and upper bracing that uses offset timber laterals with timber cross members.
Character Defining Features: Covered bridge, Truss type, Siding, Windows, Outlookers, Chords, Connections, Bracing
Alterations: In 1969, county crews remodeled the bridge to the current semi-elliptical portals and replaced the approaches and abutments. It is unknown when the corrugated metal roof was installed, though a 1940 photograph shows a shingle roof.
Elk Creek, County Rd 1

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>19C480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1935</td>
</tr>
<tr>
<td>Location</td>
<td>8.5 mi. south of Tiller on OR 227</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>42 51 00, -122 51 25</td>
</tr>
<tr>
<td>Description</td>
<td>Three span continuous steel I-Beam girder bridge</td>
</tr>
<tr>
<td>Designer</td>
<td>Bureau of Public Roads</td>
</tr>
</tbody>
</table>

Significance: Constructed to provide access to a National Forest, this bridge clearly indicates the transition in the technology used to build bridges. From the mid-1930s up until the 1960s, the methods used to connect steel sections shifted from rivets to bolts and welds, and all three of these connection types are present in this bridge, with this being the first recorded use of field welding on a bridge in Oregon. It is similar to bridge #02453 (Trail Creek, Hwy 230) in Jackson County, also designed for the Forest Service. Both of these bridges are quite simple otherwise, with the only decorative feature being the date inscription on the endpost of the standard BPR designed railing.

Character Defining Features: Structure type, Welding, Railing and date
South Myrtle Creek, County Rd 124

Bridge Number: 19C220
Year Built: 1939

Common Name: Neal Lane Covered Bridge
Location: Southeast of Myrtle Creek at the intersection of SE Neal Ln and Days Creek Cutoff Rd.
Lat/Long: 43° 01' 01", -123° 16' 28"

Description: Covered 42-ft timber through king post (king rod) truss
Builder: Floyd C. Frear

Significance: Neal Lane is both one of the shortest covered bridges and the only king post covered bridge in Oregon. Aside from its length and design, distinctive features include: board & batten siding; a single narrow framed window on each side; arched portal openings; and bottom chords made from hand-hewn single logs.

Character Defining Features: Covered bridge, Truss type, Siding, Windows, Portals, Bottom chords

Alterations: The corrugated metal roof was added at some point—historic imagery indicates an original cedar roof.
Bridge Number

19C018

Year Built

1943

Common Name: Cavitt Creek Covered Bridge

Location: Southeast of Glide at Little River Rd. and Cavitt Creek Rd.

Lat/Long: 43 14 39, -123 01 19

Description: Covered 70-ft timber through Howe truss

Builder: Floyd C. Frear

Significance: This bridge is noteworthy as the only publicly owned covered bridge in Oregon with both top and bottom chords of round, debarked logs. The truss is particularly well lit, with three framed window openings on each side and ribbon openings below the eaves. Additionally, it has the following distinctive features: board & batten siding; tapered opening returns; connections with the diagonals framing into timber angle blocks dapped into the chords; and upper bracing with timber laterals and cross members. It is unknown whether the metal roof is original.

Character Defining Features: Covered bridge, Truss type, Siding, Openings, Chords, Connections, Bracing

Alterations: The county has rehabbed the bridge by installing steel strengthening brackets at each truss support, adding a steel support bent on the south end, and altering the portal openings from a semi-elliptical shape to a Tudor shape for higher loads.
South Umpqua River, Stewart Park Rd

Bridge Number
26T05

Year Built
1946

Location: 0.4 mi. west of I-5 in Roseburg

Lat/Long: 43°13'03", -123°21'59"

Description: Riveted steel cantilevered Warren through truss

Significance: The Stewart Park Bridge is one of the strangest bridges in Oregon due to its cantilever truss design with a suspended Warren truss at the center. This bridge type is commonly used for major spans, like those crossing the Columbia or Willamette, but in this case it is used to span only 221 feet. Despite being in an urban setting, the bridge has no notable decorative features, perhaps due to the post-WWII construction date.

Character Defining Features: Structure type
Cow Creek, County Rd 39

Bridge Number: 19C215
Year Built: 1954
Location: 3.5 mi. west of Riddle
Lat/Long: 42 55 28, -123 25 19

Calapooya Creek, Hinkle Creek Rd #281

Bridge Number: 19C418
Year Built: 1953
Location: 13.4 mi. east of Sutherlin
Lat/Long: 43 26 18, -123 05 34

Description: The main span of each bridge is a welded steel plate through girder with large openings cut through it, similar to a castellated girder.
Builder: West Coast Steel Works
Significance: These two bridges represent the only known bridges of their type in Oregon. They are similar to standard through girder bridges, a type commonly used on railroads, but they have openings that increase the efficiency of the beams under the lower loading of a highway. It is not known why Douglas County chose to build bridges of this type.
Character Defining Features: Structure type, Nameplate
Alterations: Both bridges have had their decks replaced with steel grid decks. The county has also relocated bridge 19C215 and added additional welded plates to stiffen the web.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01792</td>
<td>Rock Creek, Hwy 300</td>
<td>88</td>
</tr>
</tbody>
</table>
Rock Creek, Hwy 300

Bridge Number: 01792

Year Built: 1934

Location: On OR 206, 10.3 mi. east of Condon

Lat/Long: 45 15 55, -120 01 34

Description: One 42-ft steel beam span with timber stringer approaches

Designer: Oregon State Highway Department under C. B. McCullough

Significance: The significant feature of this bridge is its railing, which is the standard timber handrail. This railing has become very rare in the state, and this is the only known example in Eastern Oregon. The use of a steel beam span is also rare in the mid-1930s, as most bridges designed under McCullough were reinforced concrete or trusses. It is not known why the OSHD chose this type for this location.

Character Defining Features: Structure type, Railing

Alterations: Some of the timber caps have been replaced with steel beams. A replacement was planned for 1965 but never completed.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23C451</td>
<td>John Day River, Moon Creek Rd #451</td>
<td>90</td>
</tr>
</tbody>
</table>
John Day River, Moon Creek Rd #45

Bridge Number: 23C541
Year Built: 1924
Location: 0.3 mi. northeast of the junction with US 26
Lat/Long: 44° 25' 02", -119° 13' 27"
Description: One 100-ft riveted steel polygonal Warren pony truss
Significance: This bridge is significant as a good example of the standard state design for pony trusses in the 1920s. Many similar bridges were built all across the state, but very few remain, especially in their original location. Grant County has an especially large collection of these trusses, and this one has been selected as a representative example due to its relatively intact condition.
Character Defining Features: Structure type
Alterations: The bridge log indicates work done on the bridge in 1968, but it is unknown what this entailed.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>Ruckel Creek Bridge</td>
<td>92</td>
</tr>
<tr>
<td>27C35</td>
<td>Gorton Creek Bridge</td>
<td>92</td>
</tr>
<tr>
<td>00273</td>
<td>Ruthton Point Viaduct</td>
<td>92</td>
</tr>
<tr>
<td>00504</td>
<td>Rock Slide Viaduct</td>
<td>92</td>
</tr>
<tr>
<td>06645</td>
<td>Columbia River, Hwy 2 Conn</td>
<td>94</td>
</tr>
<tr>
<td>02592</td>
<td>Columbia River and Hwy 100, Toll Br</td>
<td>95</td>
</tr>
<tr>
<td>01600</td>
<td>Hood River, Hwy 281</td>
<td>96</td>
</tr>
<tr>
<td>01939</td>
<td>East Fork Hood River, Hwy 281</td>
<td>97</td>
</tr>
</tbody>
</table>
Columbia River Highway Bridges

In Hood River County

Location: On the historic Columbia River Highway along the Columbia River Gorge in Hood River county. Bridges are listed in order from west to east.

Designers: L.W. Metzger (Through 1918), C.B. McCullough (After 1919)

Date Range: 1917-1920

Significance: The construction of the Columbia River Highway marked the first concerted highway building effort between the newly created Oregon State Highway Commission and the counties through which it passed. Championed by a number of notable Oregonian’s, including Simon Benson, John B. Yeon, Samuel Hill, Julius Meier and Rufus Holman, it formed an important link between the east and west of Oregon and served as a scenic route, showcasing the beautiful Columbia River Gorge. In order to match the scenic qualities of the gorge and meet the most modern highway standards of the day, the many bridges required along the route were designed to be both graceful and strong. To accomplish this at each differing site, the engineers designed a wide variety of bridge types, including many concrete deck arches, often meant to be viewed from pedestrian lookouts. Together, the 25 bridges and viaducts stretching across three counties comprise one of the finest collections of reinforced concrete structures in America.

Character Defining Features: Location on historic Columbia River Highway, Decorative features and railings, Structure types

Alterations: The section of the Columbia River Highway in Hood River County has been broken up into pieces by I-84 and some of the original bridges have been lost. A number of segments have been converted to pedestrian routes.

Ruckel Creek Bridge

Bridge Number: Unknown
Owner: Forest Service
Lat/Long: 45 38 42, -121 55 07
Description: One 10-ft reinforced concrete slab span with stone masonry-faced abutments and rail

Gorton Creek Bridge

Bridge Number: 27C35
Lat/Long: 45 41 25, -121 46 22
Description: Three span reinforced concrete slab structure

Ruthton Point Viaduct

Bridge Number: 00273
Lat/Long: 45 42 24, -121 34 55
Description: Three span, 50-ft long, reinforced concrete deck girder half-viaduct just off I-84 on private property

Rock Slide Viaduct

Bridge Number: 00504
Lat/Long: 45 41 47, -121 27 56
Description: One 34-ft reinforced concrete beam span half-viaduct near Mosier Twin Tunnels on a pedestrian trail
Columbia River Highway Bridges
In Hood River County

Ruckel Creek Bridge

Br 27C35
Common Name: White Salmon Bridge
Owner: Port of Hood River
Location: Between Hood River, OR and White Salmon, WA
Lat/Long: 45 43 06, -121 29 42
Description: One 262-ft riveted steel Pennsylvania-Petit through truss vertical lift main span with sixteen 206-ft Pratt deck truss secondary spans
Significance: This bridge is the second oldest vehicular crossing of the Columbia River between Oregon and Washington. It was built by the Oregon-Washington Bridge Company as a private toll bridge then acquired by the Port of Hood River in 1950, though it remains a toll bridge. In 1939, the bridge was heavily altered in preparation for the Bonneville Dam, including raising the existing deck truss spans, adding the lift span, and adding additional deck truss spans to lengthen the bridge. The bridge has no notable decorative features.

Character Defining Features: Structure type, Location

Alterations: The bridge has received a number of alterations, including replacing the original timber deck system with steel and relocating the toll booths in 1951, replacing the railing with steel in 1966, a seismic retrofit in 1996 and upgrading the lift span equipment in 2000.
Columbia River and Hwy 100, Toll Br

Bridge Number: 02592

Year Built: 1926 (1940)

Common Name: Bridge of the Gods

Owner: Port of Cascade Locks

Location: Across the Oregon-Washington State Line near Cascade Locks, OR

Lat/Long: 45 39 45, -121 54 04

Description: One 1131-ft riveted and pin-connected steel cantilever through truss with a 706-ft main span clearance and a mixture of steel approaches including plate girders and Warren deck trusses

Builder: Wauna Toll Bridge Company of Walla Walla

Significance: Taking its name from the Native American legend of a large natural rock bridge over the Columbia River at this site, the modern Bridge of the Gods is notable for its impressive location in the Columbia River Gorge. It is also significant as an example of the relatively rare cantilever design type and for its association with the Bonneville Dam 4 miles downstream. When they completed the dam in 1938, the rising waters forced the toll bridge company to raise and lengthen the Bridge of the Gods to its current length. The Port of Cascade Locks purchased the bridge in 1961 and has continued its operation as a toll bridge since that time.

Character Defining Features: Structure type, Location

Alterations: It is unknown what major changes the bridge has received since the raising in 1940.
Hood River, Hwy 281

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1931</td>
</tr>
<tr>
<td>Common Name:</td>
<td>Tucker Bridge</td>
</tr>
<tr>
<td>Location:</td>
<td>4 mi. south of Hood River on OR 281</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>45 39 18, -121 32 56</td>
</tr>
<tr>
<td>Description:</td>
<td>One 100-ft reinforced concrete open-spandrel rib-type deck arch with two 22-ft reinforced concrete deck girder approaches on each side</td>
</tr>
<tr>
<td>Designer:</td>
<td>Oregon State Highway Department under C.B. McCullough</td>
</tr>
<tr>
<td>Builder:</td>
<td>Chas O. Young</td>
</tr>
<tr>
<td>Significance:</td>
<td>This bridge is a good example of a standard deck arch designed under McCullough during the early 1930s. The state designed it for the county, using little ornamentation in order to save money. The decorative elements are limited to Art Deco inspired brackets for the railing, vertical incised details on the spandrel columns and a standard Type D railing.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Decorative features, Railing, Nameplate</td>
</tr>
</tbody>
</table>
East Fork Hood River, Hwy 281

Bridge Number: 01939

Year Built: 1934

Location: 1.5 mi. south of Dee on OR 281

Lat/Long: 45 34 17, -121 37 10

Description: One 100-ft riveted steel Warren deck truss with reinforced concrete deck girder approach spans on one side

Designer: Oregon State Highway Department under C.B. McCullough

Significance: This bridge is a good example of a rare standard deck truss designed under McCullough during the 1930s. It has no notable decorative features aside from the Gothic rail design that was commonly used in scenic locations.

Character Defining Features: Structure type, Railing
See next page for Jackson's bridge list
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0M274</td>
<td>Ashland Creek, Hwy 63 SB</td>
<td>100</td>
</tr>
<tr>
<td>29C237</td>
<td>Big Butte Creek, Cobleigh Rd #949</td>
<td>101</td>
</tr>
<tr>
<td>0M342</td>
<td>Galls Creek, Lampman Rd</td>
<td>102</td>
</tr>
<tr>
<td>01349</td>
<td>Foots Creek, Hwy 60</td>
<td>103</td>
</tr>
<tr>
<td>00332A</td>
<td>Rogue River, Hwy 271 (Rock Point)</td>
<td>103</td>
</tr>
<tr>
<td>01937</td>
<td>Sardine Creek, Hwy 271</td>
<td>105</td>
</tr>
<tr>
<td>00576</td>
<td>Rogue River, Hwy 271 (Gold Hill)</td>
<td>105</td>
</tr>
<tr>
<td>03780</td>
<td>Hwy 273 and COR, Hwy 273</td>
<td>105</td>
</tr>
<tr>
<td>03781</td>
<td>COR, Hwy 273</td>
<td>105</td>
</tr>
<tr>
<td>29C471</td>
<td>Applegate River, McKee Bridge Rd</td>
<td>107</td>
</tr>
<tr>
<td>29C262</td>
<td>Lost Creek, Pedestrian</td>
<td>108</td>
</tr>
<tr>
<td>29C202</td>
<td>Antelope Creek, Pedestrian</td>
<td>109</td>
</tr>
<tr>
<td>00831</td>
<td>Trail Creek, Old Hwy 62</td>
<td>110</td>
</tr>
<tr>
<td>Unknown</td>
<td>Cascade Gorge Creek Bridge</td>
<td>110</td>
</tr>
<tr>
<td>29C279</td>
<td>Copco Penstocks, County Rd 797</td>
<td>110</td>
</tr>
<tr>
<td>29C281</td>
<td>North Fork Rogue River, County Rd 797</td>
<td>111</td>
</tr>
<tr>
<td>01992</td>
<td>Applegate River, Hwy 272 at MP 18.04</td>
<td>112</td>
</tr>
</tbody>
</table>
Ashland Creek, Hwy 63 SB

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>0M274</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1911</td>
</tr>
<tr>
<td>Location</td>
<td>On Main St. at Bluebird Park in Ashland</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>42 11 53, -122 42 57</td>
</tr>
<tr>
<td>Description</td>
<td>Closed spandrel concrete deck arch</td>
</tr>
<tr>
<td>Builder</td>
<td>Raudebaugh Bros Contrs</td>
</tr>
<tr>
<td>Significance</td>
<td>The Ashland Creek Bridge is the earliest extant concrete deck arch bridge in the state. The bridge formerly had a timber façade belonging to the city of Ashland installed on the downstream face, but this has been removed revealing an inscription by the bridge builder.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type, Location, Inscription</td>
</tr>
<tr>
<td>Alterations</td>
<td>The timber façade, which was an addition to the bridge, was removed in 2013 and a new sidewalk was cantilevered from the downstream face of the bridge.</td>
</tr>
</tbody>
</table>
Big Butte Creek, Cobleigh Rd #949

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>29C237</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1913 (1954)</td>
</tr>
<tr>
<td>Location</td>
<td>2 mi. north of Butte Falls Hwy</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>42 34 52, -122 36 08</td>
</tr>
<tr>
<td>Description</td>
<td>One 200-ft riveted steel Parker through truss</td>
</tr>
<tr>
<td>Builders</td>
<td>E.G. Perham (Original Location), West Coast Steel Works (Relocation)</td>
</tr>
<tr>
<td>Significance</td>
<td>In 1913, Jackson County hired E.G. Perham to build a replacement for the Bybee Bridge over the Rogue River on Table Rock Rd. In 1950, the county replaced that bridge and reused the truss over Big Butte Creek. During the relocation, the contractor, West Coast Steel Works, narrowed the truss from an 18-ft deck to a 14-ft deck, though no evidence indicates why this was necessary. The bridge is significant as an example of bridge reuse and as an early riveted through truss.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type</td>
</tr>
<tr>
<td>Alterations</td>
<td>The steel grid deck and 2-tube railing were added in 1997.</td>
</tr>
<tr>
<td>Bridge Number</td>
<td>0M342</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Year Built</td>
<td>ca. 1913 (1938)</td>
</tr>
<tr>
<td>Location:</td>
<td>East of I-5 Exit 43 on old frontage road</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>42 25 59, -123 04 17</td>
</tr>
<tr>
<td>Description:</td>
<td>One 90-ft riveted steel polygonal Warren pony truss</td>
</tr>
<tr>
<td>Significance:</td>
<td>The Galls Creek Bridge is an example of an early riveted pony truss. It was originally constructed by E.G. Perham over Sardine Creek, and soon afterward taken over by the state on the Pacific Highway. In 1938, when the state widened the Pacific Highway, the truss was reused by the county at its current location to replace a bridge washed out in a flood.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Connection to Pacific Highway</td>
</tr>
<tr>
<td>Alterations:</td>
<td>The county acquired and relocated the truss to this location in 1938. It has some welded repairs along the lower chord and W-Beam guardrail was added at some point.</td>
</tr>
</tbody>
</table>
Pacific Highway Bridges

In Jackson County

Location: On the remaining segments of the old Pacific Highway in Jackson County. Bridges will be discussed from north to south.

Designers: Oregon State Highway Department under C.H. Purcell (To 1919) and C.B. McCullough (After 1919)

Date Range: 1914-1938

Significance: When Oregon dedicated the Pacific Highway in 1923, it became the first highway to cross an entire state west of the Mississippi. Since that time it has remained an important transportation corridor, with constant realignments and renumbering. As the alignment evolved, new bridges were built and old ones abandoned, often into county ownership. As a result of this process, the bridges that can be associated with the highway come from a wide date range, especially in Jackson County. The collection of bridges that remain vary quite significantly in type, scale and age but all retain an important link to the Pacific Highway in all of its iterations. Many of the bridges also represented the cutting edge in technology of the day, and so have additional significance beyond the highway.

Character Defining Features: Location on old Pacific Highway, Decorative features and railings, Nameplates, Structure type

Alterations: Due to the waves of improvements to the Pacific Highway, the route has, in many places, been broken into small, discontinuous pieces. Many of the bridges have also required significant rehabilitation, including replaced railings and widening.

Foots Creek, Hwy 60

Bridge Number: 01349
Year Built: 1928
Lat/Long: 42 24 18, -123 08 24
Description: Three span continuous concrete girder bridge with arched girders and bush-hammered panels

Additional Significance: This bridge appears to be one of the first to be designed using continuity between the spans to reduce the depth of the superstructure.

Rogue River, Hwy 271

Bridge Number: 00332A
Year Built: 1919
Common Name: Rock Point Bridge
Lat/Long: 42 25 56, -123 05 26
Description: One 113-ft reinforced concrete open-spandrel rib-type deck arch main span with reinforced concrete deck girder approach spans

Additional Significance: This deck arch was the first major span designed by McCullough after joining the Oregon State Highway Department. It features many of the decorative details that distinguish a McCullough design of the time, including a balustrade railing, dentils, bush-hammering and arch facades on the approaches. The north approach was replaced in the 1950s and the whole bridge received rehabilitation in 2011, including adding stealth rail and a slight widening.
Pacific Highway Bridges
In Jackson County

Br 01349

Br 00332A

Br 01937
Pacific Highway Bridges
In Jackson County

Sardine Creek, Hwy 271

Bridge Number: 01937
Year Built: 1938
Lat/Long: 42 26 11, -123 04 42
Description: Three span continuous concrete girder bridge with arched girders

Rogue River, Hwy 271

Bridge Number: 00576
Year Built: 1927
Common Name: Gold Hill Bridge
Lat/Long: 42 25 51, -123 02 36
Description: One 143-ft reinforced concrete open-spandrel barrel-type deck arch with concrete girder approach spans
Additional Significance: This bridge is the only example of a barrel-type open-spandrel arch in the state. McCullough chose it to provide high lateral strength in case of high water. The timber cantilever sidewalk, added to the south side of the bridge in 1995, reduces the integrity of feeling for the bridge.

Hwy 273 and COR, Hwy 273

Bridge Number: 03780
Year Built: 1914
Common Name: Steinman Overcrossing
Lat/Long: 42 05 31, -122 35 23
Description: Three span reinforced concrete deck girder with small curved haunch
Additional Significance: This bridge, along with the Dollarhide Overcrossing (Br. 03781), is the earliest known bridge along the proposed route of the Pacific Highway. It is also the only known switchback on Oregon's highway system where the same roadway passes both over and under the structure. The delicate arched railing is only found on three other structures, all on the historic Columbia River Highway.

COR, Hwy 273

Bridge Number: 03781
Year Built: 1914
Common Name: Dollarhide Overcrossing
Lat/Long: 42 05 09, -122 35 35
Description: Three span reinforced concrete deck girder with small curved haunch
Additional Significance: This bridge, along with the Steinman Overcrossing, is the earliest known bridge to be built on the proposed route of the Pacific Highway. It removed a difficult grade crossing with the railway, leading to a curved and skewed design.
Pacific Highway Bridges
In Jackson County

Br 00576

Br 03780

Br 03781
Applegate River, McKee Bridge Rd

Bridge Number: 29C471

Year Built: 1917

Common Name: McKee Covered Bridge

Location: 8.5 mi. south of Ruch on Upper Applegate Rd. to McKee Br. Rd.

Lat/Long: 42°07'33", -123°04'21"

Description: Covered 122-ft timber through Howe truss

Builder: Jason Hartman

Significance: Open to traffic from 1917 to 1956, the bridge originally served the local mining and logging community. The 1917 construction date places the bridge as one of the two oldest covered bridges remaining in the state (the other is Gallon House). Aside from the age, this bridge is also noteworthy as both the only through Howe truss in the state with buttress kickers for top chord stability and the only through Howe truss in Jackson County. Other remaining features specific to this bridge include: a cedar roof; board siding without battens; truncated rectangular portal openings; ribbon openings below the eaves; five unframed window openings with individual awnings on the west side of the bridge; connections with the diagonal compression members framing into cast iron angle blocks; three-member chords with dapped timber blocking for continuity; upper bracing with timber laterals and no cross members; and vertical tension rods with ogee washers for bearing surfaces.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Openings, Connections, Buttresses

Alterations: The original roof framing was replaced with a modern truss roof system in the early 1990s.
Lost Creek, Pedestrian

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>29C262</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1919</td>
</tr>
</tbody>
</table>

Common Name: Lost Creek Covered Bridge
Location: 15 mi. southeast of the city of Eagle Point
Lat/Long: 42 22 48, -122 34 46
Description: Covered 39-foot queen post pony truss with counters
Builder: John Miller
Significance: The Lost Creek Covered Bridge is the shortest covered span in the state. It is also one of only two publicly owned queen post trusses left in Oregon. The truss utilizes steel rods for queen posts, with ogee washers for bearing surfaces, timber buttresses on the exterior of the bridge, and timber diagonal cross-braces in the center panel to add rigidity to the truss. Other distinctive features include: a cedar roof; board siding without battens; ribbon openings below the eaves; hand-hewn timber top and bottom chords; and diagonal deck planking.
Character Defining Features: Covered bridge, Truss type, Roof, Siding, Openings, Buttresses, Chords
Alterations: In 1986, portal boards were added to the truss that may replicate the original design, though the bridge had been without them for many years. The structure has been closed to traffic since 1979.
Antelope Creek, Pedestrian Bridge Number 29C202

Year Built 1922 (1987)

Common Name: Antelope Creek Covered Bridge

Location: The city of Eagle Point at the intersection of Main St. and Royal Ave.

Lat/Long: 42 28 19, -122 48 01

Description: Covered 58-ft Howe pony truss

Builder: Lyle and Wes Hartman

Significance: This bridge, which was originally constructed over Antelope Creek 10 miles south of its current site, was relocated in 1987 and installed with new approaches and piers. The truss is one of only two known Howe pony trusses in the state, and is the only one in public ownership. Other notable features include: the cedar roof; board siding without battens; semi-circular portal openings; ribbon openings below the eaves; floorbeams extending beyond the truss with buttress braces to the top chord for lateral stability; and steel tension rods with ogee washers for bearing.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Openings, Buttresses, Connections

Alterations: The bridge was relocated to this site in 1987, at which time additional openings were cut into the siding, resulting in the de-listing of the structure. In 2012, the siding was replaced, without the openings, allowing the bridge to be relisted on the National Register.
Crater Lake Highway Bridges

In Jackson County

Location: On the old route of OR 62 from Medford to Crater Lake National Park. Bridges will be presented from south to north.

Designers: Bureau of Public Roads

Date Range: 1923-1930

Significance: The route between Medford and Crater Lake is one of the original highways planned by the newly created State Highway Commission in 1913. The route corresponded roughly to an old military route. Due to funding delays, the eventual building of the highway in the 1920s required the help of the Bureau of Public Roads, who set out to build roads through all of the National Forests. As a part of this development a number of new bridges had to be built to cross the mountainous terrain. In the 1960s, ODOT redeveloped the route, giving many of the bridges to the county for local access or abandoning them altogether. These bypassed bridges are the only elements of the old highway remaining, and they serve as an important marker to early tourist travel to Oregon’s only National Park.

Character Defining Features: Location on old Crater Lake Highway, Decorative features and railings, Structure types

Alterations: Since many of these bridges are on isolated segments of highway, the alterations have varied widely and will be discussed as necessary for each individual bridge.

Trail Creek, Old Hwy 62

Bridge Number: 00831

Year Built: 1923

Lat/Long: 42 38 55, -122 48 37

Description: One 100-ft riveted steel polygonal Warren pony truss

Alterations: This bridge has been restricted to pedestrian traffic only.

Cascade Gorge Creek Bridge

Bridge Number: Unknown

Year Built: 1925

Lat/Long: 42 42 33, -122 35 09

Description: Three 30-ft reinforced concrete beam spans

Alterations: This bridge is abandoned and inaccessible.

Copco Penstocks, County Rd 797

Bridge Number: 29C279

Year Built: 1930

Lat/Long: 42 43 51, -122 30 55

Description: Three 21-ft reinforced concrete beam spans on a high skew over penstocks for the nearby power plant
Crater Lake Highway Bridges
In Jackson County

North Fork Rogue River, County Rd 797
Bridge Number: 29C281
Year Built: 1930
Common Name: Prospect Arch
Lat/Long: 42 44 45, -122 29 44
Description: One 71-ft open spandrel rib-type deck arch
Alterations: In 2012, a major rehabilitation of this bridge replaced the railing with a stealth rail, widened the deck, and recreated the original decorative “Pineconian” light posts.
Applegate River, Hwy 272 at MP 18.04

Bridge Number
01992

Year Built
1933

Common Name: Pioneer Bridge

Location: On OR 238, just south of Applegate

Lat/Long: 42 15 19, -123 10 10

Description: One 180-ft riveted steel Parker through truss with timber approaches

Significance: The Applegate River bridge is a good example of the state standard through trusses that were built at the entrances to small towns around the state. Though generally rather utilitarian, these design retained some visual appeal. This bridge is notable within the collection of these trusses for its use of the relatively rare timber two bar railing on the approaches.

Character Defining Features: Railings, Location, Structure type

Alterations: The only alterations to this bridge have been maintenance actions to repair impact damage to the truss.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00813</td>
<td>Hay Creek, Old Hwy 97</td>
<td>114</td>
</tr>
<tr>
<td>00600</td>
<td>Crooked River Bridge</td>
<td>114</td>
</tr>
<tr>
<td>16C01</td>
<td>Deschutes River, Jordan Rd</td>
<td>116</td>
</tr>
<tr>
<td>16C06</td>
<td>Crooked River, Jordan Rd</td>
<td>116</td>
</tr>
</tbody>
</table>
Dalles-California Highway Bridges
In Jefferson County

Location: On the old Dalles-California Highway route in Jefferson County. Bridges are listed north to south.
Designer: C.B. McCullough
Date Range: 1923-1926
Builder: Kuckenberg & Wittman
Significance: From the very first map of planned state highways created in 1914, the Oregon State Highway Commission planned to construct the Dalles-California Highway. As named, it connects from the Columbia River Highway in The Dalles, through Redmond, Bend and Klamath Falls, to the California border. The exact route, though, took some time to work out, and construction was not begun until the 1920s. Due to necessary upgrades to the highway, the only original bridges that remain unaltered have been bypassed from the modern route.

Character Defining Features: Location on old Dalles-California Highway, Decorative features and railings, Structure type

Hay Creek, Old Hwy 97
Bridge Number: 00813
Year Built: 1923
Lat/Long: 44 45 22, -120 58 09
Description: Two 38-ft reinforced concrete beam spans with a 20 degree skew

Crooked River Bridge
Bridge Number: 00600
Year Built: 1926
Common Name: High Bridge
Lat/Long: 44 23 33, -121 11 37
Description: One 330-ft two-hinged steel braced-spandrel deck arch span over a high gorge. In addition to its unique design and impressive location, the bridge also has decorative features, including entry pylons and nameplates. In 2000, a new arch bridge was built to bypass the old bridge and a park was built to enable pedestrian access. Downstream from the two highway bridges is a 1911 steel arch railroad bridge designed by Ralph Modjeski.
Dalles-California Highway Bridges
In Jefferson County

Br 00813

Br 00600
Deschutes River, Jordan Rd

Bridge Number: 16C01
Year Built: 1963
Location: At Lake Billy Chinook
Lat/Long: 44°31’32”, -121°17’59”

Crooked River, Jordan Rd

Bridge Number: 16C06
Year Built: 1963
Location: At Lake Billy Chinook, near the Cove Palisades Resort
Lat/Long: 44°31’44”, -121°15’52”

Description: Each bridge is a wire suspension bridge.
Designer: Bechtel Corporation
Builder: Portland General Electric Company
Significance: These two small suspension bridges were built by Portland General Electric as a part of their Round Butte Hydroelectric Development. Along with the St. John’s Bridge in Portland, these are the only extant suspension bridges in Oregon. The deck of each suspension bridge is a welded Warren truss.
Character Defining Features: Structure type, Location
JOSEPHINE

<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>02379</td>
<td>Williams Creek, Hwy 272</td>
<td>118</td>
</tr>
<tr>
<td>141005</td>
<td>Grave Creek, Sunny Valley Loop</td>
<td>119</td>
</tr>
<tr>
<td>114005</td>
<td>Wolf Creek, Edgewood Rd</td>
<td>120</td>
</tr>
<tr>
<td>01418</td>
<td>Rogue River, Hwy 25 SB</td>
<td>120</td>
</tr>
<tr>
<td>509005</td>
<td>Deer Creek, Hogue Drive</td>
<td>122</td>
</tr>
</tbody>
</table>
Williams Creek, Hwy 272

Bridge Number: 02379
Year Built: 1917
Location: Bypassed from OR 238 near Provolt
Lat/Long: 42 17 36, -123 14 22
Description: One 80-ft closed-spandrel rib-type concrete deck arch with a low rise
Builder: Albert Anderson
Significance: The most significant feature of this bridge is the "Humpback" shape, which is unique among arch bridges in the state. Albert Anderson was a local contractor for Josephine County, who transferred the bridge to the state in 1933. The timber railing is likely a later addition.
Character Defining Features: Structure type
Alterations: The bridge was bypassed from the highway in 1996, and is now pedestrian.
Grave Creek, Sunny Valley Loop

Bridge Number: 141005

Year Built: 1920

Common Name: Grave Creek Covered Bridge

Location: 0.5 mi. northeast of I-5 exit 71 on Sunny Valley Loop

Lat/Long: 42 38 10, -123 22 39

Description: Covered 105-ft timber through Howe truss

Builder: J. Elmer Nelson

Significance: Though now bypassed, the Grave Creek Covered Bridge was originally designed by the state, based on a standard, for use on the Pacific Highway. Important features include: a cedar roof, board & batten siding battered at the portals; five outlookers; six framed windows on each side; triple-member chords with dapped cast iron cruciform packing blocks between the members; bottom chord tension connections using steel square u-bolt connectors with steel posts; diagonal compression members framing into cast iron angle blocks; lateral bracing with timber cross members and steel tension rods framing into cast iron blocks; upset threaded tension rods with riveted double bearing plates; and floorbeams supported on top of the bottom chord.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Outlookers, Windows, Chords, Connections, Lateral bracing

Alterations: At some point the portals were reshaped from a semi-elliptical opening to a rectangular opening. Alterations from a 2001 rehab project include: a new flattened arch portal shape; adding timber lateral beams below the top chord; replacing floorbeams, stringers and deck with glue-laminated timbers; replacing the approaches; and replacing the rail with steel-backed timber. In addition, the truss was post-tensioned in 2013.
Pacific Highway Bridges
In Josephine County

Location: On the remaining segments of the old Pacific Highway in Josephine County. Bridges are listed from north to south.

Designers: Oregon State Highway Department under C.B. McCullough

Date Range: 1921-1931

Significance: When Oregon dedicated the Pacific Highway in 1923, it became the first highway to cross an entire state west of the Mississippi. Since that time it has remained an important transportation corridor, with constant realignments and renumbering. As the alignment evolved, new bridges were built and old ones abandoned, often into county ownership. In Josephine County, this process has resulted in four separated sections of highway divided by more modern development. Only one bridge remains from this original route, but a major replacement crossing added in 1931 still exists in Grants Pass. Until the addition of I-5 in the 1950s, the Pacific Highway represented the only major route through the rugged terrain of Josephine County.

Character Defining Features: Location on old Pacific Highway, Railings, Nameplates, Decorative features, Structure type

Alterations: Due to the waves of improvements to the Pacific Highway, the route has, in many places, been broken into small, discontinuous pieces with little original context.

Wolf Creek, Edgewood Rd

Bridge Number: 114005
Lat/Long: 42 41 40, -123 23 43
Description: One 34-ft reinforced concrete beam span with small angled haunches on a bypassed section of the Pacific Highway near the historic Wolf Creek Tavern

Rogue River, Hwy 25 SB

Bridge Number: 01418
Common Name: Caveman Bridge
Builder: J.K. Holt, Salem
Lat/Long: 42 25 49, -123 19 54
Description: Three 150-ft reinforced concrete partial through arch spans with two 50-ft reinforced concrete deck girder approach spans

Additional Significance: This bridge is one of only three partial through arches remaining in the state. It is highly ornamented, including pylon lampposts, decorative brackets, segmentation of the arch ribs and a floral panel bridge rail. The bridge has become one of the symbols of Grants Pass and is named Caveman after the mascot of the city.

Pacific Highway Bridges
In Josephine County

Br 114005

Br 01418
Deer Creek, Hogue Drive

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>509005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1921</td>
</tr>
</tbody>
</table>

Location: At intersection of Hogue Dr with Lakeshore Dr just south of Selma

Lat/Long: 42 16 18, -123 37 23

Description: Five span reinforced concrete beam bridge

Builder: Lee's Dock Co.

Significance: The Deer Creek Bridge is one of the last two remaining unaltered bridges from the original construction of the Redwood Highway, US 199 (the other is the Mendenhall Creek Bridge, #530205). Both bridges are examples of the relatively simple beam spans built by the OSHD during the first few years under McCullough.

Character Defining Features: Location, Nameplate, Structure type, Railing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>62002</td>
<td>A Canal, 11th St</td>
<td>124</td>
</tr>
<tr>
<td>09693</td>
<td>Hwy 4, Riverside St</td>
<td>125</td>
</tr>
</tbody>
</table>
A Canal, 11th St

Bridge Number: 62002
Year Built: 1938

Location: In Klamath Falls
Lat/Long: 42 13 49, -121 46 57

Description: Four 50-ft arched reinforced concrete deck girder spans on a 63-degree skew

Designer: E.A. Thomas
Builder: Clifford A. Dunn

Significance: This bridge is a rare example of city bridge building. The city of Klamath Falls had it designed as a part of a group of bridges to replace badly worn timber spans. The timber industry argued for the construction of new wooden spans, but the city successfully campaigned for a more durable concrete structure in this location. This bridge is particularly noteworthy due to the difficulty of building a bridge on such a high skew and for the unusual decorative railing.

Character Defining Features: Railing, Location, Structure type
Hwy 4, Riverside St

Bridge Number: 09693

Year Built: 1968

Location: In Klamath Falls, over US 97

Lat/Long: 42 12 27, -121 47 17

Description: Three span arched welded plate girder bridge

Significance: This bridge is notable for its modern aesthetic design, which won an American Institute of Steel Construction "Award of Merit" in 1969.

Character Defining Features: Structure type
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39C409</td>
<td>Coyote Creek, Battle Creek Rd</td>
<td>132</td>
</tr>
<tr>
<td>39C446</td>
<td>Wildcat Creek, Austa Rd</td>
<td>134</td>
</tr>
<tr>
<td>01182</td>
<td>Cummins Creek, Hwy 9</td>
<td>139</td>
</tr>
<tr>
<td>01181</td>
<td>Tenmile Creek, Hwy 9</td>
<td>139</td>
</tr>
<tr>
<td>01180</td>
<td>Big Creek, Hwy 9 at MP 175.02</td>
<td>141</td>
</tr>
<tr>
<td>01114</td>
<td>China Creek, Hwy 9 at MP 175.68</td>
<td>141</td>
</tr>
<tr>
<td>01113</td>
<td>Cape Creek, Hwy 9</td>
<td>141</td>
</tr>
<tr>
<td>01821E</td>
<td>Siuslaw River, Hwy 9</td>
<td>143</td>
</tr>
<tr>
<td>00982</td>
<td>Siltcoos River, Hwy 9</td>
<td>143</td>
</tr>
<tr>
<td>01755</td>
<td>Cheshire Bridges</td>
<td>145</td>
</tr>
<tr>
<td>39C551</td>
<td>Deadwood Creek, Deadwood Loop Rd</td>
<td>147</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>39C501</td>
<td>Amazon Creek, Fern Ridge Trail</td>
<td>129</td>
</tr>
<tr>
<td>39C241</td>
<td>Mosby Creek, Layng Rd</td>
<td>130</td>
</tr>
<tr>
<td>39C242</td>
<td>Row River, Pedestrian</td>
<td>133</td>
</tr>
<tr>
<td>01223</td>
<td>Willamette River, Hwy 15 WB</td>
<td>137</td>
</tr>
<tr>
<td>39C243</td>
<td>Mosby Creek, Pedestrian</td>
<td>138</td>
</tr>
<tr>
<td>C39004</td>
<td>Fall Creek, Pengra Rd</td>
<td>151</td>
</tr>
<tr>
<td>18139</td>
<td>Row River, Shoreview Dr</td>
<td>155</td>
</tr>
<tr>
<td>05286</td>
<td>Coast Fork Willamette River, Hwy 18</td>
<td>157</td>
</tr>
<tr>
<td>06648</td>
<td>Willamette River, Coburg Rd</td>
<td>158</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>39C643</td>
<td>Lost Creek, Parvin Rd</td>
<td>131</td>
</tr>
<tr>
<td>39C183</td>
<td>Blue River, Blue River Dr</td>
<td>135</td>
</tr>
<tr>
<td>18744</td>
<td>McKenzie River, Leaburg Dam Rd</td>
<td>136</td>
</tr>
<tr>
<td>01626</td>
<td>Willamette River, Hwy 18 Frontage Rd</td>
<td>144</td>
</tr>
<tr>
<td>014721</td>
<td>Fall Creek, Jasper Lowell Rd</td>
<td>148</td>
</tr>
<tr>
<td>39C174</td>
<td>Mill Creek, Wendling Rd</td>
<td>149</td>
</tr>
<tr>
<td>39C118</td>
<td>McKenzie River, Goodpasture Rd</td>
<td>150</td>
</tr>
<tr>
<td>39C176</td>
<td>Mohawk River, Paschelke Rd</td>
<td>152</td>
</tr>
<tr>
<td>39C650</td>
<td>North Middle Fork Willamette River, County Rd 6129</td>
<td>153</td>
</tr>
<tr>
<td>06649</td>
<td>Middle Fork Willamette River, Pedestrian</td>
<td>154</td>
</tr>
<tr>
<td>39B164</td>
<td>West Fork Horse Creek, Delta Rd</td>
<td>156</td>
</tr>
<tr>
<td>39C123</td>
<td>McKenzie River, King Rd West</td>
<td>159</td>
</tr>
</tbody>
</table>
Amazon Creek, Fern Ridge Trail

Bridge Number 39C501 (at previous location)

Year Built 1920 (relocated 1956, 1986)

Former Names: Richardson Bridge, Prineville Bridge

Location: Current location is in Eugene, on a pedestrian trail

Lat/Long: 44 02 47, -123 08 35

Description: One 124-ft riveted steel double intersection Warren through truss span

Designer: Coast Bridge Company, Portland

Fabricator: Northwest Steel Co., Portland

Significance: This bridge is perhaps the most relocated truss in the state, having been originally constructed in Crook County near Prineville and then relocated to a site over the Siuslaw River in Lane County in 1956 to replace the Richardson Bridge. In 1986, the county gave the bridge to the city of Eugene for use at its current site on a pedestrian/bike trail. Its main significance is related to its double intersection Warren design. Only three of these trusses remain, none in their original location. All trusses of this type in Oregon were designed by the Coast Bridge Company.

Character Defining Features: Structure type

Alterations: The main alterations to the bridge date to the first relocation when a number of additional reinforcing members were added to the truss using bolts.
Mosby Creek, Layng Rd

Bridge Number 39C241
Year Built 1920

Common Name: Mosby Creek Covered Bridge
Location: 1.2 mi. south of Currin Covered Bridge on Layng Rd
Lat/Long: 43 46 41, -123 00 18
Description: Covered 90-ft timber through modified Howe truss
Builder: Walter and Miller Sorenson

Significance: Mosby Creek is the oldest remaining covered bridge in Lane County, costing the county $4,125 at its construction. The truss is not a true Howe design due to the lack of counter bracing in the center panel. Its distinctive features include: board & batten siding battered at the portals; semi-circular portal openings with decorative capital trim; decorative “S” curve brackets flanking the portals; ribbon openings below the eaves; triple member top and bottom chords; bottom chord tension connections using interlocking timber fish plates; diagonal connections that dap into the chords; lateral bracing with timber cross members and steel tension rods that frame into cast iron angle blocks; and floor beams supported on top of the bottom chord straddling the diagonals.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Openings, Chords, Connections, Bracing

Alterations: The County has made a number of alterations to the bridge, including replacing the approaches, modifying the end sway bracing, and a recent re-roofing.
Lost Creek, Parvin Rd

Bridge Number 39C643
Year Built 1921

Common Name: Parvin Covered Bridge
Location: 1.5 mi. south of Dexter on Parvin Rd.
Lat/Long: 43°53’58”, -122°49’23”

Description: Covered 75-ft timber through Howe truss
Builder: George W. Breeding

Significance: Parvin Covered Bridge is the second oldest covered bridge within Lane County’s large collection. It is the second bridge at this site, and is named for an early pioneer family. Distinctive features include: a cedar roof; board & batten siding battered at the portals; truncated rectangular portal openings; ribbon openings under the eaves; triple member truss chords with timber packing blocks dapped into the bottom chord; bottom chord tension connections using steel round u-bolt connectors with upset threads and steel I-beam posts; end diagonals dapped into chords; interior diagonals framing into timber angle blocks at the top chords; lateral bracing with timber cross members and steel tension rods framing into cast iron angle blocks.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Openings, Chords, Connections, Upper bracing

Alterations: A rehab project in 1986 replaced the floor beams with glue-laminated beams, replaced the approaches, and added steel tube guardrails.
Coyote Creek, Battle Creek Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>39C409</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1922</td>
</tr>
<tr>
<td>Common Name:</td>
<td>Coyote Creek Covered Bridge</td>
</tr>
<tr>
<td>Location:</td>
<td>2 mi. south of Crow off Territorial Hwy</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>43 58 11, -123 19 08</td>
</tr>
<tr>
<td>Description:</td>
<td>Covered 60-ft timber through modified Howe truss</td>
</tr>
<tr>
<td>Significance:</td>
<td>The Coyote Creek Covered Bridge, which is also known as both the Battle Creek Covered Bridge and the Swing Log Covered Bridge, was constructed on the route of the original Territorial Road (1851). The road eventually became a state secondary highway and a more direct route, bypassing the bridge, was constructed, allowing the bridge to remain serving local traffic. The truss is not a true Howe design due to the lack of counter braces in the center panel. Features of the bridge include: a cedar roof; board & batten siding battered at the portals; ribbon openings below the eaves; triple member truss chords with dapped timber packing blocks; bottom chord tension connections with interlocking timber fish plates; end diagonals dapped into chords and interior diagonals connected to timber angle blocks at the top chords; tension rods straddling the chords; lateral bracing using timber cross members and steel tension rods that frame into cast iron angle blocks.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Covered bridge, Truss type, Roof, Siding, Openings, Chords, Connections, Upper bracing</td>
</tr>
<tr>
<td>Alterations:</td>
<td>A major rehab project in 2007 included alterations to the portal shape, which was originally rectangular with curved corners, adding steel tube guardrails, and replacing some timbers.</td>
</tr>
</tbody>
</table>
Row River, Pedestrian

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>39C242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1925</td>
</tr>
</tbody>
</table>

Common Name: Currin Covered Bridge
Location: 3 mi. east of I-5 on Row River Rd (exit 174)
Lat/Long: 43 47 35, -122 59 48
Description: Covered 105-ft through Howe truss
Builder: Lane County forces (supervised by Miller and Walter Sorenson)
Significance: The current 1925 structure replaced an 1883 covered bridge built by Nels Roney. It is the only bridge to feature its red and white paint scheme, but it is unknown if it is original. Significant structural details include: board & batten siding; semi-elliptical portal openings with decorative capital trim; decorative “S” curve brackets flanking the portals; ribbon openings below the eaves; single member hand hewn chords; connections with the diagonals dapped into the chords; and upper bracing with timber laterals and cross members.
Character Defining Features: Covered bridge, Truss type, Siding, Portals, Decorative features, Openings, Chords, Connections, Bracing
Alterations: In 1987, the county “mothballed” the bridge by removing the north approach and blocking off the end of the bridge. Additional alterations include a cementitious synthetic roof, the top chord spliced with a pressure treated timber using four bolted steel angles, and portal framing spliced with bolted steel straps.
Bridge Number: 39C446
Year Built: 1925

Common Name: Wildcat Creek Covered Bridge

Location: 12.5 mi. east of Mapleton off OR 126 on Austa Rd
Lat/Long: 44 00 11, -123 39 18

Description: Covered 75-ft timber through Howe truss

Builder: Lane County forces

Significance: The Wildcat Covered Bridge is a standard example of a Lane County truss, with the only variation being the long narrow window on the east side of the bridge to increase visibility on a curving road. The standard features include: board & batten siding; semi-elliptical portal openings; decorative capital trim and “S” curved brackets flanking the portals; ribbon openings below the eaves; single member hand-hewn chords; diagonals dapped into chords; and upper bracing using timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Openings, Decorative details, Chords, Connections, Upper bracing

Alterations: A series of rehabs, including one in 2000, replaced the floor beams with glue-laminated beams, spliced some chords using bolted steel straps, installed steel brackets at bottom chord tension connections, installed tension rods across joints and replaced some timbers with pressure treated wood.
Blue River, Blue River Dr

Bridge Number: 39C183

Year Built: 1928

Location: In Blue River, on old OR 126

Lat/Long: 44°09'19", -122°20'24"

Description: Three span concrete continuous arched deck girder on a slight curve

Designer: Oregon State Highway Department under C.B. McCullough

Builder: E.R. Metzger

Significance: In 1928, the OSHD began experimenting with new techniques to increase the efficiency of multi-span concrete structures. As a part of this, they acquired a mechanical model that they used to design two continuous concrete bridges, where the spans work together to resist the load. The other bridge designed in this manner is the Parrot Creek Bridge on OR 99E, which has since been widened. Despite the savings in material from the new designs, the construction of both bridges required funding from the BPR. The Blue River Bridge includes a number of decorative elements, including arched girders with bush-hammered inset panels, ornate railings and sidewalk brackets. In addition, to harmonize with its scenic setting, the OSHD coated the bridge in white plaster. The bridge has been bypassed from the state highway since 1972 when a modern structure was constructed downstream.

Character Defining Features: Structure type, Decorative features and railings
McKenzie River, Leaburg Dam Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>18744</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1929</td>
</tr>
</tbody>
</table>

Owner: Eugene Water and Electric Board (EWEB)

Location: 3 mi. east of Leaburg

Lat/Long: 44 08 16, -122 36 43

Description: Three 102-ft riveted steel polygonal Warren pony truss spans over the Leaburg Dam Spillway

Builder: A. Guthrie & Co.

Significance: When the EWEB built the Leaburg Dam in 1929, they included this bridge to provide access across the top of the dam. The dam and associated power plant were designed by Ellis F. Lawrence in the Art Deco style. It is not known what link the bridge had to this design and construction. Aside from the link to the dam, this bridge is one of only two known bridges in Oregon that utilize multiple pony truss spans. While the houses on the dam feature Art Deco detailing, the bridge itself is quite plain.

Character Defining Features: Structure type, Association with Leaburg Dam, Location

Alterations: It is unknown what changes have been made to this EWEB-owned bridge.
Willamette River, Hwy 15 WB

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01223</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1929</td>
</tr>
</tbody>
</table>

Common Name: Springfield Bridge
Location: On the west edge of Springfield, on OR 126
Lat/Long: 44 02 43, -123 01 40
Description: One 550-ft three-span continuous humpback Warren through truss with reinforced concrete deck girder approach spans
Designer: Oregon State Highway Department under C. B. McCullough
Significance: In the late 1920s, major technological developments enabled engineers to calculate the loading for continuous frame structures. For bridges, this enabled longer, more graceful spans, both in concrete and steel. Both this bridge and the Scottsburg Bridge (#01318) demonstrate how this new technology could be applied to steel truss design. Due to its prominent location in Springfield, this bridge includes a number of decorative treatments, including ornate entrance pylons with a bell tower design and a decorative railing.
Character Defining Features: Structure type, Decorative features and railing
Alterations: The portals were raised in 1976 and ODOT added a safety railing for inspection and maintenance to the top chords of the truss. The railings were restored and the deck given an overlay in 2002.
Bridge Number 39C243

Year Built 1930

Common Name: Stewart Covered Bridge

Location: 4 mi. southeast of I-5 exit 174 on Mosby Creek Rd

Lat/Long: 43 45 58, -122 59 39

Description: Covered 60-ft timber through Howe truss

Builder: Lane County forces

Significance: The Stewart Covered Bridge is a standard example of a Lane County covered bridge. It has taken a lot of damage over the years, including flood damage in 1964 and snow damage a few years later, resulting in it eventually being bypassed and “mothballed”. Features of the bridge include: board & batten siding; semi-elliptical portal openings with decorative capital trim and “S” curved brackets flanking the portals; ribbon openings below the eaves; single member chords with the bottom chords being hand-hewn; diagonals dapped into chords; upper braces using timber laterals and cross members; and bottom panel points with cast iron straps with tension rod guides.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Decorative features, Openings, Chords, Connections, Upper bracing

Alterations: The bridge was bypassed in 1987 and the south approach removed with the bridge blocked off at the portal. Other alterations have included: a cementitious roof; the addition of sister timbers to several members; replacing end diagonals with pressure-treated incised timbers; end splicing the bottom chord with a new pressure-treated incised member; and repairing some of the house framing with pressure-treated incised members.
Roosevelt Coast Highway
In Lane County

Location: Along the Pacific coast. On US 101 in Lane County. Bridges are listed from north to south.

Date Range: 1930-1936

Designer: Oregon State Highway Department under C.B. McCullough

Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. The section of the highway in Lane County, though quite short, has remained mostly along its original route with many of its original bridges.

Character Defining Features: Location relative to Coast Highway, Decorative railings, Structure types

Alterations: Alterations are bridge specific and will be included in the individual entries.

Cummins Creek, Hwy 9

Bridge Number: 01182

Year Built: 1931

Lat/Long: 44 15 56, -124 06 25

Description: One 115-ft reinforced concrete open-spandrel, rid-type deck arch with a low rise and reinforced concrete approach spans built by Tom Lillebo

Alterations: ODOT rehabbed the bridge in 2001, including concrete repair, addition of a traffic guardrail and cathodic protection.

Tenmile Creek, Hwy 9

Bridge Number: 01181

Year Built: 1931

Lat/Long: 44 13 27, -124 06 34

Description: One 120-ft reinforced concrete tied arch span with reinforced concrete deck girder approach spans built by the Union Bridge Company

Alterations: ODOT extensively rehabbed the bridge in 2006, when the entry portals were altered, the railings were replaced with a replica and the entire structure cathodically protected.
Roosevelt Coast Highway
In Lane County
Big Creek, Hwy 9 at MP 175.02

Bridge Number: 01180
Year Built: 1931
Lat/Long: 44 10 28, -124 06 55
Description: One 120-ft reinforced concrete tied arch span with reinforced concrete deck girder approach spans built by the Union Bridge Company. It is almost identical to the Tenmile Creek Bridge.
Alterations: ODOT extensively rehabbed this bridge in 1996, when the entry portals were altered, a traffic rail was added and the entire structure was cathodically protected.

China Creek, Hwy 9 at MP 175.68

Bridge Number: 01114
Year Built: 1931
Lat/Long: 44 09 55, -124 06 48
Description: Two 33-ft reinforced concrete deck girder spans with arched girders
Alterations: This bridge has an unusual railing involving the end posts from Type D railing, but with large cast-in-place cruciform inserts rather than the traditional precast balusters. This is likely a later alteration, but it cannot be verified.

Cape Creek, Hwy 9

Bridge Number: 01113
Year Built: 1931
Lat/Long: 44 08 01, -124 07 19
Description: One 220-ft reinforced concrete open-spandrel rib-type deck arch with reinforced concrete girder approaches with an overall appearance of a Roman aqueduct. The Clackamas Construction Company and John K. Holt constructed the bridge for OSHD.
Alterations: In 1992, ODOT completed a cathodic protection project on the bridge, one of the first times this preservation technology was used in Oregon. The project also involved the addition of protective guardrails along roadway.
Roosevelt Coast Highway
In Lane County

Br 01180

Br 01114

Br 01113
Roosevelt Coast Highway
In Lane County

Siuslaw River, Hwy 9
Bridge Number: 01821E
Common Name: Florence Bridge
Year Built: 1936
Lat/Long: 43 57 53, -124 06 31
Description: One 140-ft double-leaf Chicago-style bascule main span, with one 154-ft reinforced concrete tied-arch at each side of the bascule span with reinforced concrete deck girder approach spans. The Mercer-Fraser Co. was the general contractor.
Alterations: The only major changes made to this bridge have been the complete upgrade of the electrical system, including the relighting of the pylons, window replacement in the bridge tender houses, and the replacement of the deck on the bascule span with an FRP deck.

Siltcoos River, Hwy 9
Bridge Number: 00982
Year Built: 1930
Lat/Long: 43 5 59, -124 07 29
Description: Three span reinforced concrete deck girder bridge with arched girders, constructed by Liesch & Tofte
Willamette River, Hwy 18 Frontage Rd

Bridge Number: 01626
Year Built: 1932

Common Names: Barnard Bridge, Hell Gate Bridge

Location: West of Oakridge on old OR 58
Lat/Long: 43 45 17, -122 31 36

Description: Two 160-ft riveted steel Parker through trusses with three 45-ft reinforced concrete deck girder approach spans on the west end

Designer: Bureau of Public Roads (BPR) under H.R. Angwin

Significance: Due to the shortage of funding during the Great Depression, a number of bridges on state highways across Forest Service land were designed by the BPR. As a result, these bridges utilize designs that are not seen elsewhere in the state. The Barnard bridge, built on OR 58, is one such bridge, featuring two through trusses that are somewhat different from those found elsewhere in the state. The most notable difference is the addition of an extra horizontal member across the center truss panels. The bridge is named for Charles P. Barnard, a judge in Lane County. Bypassed early on from the main route of the highway, it has remained mostly unaltered.

Character Defining Features: Structure type, Railings, Location in National Forest, Nameplate
Cheshire Bridges

Location: On OR 36 in the vicinity of Cheshire. Bridges are listed from east to west.

Date Range: 1932

Designer: Oregon State Highway Department under C.B. McCullough

Significance: Built during the Great Depression, the Cheshire bridges are an example of low-cost, simple design intended for rapid construction. This bridge set is mostly composed of simple timber pile trestle spans with concrete decks, though two of the shorter bridges are even simpler concrete slab spans. All 17 of the original bridges in the set are contained in one drawing and used a standard detail drawing. The feature that distinguishes these bridges from the many other simple timber stringer spans in the state are the railings, which utilize the standard posts from the timber panel rail, but have a single concrete cross-shaped panel instead of the timber pieces. It is unclear whether these are original or a later alteration.

Character Defining Features: Location, Railings, Structure type

Alterations: Only nine of the seventeen bridges are extant, with most of the lost bridges replaced by culvert pipes.

Creek, Hwy 229 at MP 51.29

Bridge Number: 01755Q

Description: Two 19-ft timber spans

Lat/Long: 44 11 35, -123 12 31

Creek, Hwy 229 at MP 51.17

Bridge Number: 01755P

Description: One 19-ft timber span

Lat/Long: 44 11 35, -123 12 40

Creek, Hwy 229 at MP 50.74

Bridge Number: 01755N

Description: One 10-ft reinforced concrete slab span

Lat/Long: 44 11 36, -123 13 11

Creek, Hwy 229 at MP 51.62

Bridge Number: 01755M

Description: One 19-ft timber span

Lat/Long: 44 11 36, -123 14 20

Creek, Hwy 229 at MP 50.36

Bridge Number: 01755L

Description: Two 19-ft timber spans

Lat/Long: 44 11 36, -123 14 05
Cheshire Bridges

Creek, Hwy 229 at MP 50.16
Bridge Number: 01755K
Description: Two 19-ft timber spans
Lat/Long: 44 11 36, -123 13 39

Creek, Hwy 229 at MP 49.82
Bridge Number: 01755J
Description: Two 10-ft reinforced concrete slab spans
Lat/Long: 44 11 36, -123 14 56

Creek, Hwy 229 at MP 48.78
Bridge Number: 01755G
Description: Five 19-ft timber spans
Lat/Long: 44 11 33, -123 15 33

Creek, Hwy 229 at MP 48.36
Bridge Number: 01755E
Description: Two 19-ft timber spans
Lat/Long: 44 11 30, -123 15 58
Deadwood Creek, Deadwood Loop Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>39C551</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1932</td>
</tr>
</tbody>
</table>

Common Name: Deadwood Creek Covered Bridge
Location: 5.2 mi. north of Deadwood off Deadwood Creek Rd
Lat/Long: 44 08 37, -123 43 14
Description: Covered 105-ft timber through Howe truss
Builder: Miller Sorenson (A.C. Striker Superintendent)

Significance: The Deadwood Creek Covered Bridge is significant as the only covered bridge in the state with a super elevated deck to address the curvature of the road. It is also distinctive as an example of the Lane County covered bridge design, including: a cedar roof; board & batten siding; three outlookers on each portal; decorative “S” curve brackets flanking the portals; one large framed window opening on the north side; single-member hand-hewn chords; end diagonals dapped into chords; center diagonals framed into timber angle blocks at the top chord; upper bracing using timber laterals and tension rod diagonals; upper sway bracing using steel rods.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Outlookers, Decorative features, Window, Chords, Connections, Upper bracing

Alterations: The bridge was bypassed in the 1970s and abandoned for many years. It was then restored to traffic in 1986, following a major rehab that included: new siding, flooring, railing, and portals (resulting in the current Tudor shape); and some work on the bracing, roof and approaches.
Fall Creek, Jasper Lowell Rd

Bridge Number 014721
Year Built 1936

Common Name: Unity Covered Bridge
Location: 2 mi. north of Lowell on Jasper Lowell Rd
Lat/Long: 43 56 41, -122 46 31
Description: Covered 90-ft timber through Howe truss

Significance: The Unity Covered Bridge is an example of a state standard truss, with the normal Lane County adaptations, including a full length window opening on the east side of the bridge, with a small projecting roof. As with the similar Lane County trusses, this window increases visibility on the curving road. Other features include: board & batten siding; semi-elliptical portal openings with decorative capital trim; ribbon openings below the eaves; single-member hand-hewn chords; upper bracing with timber laterals and cross-members; end diagonals dapped into chords; and center diagonals framing into timber angle blocks at the top chord.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Openings, Decorative features, Chords, Upper bracing, Connections

Alterations: Rehab projects in the past have included: adding a cementitious synthetic roof, replacing the flooring and guard rails, and repairing the piers.
Mill Creek, Wendling Rd

Bridge Number: 39C174
Year Built: 1938

Common Name: Wendling Covered Bridge
Location: 3.8 mi. northeast of Marcola on Wendling Rd
Lat/Long: 44 11 29, -122 47 56
Description: Covered 60-ft timber through modified Howe truss
Builder: Lane County under A.C. Striker (Lane County Superintendent)
Significance: One of 4 covered bridges built by Lane County in this year, the Wendling Bridge exhibits many of the standard features associated with a county built bridge. Indicating its importance to the community, the bridge interior was once used to display circus posters, though they have since been lost. Significant features include: board & batten siding; semi-elliptical portal openings with decorative capital trim; ribbon openings below the eaves; diagonals dapped into chords; center diagonals framing into timber angle blocks at the top chord; and upper bracing with timber laterals and cross members.
Character Defining Features: Covered bridge, Truss type, Siding, Portals, Decorative details, Openings, Connections, Upper bracing
Alterations: Regular maintenance efforts on this bridge have included adding a cementitious synthetic roof, steel house siding brackets and bottom supports, and glulam deck panels.
Common Name: Goodpasture Covered Bridge
Location: 6 mi. east of Leaburg on OR 126
Lat/Long: 44 08 54, -122 35 15
Description: Covered 165-ft timber through Howe truss
Builder: Lane County under A.C. Striker (Lane County Superintendent)
Significance: Due to its proximity to a major state highway and its scenic setting, the Goodpasture Covered Bridge is one of the most photographed bridges in the state. In addition to its beauty, the bridge is also tied for the second longest covered bridge remaining in the state. Like most Lane County spans, it was built based on a state standard design, and includes details like the state standard window openings with louvers. Other significant features include: a cedar roof; board & batten siding; semi-elliptical portal openings; three outlookers supporting the barge rafters at each portal; triple-member chords; and bottom chord tension connections with interlocking timber fish plates.
Character Defining Features: Covered bridge, Truss type, Siding, Portals, Outlookers, Chords, Connections
Alterations: A series of rehabs, including one in 2013 involved: installing steel fish plates at the sides of the bottom chord at the tension splices; post-tensioning the bottom chord; replacing the hanger rods with welded steel channels to allow for lower bearing plates; sistering the floor beams with glue-laminated timbers; adding steel-tubed guardrails; and adding flex beam guardrail sections above the steel-tubed guardrails at the north entrance.
Fall Creek, Pengra Rd

Bridge Number: C39004

Year Built: 1938

Common Name: Pengra Covered Bridge

Location: 4 mi. southeast of Jasper just off Jasper-Lowell Rd

Lat/Long: 43 57 58, -122 50 43

Description: Covered 120-ft timber through Howe truss

Builder: Lane County under A.C. Striker (Lane County Superintendent)

Significance: Like most Lane County covered bridges, the Pengra Covered Bridge was built to a state standard design. The unique feature of this bridge is the large single timber chords. The lower chord members, at 16”x18”x126’, were too large to be cut in a mill, so instead they were rough-hewn in the woods with county forces finishing them at the bridge site. Other significant features include: board & batten siding; semi-elliptical portal openings with decorative capital trim; decorative “S” curved brackets by the portals; ribbon openings below the eaves and one short rectangular window opening with an awning on the southwest side; single-member hand-hewn chords; end diagonals dapped into chords; interior diagonals framing into timber angle blocks at the top chord; and upper bracing using timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Decorative features, Openings, Chords, Connections, Upper bracing

Alterations: At one point closed to all traffic, the bridge was rehabbed in the 1990s and reopened. The rehab included: a cementitious roof, glue-laminated floor beams and stringers, steel connection brackets between the floor beams and the lower truss chords and between the floor beams and stringers.
Common Name: Earnest Covered Bridge
Location: 17 mi. north of Springfield on Marcola Rd
Lat/Long: 44 12 05, -122 50 10
Description: Covered 75-ft timber through truss
Builder: Lane County under A.C. Striker (Lane County Superintendent)
Significance: The second covered bridge at this location, the Earnest Covered bridge is a standard example of the Lane County covered bridge. Significant features include: board & batten siding; semi-elliptical portal openings with decorative capital trim and “S” curved brackets flanking; ribbon openings below the eaves and a framed window opening on the south side of the bridge with an awning; single-member truss chords; upper bracing using timber laterals and cross members; end diagonals dapped into chords; interior diagonals framed into timber angle blocks at the top chords.
Character Defining Features: Covered bridge, Truss type, Siding, Portals, Decorative features, Openings, Chords, Upper bracing, Connections
Alterations: Regular maintenance efforts have included adding a cementsitious synthetic roof and replacing some stringers with glue-laminated beams.
North Middle Fork Willamette River, County Rd 6129

Bridge Number: 39C650
Year Built: 1945

Common Name: Office Covered Bridge
Location: In Westfir
Lat/Long: 43 45 31, -122 29 45
Description: Covered 180-ft through timber Howe truss
Builder: Westfir Lumber Company

Significance: Oregon's longest covered bridge, the Office Covered Bridge was built by the Westfir Lumber Company to connect their lumber mill to their office. For this use, it was designed to accommodate large logging trucks, requiring a massive triple truss. In addition to length and size, the bridge is significant as the only covered bridge in Oregon with a covered walkway separate from the roadway. Other distinctive features include: shiplap horizontal siding; four window openings on each side with individual awnings; truncated rectangular portal openings; and upper bracing with timber laterals, steel rods and chevron diagonal members.

Character Defining Features: Covered bridge, Truss type, Siding, Openings, Portals, Walkway, Upper bracing

Alterations: After the closing of the lumber mill, ownership of the bridge was taken by Lane County, and in 1993 they rehabbed the structure, including: a cementsitious synthetic roof; replacing end diagonals with pressure treated incised timbers; splicing repairs to the bottom chords using bolted steel straps and pressure treated incised wood; framing end diagonals into bolted steel bearing shoes with gusset plates; and sistering some floor beams.
Middle Fork Willamette River, Pedestrian

Bridge Number: 06649

Year Built: 1945 (1953)

Common Name: Lowell Covered Bridge

Location: 13 mi. east of I-5 on OR 58

Lat/Long: 43 54 33, -122 46 46

Description: Covered 165-ft timber through Howe truss

Builder: Lane County (Walter Sorensen Bridge Foreman)

Significance: Along with the Goodpasture Bridge, Lowell is the second longest covered bridge in Oregon. When built, the bridge crossed the river normally, but was raised and given new approaches in 1953 in anticipation of the pool between Dexter Dam and Lookout Point Dam, making it the only covered bridge in Oregon to span a portion of a reservoir. The state standard design featured a wider roadway than was common on earlier bridges, enabling the bridge to take heavy traffic until 1980 when it was bypassed. Significant features include: a cedar roof; board & batten siding; semi-elliptical portal openings with three outlookers and flanking decorative “S” curved brackets; a triple leaf truss; end diagonals dapped into chords; interior diagonals framed into timber angle blocks; and bottom chord tension connections using interlocking timber fish plates.

Character Defining Features: Covered bridge, Truss type, Siding, Roof, Portals, Decorative features, Connections

Alterations: The louvered state standard window openings were added sometime after 1953. Additionally, a recent rehab project included: glulam floor beams; post-tensioned bottom chords with new “dog house” extensions at the portals; steel security gates at the each portal; and the replacement of the north approach and removal of the south approach. The bridge current serves as a museum for the bridge and surrounding area.
Common Name: Dorena Covered Bridge
Location: 11 mi. east of I-5 exit 174 on Government Rd (Shoreline Dr)
Lat/Long: 43 44 15, -122 53 02
Description: Covered 105-ft timber through Howe truss
Builder: Lane County (Miller Sorenson Bridge Foreman)
Significance: Constructed in association with the Dorena Dam, the Dorena Covered Bridge crosses the Row River just past the end of the reservoir. The bridge was bypassed in 1974 by a bridge better able to serve the logging traffic, but the covered bridge was retained and eventually restored. Significant features include: board & batten siding; rounded rectangular portal openings; three outlookers on each portal supporting the barge rafters; ribbon openings below the eaves; a single-leaf truss with bolt laminated four member chords; a rafter sill blocked directly above the top chord; end diagonals dapped into chords; center diagonals framed into a timber angle blocks at the top chord; and upper bracing with timber laterals and cross members.
Character Defining Features: Covered bridge, Truss type, Siding, Portals, Outlookers, Ribbon openings, Chords, Connections, Upper bracing
Alterations: In 1996, a rehab project included: installing windows, reroofing with a cementitious synthetic roof; adding decorative “S” curved brackets flanking the portals; replacing some floor beams with glue laminated beams; and adding glue laminated stringers.
West Fork Horse Creek, Delta Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>398164</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1950</td>
</tr>
<tr>
<td>Location</td>
<td>1 mi. southeast of McKenzie Bridge</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>44 10 15, -122 12 22</td>
</tr>
<tr>
<td>Description</td>
<td>One 100-ft timber bowstring pony truss</td>
</tr>
<tr>
<td>Designer</td>
<td>United States Forest Service</td>
</tr>
<tr>
<td>Significance</td>
<td>This bridge is significant as Oregon’s only known bowstring truss and last uncovered timber pony truss in public ownership. It has no notable decorative features.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type</td>
</tr>
<tr>
<td>Alterations</td>
<td>A substantial rehabilitation project in 2004 included post-tensioning the trusses, adding large steel plates to supplement the timbers and attaching knee braces on one truss to add lateral stability. Some timber members were also replaced.</td>
</tr>
</tbody>
</table>
Coast Fork Willamette River, Hwy 18

Bridge Number 05286

Year Built 1950

Location: 2.5 mi. east of I-5 on OR 58

Lat/Long: 43 58 51, -122 57 59

Description: One 180-ft riveted steel Parker through truss with reinforced concrete deck girder approaches

Designer: Oregon State Highway Department under G. S. Paxson

Builder: Virginia Bridge Company (Fabricator)

Significance: This bridge is a relatively late example of the state standard Parker through truss. It has no notable decorative features.

Character Defining Features: Structure type, Nameplate

Alterations: A project in 2001 added steel 2-tube rail in front of the original railing.
Willamette River, Coburg Rd

Bridge Number 06648

Year Built 1950

Common Name: Ferry Street Bridge

Location: In Eugene

Lat/Long: 44 03 29, -123 05 02

Description: One 442-ft two-span continuous steel polygonal Warren through truss with reinforced concrete deck girder approaches

Designer: Oregon State Highway Department under G.S. Paxson

Significance: This bridge is the only remaining example of a two span continuous truss in Oregon. It is not a true Warren truss due to the added bracing over the central pier. It is also a rare example of a through truss wide enough to carry 4 traffic lanes. The bridge, which has been recently altered, has only a few original decorative features, including curved sidewalk support brackets and arched deck girders on the approach spans.

Character Defining Features: Structure type

Alterations: In 2000, a substantial enhancement project widened the bridge by adding a sidewalk on each side and replacing the bridge railings.
Bridge Number: 39C123

Year Built: 1966

Common Name: Belknap Covered Bridge

Location: Off of OR 126 near Rainbow

Lat/Long: 44 10 05, -122 13 42

Description: Covered 120-ft timber through Howe truss

Designer: OBEC Consulting Engineers (Eugene, OR)

Significance: The fourth covered bridge at this site, the Belknap Covered Bridge was constructed in 1966 in a definite effort to recall those older bridges, as it was no longer economically necessary to build from timber. Significant features of this bridge include: board & batten siding; rectangular portal openings; decorative “S” curve brackets flanking the portals; double-member chords; tension connections in lower chord using bolted steel fish plates; end diagonals dapped into the chords; and center diagonals framed into timber angle blocks at the top chord.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Decorative features, Connections

Alterations: Despite its relatively young age, this bridge has received a number of alterations, including: adding louvered windows in 2 phases (1975, Unknown); a cementitious synthetic roof; installing tension rods at the southwest end of the bottom chord; and installing cross-diagonal tension rods along the plane of the upper chord.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41C27</td>
<td>Five Rivers, Pedestrian</td>
<td>161</td>
</tr>
<tr>
<td>00683</td>
<td>Yaquina River, Hwy 33</td>
<td>162</td>
</tr>
<tr>
<td>41C09</td>
<td>Yaquina River, Chitwood Rd</td>
<td>163</td>
</tr>
<tr>
<td>02459</td>
<td>Depoe Bay, Hwy 9</td>
<td>164</td>
</tr>
<tr>
<td>01089</td>
<td>Rocky Creek, Hwy 9 Frontage Rd</td>
<td>164</td>
</tr>
<tr>
<td>01820</td>
<td>Yaquina Bay, Hwy 9</td>
<td>166</td>
</tr>
<tr>
<td>01175</td>
<td>Cape Perpetua Half Viaduct, Hwy 9</td>
<td>166</td>
</tr>
<tr>
<td>04192</td>
<td>Salmon River, Hwy 39</td>
<td>167</td>
</tr>
<tr>
<td>12037</td>
<td>North Fork Yachats River, North Yachats River Rd</td>
<td>168</td>
</tr>
<tr>
<td>00853A</td>
<td>Siletz River, Hwy 181 at MP 24.10</td>
<td>169</td>
</tr>
</tbody>
</table>
Five Rivers, Pedestrian

Bridge Number: 41C27

Year Built: 1919 (1927, 2005)

Common Name: Fisher School Covered Bridge

Location: MP 20 on OR 34, 9 mi. on E. Five Rivers Rd

Lat/Long: 44 17 30, -123 50 28

Description: Covered 72-ft timber through Howe truss

Builder: Charles Otis Hamar

Significance: One of the earliest extant covered bridges, the Fisher School Bridge was originally built in 1919. It was then renovated to an unknown extent in 1927. It features many of the standard Lincoln County designs, including battered board & batten siding, rounded portal openings and red paint. Other original features include: narrow ribbon openings below the eaves; diagonals dapped into the chords; and upper bracing with timber laterals and cross-bracing.

Character Defining Features: Covered bridge, Truss type, Siding, Portals, Openings, Upper bracing

Alterations: In 2005, the county moved the bridge 50 feet upstream onto new piers and approaches. At the same time, the bridge was renovated with a cementitious synthetic roof, glue-laminated floor beams and stringers, new chords from pressure-treated incised timbers, bottom chord tension splices using bolted steel fish plates, and upper bracing bolting into steel tabs extending from the bearing plates.
Yaquina River, Hwy 33

Bridge Number: 00683

Year Built: 1923 (1962)

Common Name: Eddyville Bridge

Location: On US 20 in Eddyville

Lat/Long: 44 38 05, -123 46 35

Description: One 80-ft riveted steel polygonal Warren pony truss with precast concrete channel beam approaches

Designer: Oregon State Highway Department under C.B. McCullough

Significance: This bridge is a good example of a state standard pony truss from the early 1920s. It is also a rare example of truss widening, with one side of the truss moved outward and additional floorbeam pieces welded in. It is on one of the few remaining original segments of US 20, one of the first roads to connect the Willamette Valley with the coast.

Character Defining Features: Truss, Railing, Location

Alterations: ODOT has completed a number of projects on this bridge, including adding a cantilevered timber sidewalk in 1936, widening the truss in 1962, and repairing the truss and timber sidewalk in 2005.
Yaquina River, Chitwood Rd

Bridge Number 41C09

Year Built 1926

Common Name: Chitwood Covered Bridge

Location: 15.5 mi east of Newport off US 20

Lat/Long: 44 39 15, -123 49 04

Description: Covered 96-ft timber through Howe truss

Builder: Lincoln County

Significance: This bridge displays many of the standard Lincoln County bridge features, including battered board & batten siding, ribbon openings under the eaves, and a reddish color. Other features include: a cedar roof; rectangular portals with rounded corners; triple-member chords with dapped timber packing blocks; bottom chord tension connections with interlocking timber fish plates; diagonals dapped into the chords; hanger rods flaring from the top chord to straddling the bottom chord with large ogee washers for bearing; timber running planks; and upper bracing with timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Openings, Chords, Connections, Upper bracing

Alterations: A rehab project in 1984 by Aubrey Mountain Construction included work on the roofing, flooring, siding, and approaches, and replaced the floorbeams with glue-laminated timber.
Roosevelt Coast Highway

Location: Along the Pacific coast. On, or bypassed by, US 101 in Lincoln County. Bridges are listed from north to south.

Date Range: 1927-1934

Designer: Oregon State Highway Department under C.B. McCullough

Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. Lincoln County features four of these impressive structures, though one has been bypassed from the main route.

Character Defining Features: Location relative to Coast Highway, Decorative features and railings, Structure types

Alterations: Alterations are bridge specific and will be included in the individual entries.

Depoe Bay, Hwy 9

Bridge Number: 02459
Year Built: 1927 (1940)
Lat/Long: 44 48 35, -124 03 43

Description: One 150-ft reinforced concrete open-spandrel, rib-type deck arch with reinforced concrete deck girder approaches and McCullough's standard decorative treatments

Alterations: In 1940, ODOT widened the bridge with an additional deck arch in the style of the original bridge, with the railing on both sides dating to the widening. An additional rehab dates to 1993, when the bridge was cathodically protected.

Rocky Creek, Hwy 9 Frontage Rd

Bridge Number: 01089
Year Built: 1927
Common Name: Ben Jones Bridge
Lat/Long: 46 09 09, -123 51 37

Description: One 160-ft reinforced concrete open-spandrel, rib-type deck arch with ten reinforced concrete deck girder approach spans on a beautiful site just west of the current highway

Alterations: An extensive rehab in 2001 included cathodic protection, major concrete repairs and rail replacement with stealth rail.
Roosevelt Coast Highway
In Lincoln County

Br 02459

Br 01089
Roosevelt Coast Highway
In Lincoln County

Yaquina Bay, Hwy 9

Bridge Number: 01820
Year Built: 1936
Common Name: Yaquina Bay Bridge
Lat/Long: 44° 37' 17", -124° 03' 20"
Description: One 600-ft riveted steel partial through arch main span with two flanking 350-ft steel deck arches. There are five reinforced concrete open-spandrel rib-type deck arch secondary spans on the south end of the bridge and fifteen reinforced concrete deck girder approach spans. The bridge includes a number of decorative elements, including a decorative railing, sidewalk brackets, fluted entrance pylons, and ornamental pedestrian plazas at each end.

Cape Perpetua Half Viaduct, Hwy 9

Bridge Number: 01175
Year Built: 1931
Lat/Long: 44° 17' 28", -124° 06' 30"
Description: Two 38-ft reinforced concrete half-viaduct beam spans with masonry railing
Salmon River, Hwy 39

Bridge Number: 04192

Year Built: 1930

Location: On OR 18, 4 mi. west of Lincoln County Line

Lat/Long: 45 01 09, -123 52 01

Description: One 82-ft reinforced concrete open-spandrel, rib-type deck arch with reinforced concrete girder and floorbeam system approaches

Designer: Bureau of Public Roads under H.R. Angwin

Significance: This bridge is a good example of a BPR designed deck arch, which includes particularly heavy arch ribs and floorbeams, a skewed design to accommodate the terrain, and relatively few decorative details. The railing is a BPR standard type that was commonly used throughout the 1920s and ’30s.

Character Defining Features: Structure type, Railings, Location
North Fork Yachats River, North Yachats River Rd

Bridge Number: 12037

Year Built: 1938

Common Name: North Fork Yachats Covered Bridge

Location: 7 mi. east of Yachats off of Yachats River Rd and 1.7 mi north on N. Yachats River Rd

Lat/Long: 44 18 36, -123 58 11

Description: Covered 42-ft queen post through truss

Builder: Charles Otis Hamar

Significance: The North Fork Yachats Covered Bridge is one of only two publicly owned queen post trusses in the state and is the only queen post without cross bracing in the center panel. It was the last covered span constructed by veteran bridge builder Otis Hamar, who built many covered spans around Lincoln County. Like the other Lincoln County bridges, it features rounded portals, battered board & batten siding, and a red color. Other notable features include: a cedar roof; ribbon openings below the eaves; running planks; single-member chords; steel queen posts; and upper bracing with timber laterals and cross-members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Openings, Chords, Upper bracing

Alterations: In 1989, following the collapse of one approach span, the county restored the bridge with new approaches, replaced siding, bracing, and roof, and added new glue-laminated floor beams.
Siletz River, Hwy 181 at MP 24.10

Bridge Number: 00853A

Year Built: 1956

Location: On OR 229, just south of Siletz

Lat/Long: 44 43 08, -123 55 05

Description: One 152-ft post-tensioned concrete box beam main span with reinforced concrete deck girder approaches

Designer: Oregon State Highway Department under P.M. Stephenson

Significance: This bridge is the earliest known example of a state designed post-tensioned box beam bridge in Oregon. In 1956, only a very few bridges had been built in the state using prestressing technology of any sort, and all known examples were still relatively short spans. In this case, the span was cast in place with cables, which were then tensioned after the concrete had cured. This is the first long span application of the new technology, which became extremely common in the interstate era. It is entirely unadorned, with its age only evidenced by the use of the low three-stripe concrete parapet rail.

Character Defining Features: Structure type, Railing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12819</td>
<td>Calapooia River, Pedestrian</td>
<td>171</td>
</tr>
<tr>
<td>01706</td>
<td>Soda Fork, Hwy 16</td>
<td>172</td>
</tr>
<tr>
<td>01724</td>
<td>Crabtree Creek, Hungry Hill Dr</td>
<td>173</td>
</tr>
<tr>
<td>12948</td>
<td>Thomas Creek, Camp Morrison Rd</td>
<td>174</td>
</tr>
<tr>
<td>12876</td>
<td>Crabtree Creek, Fish Hatchery Dr</td>
<td>175</td>
</tr>
<tr>
<td>12943</td>
<td>Thomas Creek, County Rd 629</td>
<td>176</td>
</tr>
<tr>
<td>02447</td>
<td>Hwy 31, Hwy 58</td>
<td>177</td>
</tr>
<tr>
<td>02380</td>
<td>City Street & UPRR, Hwy 58</td>
<td>177</td>
</tr>
<tr>
<td>02373</td>
<td>Calapooia River, Main St</td>
<td>179</td>
</tr>
<tr>
<td>14025</td>
<td>South Santiam River, High Deck Rd</td>
<td>180</td>
</tr>
<tr>
<td>12965</td>
<td>Thomas Creek, Richardson Gap Rd North</td>
<td>181</td>
</tr>
</tbody>
</table>
Calapooia River, Pedestrian

Bridge Number 12819

Year Built 1932

Common Name: Crawfordsville Covered Bridge

Location: 10 mi. east of I-5 exit 216 on OR 228

Lat/Long: 44°21'27", -122°51'38"

Description: Covered 105-ft timber through Howe truss

Builder: Linn County

Significance: Though built by county forces, the Crawfordsville Covered Bridge was designed by the state using a standard truss design. Not long after its construction the state took ownership of the bridge as a part of the Halsey-Sweet Home Highway, but then bypassed and abandoned it in 1963. Since that time the bridge has been maintained as a Linn County park. Unlike the other Linn County spans, this bridge features full-length, eye level ribbon openings, rather than a large exposed truss plan. Other features include: a cedar roof; board & batten siding; five outlookers supporting barge rafters; double-member chords; bottom chord tension connections using interlocking timber fish plates; end diagonals that dap into the chords; interior diagonals that frame into timber angle blocks; and upper bracing with timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Openings, Chords, Connections, Upper bracing

Alterations: State forces squared the original semi-circular portal openings to allow larger loads. More recent repairs replaced the end diagonals with pressure-treated incised timbers.
Soda Fork, Hwy 16

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01706</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1936</td>
</tr>
<tr>
<td>Location:</td>
<td>25.7 mi. east of Sweet Home, on US 20</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>44 24 22, -122 16 53</td>
</tr>
<tr>
<td>Description:</td>
<td>Three span reinforced concrete continuous deck girder with 60-ft center span</td>
</tr>
<tr>
<td>Designer:</td>
<td>Oregon State Highway Department under G.S. Paxson</td>
</tr>
<tr>
<td>Significance:</td>
<td>Though one of the first to be built by the state highway department following the promotion of G.S. Paxson to State Bridge Engineer, this bridge still demonstrates some of the decorative features that were common under McCullough, including curved sidewalk brackets and Gothic railing, but also uses the flared girder haunches that became much more common under Paxson.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Decorative features, Railing</td>
</tr>
</tbody>
</table>
Crabtree Creek, Hungry Hill Dr

Bridge Number 01724

Year Built 1936

Common Name: Hoffman Covered Bridge

Location: 1.7 mi. north of Crabtree on Hungry Hill Rd

Lat/Long: 44 39 12, -122 53 25

Description: Covered 90-foot timber through Howe truss

Builder: Lee Hoffman

Significance: Unlike most Linn County covered bridges, the Hoffman Covered Bridge was built to a state standard design, including the windows, which are of the state standard shape. Other features of the bridge, include: board & batten siding battered at the portals; five outlookers supporting the barge rafters; single-member hand hewn chords; end diagonals dapping into the chords and interior diagonals that frame into timber angle blocks; and upper bracing using timber laterals and cross-members.

Character Defining Features: Covered bridge, Truss type, Siding, Outlookers, Windows, Chords, Connections, Upper bracing

Alterations: The original rounded portal was enlarged and squared for higher loads, the roof was replaced with corrugated metal, and plywood was installed on the interior lower portion of the siding to prevent vandalism.
Common Name: Hannah Covered Bridge
Location: 6.8 mi. east of Scio off of Albany-Lyons Hwy
Lat/Long: 44 42 43, -122 43 07
Description: Covered 105-ft timber through Howe truss
Significance: The Hannah Covered Bridge, which was named for John Joseph Hannah who opened one of the first sawmills in the area, is a classic example of the Linn County covered bridge design. This design is characterized by the large side openings that expose the truss with a flared skirt below them. Other features include: a cedar roof; board & batten siding; semi-circular portal openings; five outlookers supporting the barge rafters; a double-leaf truss; bottom chord tension connections with interlocking timber fish plates; connections with the end diagonals dapped into the chords and the interior diagonals framing into timber angle blocks; and upper bracing using timber laterals and cross members.
Character Defining Features: Covered bridge, Truss type, Roof, Siding, Outlookers, Openings, Portals, Connections, Upper bracing
Alterations: The only known alterations were maintenance actions.
Crabtree Creek, Fish Hatchery Dr

Bridge Number: 12876

Year Built: 1939

Common Name: Larwood Covered Bridge

Location: 10 mi. east of I-5 exit 233 — 6.7 mi. east on Fish Hatchery Dr

Lat/Long: 44 37 49, -122 44 26

Description: Covered 105-ft timber through Howe truss

Significance: The Larwood Covered Bridge is a standard example of a Linn County covered bridge, with the large exposed truss openings in the sides. It is named for the former community at this site at the confluence of Roaring River and Crabtree Creek. Other distinctive features include: a cedar roof; board & batten siding; semi-circular portal openings; five outlookers supporting the barge rafters; double-leaf trusses; bottom chord tension connections using interlocking timber fish plates; end diagonals dapped into the chords and interior diagonals framing into timber angle blocks; and upper bracing using timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Outlookers, Openings, Portals, Connections, Upper bracing

Alterations: The only known alterations are minor maintenance actions.
Thomas Creek, County Rd 629

Bridge Number 12943

Year Built 1939

Common Name: Gilkey Covered Bridge

Location: 2.5 mi. west of Scio on Robinson Dr—1.1 mi. south on Goar Rd

Lat/Long: 44° 41' 16", -122° 54' 12"

Description: Covered 120-ft timber through Howe truss

Significance: The Gilkey Covered Bridge design is nearly identical to the other Linn County covered bridges, with the large openings exposing the truss and flaring siding below. The bridge was named for the local community of Gilkey that has now virtually disappeared. Other features include: a cedar roof; board & batten siding; five outlookers supporting the barge rafters; semi-circular portal openings; double-leaf trusses; bottom chord tension connections using interlocking timber fish plates; end diagonals dapped into the chords; interior diagonals framing into timber angle blocks; and upper bracing using timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Openings, Portals, Outlookers, Connections, Upper bracing

Alterations: In 1998, due to damage caused by an overloaded truck, the bridge required significant repairs including: replacing several members with pressure-treated incised timbers; replacing some tension connections with bolted steel plates; replacing the floor beams, stringers, and lower cross-bracing with glue laminated timbers; and replacing some hanger rods with turnbuckles.
Later Pacific Highway
In Linn County

Location: In Albany, on OR 99E

Date Range: 1940

Designer: Oregon State Highway Department under G.S. Paxson

Significance: Though the Pacific Highway had existed for nearly 20 years in the city of Albany, in 1940, the OSHD decided to widen and redevelop the route across town. This redevelopment involved widening at least one existing bridge and building two new bridges. Due to their location in a town, both bridges were given a great deal of decorative treatment, though in entirely different materials. As the bridges are quite different, the specific features will be mentioned in the bridge entries below.

The one common element is the use of a variant of picket rail that incorporates light fixtures into the concrete posts.

Character Defining Features: Location in Albany, Decorative features, Railings, Structure types

Alterations: Neither bridge has had any major alterations beyond simple maintenance actions.

Hwy 31, Hwy 58

Bridge Number: 02447

Year Built: 1940

Lat/Long: 44 37 52, -123 06 11

Description: Three 50-ft reinforced concrete continuous deck girder spans with arched girders. Decorative features include scalloped trim on outside of handrail curb and decorative sidewalk brackets.

City St & UPRR, Hwy 58

Bridge Number: 02380

Year Built: 1940

Lat/Long: 44 37 57, -123 05 56

Description: Three 84-ft and five 60-ft riveted continuous steel deck girder spans on steel frame bents. Decorative features include curved steel sidewalk brackets and a staircase for pedestrian access.
Later Pacific Highway
In Linn County
Bridge Number: 02373
Year Built: 1940 (1966)

Common Name: Brownsville Bridge
Location: In Brownsville
Lat/Long: 44 23 27, -122 59 04

Description: One 130-ft riveted steel Parker through truss with eight precast prestressed concrete slab approach spans

Significance: This bridge is an example of the standard Parker trusses built during the late 1930s. The main distinctive characteristic of this bridge is the use of concrete split rail on the sidewalk, while most other trusses of this era used a steel rail. The bridge has no other notable decorative features, despite being located in town.

Character Defining Features: Structure type, Railing

Alterations: In 1966, OSHD replaced the south approach with prestressed concrete slabs. The railing on these new spans is a replica of the original concrete split rail.
South Santiam River, High Deck Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>14025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1945</td>
</tr>
</tbody>
</table>

Common Name: Short Covered Bridge
Location: 13 mi. east of Sweet Home off Santiam Hwy (US 20)
Lat/Long: 44 23 29, -122 30 36
Description: Covered 105-ft timber through Howe truss
Significance: Like most of the Linn County covered bridges, the Short Covered Bridge is based on a state standard design with the normal Linn County alterations. The main alteration is the use of large openings on the sides that provide increased visibility and keep wind resistance down. Other standard features include: a cedar roof; board & batten siding; semi-circular portal openings; double member chords; bottom chord tension connections using non-interlocking timber fish plates; end diagonals dapped into the chords; interior diagonals framing into timber angle blocks; and upper bracing using timber laterals with timber chevron members.
Character Defining Features: Covered bridge, Truss type, Roof, Siding, Openings, Portals, Chords, Connections, Upper bracing
Alterations: Repairs to this bridge include: adding a steel-tube railing system; sandwiching the floor beams between glulam sister beams; changing the hanger rods and bearing plates to accommodate the wider floor beams; and replacing the connections on the lower cross-bracing with galvanized steel. Around 1988, the approaches were also replaced.
Thomas Creek, Richardson Gap Rd North

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>12965</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1966</td>
</tr>
</tbody>
</table>

Common Name: Shimanek Covered Bridge

Location: 2 mi. east of Scio on Albany-Lyons Hwy (OR 226) - 0.7 mi. north on Richardson Gap Rd

Lat/Long: 44 42 56, -122 48 16

Description: Covered 130-ft timber through Howe truss

Designer: W.A. Palmateer

Builder: Hamilton Construction Co.

Significance: This fairly modern covered bridge bucks the trend of the other Linn County Covered Bridges in a number of features. These include the use of Oregon state standard windows with louvers, and the truncated rectangular portal frames. These features reflect the four earlier covered bridges at this site from 1894, 1904, 1921, and 1927. In addition to being the youngest covered bridge in Linn County, it is also the longest, requiring the use of triple-member chords and four hanger rods with turnbuckles at each panel point. Other features include: a cedar roof; board & batten siding battered at the portals; shiplap horizontal siding at the portals; three outlookers supporting the barge rafters; bottom chord tension connections using steel fish plates; outer diagonals dapping into chords; interior diagonals framing into timber angle blocks; and upper bracing using timber laterals and chevron diagonals.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Portals, Outlookers, Windows, Chords, Connections, and Upper bracing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45C609</td>
<td>Cow Creek, Danner Rd</td>
<td>183</td>
</tr>
<tr>
<td>45C611</td>
<td>Owyhee River, Owyhee River Rd</td>
<td>184</td>
</tr>
<tr>
<td>45C405</td>
<td>Malheur River, Warm Springs Reservoir Rd</td>
<td>185</td>
</tr>
<tr>
<td>Bridge Number</td>
<td>45C609</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Year Built</td>
<td>Ca.1902</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>0.3 mi. west of Charbonneau gravesite at Inskip Station in Danner (County Road 793)</td>
<td></td>
</tr>
<tr>
<td>Lat/Long</td>
<td>42 56 57, -117 20 34</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>One 79-ft pin-connected Pratt through truss</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>Originally constructed on the private Idaho-Oregon-Nevada (ION) Highway, which was established in 1881, this bridge has remained in its original location as the road transitioned to a minor county road. The earliest confirmed dating for the truss is a 1910 photo of the nearby Inskip Station. By dating the manufacturer mark on the steel truss members, the date of fabrication may be before 1902. This could make the bridge Oregon’s earliest extant highway bridge in its original location.</td>
<td></td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type, Connections, Piers, Location</td>
<td></td>
</tr>
<tr>
<td>Alterations</td>
<td>Alterations to the bridge include replacement of some diagonal members, and repair of the portals. The timber deck and rails were replaced in-kind and the floorbeams strengthened in 1999.</td>
<td></td>
</tr>
</tbody>
</table>
Bridge Number: 45C611
Year Built: 1906

Common Name: Rome Bridge
Location: On County Road #1025, 2.1 mi. northwest of Rome
Lat/Long: 42 51 58, -117 38 56

Description: One 152-ft pin-connected steel Parker through truss with a 40-ft pin-connected steel half-hip Pratt pony truss approach

Builder: H.T. Ward Company of Tecumseh, Nebraska

Significance: As indicated by the ornamental plaque mounted above the portals of the main truss, the H.T. Ward Company constructed the bridge for the county in 1906. The names of county officials and the builder are also included on the plaque. When originally constructed, the bridge would have carried the ION (Idaho-Oregon-Nevada) highway, now rerouted. The bridge also carries a large irrigation pipe. The pony truss approach span is the only pin-connected pony truss remaining in public ownership in Oregon.

Character Defining Features: Structure types, Connections, Nameplate, Piers, Location

Alterations: At some point prior to the 1980s a large (24") water pipe was added to the bridge and the deck narrowed. In addition, a rehab project in 1996 replaced the deck and rails in kind and added stiffening plates to the floorbeams. It is suspected that at some point an additional pony truss existed on the west end of the bridge, where there are now timber stringer spans.
<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>45C405</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1916 (1942)</td>
</tr>
<tr>
<td>Location:</td>
<td>South of Warm Springs Reservoir, near Riverside, OR</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>43 33 42, -118 11 46</td>
</tr>
<tr>
<td>Description:</td>
<td>One 124-foot riveted steel double-intersection Warren through truss</td>
</tr>
<tr>
<td>Designer:</td>
<td>Coast Bridge Company, Portland</td>
</tr>
<tr>
<td>Significance:</td>
<td>This bridge is significant as the most intact of the three remaining double-intersection Warren trusses in Oregon. It is likely the bridge ordered in May of 1916 from the Coast Bridge Company in contract 304A, fabricated by N.W.S. Co., and erected by August of that year. The 1942 construction date given in the bridge inventory likely represents a relocation, which would reflect the scarcity of resources during WWII.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type</td>
</tr>
<tr>
<td>Alterations:</td>
<td>The 1942 date likely indicates a relocation of the truss, though the truss remains entirely riveted. In 1995, the county strengthened the floorbeams and added a new in-kind deck, stringers and rail.</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>470202</td>
<td>Mill Creek, Front St NE</td>
</tr>
<tr>
<td>05381</td>
<td>Abiqua Creek, Gallon House Rd NE</td>
</tr>
<tr>
<td>47C37</td>
<td>Pudding River, Monitor McKee Rd NE</td>
</tr>
<tr>
<td>-</td>
<td>City of Salem Bridges</td>
</tr>
<tr>
<td>01582</td>
<td>Santiam River, Hwy 164</td>
</tr>
<tr>
<td>02058</td>
<td>Santiam River, Hwy 162 Conn Rt</td>
</tr>
<tr>
<td>471006</td>
<td>Battle Creek, Commercial St SE</td>
</tr>
<tr>
<td>09963</td>
<td>Champoeg Creek, Park Rd</td>
</tr>
</tbody>
</table>
Mill Creek, Front St NE

Bridge Number: 470202

Year Built: 1913

Location: In Salem, north of Downtown
Lat/Long: 44 57 03, -123 02 14

Description: One 40-ft reinforced concrete, filled-spandrel, barrel-type deck arch span for both rail and traffic use

Designer: A.M. Lupfer of Spokane, Portland, and Seattle Railway (SPSR)
Builder: Hurley-Mason & Company

Significance: Built in 1913 along the route of the Oregon Electric Railway, the Front Street Bridge, now city-owned, continues to carry occasional rail traffic. The Oregon Electric Railway once connected Portland to Eugene by way of Salem, closely following the Willamette River. SPSR acquired the route in 1910, and shortly after built the Front Street Bridge to carry their larger freight trains. The year built is stamped at the top of the arch. As is common with railroad structures, there are no notable decorative features.

Character Defining Features: Structure type, Connection to Oregon Electric Railway, Date stamp

Alterations: The highway lane and simple pipe handrail may have been a later addition to the bridge.
Abiqua Creek, Gallon House Rd NE

Bridge Number: 05381

Year Built: 1917

Common Name: Gallon House Covered Bridge

Location: 3 mi. northwest of Silverton

Lat/Long: 45°01'56", -122°47'54"

Description: Covered 84-ft timber through Howe truss

Significance: Gallon House Covered Bridge is Marion County’s only remaining historic covered bridge. According to local legend, the name was based on the bridge’s role as a liquor “pigeon drop” by a nearby dispensary that sold “White Lightning” by the gallon to the residents of Silverton, which prohibited liquor. The utilitarian design was common to Marion County bridges with features that include: a cedar roof; battered board & batten siding; small ribbon openings under the eaves; triple-member chords; bottom chords with dapped timber packing blocks and tension connections using timber interlocking fish plates; end diagonals dapped into chords; interior diagonals bearing on a shear key; and upper bracing with timber laterals and cross members.

Character Defining Features: Covered bridge, Truss type, Roof, Siding, Openings, Chords, Connections, Upper bracing

Alterations: A 1990 rehab project included: glue-laminated floor beams and bottom cross-bracing; sistering the stringers with pressure-treated timbers; and repairing some bottom chord members with pressure-treated timbers. Over the years the portals on this bridge have been altered a number of times, at one point including a hinged panel for higher loads.
Pudding River, Monitor McKee Rd NE

Bridge Number: 47C37

Year Built: 1923 (1950)

Location: Between OR 214 and OR 99E

Lat/Long: 45 06 02, -122 49 51

Description: One 120-ft riveted steel camelback Parker through truss with concrete slab on timber pile approaches

Significance: ODOT originally built the steel truss main span of this bridge on the Pacific Highway, but when greater capacity was required on that route in the late 1940s they sold the truss to Marion County and replaced it with bridge number 02743. Despite the relocation, this truss is significant as the only camelback truss remaining in the state. It is also one of the few relocated trusses where we can definitively identify where it was originally built. Though it was taken apart and reassembled, the truss retains all of its original parts, including the lacing rail on the truss.

Character Defining Features: Truss, Railing

Alterations: Aside from the 1950 relocation, the only known alteration was changing the portals to increase vertical clearance.
City of Salem Bridges

Location: In downtown Salem, over Pringle and Mill Creeks

Designers: R.A. Furrow (City Bridge Engineer)

Date Range: 1928-1930

Significance: In the late 1920s, the city of Salem began a major redevelopment of their bridges, replacing the old narrow timber structures with full width reinforced concrete girder bridges. The designer, R.A. Furrow, was a graduate of Iowa State a few years before Conde McCullough and often worked for McCullough and the state on state projects. As a result, the many bridges share a common appearance with those bridges built by the state during the same period. In recognition of their prominent positions in an urban setting, the bridges feature a number of decorative details, including: ornamental precast bridge railing similar to state standard Type D, arched girders with bush-hammered panels, ornate soffit brackets, and a number of different accommodations for pedestrians, including staircases and viewing areas.

Character Defining Features: Location in Salem, Decorative features and railings, Structure type

Alterations: Many bridges in the original collection have since been replaced or widened. A few have also had other alterations, including rail replacements and the loss of decorative details.

Pringle Creek, Liberty St SE

Bridge Number: 470604

Lat/Long: 44 56 12, -123 02 26

Description: Eight span reinforced concrete deck girder. This bridge is one of the most prominent members of the collection, due to its position near the Salem Civic Center.

Pringle Creek, Cross St SE

Bridge Number: 470614

Lat/Long: 44 55 33, -123 01 54

Description: One 41-ft reinforced concrete beam span

Mill Creek, Winter St NE

Bridge Number: 470216

Lat/Long: 44 56 46, -123 01 42

Description: One 58-ft reinforced concrete girder span

Pringle Creek/Shelton Ditch, Church St SE

Bridge Number: 470608

Lat/Long: 44 56 05, -123 02 16

Description: Seven 35-ft reinforced concrete girder spans with a staircase access to a park

Mill Creek, 15th St NE

Bridge Number: 470226

Lat/Long: 44 56 30, -123 01 12

Description: Two 30-ft reinforced concrete girder spans
City of Salem Bridges

Br 470614

Br 470216

Br 470608
City of Salem Bridges

Mill Creek, Summer St NE

Bridge Number: 470218
Lat/Long: 44 56 45, -123 01 36
Description: Three 20-ft reinforced concrete girder spans

Mill Creek, Cottage St NE

Bridge Number: 470214
Lat/Long: 44 56 47, -123 01 48
Description: One 45-ft reinforced concrete beam span

Pringle Creek, 13th St SE

Bridge Number: 470620
Lat/Long: 44 55 22, -123 01 46
Description: Two 30-ft frame culvert spans on a 60-degree skew

Mill Creek, State St

Bridge Number: 470238
Lat/Long: 44 56 04, -123 01 03
Description: One 39-ft reinforced concrete girder span

Pringle Creek, Winter St SE

Bridge Number: 470610
Lat/Long: 44 55 57, -123 02 07
Description: One 39-ft reinforced concrete beam span
Pacific Highway Bridges
In Marion County

Location: On the remaining segment of the old Pacific Highway in Marion County
Designer: Oregon State Highway Department under C.B. McCullough
Date Range: 1933
Significance: When Oregon dedicated the Pacific Highway in 1923, it became the first highway to cross an entire state west of the Mississippi. Since that time it has remained an important transportation corridor, with constant realignments and renumbering. As each new alignment evolved, new bridges were built and old ones abandoned, often into county ownership, making it difficult to identify all of the bridges that may once have been a part of this important route. In Marion County, only two bridges with a strong association to the Pacific Highway are known and one of these, Pringle Creek, Commercial Street (#01340) was replaced in 2013.

Character Defining Features: Location on old Pacific Highway, Decorative features and railings, Nameplate, Structure type

Alterations: Due to the waves of improvements to the Pacific Highway, the route has had many major changes, including rerouting and widening. This had resulted in the loss of most original Pacific Highway bridges in Marion County.

Santiam River, Hwy 164

Bridge Number: 01582
Common Names: Jefferson Bridge, Jacob Conser Bridge
Lat/Long: 44 42 54, -123 00 50
Description: Three 200-ft reinforced concrete rainbow through arches with reinforced concrete deck girder approach spans

Additional Significance: This bridge, with its ornate entry pylons and decorative soffit brackets, is dedicated to Jacob Conser, an early Oregon pioneer, who operated a ferry at this site in 1848.
Bridge Number: 02058
Year Built: 1934
Location: In Mill City, on connection to OR 22
Lat/Long: 44 45 17, -122 28 39
Description: One 200-ft riveted steel Parker through truss with mixed approaches
Significance: The Santiam River Bridge in Mill City is a good example of the state standard through truss design used at the entrances to small towns in Oregon during the 1930s. The design has few decorative features though it does incorporate a sidewalk and concrete Gothic type railing. This bridge is also notable for its position next to a bypassed railroad bridge that is one of only two Phoenix trusses in the state.
Character Defining Features: Truss, Railing, Location
Alterations: In 1960, the southern approaches of this bridge were replaced with prestressed concrete slabs.
Battle Creek, Commercial St SE

Bridge Number: 471006

Year Built: 1967

Location: On south end of Commercial St. in Salem

Lat/Long: 44 51 37, -123 00 60

Description: Three span steel girder and floorbeam system with orthotropic deck

Significance: This bridge is significant for being the first use of the orthotropic deck system in Oregon. This deck system consists of a steel plate stiffened with transverse ribs that enable it to act in conjunction with the girders as a part of the load bearing system. The only other known use of this deck system in Oregon is on the Fremont Bridge in Portland. ODOT designed the bridge before transferring the roadway to city ownership.

Character Defining Features: Structure type
Champoeg Creek, Park Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>09963</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1970</td>
</tr>
<tr>
<td>Owner:</td>
<td>Oregon State Parks</td>
</tr>
<tr>
<td>Location:</td>
<td>In Champoeg State Park</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>45°15'02", -122°52'51"</td>
</tr>
<tr>
<td>Description:</td>
<td>Three 70-ft reinforced concrete slab spans with curvature in both planes</td>
</tr>
<tr>
<td>Significance:</td>
<td>This bridge is notable for its extremely thin slab design and its modern aesthetic. The bridge is located in a state park, where the lightweight appearance of the slab enables the bridge to have a minimal visual impact on the surroundings.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type</td>
</tr>
</tbody>
</table>
MORROW

Bridge #	**Name**	**Page**
49C05 | Rhea Creek, Spring Hollow Rd | 198 |
49B09 | Willow Creek, Riverside Ave | 199 |
49C23 | Rhea Creek, Brenner Canyon Rd | 200 |
Rhea Creek, Spring Hollow Rd

Bridge Number: 49C05

Year Built: 1909

Location: Bypassed from county road 3.5 mi. east of Ruggs

Lat/Long: 45 15 46, -119 36 53

Description: One 114-ft pin-connected steel Pratt through truss

Builder: Columbia Bridge Company of Walla Walla, Washington

Significance: This bridge is significant as a relatively unaltered example of a pin-connected truss, complete with a portal message and a nameplate identifying county officials from the period. The unchanged rural rangeland setting also adds to the historic feeling of the bridge.

Character Defining Features: Structure type, Connections, Setting, Nameplate, Portal message

Status: In 2011, Morrow County built a new concrete slab bridge upstream and bypassed the truss for pedestrian use, adding a low fence and informational kiosk.
<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>49809</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1915</td>
</tr>
<tr>
<td>Location</td>
<td>In Heppner</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>45 21 33, -119 33 18</td>
</tr>
<tr>
<td>Description</td>
<td>One 45-ft filled-spandrel barrel-type deck arch</td>
</tr>
<tr>
<td>Designer</td>
<td>Daniel B. Luten of Indianapolis, Indiana</td>
</tr>
<tr>
<td>Builder</td>
<td>Charles G. Huser of Seattle, Washington</td>
</tr>
<tr>
<td>Significance</td>
<td>This Luten-designed single span reinforced concrete deck arch is one of only five remaining in Oregon and has the longest span length of the set. The design is likely one of Luten's standards, with distinguishing features that include the solid concrete parapet with incised rectangles, the low arch shape, and the use of steel straps as shear reinforcement. In addition to the distinctive Luten design, the bridge also features a nameplate identifying the Heppner city officials from 1915.</td>
</tr>
<tr>
<td>Character Defining Features</td>
<td>Structure type, Nameplate</td>
</tr>
</tbody>
</table>

Willow Creek, Riverside Ave
Rhea Creek, Brenner Canyon Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>49C23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1916</td>
</tr>
</tbody>
</table>

Common Name: Rhea Creek Bridge
Location: Bypassed from Brenner Canyon Rd, just west of Rhea Creek Rd
Lat/Long: 45 24 57, -119 47 43
Description: One 43-ft reinforced concrete through girder span
Designer: Oregon State Highway Department
Builder: John W. Ash

Significance: This bridge is one of only two concrete through girder spans in the state. It is also among the first bridges designed by the state for construction by a county. The builder, hired by the county, left his name and the date of construction incised on the concrete end post.
Character Defining Features: Structure type, Builder name
Alterations: The bridge has been bypassed by the highway system, but remains open to pedestrian traffic.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51T102</td>
<td>BNSF, N Willamette Blvd</td>
<td>207</td>
</tr>
<tr>
<td>51T104</td>
<td>BNSF, N Fessenden St</td>
<td>207</td>
</tr>
<tr>
<td>0M089</td>
<td>BNSF, N Lombard St (US 30 Bypass)</td>
<td>207</td>
</tr>
<tr>
<td>09685</td>
<td>BNSF, NE Columbia Blvd</td>
<td>207</td>
</tr>
<tr>
<td>01377A</td>
<td>Columbia River, Hwy 1 NB</td>
<td>221</td>
</tr>
<tr>
<td>07333</td>
<td>Columbia River, Hwy 1 SB</td>
<td>221</td>
</tr>
<tr>
<td>01377C</td>
<td>Columbia Slough, Hwy 1E</td>
<td>221</td>
</tr>
<tr>
<td>04517</td>
<td>Columbia Slough & N Schmeer Rd Conn, Hwy 1W</td>
<td>228</td>
</tr>
<tr>
<td>04518</td>
<td>N Columbia Blvd & UPRR, Hwy 1W</td>
<td>228</td>
</tr>
<tr>
<td>05290</td>
<td>UPRR, Hwy 1E</td>
<td>229</td>
</tr>
<tr>
<td>25B06</td>
<td>UPRR, N Vancouver Ave</td>
<td>229</td>
</tr>
<tr>
<td>25B01</td>
<td>UPRR & SPRR, N Burgard St</td>
<td>229</td>
</tr>
<tr>
<td>06497</td>
<td>Willamette River & Hwy 2W NB & UPRR, Hwy 123</td>
<td>231</td>
</tr>
<tr>
<td>06498</td>
<td>Mills St, Hwy 123</td>
<td>232</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>25B15</td>
<td>MacLeay Park, NW Thurman St</td>
<td>206</td>
</tr>
<tr>
<td>02757</td>
<td>Willamette River, Hawthorne Ave</td>
<td>209</td>
</tr>
<tr>
<td>06683</td>
<td>Willamette River, Hwy 1W</td>
<td>210</td>
</tr>
<tr>
<td>06757</td>
<td>Willamette River, Broadway St</td>
<td>212</td>
</tr>
<tr>
<td>25B14</td>
<td>Canyon, NW Alexandra Ave</td>
<td>223</td>
</tr>
<tr>
<td>25B36</td>
<td>SW Jefferson St, SW Vista Ave</td>
<td>224</td>
</tr>
<tr>
<td>00511</td>
<td>Willamette River, Burnside St</td>
<td>225</td>
</tr>
<tr>
<td>05054</td>
<td>Willamette River & Hwy 1 & OPR, Hwy 26</td>
<td>226</td>
</tr>
<tr>
<td>25B18</td>
<td>NW Maywood Dr Semi-Viaduct</td>
<td>233</td>
</tr>
<tr>
<td>02758</td>
<td>Willamette River, Morrison St</td>
<td>237</td>
</tr>
<tr>
<td>02529</td>
<td>Willamette River, Hwy 61</td>
<td>238</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>25T01</td>
<td>SW Bertha Blvd, SW Capitol Hwy</td>
<td>220</td>
</tr>
<tr>
<td>25T03</td>
<td>SW Multnomah Blvd, SW Capitol Hwy</td>
<td>227</td>
</tr>
<tr>
<td>01983</td>
<td>SW Newbury St Viaduct, Hwy 1W</td>
<td>234</td>
</tr>
<tr>
<td>01984</td>
<td>SW Vermont St Viaduct, Hwy 1W</td>
<td>234</td>
</tr>
<tr>
<td>02010</td>
<td>SW Multnomah Blvd, Hwy 1W</td>
<td>234</td>
</tr>
<tr>
<td>25B58</td>
<td>Johnson Creek, SE Ochoco St</td>
<td>236</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>02019</td>
<td>Sandy River, Historic Columbia River Hwy</td>
<td>211</td>
</tr>
<tr>
<td>04522</td>
<td>Beaver Creek, Historic Columbia River Hwy</td>
<td>211</td>
</tr>
<tr>
<td>11112</td>
<td>Sandy River, Stark St</td>
<td>213</td>
</tr>
<tr>
<td>04524</td>
<td>Crown Point Viaduct</td>
<td>214</td>
</tr>
<tr>
<td>04527</td>
<td>Latourell Creek Bridge</td>
<td>214</td>
</tr>
<tr>
<td>04528</td>
<td>Youngs Creek Bridge</td>
<td>214</td>
</tr>
<tr>
<td>00823</td>
<td>Bridal Veil Falls Bridge</td>
<td>216</td>
</tr>
<tr>
<td>11113</td>
<td>Draw, Stark St</td>
<td>219</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>04533</td>
<td>Wahkeena Creek Bridge (Gordon Creek)</td>
<td>216</td>
</tr>
<tr>
<td>00840</td>
<td>West Multnomah Falls Viaduct</td>
<td>216</td>
</tr>
<tr>
<td>04534</td>
<td>Multnomah Creek Bridge</td>
<td>216</td>
</tr>
<tr>
<td>00841</td>
<td>East Multnomah Falls Viaduct</td>
<td>216</td>
</tr>
<tr>
<td>04542</td>
<td>Oneonta Gorge Creek Bridge (Old)</td>
<td>216</td>
</tr>
<tr>
<td>04543</td>
<td>Horsetail Falls Bridge</td>
<td>216</td>
</tr>
<tr>
<td>02194</td>
<td>Moffett Creek Bridge</td>
<td>216</td>
</tr>
<tr>
<td>02062</td>
<td>Tanner Creek Bridge</td>
<td>218</td>
</tr>
<tr>
<td>17490</td>
<td>Toothrock Viaduct</td>
<td>218</td>
</tr>
<tr>
<td>17492</td>
<td>Eagle Creek Viaduct</td>
<td>218</td>
</tr>
<tr>
<td>02063A</td>
<td>Eagle Creek Bridge</td>
<td>218</td>
</tr>
</tbody>
</table>
Bridge Number: 2SB15

Year Built: 1905

Common Name: Balch Gulch Bridge

Location: Over Balch Gulch at Forest Park

Lat/Long: 45 32 08, -122 42 45

Description: One 180-foot pin-connected hanging Pratt deck truss on steel trestles

Designer: J.B.C. Lockwood

Significance: This bridge is the only remaining pin-connected deck truss in the state and one of only four hanging truss designs. Built during the Lewis and Clark Exposition of 1905, the bridge cost the city of Portland $35,000. The bridge now crosses over MacLeay Park, a popular pedestrian area.

Character Defining Features: Structure type, Connections, Location

Alterations: The bridge has received a number of repairs, including: a deck and rail replacement in 1951; adding steel struts to tighten the lower chord and some diagonals in 1978; and adding a new pedestrian fence and possibly the sidewalk.
North Portland Railroad Overcrossing

Owner: BNSF Railroad (Trusses)

Year Built: 1909

Location: Across the Portsmouth Cut, in North Portland’s Peninsula district

Designer: Ralph Modjeski

Significance: These bridges were all built by the Spokane, Portland, and Seattle Railroad as part of a 4.75 mile long complex of bridges, cuts and causeways between the Columbia River and the Willamette River. All three truss bridges use riveted connections, making them Oregon's earliest extant uses of this technology in highway bridge construction. They are also 3 of the 4 remaining hanging deck trusses in the state. The pony girder span is also the earliest extant highway bridge of its type in Oregon, though the type was commonly used for railroad bridges throughout the early 20th century.

Character Defining Features: Decorative railing, Location, Structure types, Connections

Alterations: Due to the private ownership, the alterations on the trusses have not been well documented, though there have certainly been members of all of the trusses replaced. The pony girder bridge was widened with additional steel girders in 1968, and had the deck and rails replaced in 1988.

BNSF, N Willamette Blvd

Bridge Number: 51T102

Description: Three 90-ft hanging riveted steel Warren deck trusses on steel trestles

Lat/Long: 45 34 56, -122 44 27

BNSF, N Fessenden St

Bridge Number: 51T104

Lat/Long: 45 35 31, -122 43 45

Description: One 90-ft hanging riveted steel Warren deck truss on steel trestles

BNSF, N Lombard St (US 30 Bypass)

Bridge Number: 0M089

Lat/Long: 45 35 11, -122 44 09

Description: Three 90-ft hanging riveted steel Warren deck trusses on steel trestles

BNSF, NE Columbia Blvd

Bridge Number: 09685

Lat/Long: 45 35 34, -122 42 44

Description: Two span riveted steel pony girder
North Portland Railroad Overcrossing

Br 51T102

Br 51T104

Br 09685
Willamette River, Hawthorne Ave

Bridge Number: 02757

Year Built: 1910

Common Name: Hawthorne Bridge

Location: In Portland, Willamette River MP 13.2

Lat/Long: 45 30 48, -122 40 15

Description: One 244-ft steel Parker through truss lift span with five Parker secondary spans. Approach spans include a variety of different ramps, including steel girders and prestressed concrete beams.

Designer: Waddell & Harrington, Kansas City

Fabricator: Pennsylvania Steel Company, Portland

Builder: United Engineering & Construction Co., Portland (Superstructure); Robert Wakefield & Co., Portland (Substructure)

Significance: The Hawthorne Bridge is the oldest operating vertical lift bridge existing in the US. The lift span is raised approximately 200 times per month, with a maximum vertical lift of 110-ft. The riveted connections are also significant as an early use of this technology, as most steel trusses in Oregon from 1910 were still pin-connected. Since its construction, the traffic on the bridge has been multi-modal, including pedestrian, automobile and, for part of its life, electric streetcar.

Character Defining Features: Connections, Structure type, Location, Cantilevered lanes

Alterations: A major rehab occurred in 1999, including repainting, widening the sidewalk to accommodate bikes, and replacing many of the mechanical and electrical components of the lift span. The approach spans are all also additions to the bridge from 1941 and later.
Willamette River, Hwy 1W

Bridge Number 06683

Year Built 1912

Common Name: Steel Bridge
Owner: Southern Pacific Railroad
Location: In Portland, Willamette River MP 12.1
Lat/Long: 45 31 39, -122 40 09

Description: Three double-deck riveted Pratt trusses with the center truss being a 211-ft long two stage lift span.

Designer: Waddell & Harrington, Kansas City
Builder: Oregon-Washington Railway & Navigation Co. (Builder); United Engineering & Construction Co., Portland (Superstructure); Robert Wakefield & Co., Portland (Substructure)

Significance: The first bridge built at this location in 1888 used steel as its main building material, the first such occurrence in Portland, thus the name the Steel Bridge, which remains on the modern bridge. The current Steel Bridge replaced that first one in 1912, and maintained the tradition of innovation in bridge design set by its predecessor. At the time of its opening, the 1912 Steel Bridge claimed to be the largest telescoping bridge in the world. The telescoping, two-stage lift action of the bridge still functions, allowing the lower rail-carrying deck to lift without disturbing traffic on the upper deck. For larger vessels, both decks can be raised, giving a maximum clearance of 163-ft.

Character Defining Features: Structure type, Location, Decorative railing, Multimodal functionality, Mechanism

Alterations: Major alterations include the addition of a light rail line to the upper deck of the bridge and the addition of a pedestrian bridge on the lower deck.
Bridge Number: 02019

Year Built: 1912

Common Name: Troutdale Bridge

Location: In Troutdale, at the western entrance to the Historic Columbia River Highway

Lat/Long: 45 32 18, -122 22 36

Description: Two 162-ft riveted steel Pratt through truss main spans with a plate girder approach span

Designer: Waddell & Harrington, Consulting Engineers, Kansas City

Builder: Oregon Bridge & Construction Company, Portland; Northwest Steel Company, Portland (Fabricator)

Significance: Shortly after Multnomah County built the bridge on a county road, it became one of the two entry points to the new Columbia River Highway. In the early 1920s, OSHD took over the bridge as a part of US 30. It features a lacing rail on the inside of the truss and a sidewalk along the outside of the truss on the upstream side. Just west of the truss on the same road is the Beaver Creek Bridge (#04522), built at the same time by the county. It is a 40-ft concrete deck girder span with arched girders and a heavy concrete rail that has been recently restored.

Character Defining Features: Structure type, Nameplates, Decorative railings, Location relative to the Columbia River Highway

Alterations: The only major alterations to this bridge have been the replacement of the deck and sidewalks, and the loss of the masonry rail on one corner.
Bridge Number: 06757
Year Built: 1913

Common Name: Broadway Bridge
Location: In Portland, Willamette River MP 11.7
Lat/Long: 45 31 54, -122 40 28

Description: 278-ft double-leaf Rall-type bascule main span with four fixed Pennsylvania-Petit though trusses and one Pratt through truss secondary spans. The approach spans are steel plate girders.

Designer: Ralph Modjeski, Chicago; Strobel Engineering, Chicago (Bascule Span)

Builder: Pennsylvania Steel Co., Steelton, Pennsylvania (Superstructure); Union Bridge and Construction Co., Kansas City (Substructure)

Significance: As the first bascule span in Portland, the city explored many options for its design. This exploration led to the choice of the patented Rall bascule design, thought to be the cheapest of the proposed types. The rare Rall-type bascule uses large Rall wheels that enable the bascules to roll backward and upward as they open in order to clear a wider channel. In addition to the unique main span, the bridge also features distinctive granite-faced and topped piers on concrete-filled pneumatic caissons.

Character Defining Features: Bascule mechanism, Location, Decorative railing, Piers, Structure type

Alterations: Major alterations including the replacement of the deck, sidewalks, electrical system for the bascule, and adding the Lovejoy Street approach.
Bridge Number: 11112
Year Built: 1914

Common Name: Auto Club Bridge
Location: Next to the Portland Automobile Club near the west end of the historic Columbia River Highway
Lat/Long: 45 30 55, -122 21 41
Description: One 200-ft Parker through truss main span with a 77-ft polygonal Warren pony truss secondary span
Builder: George H. Griffin of Portland Bridge Company
Significance: The Stark Street Bridge is one of the two entrances to the historic Columbia River Highway (the other being the Troutdale Bridge, #02019). One of the first truss bridges built by the newly formed Oregon State Highway Commission for the county, it replaced a timber truss at this location that had fallen into the river on Good Roads Day in 1914. Despite its connection to the historic state highway, the bridge has always been owned by Multnomah County.
Character Defining Features: Structure type, Nameplates, Location relative to the Columbia River Highway
Alterations: The county added a timber sidewalk to the north side of the bridge in the 1990s. Additionally, a number of stiffening plates and pair of lower chord tie rods were added to strengthen the main truss.
Columbia River Highway Bridges
In Multnomah County

Location: On the historic Columbia River Highway along the Columbia River Gorge between the town of Troutdale and the border with Hood River county. Bridges are listed in order from west to east.

Designers: Samuel C. Lancaster (Highway Engineer), Charles H. Purcell (State Bridge Engineer), H.K. Billner and L.W. Metzger (Design Engineers)

Date Range: 1914-1915

Significance: The construction of the Columbia River Highway marked the first concerted highway building effort between the newly created Oregon State Highway Commission and the counties through which it passed. Championed by a number of notable Oregonian’s, including Simon Benson, John B. Yeon, Samuel Hill, Julius Meier and Rufus Holman, it formed an important link between the east and west of Oregon and served as a scenic route, showcasing the beautiful Columbia River Gorge. In order to match the scenic qualities of the gorge and meet the most modern highway standards of the day, the many bridges required along the route were designed to be both graceful and strong. To accomplish this at each differing site, the engineers designed a wide variety of bridge types, including many concrete deck arches, often meant to be viewed from pedestrian lookouts. Together, the 25 bridges and viaducts stretching across three counties comprise one of the finest collections of reinforced concrete structures in America.

Character Defining Features: Location on historic Columbia River Highway, Decorative features and railings, Structure type

Alterations: When the state highway department constructed a water-level route along the Gorge in 1937, they converted the historic highway to a local access secondary highway. This process resulted in the loss of some segments. A number of the bridges have had repairs in-kind, primarily to railings.

Crown Point Viaduct
Bridge Number: 04524
Lat/Long: 45 32 19, -122 14 41
Description: Twenty-eight 20-ft reinforced concrete slab spans as a half-viaduct surrounding Crown Point, a rock promontory overlooking the Gorge

Latourell Creek Bridge
Bridge Number: 04527
Lat/Long: 45 32 19, -122 13 08
Description: Three 80-ft reinforced concrete braced-spandrel arches

Youngs Creek Bridge
Common Name: Shepperds Dell Bridge
Bridge Number: 04528
Lat/Long: 45 32 48, -122 11 52
Description: One 100-ft reinforced concrete open-spandrel parabolic deck arch
Columbia River Highway Bridges
In Multnomah County

Br 04524

Br 04527

Br 04528
Columbia River Highway Bridges

In Multnomah County

Bridal Veil Falls Bridge

- **Bridge Number:** 00823
- **Lat/Long:** 45 33 15, -122 10 49
- **Description:** Reinforced concrete through girder bridge with diagonal support piers

Wahkeena Creek Bridge (Gordon Creek)

- **Bridge Number:** 04533
- **Lat/Long:** 45 34 32, -122 07 41
- **Description:** One 15-ft reinforced concrete slab span with masonry faced abutments

West Multnomah Falls Viaduct

- **Bridge Number:** 00840
- **Lat/Long:** 45 34 35, -122 07 14
- **Description:** Twenty 20-ft half-viaduct slab spans above the railroad tracks

Multnomah Creek Bridge

- **Bridge Number:** 04534
- **Lat/Long:** 45 34 40, -122 07 01
- **Description:** One 40-ft filled-spandrel barrel arch below Multnomah Falls

East Multnomah Falls Viaduct

- **Bridge Number:** 00841
- **Lat/Long:** 45 34 45, -122 06 39
- **Description:** Eighty-six 10-ft reinforced concrete half-viaduct slab spans above the railroad tracks

Oneonta Gorge Creek Bridge (Old)

- **Bridge Number:** 04542
- **Lat/Long:** 45 35 23, -122 04 31
- **Description:** Four 20-ft reinforced concrete slab spans on the approach to the Oneonta Tunnel. It was made pedestrian and bypassed by bridge #07108A in 1948.

Horsetail Falls Bridge

- **Bridge Number:** 04543
- **Lat/Long:** 45 35 25, -122 04 09
- **Description:** Three 20-ft reinforced concrete slab spans

Moffett Creek Bridge

- **Bridge Number:** 02194
- **Lat/Long:** 45 37 25, -121 58 39
- **Description:** One 170-ft low-rise three-hinged open-spandrel reinforced concrete deck arch. It is on an abandoned highway alignment and now part of the Historic Columbia River Highway State Trail.
Columbia River Highway Bridges
In Multnomah County

Br 04534

Br 00841

Br 04542

Br 04543
Columbia River Highway Bridges
In Multnomah County

Tanner Creek Bridge
Bridge Number: 02062
Lat/Long: 45 37 52, -121 57 17
Description: One 60-ft reinforced concrete deck girder on the Historic Columbia River Highway State Trail

Toothrock and Eagle Creek Viaducts
Bridge Number: 17490 and 17492
Lat/Long: 45 38 18, -121 56 11
Description: Two reinforced concrete deck girder half-viaducts for 224-ft in total length. They were abandoned with the completion of the Toothrock Tunnel in 1936, they are now on the Historic Columbia River State Trail.

Eagle Creek Bridge
Bridge Number: 02063A
Lat/Long: 45 38 28, -121 55 41
Description: One 60-ft reinforced concrete, closed-spandrel, semi-circular deck arch with a masonry façade. The bridge now accesses the state fish hatchery and recreation areas at Eagle Creek.
Bridge Number: 11113
Year Built: 1915

Common Name: Stark Street Viaduct

Location: On Stark Street, above the south bank of the Sandy River, west of bridge #11112

Lat/Long: 45 30 40, -122 22 19

Description: One 64-ft closed-spandrel rib-type deck arch

Designer: Karl P. Billner

Significance: The completion of the Stark Street Viaduct provided an alternate access point to the newly constructed historic Columbia River Highway. Due to the scenic location, the Sandy River side of the bridge features an ornate overlook area with benches and decorative light posts with a pinecone motif on the capiols. In 1940, the CCC repaired the bridge, adding the masonry retaining wall on the south side under the bridge. The names of the CCC crew remain in the concrete cap of the wall.

Character Defining Features: Structure type, Decorative light posts and railings, Masonry walls, CCC signatures, Location

Alterations: A rehab project in 2004 included a deck replacement, masonry repairs, a replica railing, and an interpretive sign.
Bridge Number: 2ST01
Year Built: 1915 (1929)

Location: Just west of Hillsdale
Lat/Long: 45 28 40, -122 41 54

Description: Seven reinforced concrete girder spans with small curved haunches

Significance: This bridge is one of the few remaining segments of the original route of the Capitol Hwy, later superseded by the West Side Highway. The bridge originally crossed over the Oregon Electric Railway. Widened with two additional girders in 1929, the bridge retains its early feel though the use of a replica of the original decorative railing. A short staircase provides pedestrian access to the underside of the bridge.

Character Defining Features: Decorative railing, Location

Alterations: A 2011 rehab project included repairs to the concrete and replaced the remaining 1915 railing with a replica.
Columbia River Crossing
“The Interstate Bridge”

Location: Crossing of the Columbia River, Columbia River Slough and nearby railroad tracks between Portland, Oregon and Vancouver, Washington

Date Range: 1916-1958

Significance: Prior to the completion of the first Interstate Bridge and associated structures, a ferry provided the only means for an automobile to cross the Columbia River between Oregon and Washington. By the early 20th century, the ferry had become inadequate and Multnomah County, Oregon and Clark County, Washington joined together to build a permanent crossing. When completed in 1917, the bridge carried automobile, pedestrian, and street car traffic for a small toll. By the middle of the century, the bridge had again become inadequate, and once again the states joined forces to create a parallel structure. The 1958 bridge, which now carries I-5 Southbound, imitates the design of the original bridge. As a part of the 1958 construction, spans on the south end of the original bridge were raised and replaced with longer spans to allow a secondary shipping channel. The project also involved widening the approach bridges so that they could accommodate the additional lanes of traffic.

Character Defining Features: Location over Columbia River, Decorative railings, Structure types

Alterations: In 1987, a new bridge replaced the bridge over Oregon Slough, at the south end of the Interstate bridges.

Columbia River, Hwy 1 NB

Bridge Number: 01377A
Lat/Long: 45 37 05, -122 40 31
Designer: Harrington, Howard and Ash of Kansas City
Builder: Pacific Bridge Company of Portland (Piers), American Bridge Company (Fabricator), Porter Brothers of Portland (Erector)
Description: 280-ft steel Pennsylvania-Petit through truss lift span with ten Pennsylvania through truss secondary spans

Columbia River, Hwy 1 SB

Bridge Number: 07333
Lat/Long: 45 37 05, -122 40 32
Description: Same as 01377A

Columbia Slough, Hwy 1E

Bridge Number: 01377C
Lat/Long: 45 35 12, -122 39 51
Description: Four 77-ft steel girder and floorbeam system spans
Columbia River Crossing
“The Interstate Bridge”

Br 01377A

Br 01377C
Canyon, NW Alexandra Ave

Bridge Number: 25B14
Year Built: 1922

Location: Near Forest Park, in the Northwest District of Portland
Lat/Long: 45 32 27, -122 43 23

Description: One 150-ft reinforced concrete braced-spandrel, rib-type deck arch with concrete trestle and beam approach spans

Designer: Fred T. Fowler (Design Engineer), Olaf Laurgaard (Lead Engineer)
Builder: Lindstrom and Feigenson

Significance: This bridge, the only access to the White Shield Center of the Salvation Army, replaced a dangerous timber trestle for a planned housing development called Blythewood. Due to the difficult site and the need for great economy, Fowler and Laurgaard selected the braced-spandrel design, where the arch is composed of separate chord members. This enabled a faster and easier construction, with the old trestle serving as falsework for the new structure. The bridge is one of the earliest designed by Fowler, who went on to design Portland’s iconic Vista Avenue Viaduct.

Character Defining Features: Nameplate, Structure type, Location

Alterations: The only known alteration is the replacement of the precast concrete panels in the railing with picket rail segments some time during the 1940s.
Common Name: Vista Avenue Viaduct
Location: In western Portland, north of US 26
Lat/Long: 45 31 09, -122 41 52
Description: One 248-ft reinforced concrete open-spandrel, rib-type deck arch
Designer: Fred T. Fowler (Design Engineer)
Builder: Parker & Banfield Contractors
Significance: This monumental structure is one of the most recognizable features in Portland. In recognition of this prominent location, the bridge exhibits a great deal of decorative detail, including ornamental lampposts, pylons, pebble-dashed inset panels, scrollwork, and a spindle-type balustrade railing. The bridge also accommodates pedestrians with four overlooks providing views across Portland to Mt. Hood. It has long been recognized as historic and protected by the city since 1984.
Character Defining Features: Nameplate, Decorative details and railing, Structure type, Location
Willamette River, Burnside St

Bridge Number: 00511
Year Built: 1926

Common Name: Burnside Bridge
Location: In downtown Portland
Lat/Long: 45 31 23, -122 40 03

Description: 252-ft double-leaf Strauss bascule main span with two 266-ft riveted steel double-intersection Warren deck truss secondary spans and thirty-four steel deck girder approach spans

Designer: I.G. Hedrick and Robert Kremers (Original Design), Gustav Lindenthal (Lead Engineer), Joseph Strauss (Bascule Design)

Builder: Pacific Bridge Company

Significance: One of the lesser known features of the Burnside Bridge is the corruption involved in building it. The county brought in Lindenthal to complete the design and supervise construction after the arrest of Kremers for bribery and collusion, resulting in the replacement of the county commissioners. The bridge replaced a pin-connected steam-powered swing span from 1894 that could no longer keep up with the demands of the 1920s motoring public. Due to its location in the middle of downtown, a number of decorative treatments are featured, including a balustrade railing and octagonal Italianate operator’s houses designed by Architects Houghtaling & Dougan.

Character Defining Features: Decorative features, Operator houses, Railings, Structure type, Location
Willamette River & Hwy 1 & OPR, Hwy 26

Bridge Number: 05054
Year Built: 1926

Common Name: Ross Island Bridge
Location: US 26 crossing of the Willamette River
Lat/Long: 45 30 05, -122 40 02
Description: 1819-ft cantilever deck truss with a 535-ft arch shaped main span
Designer: Gustav Lindenthal
Builders: Booth & Pomeroy (Main Structure), Lindstrom & Feigenson (Approaches), American Bridge Company (Steel Fabricator)

Significance: This bridge, constructed by Multnomah County during the largest period of bridge building in Portland, was the first among the set to truly recognize the arrival of the automobile era. Designed to be high enough above to river that it did not require a movable span, the bridge allows for the free flow of automobile traffic. The bridge later became part of US 26, resulting in its eventual acquisition by the state in 1976.

Character Defining Features: Railing, Structure type, Location

Alterations: A significant rehabilitation in 2001 included a deck overlay, a new drainage system and a strengthened railing. In addition, the approaches to the bridge have been altered a number of times as the street network around the bridge has changed.
SW Multnomah Blvd, SW Capitol Hwy

Bridge Number
2ST03

Year Built
1927

Location: Just west of Multnomah Village

Lat/Long: 45 28 02, -122 42 56

Description: Nine 60-ft reinforced concrete girder spans with varying skews

Significance: This bridge allowed Capitol Highway, then a major route to Salem, to avoid a grade crossing of the Oregon Electric Railway, which has since been replaced by Multnomah Blvd. The Multnomah Boosters Club promoted the structure to the county, who constructed it with assistance from the railway. The bridge has minimal decorative features aside from a simple concrete railing with arched openings.

Character Defining Features: Decorative railing, Location, Connection to Oregon Electric Railway
West Side Highway Bridges

In Portland

Location: At the north end of the West Side Highway, on the approach to the Interstate Bridge

Date Range: 1929

Significance: In the late 1920s, increased traffic on the West Side Highway led to a major revision in how the highway approached the Interstate Bridge, then the only Portland area crossing into Washington State. Prior to this redesignation, the West Side Highway ended at downtown Portland, with only the Pacific Highway continuing over the bridge. These new bridges were designed to match those on the Pacific Highway, and continued to be a major part of the approach until the construction of I-5. They both feature a unique baluster railing, which is now mostly hidden behind protective wooden paneling.

Character Defining Features: Location, Structure types, Decorative railing

Columbia Slough & N Schmeer Rd Conn, Hwy 1W

Bridge Number: 04517
Lat/Long: 45 35 23, -122 41 13
Description: Three 78-ft steel girder and floorbeam system spans with reinforced concrete deck girder approach spans

N Columbia Blvd & UPRR, Hwy 1W

Bridge Number: 04518
Lat/Long: 45 35 09, -122 41 13
Description: Thirteen 71-ft reinforced concrete girder and floorbeam system spans with curved haunches
North Portland Railway Crossing Bridges

Location: In various parts of North Portland, over UPRR tracks
Date Range: 1916-1930. Bridges are listed chronologically.
Significance: The cities in Oregon have historically been in charge of their own bridge design, though with the right to call on the state for help. In North Portland, this independent design, combined with the large number of rail lines to be crossed, resulted in a collection of substantial bridges with unusual designs. The most notable features of these bridges are their distinctive railing design. Two of the bridges also have large bronze nameplates prominently noting the city officials, indicating the honor involved in the building of bridges. It is likely that other bridges were also built in the same era, but have since been replaced.
Character Defining Features: Location, Structure types, Decorative railings, Nameplates

UPRR, Hwy 1E
Bridge Number: 05290
Year Built: 1916
Lat/Long: 45 34 44, -122 39 41
Description: Nine 25-ft reinforced concrete beam spans with a concrete parapet railing with elongated hexagonal openings. "Union St" is incised on the end posts of the rail. Though originally constructed by the city, the state later acquired the bridge to connect the Pacific Highway across the Interstate Bridge.

UPRR, N Vancouver Ave
Bridge Number: 25806
Year Built: 1929
Lat/Long: 45 34 50, -122 40 05
Description: Nineteen 21-ft reinforced concrete girder and floorbeam system spans with curved haunches. The bridge has a panelized rail with hourglass-like openings.
Alterations: The bridge has had protective fencing installed under many of the spans.

UPRR & SPRR, N Burgard St
Bridge Number: 25801
Year Built: 1930
Lat/Long: 45 36 23, -122 45 59
Designer: Fred T. Fowler
Description: Six 21-ft reinforced concrete arched slab spans on wall-like piers with arched openings. The bridge has a concrete rail with narrow gothic openings.
Alterations: The bridge was widened with timber spans in 1950 which were then removed in 1968.
North Portland Railway Crossing Bridges

Br 05290

Br 25B06

Br 25B01
Willamette River & Hwy 2W NB & UPRR, Hwy 123

Bridge Number 06497

Year Built 1931

Common Name: St. Johns Bridge

Location: US 30 over the Willamette River in North Portland

Lat/Long: 45 35 06, -122 45 52

Description: 1207-ft steel suspension main span with riveted steel deck truss approach spans for a total length of 3608-ft

Designer: David B. Steinman and Holton D. Robinson

Builders: Gilpin Construction (Contractor), John A. Roebling's Sons Co. (Cable Design/Fabrication), Lindstrom & Feigenson (Contractor), Wallace Bridge & Structural Steel Company (Steel Fabricator)

Significance: As the largest and earliest of Oregon's three extant suspension bridges, the St. Johns Bridge is one of the most significant structures in the state. The designer, internationally-famous David B. Steinman, identified this bridge as his favorite among all those he built. Innovative for its time, it featured the highest concrete rigid frame piers in the world, the first use of main steel towers without diagonal bracing, and the use of prestressed rope strands instead of the conventional parallel wire cable construction. It also incorporated a number of decorative features, including its gothic arched details, large copper spires, a decorative steel railing and ornamentation on the concrete piers. The gothic arched details of this bridge may have influenced McCullough's later bridge designs.

Character Defining Features: Structure type, Location, Decorative details, Railing, Nameplate, Distinctive color

Alterations: A significant rehabilitation was completed in 2005.
Bridge Number
06498

Year Built
1931

Location: Northwest of the St. Johns Bridge carrying US 30 over a small gorge

Lat/Long: 45 35 04, -122 46 14

Description: Five riveted steel plate girder and floorbeam spans coated in concrete with the longest span being 90-ft

Significance: Built as part of the St. Johns Bridge project and also designed by David Steinman, this bridge enables the long approach route to the western end of the large suspension bridge. It is not known why Steinman selected a concrete coated steel design for this location, but it makes this the only known example of concrete coated plate girder main spans in the state. The bridge has a number of decorative elements, including curved brackets at the ends of the beams and an unusual concrete baluster railing.

Character Defining Features: Decorative railing, Location, Structure type

Alterations: A rehabilitation in 2002 included replacing the balusters with replicas and patching the concrete coating.
<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>25B18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1934</td>
</tr>
<tr>
<td>Location:</td>
<td>At NW Melinda Avenue</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>45 31 39, -122 42 21</td>
</tr>
<tr>
<td>Description:</td>
<td>Nine 13-ft reinforced concrete frame spans with an arched façade</td>
</tr>
<tr>
<td>Significance:</td>
<td>The significant aspect of this relatively simple structure is the arched façade on the frame spans which give the bridge the appearance of a Roman aqueduct. It is unknown why this sort of bridge would have been constructed in this neighborhood. Along the road underneath the viaduct is a large amount of stone masonry that may be the remnants of the previous bridge or roadway.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Railing, Location, Structure type</td>
</tr>
</tbody>
</table>
Later West Side Highway Bridges

Location: On OR 99W, at the southern edge of Portland. Bridges are listed from north to south.

Date Range: 1934-1935

Significance: Originally constructed in the late 1910s and early 1920s, the West Side Highway is the counterpart to the Pacific Highway on the other side of the Willamette River. In the mid-1930s OSHD relocated the route to join with the four-lane Barbur Boulevard to enter Portland. This required a series of new bridges to take the newly widened roadway over the hills and other obstacles just south of downtown.

Character Defining Features: Location, Structure types, Decorative features, Railings, Nameplate

SW Newbury St Viaduct, Hwy 1W

Bridge Number: 01983
Lat/Long: 45 28 47, -122 40 49

Description: Thirteen span timber trestle with a 29-ft maximum span with decorative pylons and concrete and timber panel railing

Alterations: Some of the timbers have been replaced with steel, and steel 2 tube railing has been added in front of the timber panels.

SW Vermont St Viaduct, Hwy 1W

Bridge Number: 01984
Lat/Long: 45 28 34, -122 40 47

Description: Eighteen span timber trestle with a 38-ft maximum span and decorative pylons and concrete and timber panel railing

Alterations: Some of the timbers have been replaced with steel, and steel 2 tube railing has been added in front of the timber panels.

SW Multnomah Blvd, Hwy 1W

Bridge Number: 02010
Lat/Long: 45 27 54, -122 41 56

Description: Three span continuous reinforced concrete deck girder bridge with a 70-ft maximum span on a 47-degree skew. The bridge originally crossed over the Oregon Electric Railway.

Alterations: The railway was replaced by Multnomah Blvd, changing the context of the bridge.
Later West Side Highway Bridges
Johnson Creek, SE Ochoco St

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>25B58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1947</td>
</tr>
<tr>
<td>Location:</td>
<td>Near 21st Street in southeast Portland</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>45 27 31, -122 38 31</td>
</tr>
<tr>
<td>Description:</td>
<td>One 40-ft reinforced concrete rigid frame span</td>
</tr>
<tr>
<td>Designer:</td>
<td>Geary Kimbrell for Portland City Engineer Ben S. Morrow</td>
</tr>
<tr>
<td>Builder:</td>
<td>Johnson-Sterner Corporation</td>
</tr>
<tr>
<td>Significance:</td>
<td>This bridge is significant as an intact example of a slab-type rigid frame structure, which is a rare type in Oregon. Designed by the city, it improved access to the Kellogg Park Housing Project, which had housed soldiers during WWII. As is common with Portland structures, the bridge features an unusual railing that adds to the appeal of the visually simple structure.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Decorative railing, Structure type</td>
</tr>
</tbody>
</table>
Common Name: Morrison Bridge
Location: In downtown Portland, between the Burnside and Hawthorne Bridges
Lat/Long: 45 31 04, -122 40 11
Description: One 284-ft riveted steel double-leaf Chicago-style bascule main span with one Pratt deck truss on each side and with steel plate girder approaches considered to be separate bridges
Designers: Sverdrup & Parcel, St. Louis; Moffatt, Nichol & Taylor, Portland
Builders: American Bridge Division of United States Steel Co (Steel Contractor); Manson Construction & Engineering (Substructure)
Significance: The third bridge to be built at this location, the current Morrison Bridge embodies the transition occurring in bridge engineering in the mid-century. While the previous two spans had been swing spans, the engineers utilized the bascule design to minimize the opening time in response to river traffic. Though the bascule span is an older technological development, the Morrison Bridge is an important expression of modernity, both for its design and for its construction method. The modern design is typified by the mechanical operator houses, which are designed to look like the air traffic control towers of that era. The bridge is also noteworthy for the construction method of the approach spans, which were constructed upriver and barged into place.
Character Defining Features: Structure type, Location, Overall style
Alterations: FRP deck replaced the steel grid deck on the bascule span and a pedestrian and bicycle path were added in 2012.

Willamette River, Hwy 61

Bridge Number: 02529

Year Built: 1973

Common Name: Fremont Bridge

Location: In Downtown Portland on I-405

Lat/Long: 45 32 17, -122 40 59

Description: Three span steel half-through tied arch with an orthotropic steel upper deck and steel box girder approach spans

Designers: Parsons, Brinckerhoff, Quade & Douglas, New York (Design), Werner Storch & Assoc., Portland (Concept)

** Builders**: Murphy Pacific Corp. (Main Contractor)

Significance: The long planned Fremont Bridge was a technological marvel at the time of its construction and it remains one of the most impressive bridges in the state. Its revolutionary design came following public outcry about the mundane design of the Marquam Bridge on I-5. In order to construct the massive arch span, the contractor assembled the center of the arch off-site, then brought it into place on barges, and lifted it from the river to its final position—the largest lift ever undertaken—it completed the longest bridge span in Oregon and the second longest tied arch in the world.

Character Defining Features: Structure type, Location, Overall style
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>53C063</td>
<td>Mill Creek, Old Military Rd</td>
<td>240</td>
</tr>
<tr>
<td>00871A</td>
<td>Berry Creek, Hwy 1W</td>
<td>241</td>
</tr>
<tr>
<td>00872A</td>
<td>Soap Creek, Hwy 1W</td>
<td>241</td>
</tr>
<tr>
<td>01251</td>
<td>Ritner Creek, Pedestrian</td>
<td>242</td>
</tr>
<tr>
<td>53C122</td>
<td>Luckiamute River, Helmick Rd</td>
<td>243</td>
</tr>
<tr>
<td>02081</td>
<td>South Yamhill River, Hwy 30</td>
<td>244</td>
</tr>
</tbody>
</table>
Mill Creek, Old Military Rd

Bridge Number: 53C063

Year Built: 1914 (1963)

Location: Just off Mill Creek Rd. NE of Mill Creek Park

Lat/Long: 44 59 42, -123 25 11

Description: One 72-ft riveted steel polygonal Warren pony truss with timber pile trestle approaches

Significance: This bridge appears to be one of the last known examples of the first state standard pony truss design from the early years of the State Highway Commission. It is unknown from whence this bridge came, so it is not possible to confirm the use of the state design. The only other known state standard trusses from 1914 have also been relocated and are now in private hands.

Character Defining Features: Structure type

Alterations: The county acquired the truss in 1963 and reassembled it using bolts.
Berry Creek, Hwy 1W

Bridge Number: 00871A
Year Built: 1923 (1943)
Location: 0.9 mi. north of Benton County Line
Lat/Long: 44 43 57, -123 13 23

Description: Each bridge is one standard 40-ft reinforced concrete beam span.

Significance: These bridges are significant mainly for their connection to Camp Adair, a WWII Army Base. Built in 1942 to serve as temporary housing for nearly 40,000 military personnel, Camp Adair formed the second largest city in Oregon at the time. In order to facilitate movement associated with the new city, the Oregon Highway Department rapidly widened 99W, despite limited resources. As a result, these two bridges were widened using reused railroad rails as the primary reinforcement. The workmanship is much cruder than that normally used on state bridges, and the difference in quality is readily apparent next to the original, much older, bridge. The widening also used a railing type that roughly replicated the original Type A rail, though cast-in-place, rather than precast.

Character Defining Features: Structure type, Workmanship, Railing, Connection with Camp Adair and West Side Highway

Soap Creek, Hwy 1W

Bridge Number: 00872A
Year Built: 1923 (1943)
Location: 0.6 mi. north of Benton County Line
Lat/Long: 44 43 52, -123 13 23
Ritner Creek, Pedestrian

Bridge Number
01251

Year Built
1927

Common Name: Ritner Creek Covered Bridge

Location: 17 mi. south of Dallas on Kings Valley Hwy (OR 223)

Lat/Long: 44 43 41, -123 26 31

Description: Covered 75-ft timber through Howe truss

Builder: Hamar & Curry Contractors

Significance: By 1976, the Ritner Creek Bridge was the last covered bridge on a state highway. When the state decided to replace it, Polk County residents voted to save the bridge as a pedestrian structure. The design of the bridge is based on a state standard with features that include: board & batten siding battered at the portals; five outlookers supporting decorative barge rafters; four state standard windows on each side; double-member chords with dapped timber packing blocks; bottom chord tension connections with external clamped steel channels and steel tie rods; diagonal compression members dapped into the chords; interior diagonals framing into timber angle blocks at the top chord; lateral bracing using steel tension rods and timber cross members which frame into timber angle blocks; upset threaded tension rods with riveted triple bearing plates; and floor beams supported on top of the bottom chord.

Character Defining Features: Covered bridge, Truss type, Siding, Outlookers, Windows, Chords, Connections, Upper bracing

Alterations: In 1976 the bridge was moved 50 ft onto new piers and approaches. The bridge was then given a complete rehab in 2007, including a new roof, the replacement of the end diagonals and some stringers and floor beams. The original appearance of the portals was also restored.
Luckiamute River, Helmick Rd

Bridge Number: 53C122

Year Built: 1928

Location: At Helmick State Park on a bypassed segment of OR 99W

Lat/Long: 44 46 56, -123 14 05

Description: One 100-ft riveted steel polygonal Warren pony truss main span with reinforced concrete deck girder approach spans

Builder: O.N. Pierce Contractors

Significance: This bridge, which was built along the West Side Highway, is a good example of the sorts of standard truss spans being built in the late 1920s. It features steel lacing railing on the truss span and a standard reinforced concrete rail on the approaches. When OSHD widened and rerouted 99W in the 1950s, they bypassed this segment of roadway from the system and transferred it to the county for local access.

Character Defining Features: Riveted trusses, Railings, Location on old West Side Highway
South Yamhill River, Hwy 30

Bridge Number: 02081
Year Built: 1935

Common Name: Wallace Bridge
Location: 24.7 mi. west of Salem on OR 22
Lat/Long: 45 03 20, -123 29 34

Description: Three span continuous riveted steel plate girder bridge

Significance: This bridge is the earliest known example of the use of the pin and hanger connection in a continuous steel girder bridge. This type of connection allows the design of longer spans by reducing bending in the girders, and became a common feature of steel bridges throughout the interstate building era of the 1960s. The bridge has no distinctive decorative features, though it does have the standard Type D bridge railing commonly found in urban areas.

Character Defining Features: Structure type, Railing
Alterations: Steel 2 tube rail has been added in front of the Type D railing.
Bridge Information

<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>02133</td>
<td>Spanish Hollow Creek, Hwy 2 Frontage Rd</td>
<td>246</td>
</tr>
<tr>
<td>00849A</td>
<td>Columbia River, Hwy 42</td>
<td>247</td>
</tr>
</tbody>
</table>
Spanish Hollow Creek, Hwy 2 Frontage Rd

Bridge Number: 02133
Year Built: 1936

Location: In Biggs on the old Columbia River Highway
Lat/Long: 45 40 16, -120 49 49

Description: Seven 70-ft reinforced concrete continuous deck girder spans with arched exterior girders and simple haunched interior girders

Designer: State Highway Department under C.B. McCullough and G.S. Paxson
Builder: Joplin & Eldon

Significance: While the Spanish Hollow Bridge does lie on the old Columbia River Highway, its construction did not coincide with the construction of the initial route. Instead, it was part of an effort in the mid-1930s to eliminate grade crossings with the railway along state highways. Due to its location on the scenic highway, the bridge is embellished with decorative features, including curved sidewalk brackets, arched exterior girders, a Gothic-type handrail and Art-Deco entry pylons.

Character Defining Features: Structure type, Location, Decorative features, Railing
Columbia River, Hwy 42

Bridge Number: 00849A
Year Built: 1962

Common Name: Sam Hill Memorial Bridge
Owner: WashDOT
Location: Across the Washington State Line near Biggs Junction
Lat/Long: 45 40 35, -120 50 10
Description: One 340-ft polygonal Warren through truss main span with plate girder approaches with a total length of 2567-ft
Designer: Charles Andrew, Chief Consulting Engineer, WA
Builder: Paul Jarvis, Inc for WA Toll Bridge Authority

Significance: This is one of the major Columbia River crossings. It is named for Sam Hill, one of main promoters of the Good Roads movement and the Columbia River Highway. Though designed and built by Washington State's Highway Department, OSHD paid half the cost.

Character Defining Features: Structure type, Location
Alterations: The deck and rails were replaced in 2008.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>02312</td>
<td>Short Sand Beach Creek, Hwy 9</td>
<td>249</td>
</tr>
<tr>
<td>02311</td>
<td>Necarney Creek, Hwy 9</td>
<td>249</td>
</tr>
<tr>
<td>01951</td>
<td>Half Viaducts, Hwy 9</td>
<td>249</td>
</tr>
<tr>
<td>02723</td>
<td>Neahkahnie Mountain Bridge</td>
<td>251</td>
</tr>
<tr>
<td>01217</td>
<td>Nehalem River, Hwy 46</td>
<td>251</td>
</tr>
<tr>
<td>00505</td>
<td>POTB RR, Hwy 9</td>
<td>251</td>
</tr>
<tr>
<td>57C60</td>
<td>Wilson River Overflow, Boquist Rd</td>
<td>251</td>
</tr>
<tr>
<td>01498</td>
<td>Wilson River Slough, Hwy 9</td>
<td>251</td>
</tr>
<tr>
<td>01499</td>
<td>Wilson River, Hwy 9</td>
<td>252</td>
</tr>
<tr>
<td>02202</td>
<td>West Beaver Creek, Hwy 9</td>
<td>252</td>
</tr>
<tr>
<td>02762</td>
<td>Beaver Creek, Hwy 9 at MP 80.32</td>
<td>252</td>
</tr>
<tr>
<td>01861</td>
<td>Little Nestucca River, Hwy 130 at MP 4.15</td>
<td>253</td>
</tr>
<tr>
<td>04805</td>
<td>Buck Creek, Hwy 32</td>
<td>254</td>
</tr>
<tr>
<td>01868</td>
<td>Wilson River, Hwy 37 at MP 5.78</td>
<td>255</td>
</tr>
<tr>
<td>05640A</td>
<td>Trask River, Hwy 131</td>
<td>256</td>
</tr>
</tbody>
</table>
Roosevelt Coast Highway
In Tillamook County

Location: Along the Pacific coast. On, or bypassed by, US 101 in Tillamook County. Bridges are listed from north to south.

Date Range: 1920-1940

Designer: Oregon State Highway Department under C.B. McCullough (through 1936), G.S. Paxson (after 1936)

Significance: Though a part of the overall state highway plan from the beginning, the Roosevelt Coast Highway took decades to complete. It traverses highly varied terrain, requiring a great deal of innovation in design and causing many delays to the eventual completion of the route. Partially due to this terrain, the Coast Highway features some of the most impressive bridges in the state, either for their design or for their scenic locations. Over the years, many of these bridges have remained in service on the highway, though a few have been bypassed as the route was realigned. Tillamook County has one of the largest collections of extant Coast Highway bridges, with a range of construction dates and structure types.

Character Defining Features: Location relative to Coast Highway, Decorative railings, Structure types

Alterations: Most of the bridges on the coast highway in Tillamook County are relatively untouched except for minor maintenance.

Short Sand Beach Creek, Hwy 9
Bridge Number: 02312
Year Built: 1937
Lat/Long: 45 45 44, -123 57 26
Description: Three span reinforced concrete deck girder bridge with haunched girders and minimal detailing aside from a floral panel railing

Necarney Creek, Hwy 9
Common Name: Sam Reed Bridge
Bridge Number: 02311
Year Built: 1937
Lat/Long: 45 45 24, -123 57 31
Description: 13 span curved steel deck girder bridge on steel trestle towers. Steel 2 tube railing has been added in front of original Gothic railing.

Half Viaducts, Hwy 9
Bridge Number: 01955, 01951, 01952, 01953
Year Built: 1940
Description: Four reinforced concrete half-viaducts around Neahkahnie Mountain with stone masonry façade walls, making them appear to be retaining walls. It is very difficult to access behind the walls.
Roosevelt Coast Highway
In Tillamook County

Br 02311

Br 02723

Br 01217

Br 00505
Roosevelt Coast Highway
In Tillamook County

Neahkahnie Mountain Bridge

Common Name: Chasm Bridge
Bridge Number: 02723
Year Built: 1937
Lati/Long: 45 44 35, -123 57 31
Description: One 59-ft reinforced concrete girder and floorbeam system span with arched girders and a stone masonry façade.

Nehalem River, Hwy 46

Common Name: Mohler Bridge
Bridge Number: 01217
Year Built: 1926
Builder: Portland Bridge Company
Lati/Long: 45 42 33, -123 51 31
Description: Two 100-ft riveted steel polygonal Warren pony truss spans with reinforced concrete deck girder approach spans. This bridge is on an old alignment of the Coast Highway.

POTB RR, Hwy 9

Common Name: Juno Bridge
Bridge Number: 00505
Year Built: 1931
Lati/Long: 45 29 21, -123 50 45
Description: Three 60-ft reinforced concrete deck girder spans with angled haunches on a high skew.

Wilson River Overflow, Boquist Rd

Bridge Number: 57C60
Year Built: 1920
Lati/Long: 45 28 47, -123 50 55
Description: Four 25-ft reinforced concrete beam spans on an old alignment of the Coast Highway.

Wilson River Slough, Hwy 9

Bridge Number: 01498
Year Built: 1931
Lati/Long: 45 28 46, -123 50 41
Description: Three span concrete continuous deck girder bridge with arched girders.
Roosevelt Coast Highway
In Tillamook County

Wilson River, Hwy 9
Bridge Number: 01499
Year Built: 1931
Lat/Long: 45 28 42, -123 50 40
Builder: Clackamas Construction Co.
Description: One 120-ft reinforced concrete tied-arch span, the first to be built in America. McCullough chose this new structure type for this location to avoid having to build cost prohibitive abutments for a traditional arch span. Alterations to the bridge include altering the portal bracing and adding 2-tube curb railing on the edge of the roadway.

West Beaver Creek, Hwy 9
Bridge Number: 02202
Year Built: 1914 (1939)
Lat/Long: 45 18 42, -123 50 15
Description: One 65-ft reinforced concrete, filled-spandrel, barrel-type deck arch span, widened on one side with two concrete girder spans in 1939. The arch span resembles a Luten design. A thrie-beam guardrail was added to both railings in 2005.

Beaver Creek, Hwy 9 at MP 80.32
Bridge Number: 02762
Year Built: 1916 (1940)
Lat/Long: 45 16 38, -123 49 36
Description: Three 40-ft reinforced concrete deck girder spans on a skew. It was widened on both sides with matching girders in 1940.
Little Nestucca River, Hwy 130 at MP 4.15

Bridge Number: 01861
Year Built: 1934
Location: On OR 130, 4.2 mi. east of US 101
Lat/Long: 45 07 28, -123 52 50
Description: One 90-ft riveted steel polygonal Warren pony truss with timber stringer approach spans
Designer: Oregon State Highway Department under C.B. McCullough
Significance: This pony truss is an example of the standard sort of trusses being built by the state during the 1930s. It is a slightly heavier than those built in the 1920s and has a wider deck to accommodate the increasing demands of traffic. Due to its remote location, this bridge has no notable decorative features.
Character Defining Features: Structure type, Railing
Buck Creek, Hwy 32

Bridge Number: 04805
Year Built: 1935

Location: 7.2 mi. southeast of Hebo on OR 22
Lat/Long: 45 08 55, -123 47 56

Description: Three span reinforced concrete slab bridge on heavy pi-shaped concrete piers

Designer: Bureau of Public Roads under H.R. Angwin

Significance: This bridge is part of a small collection of BPR designed bridges which were built for the Forest Service but now serve on a state highway. These bridges are characterized by their continuous concrete parapet railings with upside-down Roman style openings. The date is stamped on the end posts and there are no intermediate posts in the rail. The bridges also have distinctive concrete piers that lend them a slightly decorative element.

Character Defining Features: Structure type, Railing, Piers
Wilson River, Hwy 37 at MP 5.78

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>01868</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1939</td>
</tr>
</tbody>
</table>

Common Name: Mills Bridge
Location: 5.8 mi. east of US 101 on OR 6
Lat/Long: 45 28 19, -123 44 12
Description: Three span continuous riveted steel plate girder and floorbeam system bridge with arched girders on a 53-degree skew
Designer: Oregon State Highway Department under G.S. Paxson
Builder: Jacobsen-Jensen Co.
Significance: The significance of this bridge is largely derived from the its railing, which is made up of narrow steel bars arranged like a picket fence between concrete posts. It was chosen to "provid[e] minimum view obstruction" according to the 1938-1940 Biennial Report. Soon after the construction of the Mills Bridge, this railing type became a state standard, known as “Picket Rail", eventually being used on bridges throughout the 1940s. The bridge is also notable for its high skew and arched girders.
Character Defining Features: Structure type, Railing, Nameplate
Bridge Number: 05640A
Year Built: 1948
Common Name: Stillwell Bridge
Location: Just west of Tillamook on OR 131
Lat/Long: 45 27 22, -123 51 35
Description: One 100-ft riveted steel polygonal Warren pony truss with reinforced concrete slab spans on timber piles as approaches
Designer: Oregon State Highway Department under G.S. Paxson
Significance: This pony truss, which was one of the last to be built by the OSHD, was designed to maximize the clearance over the waterway, which is prone to flooding. Relative to most other pony trusses in the state, this truss appears quite heavy, with the vertical members made up of wide-flange beams. Despite its proximity to a town, the bridge has no notable decorative features aside from the standard concrete split-rail type handrail.
Character Defining Features: Structure type, Railing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>59C111</td>
<td>Umatilla River, Lee St Grade Rd</td>
<td>258</td>
</tr>
<tr>
<td>59C421</td>
<td>Dry Creek, Sams Rd</td>
<td>259</td>
</tr>
<tr>
<td>59C705</td>
<td>US Feed Canal, Rieth Rd at MP 2.21</td>
<td>260</td>
</tr>
<tr>
<td>59C706</td>
<td>Furnish Ditch, Rieth Rd at MP 2.96</td>
<td>260</td>
</tr>
<tr>
<td>59C708</td>
<td>Furnish Ditch, Rieth Rd at MP 3.79</td>
<td>260</td>
</tr>
<tr>
<td>59C721</td>
<td>Furnish Ditch, Rieth Rd at MP 4.94</td>
<td>260</td>
</tr>
<tr>
<td>59C752</td>
<td>Furnish Ditch, Rieth Rd at MP 5.14</td>
<td>260</td>
</tr>
<tr>
<td>59C751</td>
<td>Furnish Ditch, Rieth Rd at MP 5.92</td>
<td>260</td>
</tr>
<tr>
<td>59C568</td>
<td>Wildhorse Creek, Commercial St</td>
<td>262</td>
</tr>
<tr>
<td>59C356</td>
<td>Wildhorse Creek, Adams Rd</td>
<td>263</td>
</tr>
<tr>
<td>00624A</td>
<td>Umatilla River Bridge</td>
<td>264</td>
</tr>
<tr>
<td>01629</td>
<td>Juniper Point Half Viaduct</td>
<td>264</td>
</tr>
<tr>
<td>02561</td>
<td>East Fork Birch Creek, Hwy 28</td>
<td>266</td>
</tr>
<tr>
<td>02230A</td>
<td>Columbia River, Hwy 70 EB</td>
<td>267</td>
</tr>
<tr>
<td>59C483</td>
<td>Walla Walla River, Birch Creek Rd</td>
<td>268</td>
</tr>
</tbody>
</table>
Umatilla River, Lee St Grade Rd

Bridge Number: 59C111

Year Built: 1909

Common Name: 8th Street Bridge

Owner: City of Pendleton

Location: In Pendleton, 0.1 mi. north of Court Avenue

Lat/Long: 45 40 35, -118 46 47

Description: Two 150-ft pin-connected steel Pratt trusses

Builder: Columbia Bridge Company of Walla Walla, WA

Significance: This bridge is the only remaining member of a set of six bridges built to replace timber structures washed out by a flood. There are two nameplates on the bridge, one above the portal for the initial construction and one on an end post for the 1955 rehab by West Coast Steel Works of Portland.

Character Defining Features: Structure type, Pin-connected joints, Nameplate

Alterations: The 1955 rehab project included adding additional diagonals, replacing the deck and stringers, and possibly altering the entry portals. A stacked W-Beam rail was added at some point.
Bridge Number 59C421
Year Built Ca. 1913 (1928)
Location: North of Weston, just west of OR 11
Lat/Long: 45 51 29, -118 24 09
Description: One 40-ft riveted steel Warren pony truss
Significance: This bridge is a very rare example of a short span pony truss in Oregon. It is similar in design to those built by the Coast Bridge Company that was prominent elsewhere in the state, though there is no record of the Coast Bridge Company designing bridges in Umatilla County. Based on the lightweight design, the bridge dates from the early years of riveted truss building in the early 1910s, and it is unknown what was done in 1928 to justify that date in the bridge inventory.
Character Defining Features: Structure type
Alterations: In the 1990s, Umatilla County repaired the bridge using welds on the lower chord.
Old Oregon Trail Highway

Location: Along the Umatilla River between Echo and Rieth
Date Range: 1921-1922
Designer: Oregon State Highway Department under C.B. McCullough
Significance: The Old Oregon Trail Highway, an extension of the Columbia River Highway past where the Columbia River turns north into Washington, appears on the earliest state highway maps from 1914. Yet not until 1920 did construction begin on the route. While the terrain chosen for the route between Umatilla and Pendleton is mostly flat, the road did have to address a pair of irrigation canals that ran along the north bank of the Umatilla River. As a result, a set of six concrete beam bridges were built along the roadway between 1921 and 1922. Designated as US 30 in 1926, this section of highway was dropped from the state highway system with the completion of I-84 along a different alignment. Now the route, and the six bridges, are owned by Umatilla County and maintained as Rieth Road for local access.

Character Defining Features: Location on Old Oregon Trail Highway, Railing, Structure types

US Feed Canal, Rieth Rd at MP 2.21
Bridge Number: 59C705
Lat/Long: 45 43 55, -119 11 01
Description: 31-ft reinforced concrete beam span on a 13-degree skew

Furnish Ditch, Rieth Rd at MP 2.96
Bridge Number: 59C706
Lat/Long: 45 43 24, -119 10 29
Description: 23-ft reinforced concrete beam span on a 21-degree skew

Furnish Ditch, Rieth Rd at MP 3.79
Bridge Number: 59C708
Lat/Long: 45 43 13, -119 09 52
Description: 22-ft reinforced concrete beam span on a 14-degree skew

Furnish Ditch, Rieth Rd at MP 4.94
Bridge Number: 59C721
Lat/Long: 45 42 28, -119 09 01
Description: 23-ft reinforced concrete beam span

Furnish Ditch, Rieth Rd at MP 5.14
Bridge Number: 59C752
Lat/Long: 45 42 25, -119 08 47
Description: 25-ft reinforced concrete beam span on a 53-degree skew

Furnish Ditch, Rieth Rd at MP 5.92
Bridge Number: 59C751
Lat/Long: 45 41 60, -119 08 04
Description: 25-ft reinforced concrete beam span on a 34-degree skew
Old Oregon Trail Highway

Br 59C706

Br 59C708

Br 59C721

Br 59C705
Wildhorse Creek, Commercial St

Bridge Number: 59C568

Year Built: 1924

Location: In Adams

Lat/Long: 45 46 07, -118 33 33

Description: Three 18-ft reinforced concrete beam spans

Significance: This is one of the few bridges remaining from the original Oregon-Washington Highway, now OR 11. The plans show a 1919 design date, yet the bridge log indicates construction in 1924. This lag likely accounts for the use of Old Type B railing, which was more common on earlier bridges.

Character Defining Features: Structure type, Railing
Wildhorse Creek, Adams Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>59C356</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1924</td>
</tr>
</tbody>
</table>

Location: Between Pendleton and Adams on Adams Rd

Lat/Long: 45 42 16, -118 42 53

Description: One 80-ft riveted steel polygonal Warren pony truss

Significance: This bridge, on an old alignment of the Oregon-Washington Highway, is an intact example of a state standard pony truss from the mid-1920s. During that period, many similar trusses were built across the state, but very few remain, especially in their original location. The utilitarian design has no decorative features, but still manages to complement the rural setting. The only notable alteration is the addition of W-Beam Railing on the approaches.

Character Defining Features: Structure type, Location on old Oregon-Washington Highway
Columbia River Highway Bridges
In Umatilla County

Location: On the old route of the Columbia River Highway along the Columbia River in Umatilla County. Bridges are listed in order from west to east.

Designers: Oregon State Highway Department under C.B. McCullough

Date Range: 1925-1933

Significance: In 1917, when the Oregon State Highway Commission first surveyed the route of the Columbia River Highway beyond the Columbia River Gorge, they intended for the highway to run along the river as far as the town of Umatilla, before turning south as the Old Oregon Trail Highway. Instead, when construction of the highway reached Umatilla County in 1926, they decided to extend it to the Washington State Line, eventually designating this last segment as US 730. There are very few bridges along this portion of highway, and only two retain any sense of that original era.

Character Defining Features: Location on historic Columbia River Highway, Decorative features and railings, Structure type

Umatilla River Bridge
Bridge Number: 00624A
Year Built: 1925 (1950)
Lat/Long: 45 54 56, -119 21 09
Description: Three 110-ft reinforced concrete open-spandrel, rib-type deck arch spans with six reinforced concrete deck girder approach spans

Additional Significance: This bridge, which was widened with a similar structure in 1950, features a number of decorative details, including arched spandrel walls and arched façades on the approach spans. The widening replicates these features, though it replaced the railing with picket rail.

Alterations: In addition to the 1950 widening, this bridge received a rehab in 2012 which involved repairs to the concrete and a deck overlay. The railing has also been protected behind 2 Tube steel rail.

Juniper Point Half Viaduct
Bridge Number: 01629
Year Built: 1933
Lat/Long: 45 56 59, -119 03 36
Description: Twelve 29-ft reinforced concrete deck girder spans along the side of a bluff with masonry railing
Columbia River Highway Bridges
In Umatilla County

Br 00624A

Br 01629
East Fork Birch Creek, Hwy 28

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>02561</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1940</td>
</tr>
<tr>
<td>Location</td>
<td>In Pilot Rock, on US 395</td>
</tr>
<tr>
<td>Lat/Long</td>
<td>45 29 01, -118 50 03</td>
</tr>
<tr>
<td>Description</td>
<td>Three 18-ft reinforced concrete slab spans</td>
</tr>
<tr>
<td>Significance</td>
<td>This bridge is a good example of the simple slab structures that were commonly built around the state in the 1930s and 40s. The lack of ornamentation signals the coming era in the 1950s and 1960s of function-based design as seen in the Interstate bridges. The use of picket rail on the bridge is the only indication of its age.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure Type, Railing</td>
</tr>
<tr>
<td>Alterations</td>
<td>Strengthening beams were added at the bents in 2008.</td>
</tr>
</tbody>
</table>
Columbia River, Hwy 70 EB

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>02230A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1955</td>
</tr>
<tr>
<td>Common Name:</td>
<td>Umatilla Bridge</td>
</tr>
<tr>
<td>Owner:</td>
<td>WashDOT</td>
</tr>
<tr>
<td>Location:</td>
<td>On I-82 at Oregon-Washington State Line, near Umatilla</td>
</tr>
<tr>
<td>Lat/Long:</td>
<td>45 55 53, -119 19 43</td>
</tr>
<tr>
<td>Description:</td>
<td>Five span continuous Warren through truss with two 600-ft cantilevered spans flanked by shorter anchor spans. Approaches are steel plate girders.</td>
</tr>
<tr>
<td>Designer:</td>
<td>Tudor Engineering Company, San Francisco, CA</td>
</tr>
<tr>
<td>** Builders:**</td>
<td>American Bridge Co. (Superstructure, Fabricator); Austin Construction Co.; Cascade Construction Co.</td>
</tr>
<tr>
<td>Significance:</td>
<td>First proposed in the 1940s by Umatilla County Judge James Sturgis, the state considered the bridge to be a waste of money until the 1950s when ferry service became strained following the completion of the McNary Dam. Funded entirely by County Bridge Bonds, it operated as a toll bridge until paid off in 1974, and then transferred to the joint ownership of Oregon and Washington. The Umatilla Bridge is significant for its use of a multiple cantilever span design, which is unique for both states.</td>
</tr>
<tr>
<td>Character Defining Features:</td>
<td>Structure type, Location</td>
</tr>
<tr>
<td>Alterations:</td>
<td>The bridge received a significant rehab in 1989, including the removal of the sidewalk and the widening of the deck. The truss spans were also seismically retrofit at that time.</td>
</tr>
</tbody>
</table>
Walla Walla River, Birch Creek Rd

Bridge Number 59C483

Year Built 1956

Location: Just east of OR 11, near the Washington State Line

Lat/Long: 45° 58' 36", -118° 22' 35"

Description: One 110-ft welded steel Pratt pony truss

Builder: West Coast Steel Works (Fabricator)

Significance: This is the earliest extant example of an all welded truss in the state. Umatilla County constructed the bridge as a part of a collection of welded steel bridges of different types.

Character Defining Features: Structure type
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61C16</td>
<td>Grande Ronde River, Yarrington Rd</td>
<td>270</td>
</tr>
<tr>
<td>20189</td>
<td>Catherine Creek, Woodruff Lane</td>
<td>271</td>
</tr>
<tr>
<td>00718</td>
<td>Five Point Creek, Hwy 2 Frontage Rd Lt</td>
<td>272</td>
</tr>
<tr>
<td>00799</td>
<td>Grande Ronde River, Hwy 10 Frontage Rd</td>
<td>273</td>
</tr>
<tr>
<td>61C40</td>
<td>Indian Creek, Philberg Rd</td>
<td>274</td>
</tr>
<tr>
<td>00626</td>
<td>Grande Ronde River and UPRR, Hwy 6 Frontage Rd</td>
<td>275</td>
</tr>
</tbody>
</table>
Grande Ronde River, Yarrington Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>61C16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1906 (Site-1925)</td>
</tr>
</tbody>
</table>

Common Name: Palmer Junction Bridge
Location: 1 mi. southwest of Palmer Junction
Lat/Long: 45 42 07, -117 51 09
Description: One 150-ft and one 100-ft pin-connected steel Pratt through truss
Builder: P.S. Easterday & Company of Walla Walla, WA
Significance: Based on a nameplate that has since been lost, this bridge has been identified as constructed in 1906 by P.S. Easterday and Co. (later the Columbia Bridge Company). It is unknown what records date the relocation to 1925. The current location of the bridge connects it with the significant development of market roads in Union County during the 1920s. Additionally, the bridge is a significant example of pin-connected technology.
Character Defining Features: Connections, Structure type, Location on a Union County market road
Alterations: In 2008, a substantial rehab project replaced the deck, rails and floorbeams and some of the diagonal members.
Catherine Creek, Woodruff Lane

Bridge Number
20189

Year Built
1911 (Site-1930)

Location: 0.75 mi. north of OR 203 near Hot Lake Springs

Lat/Long: 45 15 12, -117 55 39

Description: One 60-ft riveted polygonal Warren pony truss span with low timber trestle approaches

Designer: Coast Bridge Co. of Portland

Significance: Based on the design, this is likely one of the two Coast Bridge Company bridges commissioned by the county near Imbler in 1911. Despite having been relocated, the Catherine Creek bridge is one of the most intact of the few remaining Coast Bridge Company truss designs.

Character Defining Features: Riveted connections, Structure type

Alterations: The only rehab work that has been done has been in-kind. This includes the relocation around 1930, where the truss was riveted back together in its new location.
Bridge Number: 00718
Year Built: 1921
Location: 0.6 mi. east of the Junction of I-84 with OR 244
Lat/Long: 45 20 50, -118 13 22
Description: One 60-ft riveted standard Warren pony truss span
Builder: Kelly & Lilly Contractors
Fabricator: American Bridge Co. at Lassig Plant
Significance: This bridge, based on the 1919 state standard, is the only extant example of a state designed standard Warren pony truss, rather than the state’s more common polygonal Warren type. This is also one of the few state designed trusses for which fabrication drawings are still available.
Character Defining Features: Connections, Structure type
Grande Ronde River, Hwy 10 Frontage Rd

Bridge Number: 00799

Year Built: 1922

Common Name: Old Rhinehart Bridge

Location: East of OR 82, 3 mi. south of Elgin

Lat/Long: 45 30 52, -117 55 42

Description: One 142-ft riveted steel Warren deck truss main span with reinforced concrete deck girder approach spans on both sides

Designer: OSHD under C.B. McCullough

Significance: The Old Rhinehart Bridge, which is the second oldest extant deck truss of its type, is a good example of the standard details in use in the early 1920s. These include the standard Old Type A railing and curved sidewalk brackets. Built to enable a crossing both of the river and a railroad line, the structure includes a high skew on the approach spans over the RR on the west end. The bridge has been completely abandoned for more than 30 years and is quite difficult to access with significant amounts of vegetation growing on and around the deck.

Character Defining Features: Riveted joints, Decorative features and railings, Structure type

Alterations: No work has been completed on the bridge since its abandonment.
Indian Creek, Philberg Rd

Bridge Number 61C40

Year Built 1922

Location: 0.15 mi. east of OR 82
Lat/Long: 45 32 09, -117 55 04
Description: Four 19-ft timber stringer spans on timber pile bents
Significance: This bridge, apparently based on an early standard design, is the earliest extant example of a timber stringer bridge in the state. Due to the dry climate in Union County and low traffic on the bridge, it is likely that many of the timbers are original.

Character Defining Features: Structure type, Material
Alterations: A reconstruction date of 1990 is given in the bridge files, but no major changes were noted. Minor alterations include a new timber deck.
Grande Ronde River and UPRR, Hwy 6 Frontage Rd

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>00626</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1924</td>
</tr>
</tbody>
</table>

Common Name: Upper Perry Arch
Location: Just east of I-84 exit 256
Lat/Long: 45 21 09, -118 10 14
Description: One 134-ft reinforced concrete open-spandrel, rib-type deck arch with four reinforced concrete deck girder approach spans
Designer: OSHD under C.B. McCullough
Builder: Union Bridge Company

Significance: The Perry Arch is one of the few examples of a McCullough designed deck arch in Eastern Oregon. Built as part of the Old Oregon Trail, the bridge has since been bypassed from all but local traffic. It features many of the decorative elements that are commonly found on McCullough's arches, including decorative sidewalk brackets, arched fascia curtain walls, and bush hammered inset panels.
Character Defining Features: Location on Old Oregon Trail, Decorative features and railings, Structure type
Alterations: The bridge received a major rehabilitation in 2009, which included significant repair or replacement above the arch ribs. The project also included building a viewing area and an interpretive kiosk at the east end of the bridge.
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32C62</td>
<td>Grande Ronde River, Redmond Grade Rd</td>
<td>277</td>
</tr>
<tr>
<td>63C114</td>
<td>Wallowa River, Deer Creek Rd</td>
<td>278</td>
</tr>
<tr>
<td>63B016</td>
<td>Prairie Creek, Depot St</td>
<td>279</td>
</tr>
<tr>
<td>63B012</td>
<td>Prairie Creek, West 2nd St</td>
<td>279</td>
</tr>
<tr>
<td>63C23</td>
<td>Lostine River, Lostine River Rd</td>
<td>280</td>
</tr>
</tbody>
</table>
Grande Ronde River, Redmond Grade Rd

Bridge Number: 32C62
Year Built: 1910

Common Name: Troy Bridge
Location: In Troy, serves as connection between the town and school
Lat/Long: 45 56 43, -117 27 02

Description: 175-ft pin-connected Pennsylvania-Petit through truss main span with a 60-ft riveted Warren pony truss secondary span
Builder: Columbia Bridge Company of Walla Walla, WA

Significance: The Troy Bridge is the longest Columbia Bridge Company truss extant in Oregon. It includes both a portal message with the construction date and builder, and a nameplate bearing the names of local officials. The combination of the pin-connected main span and the riveted approach show the transition going on in truss design. Currently, the bridge serves pedestrian traffic between Troy and the local school.

Character Defining Features: Connections, Nameplate and portal message, Structure type, Piers

Alterations: No records are available to document any changes to the bridge, though it has obviously had a deck and rail replacement and a few minor repairs to the portal frames.
Wallowa River, Deer Creek Rd

Bridge Number: 63C114

Year Built: 1911 (1940, 1964)

Location: Just south of OR 82, in Minam vicinity

Lat/Long: 45 37 15, -117 43 12

Description: One 110-ft riveted steel polygonal Warren pony truss

Designer: Coast Bridge Co.

Significance: Wallowa County first purchased the pony truss main span of this bridge from the Coast Bridge Company in January of 1911. By fall 1911, they had erected it across the Wallowa River just west of the town of Wallowa. The state continued to use the bridge for their crossing on OR 82, until it was judged insufficient in 1937. A few years after its replacement on that site, the truss was relocated to its current site in Minam where it provided the only direct access to the logging community of Minam-on-top.

Character Defining Features: Structure type, Connection to Minam

Alterations: In the flooding of 1964, the approaches of the truss were washed out, resulting in the truss being set upon new abutments in 1965. The railing likely dates to this repair.
Prairie Creek, Depot St

Bridge Number: 63B016
Year Built: 1921
Lat/Long: 45 25 24, -117 16 53

Prairie Creek, West 2nd St

Bridge Number: 63B012
Year Built: 1921
Lat/Long: 45 25 24, -117 16 48

Description: Each of these City of Enterprise owned bridges is a reinforced concrete, filled-spandrel, barrel-type deck arch with a solid concrete parapet. In addition to the two inventoried bridges, three culverts are also a part of the collection.

Location: In City of Enterprise, around the Enterprise city park

Designer: Daniel B. Luten

Significance: In the 1900s, the booming City of Enterprise built a number of major stone buildings and became a center for flour milling and the lumber industry in eastern Oregon. As the town grew, they needed new bridges, and, wanting them to last, they solicited bids for 6 concrete bridges to span Prairie Creek and the associated mill channels. It is likely that the contractor suggested the Luten designs and paid the patent fee.

Character Defining Features: Structure type, Designer, Parapet rail, Location

Alterations: ODOT replaced the largest bridge in the set in 1995, leaving only 5 of the original 6 bridges. One of the small bridges has only railings visible.
Lostine River, Lostine River Rd

Bridge Number: 63C23

Year Built: Ca. 1922 (1950)

Location: 8 mi. south of Lostine

Lat/Long: 45 24 30, -117 25 39

Description: One 80-ft riveted steel polygonal Warren pony truss

Significance: This truss bridge is a good example of a reused state standard pony truss. It may have been reused by the county following the relocation of OR 82, or it may have been designed for the county at an earlier time. It is mostly intact, with the exception of one end of the steel lacing rail.

Character Defining Features: Structure type, Railing

Alterations: The only known alteration was the relocation in 1950.
Bridge List

<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>65C63</td>
<td>Rock Creek Bridge</td>
<td>284</td>
</tr>
<tr>
<td>00498</td>
<td>Mosier Creek Bridge</td>
<td>284</td>
</tr>
<tr>
<td>00523</td>
<td>Hog Creek Canyon Bridge (Rowena Dell)</td>
<td>284</td>
</tr>
<tr>
<td>00524</td>
<td>Dry Canyon Creek Bridge</td>
<td>286</td>
</tr>
<tr>
<td>00464</td>
<td>Mill Creek, West 6th St</td>
<td>286</td>
</tr>
<tr>
<td>003080</td>
<td>Fifteenmile Creek Viaduct (Seufert)</td>
<td>286</td>
</tr>
<tr>
<td>06564</td>
<td>Mill Creek, Mill Creek Rd at MP 5.00</td>
<td>291</td>
</tr>
<tr>
<td>06565</td>
<td>Mill Creek, Mill Creek Rd at MP 3.91</td>
<td>291</td>
</tr>
<tr>
<td>06566</td>
<td>Mill Creek, Mill Creek Rd at MP 3.23</td>
<td>291</td>
</tr>
<tr>
<td>06635Q</td>
<td>Columbia River, Hwy 4</td>
<td>293</td>
</tr>
<tr>
<td>Bridge #</td>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>65C34</td>
<td>Eightmile Creek, Old Dufur South</td>
<td>283</td>
</tr>
<tr>
<td>65C19</td>
<td>Eightmile Creek, Davis Cutoff</td>
<td>283</td>
</tr>
<tr>
<td>00893</td>
<td>Eightmile Creek, Lower Eightmile Rd at MP 4.19</td>
<td>287</td>
</tr>
<tr>
<td>00894</td>
<td>Eightmile Creek, Lower Eightmile Rd at MP 3.94</td>
<td>287</td>
</tr>
<tr>
<td>00895</td>
<td>Eightmile Creek, Lower Eightmile Rd at MP 3.24</td>
<td>287</td>
</tr>
<tr>
<td>00896</td>
<td>Eightmile Creek, Lower Eightmile Rd at MP 1.48</td>
<td>287</td>
</tr>
<tr>
<td>01095</td>
<td>Fifteenmile Creek, Boyd Loop Rd</td>
<td>289</td>
</tr>
<tr>
<td>00966</td>
<td>Deschutes River & BNSF, Hwy 4</td>
<td>290</td>
</tr>
<tr>
<td>65C05</td>
<td>Easton Canyon #4, County Rd 10</td>
<td>291</td>
</tr>
<tr>
<td>65C36</td>
<td>Mays Creek, County Rd 148</td>
<td>291</td>
</tr>
<tr>
<td>65C57</td>
<td>Antelope Creek, Upper Tub Springs Rd</td>
<td>291</td>
</tr>
</tbody>
</table>
Eightmile Creek, Old Dufur South

Bridge Number: 65C34
Year Built: 1914
Location: 0.2 mi. west of Eightmile Rd
Lat/Long: 45 31 28, -121 06 02

Eightmile Creek, Davis Cutoff

Bridge Number: 65C19
Year Built: 1915
Location: 0.2 mi. west of Lower Eightmile Rd
Lat/Long: 45 32 16, -121 04 55

Description: Each bridge is one standard 30-ft reinforced concrete beam span

Designer: OSHD under C.H. Purcell
Builder: S.A. Fredricksen

Significance: These two simple bridges were the first to be designed by the state for a county to use on a county road. In the 1914 Biennial Report, they are identified as structures 1 and 2. It is unknown what prompted the county to request such sturdy bridges in such an out-of-the-way location. Both bridges use an iron pipe handrail in the curb of which the builder has recorded his name, the date, and The Dalles.

Character Defining Features: Imprints in concrete, Railing, Structure type
Columbia River Highway Bridges
In Wasco County

Location: On the historic Columbia River Highway along the Columbia River Gorge in Wasco County. Bridges are listed in order from west to east.

Designers: C.B. McCullough (State Bridge Engineer), L.W. Metzger (Design Engineer)

Date Range: 1918-1921

Significance: The building of the Columbia River Highway was the first concerted highway building effort of the newly created Oregon State Highway Commission in cooperation with the counties through which it passed. Championed by a number of notable Oregonian’s, including Simon Benson, John B. Yeon, Samuel Hill, Julius Meier and Rufus Holman, they promoted the highway as both an important link between the east and west of Oregon and as a scenic route, showing off the beautiful Columbia River Gorge. In order to match the scenic qualities of the Gorge and meet the most modern highway standards of the day, the many bridges required along the route were designed to be both graceful and strong. To accomplish this at each differing site, the engineers created a wide variety of bridge types, including many concrete deck arches, often designed to be viewed from pedestrian lookouts. Together, the 25 bridges and viaducts stretching across three counties comprise one of the finest collections of reinforced concrete structures in America. The bridges in Wasco County were among the last to be built and show many of the characteristic features of McCullough designs.

Character Defining Features: Location on historic Columbia River Highway, Decorative features and railings, Structure type

Alterations: Alterations are noted for the individual bridges.

Rock Creek Bridge

- **Bridge Number:** 65C63
- **Year Built:** 1918
- **Lat/Long:** 45 41 06, -121 24 17
- **Description:** Two 22-ft reinforced concrete beam spans. This bridge was rehabilitated in 1995, including restoring the original railing and adding shotcrete to the beams.

Mosier Creek Bridge

- **Bridge Number:** 00498
- **Year Built:** 1920
- **Lat/Long:** 45 41 05, -121 23 40
- **Description:** One 110-ft open-spandrel rib-type reinforced concrete deck arch built by Lindstrom and Feigenson, Contractors

Hog Creek Canyon Bridge (Rowena Dell)

- **Bridge Number:** 00523
- **Year Built:** 1920
- **Lat/Long:** 45 40 43, -121 18 45
- **Description:** One 20-ft reinforced concrete beam span with 1930s era steel angle bridge railing.
Columbia River Highway Bridges
In Wasco County

Br 65C63

Br 00498

Br 00524

WO
Columbia River Highway Bridges
In Wasco County

Dry Canyon Creek Bridge

Bridge Number: 00524
Year Built: 1921
Lat/Long: 45 40 59, -121 18 09
Description: One 75-ft reinforced concrete open-spandrel rib-arch span over deep ravine. Construction was supervised by resident engineer Christ Fauerso.

Mill Creek, West 6th St

Bridge Number: 00464
Year Built: 1920
Lat/Long: 45 36 11, -121 11 36
Description: Four 40-ft reinforced concrete girder spans with an arched façade and bush hammered panels

Fifteenmile Creek Viaduct (Seufert)

Bridge Number: 003080
Year Built: 1919
Lat/Long: 45 36 42, -121 07 21
Description: Six 40-ft reinforced concrete girder spans with arched façades, curved pier caps and bush hammered panels
Dalles-California Highway Bridges

In Wasco County

Location: On the old Dalles-California Highway route, now Lower Eightmile Rd. and Boyd Market Rd., in Wasco County. Bridges are listed in order from north to south.

Designer: C.B. McCullough
Builder: Tobin & Pierce
Date Range: 1922-1926

Significance: From the very first map of planned state highways created in 1914, the Oregon State Highway Commission planned the Dalles-California Highway. Slated to connect the Columbia River Highway in The Dalles, through Redmond, Bend and Klamath Falls, to the California border, the exact route took some time to work out, and construction did not begin until the 1920s. Though the portion of the route in Wasco County remained the Dalles-California highway, it was not one the routes designated as a federal highway in 1926, and when US 197 was created in the 1950s it ran along a different alignment, allowing many the bridges along the former highway to remain in their original condition. These remaining bridges are simple structures of standard design with their significance being tied primarily to their location on this early highway.

Character Defining Features: Location on Dalles-California Highway, Decorative features and railings, Structure type

Alterations: No notable alterations have been made to these structures.

Eightmile Creek, Lower Eightmile Rd at MP 4.19

Bridge Number: 00893
Lat/Long: 45 34 14, -121 03 21
Description: One 32-ft reinforced concrete beam span on a 38-degree skew

Eightmile Creek, Lower Eightmile Rd at MP 3.94

Bridge Number: 00894
Lat/Long: 45 34 04, -121 03 14
Description: One 33-ft reinforced concrete beam span on a 45-degree skew

Eightmile Creek, Lower Eightmile Rd at MP 3.24

Bridge Number: 00895
Lat/Long: 45 33 35, -121 03 31
Description: Two 25-ft reinforced concrete beam spans on a 40-degree skew

Eightmile Creek, Lower Eightmile Rd at MP 1.48

Bridge Number: 00896
Lat/Long: 45 32 25, -121 04 26
Description: One 32-ft reinforced concrete beam span on a 45-degree skew
Dalles-California Highway Bridges
In Wasco County

Br 00894

Br 00895

Br 08896
Fifteenmile Creek, Boyd Loop Rd

Bridge Number 01095

Year Built 1925

Common Name: Adkisson Bridge

Year Built: 1925

Location: 0.6 mi. south of Boyd

Lat/Long: 45 28 46, -121 04 51

Description: One 120-ft reinforced concrete open-spandrel rib-type deck arch

Designer: C.B. McCullough

Builder: George F. Reeves of Portland

Significance: Designed and constructed by the state for Wasco County, the Adkisson Bridge served as a crossing of both a creek and a now defunct railroad line. The structure features many of the common decorative details of McCullough arches, including arched fascia spandrel walls, ornate sidewalk brackets and a band of dentils below the rail.

Character Defining Features: Structure type, Decorative features, Location

Alterations: Only minor changes have been made, including the addition of a utility line on the outside of the rail and the loss of the nameplates.
Deschutes River & BNSF, Hwy 4

Bridge Number: 00966

Year Built: 1929

Common Name: Maupin Bridge

Location: In Maupin on US 197

Lat/Long: 45 10 22, -121 04 36

Description: One 200-ft riveted steel Warren deck truss with reinforced concrete trestle-like approaches

Designer: OSHD under C.B. McCullough

Builder: Kuckenberg & Wittman

Significance: This bridge, constructed on the Dalles-California Highway during a later phase of building, provides a much needed access across the river in Maupin. The structure is dominated by a very large and unique subdivided single-span Warren deck truss. In addition to the unique main span, the concrete girder approaches, which are supported on trestle-like concrete towers, are also rare. The design allows the roadway to cross over both the large river canyon and the main railroad line. It also includes a number of decorative features, including a unique railing design similar to standard Type C, ornate soffit brackets and small curved haunches on the concrete beams.

Character Defining Features: Structure types, Approaches, Decorative features, Railing, Nameplate
Wasco County Masonry

Location: Over small creeks around Wasco County
Date Range: 1940-1941
Significance: It is unknown why, during the early 1940s, Wasco County began building small, simple reinforced concrete slab and beam bridges using stone masonry piers, abutments and parapets, but a number of such structures can be found across the county. The quality of the masonry is not uniform, implying it was likely a county design decision, and not the work of a single builder. No other county has more than one or two known examples of masonry usage, and rarely as high quality as the ashlar masonry of these Wasco bridges. Only six of these structures have been identified by this study, but it is expected that others with shorter spans exist.
Character Defining Features: Stone masonry, Structure type
Alterations: Some of these bridges have had changes ranging from the replacement of a masonry wingwall to the repointing of the masonry.

Easton Canyon #4, County Rd 10
Bridge Number: 65C05
Lat/Long: 45 26 34, -121 03 52
Description: Two 10-ft reinforced concrete slab spans on a 45-degree skew

Mays Creek, County Rd 148
Bridge Number: 65C36
Lat/Long: 45 23 17, -121 09 17
Description: One 20-ft reused steel beam span

Mill Creek, Mill Creek Rd at MP 5.00
Bridge Number: 06564
Lat/Long: 45 34 28, -121 14 17
Description: One 29-ft reinforced concrete beam span on a 31-degree skew

Mill Creek, Mill Creek Rd at MP 3.91
Bridge Number: 06565
Lat/Long: 45 34 03, -121 15 29
Description: One 32-ft reinforced concrete beam span on a 36-degree skew

Mill Creek, Mill Creek Rd at MP 3.23
Bridge Number: 06566
Lat/Long: 45 33 59, -121 16 10
Description: One 25-ft reinforced concrete beam span on a 25-degree skew

Antelope Creek, Upper Tub Springs Rd
Bridge Number: 65C57
Lat/Long: 45 53 56, -120 44 34
Description: Two 16-ft steel I-beam spans. A pile bent was added in 1992-93.
Columbia River, Hwy 4

Bridge Number: 06635Q

Year Built: 1954

Common Name: The Dalles Bridge

Location: In The Dalles on US 197

Lat/Long: 45 36 38, -121 08 22

Description: Riveted steel cantilevered Warren through truss with a 576-ft long span. Approaches are a mixture of continuous through truss spans, steel deck girders and reinforced concrete deck girders.

Designer: Ralph A. Tudor of Tudor Engineering Co.

Builders: Guy F. Atkinson Co. (Contractor); Judson Pacific Murphy (Fabricator)

Significance: This bridge is notable as one of the major crossings of the Columbia River, a crossing which the local officials had been requesting for years before its construction. After the initial bridge design and construction began, the US Army Corp proposed the Dalles Dam, requiring the bridge design to be altered and relocated, leading to the continuous truss spans which extend outward on the Washington side of the bridge. There are no notable decorative features.

Character Defining Features: Structure type, Location, Nameplate, Railing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01417S</td>
<td>Tualatin River, Hwy 1W SB</td>
<td>295</td>
</tr>
<tr>
<td>671275</td>
<td>Gales Creek, Gales Creek Rd</td>
<td>296</td>
</tr>
</tbody>
</table>
Bridge Number: 01417S
Year Built: 1929
Location: On OR 99W, 0.5 mi. south of King City
Lat/Long: 45 23 39, -122 47 58
Description: One 150-ft riveted steel Warren deck truss main span with nine 40-ft reinforced concrete deck girder approach spans
Designer: OSHD under C.B. McCullough
Builder: Northwest Contract Co.
Significance: This bridge is significant as one of the longest extant single span Warren deck trusses in the state. The bridge displays many of the standard decorative features of the era, including arched exterior girders, bush hammered panels, arched sidewalk brackets and a nameplate.
Character Defining Features: Structure type, Railing, Nameplate, Decorative features
Alterations: In addition to a number of maintenance actions, the bridge has had 2-tube steel rail mounted in front of the original Type C railing.
Bridge Number: 671275

Year Built: 1934

Location: In Gales Creek, on OR 8

Lat/Long: 45 35 02, -123 12 45

Description: One 73-ft reinforced concrete girder rigid frame span

Designer: OSHD under C.B. McCullough

Significance: This bridge is unique in the state as a concrete rigid frame structure made up of girders, rather than a slab. In order to span the entire 73-ft using a concrete structure, the girders are cast continuous with the abutments, allowing them to function as a frame. Besides the use of Type D railing, there are no decorative features.

Character Defining Features: Structure type, Railing
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01469</td>
<td>Rock Creek, Hwy 41</td>
<td>298</td>
</tr>
</tbody>
</table>
Rock Creek, Hwy 41

Bridge Number 01469

Year Built 1930

Location: On US 26, just west of John Day Fossil Beds National Monument

Lat/Long: 44 31 16, -119 42 29

Description: Three span reinforced concrete continuous deck girder bridge on a 45-degree skew

Designer: OSHD under C.B. McCullough

Builder: Kuckenberg & Wittman

Significance: This bridge is a good example of the standard concrete girder bridge being built in the early 1930s in Oregon. Despite its remote location, its appearance received a great deal of attention, possibly in recognition of the scenic beauty of the setting. The decorative features include the arched girders, soffit brackets, decorative Type A railing and nameplate.

Character Defining Features: Setting, Railing, Structure type, Nameplate
<table>
<thead>
<tr>
<th>Bridge #</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00441</td>
<td>North Yamhill River, Hwy 1W SB</td>
<td>300</td>
</tr>
<tr>
<td>02557</td>
<td>Yamhill River, Bridge St</td>
<td>301</td>
</tr>
</tbody>
</table>
North Yamhill River, Hwy 1W SB

Bridge Number: 00441

Year Built: 1921

Common Name: North Yamhill River Bridge

Location: 0.2 mi. north of McMinnville

Lat/Long: 45 13 54, -123 09 40

Description: One 80-ft riveted steel Warren deck truss main span with reinforced concrete deck girder approach spans

Designer: OSHD under C.B. McCullough

Builder: Gilpin Construction

Significance: This is the earliest extant example of a state designed riveted Warren deck truss in Oregon. It is a relatively unornamented structure, with standard Old Type A railing and a nameplate identifying the builder. Built on the West Side Highway during the early years of state highway development, it originally carried two-way traffic. In 1959, OSHD added a second bridge just downstream to carry northbound traffic.

Character Defining Features: Structure type, Railing, Nameplate, Location on OR 99W
Yamhill River, Bridge St

<table>
<thead>
<tr>
<th>Bridge Number</th>
<th>02557</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Built</td>
<td>1939</td>
</tr>
</tbody>
</table>

Common Name: Sheridan Bridge
Location: In downtown Sheridan
Lat/Long: 45 05 56, -123 23 43
Description: One 130-ft riveted steel Parker through truss span with reinforced concrete deck girder approaches
Designer: OSHD under G. S. Paxson
Builder: Mountain States Construction Co.
Significance: This bridge is a significant example of the standard steel through trusses being built in the late 1930s. Designed by the state highway department, Yamhill County built the bridge in cooperation with the WPA. Due to its urban location, the Sheridan Bridge is slightly more ornate than the standard truss built under Paxson, with the design including decorative light posts and a low concrete curb, rather than the higher railing on the truss. The bridge also uses the rare standard KY rail type, the precursor to picket rail.
Character Defining Features: Structure type, Railing, Nameplates, Location in town, Light posts
In Memoriam

Significance: These are bridges that were identified as significant during the course of the inventory but are either scheduled for replacement or have since been replaced. This information is provided to provide full documentation of the completed inventory.

Burnt River & UPRR, Hwy 449

Common Name: Huntington Overcrossing

Bridge Number: 00700

Lat/Long: 44 22 43, -117 17 54

Description: One 120-ft riveted steel Camelback through truss. Replaced in 2012. Mitigation for this replacement helped fund this study.

Willamette River & Hwy 3 NB, SE Tacoma St

Common Name: Sellwood Bridge

Bridge Number: 06879

Lat/Long: 45 27 52, -122 39 55

Description: Four 300-ft riveted steel subdivided continuous Warren deck truss spans. Replacement underway in 2013.

Designer: Gustav Lindenthal (chief engineer)

Builder: Gilpin Construction

Pringle Creek, Commercial St

Common Name: Commercial Street Bridge

Bridge Number: 470602

Lat/Long: 44 56 16, -123 02 30

Description: Four 48-ft reinforced concrete deck girder spans with arched beams and decorative details. Replacement underway in 2013.

Designer: OSHD under C.B. McCullough

Hoquarten Slough, Hwy 9

Bridge Number: 01500

Lat/Long: 45 27 33, -123 50 39

Designer: OSHD under C.B. McCullough

Builder: Clackamas Construction Co.

McKenzie River, Public Rd

Bridge Number: 18753

Lat/Long: 44 10 06, -122 14 25

Description: One 80-ft riveted steel polygonal Warren pony truss. Replaced in 2012.

Designer: Coast Bridge Company
In Memoriam

Sandy River, Hwy 2 EB

Bridge Number: 06875
Lat/Long: 45 32 41, -122 23 05
Description: Three 160-ft steel plate girder spans. Replaced in 2012.

Jordan Rd, Hwy 2

Bridge Number: 06945
Lat/Long: 45 32 40, -122 22 54
Description: One 30-ft reinforced concrete slab span each direction. Replaced in 2012.

Marys River, Harris Rd

Bridge Number: 03C17
Lat/Long: 45 32 40, -122 22 54
Description: One 100-ft steel polygonal Warren pony truss. Hit by a tree in 2012 and replaced in 2013.
Designer: Coast Bridge Company

Br 06879

Br 03C17
Bibliography

The limited references listed here include only major and general sources of information. The list does not include references used in the research of specific bridges.

Coast Bridge Company Contract Files. Oregon Department of Transportation Library, Salem.

Lingo, Shawn. "Oregon Department of Transportation Historic Bridge Inventory," 2007. Bridge Section, Highway Division, Oregon Department of Transportation, Salem.

Smith, Dwight A. Columbia River Highway Historic District: Nomination of the Old Columbia River Highway in the Columbia Gorge to the National Register of Historic Places. Salem: Environmental Section, Technical Services Branch, Oregon State Highway Division, Oregon Department of Transportation, 1984.

Photography Credits

Credit Pages

Engineering Antiquities Inventory 6, 22A, 74B, 94, 95, 137, 191
208B, 224

Historic American Engineering Record 9, 49, 55A, 63C, 121B, 165A,
209, 210, 212, 215B, 217A,
225, 226, 237, 238

Michael Goff 22C, 36B, 162, 187, 253,
265A, 295

ODOT Bridge Engineering Collection 25, 40, 74C, 143A

ODOT Photo and Video Services 33B, 111C

Photos not listed were taken by the authors.
Index by Structure Type

Note: Structure names in italics are not state-owned

BAILEY BRIDGES

Cat 2

17M001 - North Unit Canal, Coyote Rd ... 69

CONCRETE ARCHES

Closed-Spandrel Deck Arch

Cat 1

- 02063A - Eagle Creek Bridge .. 218
- 02194 - Moffett Creek Bridge .. 216
- 02379 - Williams Creek, Hwy 272 ... 118
- 04534 - Multnomah Creek Bridge .. 216
- 07C11 - Necanicum River, W Broadway 38
- 11113 - Draw, Stark Street .. 219
- 17C02 - Tumalo Irrigation Canal, Sisemore Rd 68
- 470202 - Mill Creek, Front St NE ... 187
- 49B09 - Willow Creek, Riverside Ave 199

Cat 2

- 02202 - West Beaver Creek, Hwy 9 ... 252
- 0M274 - Ashland Creek, Hwy 63 SB .. 100
- 63B012 - Prairie Creek, West 2nd St 279
- 63B016 - Prairie Creek, Depot St ... 279

Cat 3

- 08111 - Shelton Ditch, Hwy 72 (12th St SE)

Not Historic

- 00231A - Rickreall Creek, Hwy 191 SB
- 04656 - West Creek (Bun Creek), Hwy 9

Open-Spandrel Deck Arch

Cat 1

- 00332A - Rogue River, Hwy 271 (Rock Point) 103
- 00498 - Mosier Creek Bridge .. 284
- 00524 - Dry Canyon Creek Bridge .. 286
- 00626 - Grande Ronde R & UPRR, Hwy 6 Frtg Rd 275
- 00839 - North Umpqua River, Hwy 234 73
- 01089 - Rocky Creek, Hwy 9 Frontage Rd 164
- 01095 - Fifteenmile Creek, Boyd Loop Rd 289
- 01113 - Cape Creek, Hwy 9 ... 141
- 01172 - Rogue River, Hwy 9 .. 62
- 01182 - Cummins Creek, Hwy 9 ... 139
- 02165 - Nehalem River & Hwy 103, Hwy 47 40
- 02459 - Depoe Bay, Hwy 9 ... 164
- 04527 - Latourelle Creek Bridge .. 214
- 04528 - Youngs Creek Bridge (Shepperds Dell) 214
- 25B14 - Canyon, NW Alexandra Ave .. 223
- 25B36 - SW Jefferson St, SW Vista Ave 224
- 29C281 - North Fork Rogue River, County Rd 797 111

Note: Structure names in italics are not state-owned
Cat 2
00576 - Rogue River, Hwy 271 (Gold Hill) 105
00624A - Umatilla River Bridge 264
01319 - Soapstone Creek, Hwy 46 34
01600 - Hood River, Hwy 281 96
02208 - Clackamas River, Hwy 161 25
04192 - Salmon River, Hwy 39 167
19C513 - South Umpqua River, County Rd 386 75

Cat 3
01869A - Wilson River, Hwy 37 at MP 11.80
19C469 - Calapooya Creek, Driver Valley Rd #22

Not Historic
00409 - Oswego Creek, Hwy 3 SB (Sucker Creek)
07347 - Little North Fork Santiam River, Hwy 162

Through Arch
Cat 1
01180 - Big Creek, Hwy 9 at MP 175.02 141
01181 - Tenmile Creek, Hwy 9 139
01418 - Rogue River, Hwy 25 SB 120
01499 - Wilson River, Hwy 9 252
01582 - Santiam River, Hwy 164 193

COVERED BRIDGES
Housed Spans (Other structure types with an added covering house.)
Cat 3
39C386 - Lake Creek, Nelson Mountain Rd
51C05 - Johnson Creek (Cedar Crossing)

Not Historic
N/A - South Umpqua River (Milo Academy)
N/A - Swalley Canal (Rock O’ the Range)

Howe Truss
Cat 1
00482 - Sandy Creek, Pedestrian 52
01251 - Ritner Creek, Pedestrian 242
014721 - Fall Creek, Jasper Lowell Rd 148
01724 - Crabtree Creek, Hungry Hill Dr 173
05381 - Abiqua Creek, Gallon House Rd NE 188
12876 - Crabtree Creek, Fish Hatchery Dr 175
12948 - Thomas Creek, Camp Morrison Rd 174
14538 - Alsea River, Hayden Rd 155
19C018 - Little River, CR 82 84
19C487 - Calapooya Creek, County Rd 10A 81
39C118 - McKenzie River, Goodpasture Rd 150
39C176 - Mohawk River, Paschelke Rd 152
39C241 - Mosby Creek, Layng Rd 130
39C409 - Coyote Creek, Battle Creek Rd 132
39C446 - Wildcat Creek, Austa Rd 134
<table>
<thead>
<tr>
<th>Code</th>
<th>Name and Location</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>39C551</td>
<td>Deadwood Creek, Deadwood Loop Rd</td>
<td>147</td>
</tr>
<tr>
<td>39C643</td>
<td>Lost Creek, Parvin Rd</td>
<td>131</td>
</tr>
<tr>
<td>41C09</td>
<td>Yaquina River, Chitwood Rd</td>
<td>163</td>
</tr>
<tr>
<td>C39004</td>
<td>Fall Creek, Pengra Rd</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01441</td>
<td>Marys River, Harris Rd</td>
<td>13</td>
</tr>
<tr>
<td>06649</td>
<td>Middle Fork Willamette River, Pedestrian</td>
<td>154</td>
</tr>
<tr>
<td>12919</td>
<td>Calapooia River, Pedestrian</td>
<td>171</td>
</tr>
<tr>
<td>12943</td>
<td>Thomas Creek, County Rd 629</td>
<td>176</td>
</tr>
<tr>
<td>12965</td>
<td>Thomas Creek, Richardson Gap Rd North</td>
<td>181</td>
</tr>
<tr>
<td>14025</td>
<td>South Santiam River, High Deck Rd</td>
<td>180</td>
</tr>
<tr>
<td>141005</td>
<td>Grave Creek, Sunny Valley Loop</td>
<td>119</td>
</tr>
<tr>
<td>14169</td>
<td>Oak Creek, Pedestrian</td>
<td>16</td>
</tr>
<tr>
<td>19801</td>
<td>Pass Creek, Pedestrian</td>
<td>77</td>
</tr>
<tr>
<td>29C202</td>
<td>Antelope Creek, Pedestrian</td>
<td>109</td>
</tr>
<tr>
<td>29C471</td>
<td>Applegate River, McKee Bridge Rd</td>
<td>107</td>
</tr>
<tr>
<td>39C123</td>
<td>McKenzie River, King Rd West</td>
<td>159</td>
</tr>
<tr>
<td>39C174</td>
<td>Mill Creek, Wendling Rd</td>
<td>149</td>
</tr>
<tr>
<td>39C242</td>
<td>Row River, Pedestrian</td>
<td>133</td>
</tr>
<tr>
<td>39C243</td>
<td>Mosby Creek, Pedestrian</td>
<td>138</td>
</tr>
<tr>
<td>39C650</td>
<td>N Middle Fk Willamette R, C Rd 6129</td>
<td>153</td>
</tr>
<tr>
<td>41C27</td>
<td>Five Rivers, Pedestrian</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12935</td>
<td>Thomas Creek (Weddle)</td>
<td></td>
</tr>
<tr>
<td>12958</td>
<td>Thomas Creek (Jordan)</td>
<td></td>
</tr>
<tr>
<td>16-5E-24</td>
<td>Horse Creek</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingpost Truss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19C220</td>
<td>South Myrtle Creek, County Rd 124</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queenpost Truss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12037</td>
<td>N Fork Yachats R, North Yachats River Rd</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29C262</td>
<td>Lost Creek, Pedestrian</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Historic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29C211</td>
<td>Evans Creek, County Rd 887 (Wimer)</td>
<td></td>
</tr>
<tr>
<td>N/A - Fourtner Covered Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOVABLE BRIDGES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bascule Span</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cat 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00330</td>
<td>Youngs Bay, Hwy 105</td>
<td>32</td>
</tr>
<tr>
<td>00511</td>
<td>Willamette River, Burnside St</td>
<td>225</td>
</tr>
<tr>
<td>00711</td>
<td>Lewis and Clark River, Hwy 105</td>
<td>32</td>
</tr>
<tr>
<td>01821E</td>
<td>Suslaw River, Hwy 9</td>
<td>143</td>
</tr>
<tr>
<td>02758</td>
<td>Willamette River, Morrison St</td>
<td>237</td>
</tr>
</tbody>
</table>
06757 - Willamette River, Broadway St 212

Cat 3
01132F - Isthmus Slough, Hwy 241 (Eastside)

Lift Span
Cat 1
01377A - Columbia River, Hwy 1 NB 221
02757 - Willamette River, Hawthorne Ave 209
06645 - Columbia River, Hwy 2 Conn 94
06683 - Willamette River, Hwy 1W 210
07176 - Coos River, Hwy 241 .. 56

Cat 2
07333 - Columbia River, Hwy 1 SB 221
08306 - Youngs Bay, Hwy 9 ... 42

Cat 3
07020 - Coquille River, Hwy 9 (Bullards)

Swing Span
Cat 1
01822 - Umpqua River & McIntosh Slough, Hwy 9 79
02728 - Willamette River, Van Buren Ave 6

PRESTRESSED CONCRETE BEAM
Cat 2
00853A - Siletz River, Hwy 181 at MP 24.10 169
00949A - Tenmile Creek & CBRL, Hwy 9 & Frtg Rd 57
01214 - Abernethy Creek, Redland Rd (West) 29
01215 - Abernethy Creek, Redland Rd (East) 29

Cat 3
008T3 - Coast Fork Willamette River, Woodson Place
16860 - Fish Creek, Hwy 138
19C231 - Umpqua River, Hubbard Creek Rd

REINFORCED CONCRETE FRAME BRIDGES
Cat 1
25858 - Johnson Creek, SE Ochoco St 236

Cat 2
15C29 - Foster Creek, County Rd 375 64
25818 - NW Maywood Dr Semi-Viaduct 233
470620 - Pringle Creek, 13th St SE 192
671275 - Gales Creek, Gales Creek Rd 296

Cat 3
06895 - Hwy 1W over Hwy 26 EB & Grover St
16006 - East Fork Hood River, Hwy 26 at MP 77.65
REINFORCED CONCRETE STRINGER AND GIRDER BRIDGES

Arched Beam Spans

Cat 1
003080 - Fifteen Mile Creek Viaduct ... 286
00464 - Mill Creek, West 6th St .. 286
01629 - Juniper Point Half Viaduct .. 264
39C183 - Blue River, Blue River Dr .. 135

Cat 2
00982 - Siltcoos River, Hwy 9 .. 143
01114 - China Creek, Hwy 9 at MP 175.68 141
01305 - Neawanna Creek, Hwy 9 .. 103
01349 - Foots Creek, Hwy 60 .. 134
01481 - Necanicum River, Hwy 9 .. 34
01469 - Rock Creek, Hwy 41 ... 298
01498 - Wilson River Slough, Hwy 9 ... 251
01937 - Sardine Creek, Hwy 271 .. 105
01950 - CBRL, Hwy 9 ... 54
02010 - SW Multnomah Blvd, Hwy 1W 234
02133 - Spanish Hollow Creek, Hwy 2 Frtg Rd 246
02312 - Short Sand Beach Creek, Hwy 9 249
02447 - Hwy 31, Hwy 58 ... 177
15C31 - Euchre Creek, County Rd 510 62
19C514 - Myrtle Creek, County Rd 386 75
26T04 - Deer Creek, Jackson St .. 177
470216 - Mill Creek, Winter St NE ... 190
470218 - Mill Creek, Summer St NE 192
470226 - Mill Creek, 15th St NE ... 190
470604 - Pringle Creek, Liberty St SE 190
470608 - Pringle Creek/Shelton Ditch, Church St SE 190

Cat 3
01419A - USRS Canal, Hwy 20 (Altamont)
02117 - Umatilla River, Hwy 67 (Ball Park)
02374 - SE Water St Viaduct, Hwy 1E (McLoughlin Blvd)
02734A - Rock Creek, Hwy 5 (Picture Gorge)
13490 - Neskwoin Creek, Hwy 9
470405 - Shelton Ditch, Winter St SE

Not Historic
00580 - Parrot Creek, Hwy 1E
01548 - Malheur River, Hwy 7 Frtg Rd
01559 - Pudding River, Whiskey Hill Rd
069C05 - Bridge Creek, E Main St
470238 - Mill Creek, State St

Haunched Beam Spans

Cat 1
01175 - Cape Perpetua Half Viaduct, Hwy 9 166

Cat 2
00505 - POTB RR, Hwy 9 ... 251
00548A - Canyon Creek, South Main Street 75
01508 - Rock Creek, Hwy 102 .. 48
01706 - Soda Fork, Hwy 16 ... 172
02625A - Marys River, Hwy 191 ... 15
05290 - UPRR, Hwy 1E ... 229
25701 - SW Bertha Blvd, SW Capitol Hwy 220
25703 - SW Multnomah Blvd, SW Capitol Hwy 227
59C705 - US Feed Canal, Rieth Rd at MP 2.21 260
62002 - A Canal, 11th St ... 124

Cat 3
00413 - Millers Gulch, Hwy 60
00612 - South Yamhill River, Hwy 32
00738 - Lake Creek, Hwy 58
00744B - Dairy Creek, Hwy 29
01833 - Gurkin Canyon Creek, Hwy 2 Frtg Rd
02104 - Rhea Creek, Hwy 300 (Ruggs)
02184 - Wallowa River, Hwy 10 (Bear Creek)
02235 - Mule Shoe Creek, Hwy 5
02464 - John Day River, Hwy 5 (Prairie Creek)
25B38 - SW Canyon Rd near WSLRT Tunnel
25B42 - SW Greenway Ave over SW Talbot Rd
02601 - Necanicum River, Hwy 47 at MP 4.40
530205 - Mendenhall Creek, Old Hwy 199

Not Historic
00447 - Meacham Creek & UPRR, Hwy 6 Frtg Rd
00449 - Hwy 6 Emigrant Hill Frtg Rd over UPRR
00682A - Reese Creek, Hwy 22
00745 - South Yamhill River, Hwy 39 at MP 23.77
00818A - Little Creek, Hwy 66
01516 - Eugene Water Bd Cnl, Hwy 15 at MP 13.06
03459 - Castle Creek, Hwy 233
03460 - Bybee Creek, Hwy 233
03462 - Muir Creek, Hwy 233
07489 - Bridge Creek, Hwy 14 at MP 65.03
671404 - Scoggins Creek, Old Tualatin Valley Hwy #47

Standard Beam Spans
Cat 1
00142 - Beaver Creek, Old Hwy 30 at MP 9.28 46
00273 - Ruthton Point Viaduct .. 92
00504 - Rock Slide Viaduct ... 92
00523 - Hog Creek Canyon Bridge (Rowena Dell) 284
02062 - Tanner Creek Bridge ... 218
03780 - Hwy 273 and COR, Hwy 273 105
03781 - COR, Hwy 273 ... 105
09C01 - Nice Creek, C Street West 45
09C57 - Beaver Creek, Old Hwy 30 46
65C19 - Eightmile Creek, Davis Cutoff 283
65C34 - Eightmile Creek, Old Dufur South 283
65C63 - Rock Creek Bridge .. 284

Cat 2
N/A - Cascade Gorge Creek Bridge 110
<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tide Creek Bridge</td>
<td>46</td>
</tr>
<tr>
<td>Hay Creek, Old Hwy 97</td>
<td>114</td>
</tr>
<tr>
<td>Berry Creek, Hwy 1W</td>
<td>241</td>
</tr>
<tr>
<td>Soap Creek, Hwy 1W</td>
<td>241</td>
</tr>
<tr>
<td>Eightmile Ck, Lower Eightmile Rd, MP 4.19</td>
<td>287</td>
</tr>
<tr>
<td>Eightmile Ck, Lower Eightmile Rd, MP 3.94</td>
<td>287</td>
</tr>
<tr>
<td>Eightmile Ck, Lower Eightmile Rd, MP 3.24</td>
<td>287</td>
</tr>
<tr>
<td>Eightmile Ck, Lower Eightmile Rd, MP 1.48</td>
<td>287</td>
</tr>
<tr>
<td>Myers Creek, Hwy 255</td>
<td>63</td>
</tr>
<tr>
<td>Alder Creek, County Rd 539 (Old US 30)</td>
<td>4</td>
</tr>
<tr>
<td>Glenwood Private Rd, Hwy 9</td>
<td>34</td>
</tr>
<tr>
<td>Tahkenitch Creek, Hwy 9</td>
<td>79</td>
</tr>
<tr>
<td>Half Viaduct, Hwy 9</td>
<td>249</td>
</tr>
<tr>
<td>Beaver Creek, Hwy 9 at MP 80.32</td>
<td>252</td>
</tr>
<tr>
<td>Mill Creek, Mill Creek Rd at MP 5.00</td>
<td>291</td>
</tr>
<tr>
<td>Mill Creek, Mill Creek Rd at MP 3.91</td>
<td>291</td>
</tr>
<tr>
<td>Mill Creek, Mill Creek Rd at MP 3.23</td>
<td>291</td>
</tr>
<tr>
<td>Bear Creek, Old Hwy 30</td>
<td>37</td>
</tr>
<tr>
<td>Wolf Creek, Edgewood Rd</td>
<td>120</td>
</tr>
<tr>
<td>Hunter Creek, Hunter Creek Rd</td>
<td>62</td>
</tr>
<tr>
<td>Pass Creek, Curtin Rd</td>
<td>73</td>
</tr>
<tr>
<td>Copco Penstocks, County Rd 797</td>
<td>110</td>
</tr>
<tr>
<td>Mill Creek, Cottage St NE</td>
<td>192</td>
</tr>
<tr>
<td>Mill Creek, State St</td>
<td>192</td>
</tr>
<tr>
<td>Pringle Creek, Winter St SE</td>
<td>192</td>
</tr>
<tr>
<td>Pringle Creek, Cross St SE</td>
<td>190</td>
</tr>
<tr>
<td>Deer Creek, Hogue Dr</td>
<td>122</td>
</tr>
<tr>
<td>Wilson River Overflow, Boquist Rd</td>
<td>251</td>
</tr>
<tr>
<td>Wildhorse Creek, Commercial St</td>
<td>262</td>
</tr>
<tr>
<td>Furnish Ditch, Rieth Rd at MP 2.96</td>
<td>260</td>
</tr>
<tr>
<td>Furnish Ditch, Rieth Rd at MP 3.79</td>
<td>260</td>
</tr>
<tr>
<td>Furnish Ditch, Rieth Rd at MP 4.94</td>
<td>260</td>
</tr>
<tr>
<td>Furnish Ditch, Rieth Rd at MP 5.92</td>
<td>260</td>
</tr>
<tr>
<td>Furnish Ditch, Rieth Rd at MP 5.14</td>
<td>260</td>
</tr>
</tbody>
</table>

Cat 3

<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cozine Creek, Old Sheridan Rd</td>
<td></td>
</tr>
<tr>
<td>Chenoweth Creek Bridge</td>
<td></td>
</tr>
<tr>
<td>Pudding River Relief Channel, Hwy 1E</td>
<td></td>
</tr>
<tr>
<td>Scott Creek, Hwy 2 Frtg Rd</td>
<td></td>
</tr>
<tr>
<td>Alder Creek, Hwy 5</td>
<td></td>
</tr>
<tr>
<td>Indian Creek, Hwy 5</td>
<td></td>
</tr>
<tr>
<td>Powell Butte Canal, Hwy 371 at MP 2.27</td>
<td></td>
</tr>
<tr>
<td>Wagner Creek, Talent Ave</td>
<td></td>
</tr>
<tr>
<td>Oneonta Gorge Creek, Hwy 100</td>
<td></td>
</tr>
<tr>
<td>Beaver Creek, Old Hwy 30</td>
<td></td>
</tr>
<tr>
<td>Muddy Creek, Church Dr</td>
<td></td>
</tr>
<tr>
<td>Mill Creek, Liberty St NE</td>
<td></td>
</tr>
<tr>
<td>McKay Creek, Schroeder Rd</td>
<td></td>
</tr>
<tr>
<td>McCarthy Creek</td>
<td></td>
</tr>
</tbody>
</table>

Not Historic

<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neil Creek, Hwy 21 at MP 4.26</td>
<td></td>
</tr>
<tr>
<td>Birdseye Creek, Hwy 60</td>
<td></td>
</tr>
</tbody>
</table>
00416A - Ash Swale, Hwy 1W at MP 44.89 (Amity)
00636 - Old Hwy 30 over UP RR
00704A - County Rd 539 over UP RR
00995 - Myers Creek, Hwy 255
01254A - Link River, Lakeshore Dr
06204 - Smith Creek, Hwy 28
08543 - Bear Creek & Table Rock Rd, Hwy 1 at MP 31.30
11841 - Deer Creek, Caleb Payne Rd
19C451 - Sutherlin Creek, County Rd 388
29C133 - Griffin Creek, South Stage Rd #634
33C37 - Wolf Creek, Old Hwy 99 (Frontage Rd)
470208 - Mill Creek, High St NE
470230 - Mill Creek, 17th St NE
671407 - Tualatin River, Old Tualatin Valley Hwy #47

Girder and Floorbeam Systems
Cat 1
00144 - Beaver Creek, Old Hwy 30 at MP 8.48 46
00823 - Bridal Veil Falls Bridge ... 216
04522 - Beaver Creek, Historic Columbia River Hwy 211
49C23 - Rhea Creek, Brenner Canyon Rd 200

Cat 2
02723 - Neahkahnie Mountain Bridge 251
04518 - N Columbia Blvd & UP RR, Hwy 1W 228
06524 - N Fk Necanicum River, Hwy 47 at MP 7.07 41
25806 - UP RR, N Vancouver Ave 229

Cat 3
01362A - Nehalem River, Miami Foley Rd
02515A - Cox Creek, Hwy 58
03111A - Nehalem River, Hwy 102 at MP 32.06
03112A - Nehalem River, Hwy 102 at MP 35.08

Not Historic
07034C - NE 28th Ave over UP RR

REINFORCED CONCRETE SLAB
Cat 1
N/A - Ruckel Creek Bridge .. 92
00840 - West Multnomah Falls Viaduct 216
00841 - East Multnomah Falls Viaduct 216
02418 - Beltline Overcrossing .. 32
04524 - Crown Point Viaduct ... 214
04533 - Wahkeena Creek Bridge (Gordon Creek) 216
04542 - Oneonta Gorge Creek Bridge (Old) 216
04543 - Horsetail Falls Bridge ... 216
17490 - Toothrock Viaduct .. 218
17492 - Eagle Creek Viaduct .. 218
27C35 - Gorton Creek Bridge .. 92

Cat 2
00420A - Jackson Creek, Hwy 1W 8
02561 - East Fork Birch Creek, Hwy 28 266
04805 - Buck Creek, Hwy 32 254
09963 - Champoe Creek, Park Rd 196
25801 - UPRR & SPRR, N Burgard St 229
65C05 - Easton Canyon #4, County Rd 10 291

Cat 3
00366 - Chehulpum Ck, Hwy 164 (Sidney Power Canal) 24704 - Old Mill Race, SE Court Place
438007 - Santiam-Albany Canal, 2nd St North 53C107 - North Fork Ash Creek, Riddell Rd

Not Historic
01949 - Kellogg Lake Outlet, Hwy 1E (SE McLoughlin) 01994 - Hwy 68 (NE 82nd Ave) over UPRR & MAX LRT
07964 - Partial Viaduct, Hwy 162 at MP 40.33 25841 - SW Vista Ave Semi-Viaduct

STEEL ARCHES
Cat 1
00357 - Willamette River & Hwy 1E, Hwy 3 21
00600 - Crooked River Bridge 114
01617 - Clackamas River, Hwy 1E 20
01820 - Yaquina Bay, Hwy 9 166
02529 - Willamette River, Hwy 61 238

Cat 2
01923 - South Umpqua River, Hwy 35 EB 75
02743 - Pudding River, Hwy 1E 26

Cat 3
06560 - Clackamas River, Bakers Ferry Rd

STEEL FRAME SPANS (This is a modern structure type category and was not fully inventoried.)
Cat 3
09540 - Hwy 6 Conn over Hwy 6 (Westland Interchange)

STEEL STRINGER AND GIRDER BRIDGES
Beam Spans
Cat 1
02311 - Necarney Creek, Hwy 9 249

Cat 2
01400 - Skipanon River, Hwy 104 Spur 34
01792 - Rock Creek, Hwy 300 88
02081 - South Yamhill River, Hwy 30 244
02380 - City Street & UPRR, Hwy 58 177
09693 - Hwy 4, Riverside St 125
19C480 - Elk Creek, County Road 1 82
65C36 - Mays Creek, County Rd 148 291
65C57 - Antelope Creek, Upper Tub Springs Rd 291
Cat 3
01959 - Williamson River, Hwy 422
02164 - North Fork Quartz Creek, Hwy 47
02453 - Trail Creek, Hwy 230
08003 - Yamhill River, Hwy 39 (Dayton)
08051 - Willamette River, Hwy 15 EB
09579 - Hwy 6 Conn over Hwy 6 (Rew Interchange)
09741 - Meridian Rd over Hwy 64
19C200 - Lookingglass Creek, County Rd 47

Not Historic
02350A - Hwy 1E (SE MLK Blvd) over Hwy 2 & UPRR
02472 - Devils Lake Fk Wilson R, Hwy 37 at MP 32.05
03849B - Hwy 20 over Spring St & UPRR
04335A - Snake River, Hwy 455 Spur (Payette)
07027A - NE 53rd Ave over UPRR
07028A - NE 60th Ave over UPRR
07030A - NE 74th Ave over UPRR
08638 - Willamette River & River Ave, Hwy 69 WB

Girder and Floorbeam System Spans
Cat 1
01868 - Wilson River, Hwy 37 at MP 5.78...................... 255
06498 - Mills St, Hwy 123... 232

Cat 2
01377C - Columbia Slough, Hwy 1E........................... 221
04517 - Columbia Slough, Hwy 1W........................... 228
09685 - BNSF, NE Columbia Blvd............................. 207
19C215 - Cow Creek, County Rd 39......................... 86
19C418 - Calapooya Creek, Hinkle Creek Rd #281....... 86
471006 - Battle Creek, Commercial St SE............... 195

Cat 3
02652 - Alsea River, Hwy 27
07039 - E 12th Ave over Hwy 2 & UPRR
07040 - Hwy 1E NB over Hwy 2 Conn & UPRR
08156 - Willamette River, Hwy 140
12911 - Green Peter Reservoir, Quartzville Dr
20726 - Chinquapin Dr over Little Deschutes River

Not Historic
02398 - North Fork John Day River, Hwy 5 (Kimberly)

STEEL TRUSSES
Cantilever
Cat 1
01823 - Coos Bay, Hwy 9... 54
02046 - Columbia River, Hwy 2W Conn.................. 49
02230A - Columbia River, Hwy 70 EB..................... 267
02592 - Columbia R & Hwy 100, Toll Br............. 95
05054 - Willamette R & Hwy 1 & OPR, Hwy 26...... 226
06635Q - Columbia River, Hwy 4......................... 293
<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>County and Road</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia River (Astoria)</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>South Umpqua River, Stewart Park Rd</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Pin-Connected Parker Through Truss</td>
<td>Cat 1</td>
<td></td>
</tr>
<tr>
<td>Owyhee River, Owyhee River Rd</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Pin-Connected Pennsylvania Through Truss</td>
<td>Cat 1</td>
<td></td>
</tr>
<tr>
<td>Bull Run River, Bull Run Rd</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Sandy River, Lusted Rd</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Grande Ronde River, Redmond Grade Rd</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>Pin-Connected Pratt Deck Truss</td>
<td>Cat 1</td>
<td></td>
</tr>
<tr>
<td>MacLeay Park, NW Thurman St</td>
<td></td>
<td>206</td>
</tr>
<tr>
<td>Pin-Connected Pratt Through Truss</td>
<td>Cat 1</td>
<td></td>
</tr>
<tr>
<td>Cow Creek, Danner Rd</td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>Rhea Creek, Spring Hollow Rd</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>Umatilla River, Lee Street Grade Rd</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>North Myrtle Creek, County Park Rd</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Grande Ronde River, Yarrington Rd</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>Riveted Double-Intersection Warren Through Truss</td>
<td>Cat 1</td>
<td></td>
</tr>
<tr>
<td>Malheur R, Warm Springs Reservoir Rd</td>
<td></td>
<td>185</td>
</tr>
<tr>
<td>Riveted Parker Through Truss</td>
<td>Cat 1</td>
<td></td>
</tr>
<tr>
<td>Willamette River, Hwy 31 EB</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Applegate River, Hwy 272 at MP 18.04</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Sandy River, Stark St</td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>Marys River, Hwy 1W NB</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Willamette River, Hwy 18 Frontage Rd</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>Santiam River, Hwy 162 Conn Rt</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>Nehalem River, Hwy 102 at MP 61.28</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Calapooia River, Main St</td>
<td></td>
<td>179</td>
</tr>
</tbody>
</table>
02557 - Yamhill River, Bridge St .. 301
05286 - Coast Fork Willamette River, Hwy 18 157
08988 - Clackamas River, Hwy 171 at MP 38.77 27
08989 - Clackamas River, Hwy 171 at MP 39.16 27
08990 - Clackamas River, Hwy 171 at MP 45.83 27
08991 - Clackamas River, Hwy 171 at MP 44.88 27
29C237 - Big Butte Creek, Cobleigh Rd #949 101
47C37 - Pudding River, Monitor McKee Rd NE 189

Cat 3
00583E - Willamette R, Hwy 58 (Harrisburg)
00604 - Clackamas River (Park Place)
00851A - Siletz River, Hwy 181 at MP 23.10 (Fuller)
00852A - Siletz River, Hwy 181 at MP 20.66 (Ojalla)
01245B - Rogue River, Hwy 271 (Dodge)
01857A - Little Nestucca River, Hwy 130 at MP 7.55
01858A - Little Nestucca River, Hwy 130 at MP 5.97
01859A - Little Nestucca River, Hwy 130 at MP 5.11
02496 - North Umpqua River, Hwy 138 at MP 17.86
04117A - Willamette River, Hwy 222 (Jasper)
23C011 - North Fork John Day River, County Rd 1
23C291 - North Fork John Day River, County Rd 29
39C111 - McKenzie River, Bridge St
531515 - Illinois River, Finch Rd
53C089 - Rickreall Creek, Bowersville Rd
53C140 - Luckiamute River, Wildwood Rd
59C093 - Umatilla River, Mac Hoke Rd
59C099 - Umatilla River, Cunningham Rd

Riveted Pratt Pony Truss
Cat 1
00661 - North Powder River, Bidwell Rd 3

Riveted Pratt Through Truss
Cat 1
02019 - Sandy River, Historic Columbia River Hwy 211

Riveted Warren Deck Truss
Cat 1
00441 - North Yamhill River, Hwy 1W SB 300
00966 - Deschutes River & BNSF, Hwy 4 290
08459 - Thomas Creek, Hwy 9 ... 66
0M089 - BNSF, N Lombard Street (US 30 Bypass) 207
51T102 - BNSF, N Willamette Blvd 207
51T104 - BNSF, N Fessenden Street 207

Cat 2
00799 - Grande Ronde River, Hwy 10 Frontage Rd 273
01417S - Tualatin River, Hwy 1W SB 295
01438 - Salmon River, Brightwood Loop Rd 23
01939 - East Fork Hood River, Hwy 281 97
01942A - S Fk Coquille River, Hwy 242 at MP 18.22 53
02061 - Molalla River, Hwy 1E NB 21
02319 - N Fk Nehalem River, Hwy 46 at MP 7.74 34
07514 - Rinehart Creek, Hwy 9 ... 65
19C519 - Calapooya Creek & SPRR, Shady Hwy 73

Cat 3
01660 - Mill Creek, Hwy 53
01945A - Owyhee River, Hwy 456 (Rome)

Riveted Warren Pony Truss
Cat 1
18744 - McKenzie River, Leaburg Dam Rd 136
20189 - Catherine Creek, Woodruff Lane 271
53C122 - Luckiamute River, Helmick Rd 243

Cat 2
00683 - Yaquina River, Hwy 33 ... 162
00718 - Five Point Creek, Hwy 6 Frtg Rd Lt 272
00831 - Trail Creek, Old Hwy 62 ... 110
01122A - Eagle Creek, Hwy 12 ... 11
01204 - North Fork Alsea River, Hwy 27 11
01217 - Nehalem River, Hwy 46 ... 251
01861 - Little Nestucca River, Hwy 130 at MP 4.15 253
02305 - North Fork Alsea River, Hwy 201 14
05640A - Trask River, Hwy 131 ... 256
06217 - Abernethy Creek, Holly Ln ... 24
06574 - Salmon River, Elk Park Rd .. 19
0M342 - Galls Creek, Lampman Rd ... 102
13C12 - Canal, Pedestrian Path ... 59
14135 - Muddy Creek, McFarland Rd at MP 5.30 10
15160 - Steamboat Channel, Bundy Rd 10
16636 - Crooked River, Pedestrian (Conant Basin Rd) 60
23C451 - John Day River, Moon Creek Rd #45 90
53C063 - Mill Creek, Old Military Rd 240
59C356 - Wildhouse Creek, Adams Rd 263
59C421 - Dry Creek, Sams Rd ... 259
63C114 - Wallowa River, Deer Creek Rd 278
63C23 - Lostine River, Lostine River Rd 280

Cat 3
01331 - Deadwood Creek, Hwy 229
06207A - Butte Creek, Scotts Mills Rd
11883 - Willamina Creek, Blackwell Park Rd
14183 - Ingram Slough, East Ingram Island Rd
20108 - Canal, County Rd
21C04 - Rock Creek, Cayuse Canyon Rd
23C441 - John Day River, Bellshaw Creek Rd #44
23C571 - John Day River, Morgan Rd #57
23C701 - John Day River, Widows Creek Rd
31C53 - Trout Creek, Coleman Rd
47812 - North Santiam River, Church St
53C003 - Little Luckiamute River, Black Rock Rd
53C080 - State Farm Rd over Rickreall Creek
61C42 - Philips Creek, Jones Rd (Shafer)
Riveted Warren Through Truss
 Cat 1
 00849A - Columbia River, Hwy 42................................. 247

 Cat 2
 01223 - Willamette River, Hwy 15 WB............................ 137
 01318 - Umpqua River, Hwy 45.................................... 78
 06648 - Willamette River, Coburg Rd............................. 158

Welded Kingpost Pony Truss
 Cat 3
 59C662 - Camas Creek, Cable Creek Rd

Welded Pratt Pony Truss
 Cat 2
 59C483 - Walla Walla River, Birch Creek Rd..................... 268

 Cat 3
 19C152 - South Deer Creek, County Rd 16

SUSPENSION BRIDGES
 Cat 1
 06497 - Willamette R & Hwy 2W NB, Hwy 123..................... 231

 Cat 2
 16C01 - Deschutes River, Jordan Rd............................... 116
 16C06 - Crooked River, Jordan Rd.................................. 116

TIMBER BEAM SPANS
 Cat 2
 01755 - Creek, Hwy 229 (Multiple)................................. 145
 01797 - Arch Cape Creek & Webb Ave, Hwy 9...................... 36
 01831 - West Humbug Creek, Hwy 47................................ 39
 01832 - East Fork Humbug Creek, Hwy 47........................... 39
 01878 - Aults Point Half Viaduct, Hwy 9........................... 36
 01983 - SW Newbury St Viaduct, Hwy 1W............................ 234
 01984 - SW Vermont St Viaduct, Hwy 1W............................ 234
 61C40 - Indian Creek, Philberg Rd.................................. 274

 Cat 3
 02275 - West Olalla Slough, Hwy 33 Frtg Rd at MP F8.17
 02349 - Lake Lytle Outlet, Hwy 9
 05041 - Salt Creek (Ash Swale), Hwy 153
 11491A - Drift Creek South, Bayview Rd
 15C21 - Floras Creek, Floras Creek Rd

 Not Historic
 00596 - Keene Creek, Bat Bridge
 29C154 - Yale Creek, County Rd 790

TIMBER PONY TRUSS
 Cat 2
 398164 - West Fork Horse Creek, Delta Rd....................... 156
Index by Structure Name

<table>
<thead>
<tr>
<th>Structure Name – County Code, Bridge Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8th Street Bridge – UM, 59C111</td>
<td>258</td>
</tr>
</tbody>
</table>

A

- A Canal, 11th St – KL, 62002 124
- Abernethy Creek, Holly Ln – CK, 06217 24
- Abernethy Creek, Redland Rd (West) – CK, 01214 ... 29
- Abernethy Creek, Redland Rd (East) – CK, 01215 ... 29
- Abiqua Creek, Gallon House Rd NE – MN, 05381 188
- Adkisson Bridge – WO, 01095 289
- Alder Creek, County Rd 539 (Old US 30) – BA, 01409 ... 4
- Alsea River, Hayden Rd – BE, 14538 7
- Amazon Creek, Fern Ridge Trail – LA, 39C501 129
- Antelope Creek Covered Bridge – JA, 29C202 109
- Antelope Creek, Pedestrian – JA, 29C202 109
- Antelope Creek, Upper Tub Springs Rd – WO, 65C57 ... 291
- Applegate River, Hwy 272 at MP 18.04 – JA, 01992 ... 112
- Applegate River, McKee Bridge Rd – JA, 29C471 ... 107
- Arch Cape Creek & Webb Ave, Hwy 9 – CP, 01797 36
- Armstrong Bridge – CK, 08989 27
- Ashland Creek, Hwy 63 SB – JA, 0M274 100
- Astoria-Megler Bridge – CP, 07949 42
- Aults Point Half Viaduct, Hwy 9 – CP, 01878 36
- Auto Club Bridge – MU, 11112 213

B

- Balch Gulch Bridge – MU, 25815 206
- Barnard Bridge – LA, 01626 144
- Battle Creek, Commercial St SE – MN, 471006 195
- Battle Creek Covered Bridge – LA, 39C409 132
- Bear Creek, Old Hwy 30 – CP, 07C13 37
- Beaver Creek, Historic Columbia River Hwy – MU, 04522 211
- Beaver Creek, Hwy 9 at MP 80.32 – TI, 02762 252
- Beaver Creek, Old Hwy 30 – CA, 09C57 46
- Beaver Creek, Old Hwy 30 at MP 8.48 – CA, 00144 ... 46
- Beaver Creek, Old Hwy 30 at MP 9.28 – CA, 00142 ... 46
- Belknap Covered Bridge – LA, 39C123 159
- Beltline Overcrossing – CP, 02418 32
- Ben Jones Bridge – LC, 01089 164
- Berry Creek, Hwy 1W – PO, 00871A 241
- Big Butte Creek, Cobleigh Rd #949 – JA, 29C237 101
- Big Creek, Hwy 9 at MP 175.02 – LA, 01180 141
- Blue River, Blue River Dr – LA, 39C183 135
- BNSF, N Fessenden Street – MU, 51T104 207
- BNSF, N Lombard Street (US 30 Bypass) – MU, 0M089 207
- BNSF, N Williamette Blvd – MU, 51T102 207
- BNSF, NE Columbia Blvd – MU, 09685 207
- Bridal Veil Falls Bridge – MU, 00823 216
<table>
<thead>
<tr>
<th>Bridge</th>
<th>City</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge of the Gods</td>
<td>HO</td>
<td>02592</td>
<td></td>
</tr>
<tr>
<td>Broadway Bridge</td>
<td>CP</td>
<td>07C11</td>
<td></td>
</tr>
<tr>
<td>Broadway Bridge</td>
<td>MU</td>
<td>06757</td>
<td></td>
</tr>
<tr>
<td>Brownsville Bridge</td>
<td>LN</td>
<td>02373</td>
<td></td>
</tr>
<tr>
<td>Buck Creek, Hwy 32 – Ti</td>
<td>TI</td>
<td>04805</td>
<td></td>
</tr>
<tr>
<td>Bull Creek Dam Bridge</td>
<td>DE</td>
<td>17C02</td>
<td></td>
</tr>
<tr>
<td>Bull Run River, Bull Run Rd – CK</td>
<td>CK</td>
<td>06571</td>
<td></td>
</tr>
<tr>
<td>Burnside Bridge</td>
<td>MU</td>
<td>00511</td>
<td></td>
</tr>
<tr>
<td>Burnt River & UPRR, Hwy 449 – BA</td>
<td>BA</td>
<td>00700</td>
<td></td>
</tr>
<tr>
<td>Calapooia River, Main St – LN</td>
<td>LN</td>
<td>02373</td>
<td></td>
</tr>
<tr>
<td>Calapooia River, Pedestrian – LN</td>
<td>LN</td>
<td>12819</td>
<td></td>
</tr>
<tr>
<td>Calapooya Creek & SPRR, Shady Hwy – DO</td>
<td>DO</td>
<td>19C519</td>
<td></td>
</tr>
<tr>
<td>Calapooya Creek, County Rd 10A – DO</td>
<td>DO</td>
<td>19C487</td>
<td></td>
</tr>
<tr>
<td>Calapooya Creek, Hinkle Creek Rd #281 – DO</td>
<td>DO</td>
<td>19C418</td>
<td></td>
</tr>
<tr>
<td>Canal, Pedestrian Path – CR</td>
<td>CR</td>
<td>13C12</td>
<td></td>
</tr>
<tr>
<td>Canyon Creek, South Main St – DO</td>
<td>DO</td>
<td>00548A</td>
<td></td>
</tr>
<tr>
<td>Canyon, NW Alexandra Ave – MU</td>
<td>MU</td>
<td>25B14</td>
<td></td>
</tr>
<tr>
<td>Cape Creek, Hwy 9 – LA</td>
<td>LA</td>
<td>01113</td>
<td></td>
</tr>
<tr>
<td>Cape Perpetua Half Viaduct, Hwy 9 – LC</td>
<td>LC</td>
<td>01175</td>
<td></td>
</tr>
<tr>
<td>Carter Bridge – CK</td>
<td>CK</td>
<td>08988</td>
<td></td>
</tr>
<tr>
<td>Cascade Gorge Creek Bridge – JA</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catherine Creek, Woodruff Lane – UN</td>
<td>UN</td>
<td>20189</td>
<td></td>
</tr>
<tr>
<td>Caveman Bridge – JO</td>
<td>JO</td>
<td>01418</td>
<td></td>
</tr>
<tr>
<td>Cavitt Creek Covered Bridge – DO</td>
<td>DO</td>
<td>19C018</td>
<td></td>
</tr>
<tr>
<td>CBRL, Hwy 9 – CO</td>
<td>CO</td>
<td>01950</td>
<td></td>
</tr>
<tr>
<td>Champoeg Creek, Park Rd – MN</td>
<td>MN</td>
<td>09963</td>
<td></td>
</tr>
<tr>
<td>Chandler Bridge – CO</td>
<td>CO</td>
<td>07176</td>
<td></td>
</tr>
<tr>
<td>Chasm Bridge – Ti</td>
<td>TI</td>
<td>02723</td>
<td></td>
</tr>
<tr>
<td>Cheshire Bridges – LA</td>
<td>LA</td>
<td>01755</td>
<td></td>
</tr>
<tr>
<td>China Creek, Hwy 9 at MP 175.68 – LA</td>
<td>LA</td>
<td>01114</td>
<td></td>
</tr>
<tr>
<td>Chitwood Covered Bridge – LC</td>
<td>LC</td>
<td>41C09</td>
<td></td>
</tr>
<tr>
<td>City Street & UPRR, Hwy 58 – LN</td>
<td>LN</td>
<td>02380</td>
<td></td>
</tr>
<tr>
<td>Clackamas River, Hwy 161 – CK</td>
<td>CK</td>
<td>02208</td>
<td></td>
</tr>
<tr>
<td>Clackamas River, Hwy 171 at MP 38.77 – CK</td>
<td>CK</td>
<td>08988</td>
<td></td>
</tr>
<tr>
<td>Clackamas River, Hwy 171 at MP 39.16 – CK</td>
<td>CK</td>
<td>08989</td>
<td></td>
</tr>
<tr>
<td>Clackamas River, Hwy 171 at MP 44.88 – CK</td>
<td>CK</td>
<td>08991</td>
<td></td>
</tr>
<tr>
<td>Clackamas River, Hwy 171 at MP 45.83 – CK</td>
<td>CK</td>
<td>08990</td>
<td></td>
</tr>
<tr>
<td>Clackamas River, Hwy 1E – CK</td>
<td>CK</td>
<td>01617</td>
<td></td>
</tr>
<tr>
<td>Coast Fork Willamette River, Hwy 18 – LA</td>
<td>LA</td>
<td>05286</td>
<td></td>
</tr>
<tr>
<td>Columbia River & Hwy 100, Toll Bridge – HO</td>
<td>HO</td>
<td>02592</td>
<td></td>
</tr>
<tr>
<td>Columbia River (Astoria) – CP</td>
<td>CP</td>
<td>07949</td>
<td></td>
</tr>
<tr>
<td>Columbia River, Hwy 2 Conn – HO</td>
<td>HO</td>
<td>06645</td>
<td></td>
</tr>
<tr>
<td>Columbia River, Hwy 2W Conn – CA</td>
<td>CA</td>
<td>02046</td>
<td></td>
</tr>
<tr>
<td>Columbia River, Hwy 4 – WO</td>
<td>WO</td>
<td>06635Q</td>
<td></td>
</tr>
<tr>
<td>Columbia River, Hwy 42 – SH</td>
<td>SH</td>
<td>00849A</td>
<td></td>
</tr>
<tr>
<td>Columbia River, Hwy 70 EB – UM</td>
<td>UM</td>
<td>02230A</td>
<td></td>
</tr>
<tr>
<td>Columbia River, Hwy 1 NB – MU</td>
<td>MU</td>
<td>01377A</td>
<td></td>
</tr>
</tbody>
</table>
Columbia River, Hwy 1 SB – MU, 07333 ..221
Columbia Slough & N Schmeer Rd Conn, Hwy 1W – MU, 04517228
Columbia Slough, Hwy 1E – MU, 01377C ...221
Coos Bay, Hwy 9 – CO, 01823 ...54
Coos River, Hwy 241 – CO, 07176 ..56
Copco Penstocks, County Rd 797 – JA, 29C279110
COR, Hwy 273 – JA, 03781 ..105
Cow Creek, County Rd 39 – DO, 19C215 ...86
Cow Creek, Danner Rd – MH, 45C609 ...183
Coyote Creek Covered Bridge – LA, 39C409132
Coyote Creek, Battle Creek Rd – LA, 39C409132
Crabtree Creek, Fish Hatchery Dr – LN, 12876175
Crabtree Creek, Hungry Hill Dr – LN, 01724173
Crawfordsville Covered Bridge – LN, 12819171
Creek, Hwy 229 (Multiple) – LA, 01755 ..145
Cripple Creek Bridge – CK, 08990 ...27
Crooked River Bridge – JE, 00600 ...114
Crooked River, Jordan Rd – JE, 16CD6 ...116
Crooked River, Pedestrian (Conant Basin Rd) – CR, 1663660
Crooked River, Pedestrian Path – CR, 13C1259
Crown Point Viaduct – MU, 04524 ..214
Cummins Creek, Hwy 9 – LA, 01182 ...139
Curn Covered Bridge – LA, 39C242 ...133

D

Deadwood Creek Covered Bridge – LA, 39C551147
Deadwood Creek, Deadwood Loop Rd – LA, 39C551147
Deer Creek, Hogue Drive – JO, 509005 ...122
Deer Creek, Jackson St – DO, 26J04 ..75
Depoe Bay, Hwy 9 – LC, 02459 ...164
Deschutes River & BNSF, Hwy 4 – WO, 00966290
Deschutes River, Jordan Rd – JE, 16C01 ...116
Dollarhide Overcrossing – JA, 03781 ...105
Dorena Covered Bridge – LA, 18139 ...155
Draw, Stark Street – MU, 11113 ...219
Dry Canyon Creek Bridge – WO, 00524 ..286
Dry Creek, Sams Rd – UM, 59C421 ..259

E

Eagle Creek Bridge – MU, 02063A ..218
Eagle Creek Viaduct – MU, 17492 ...218
Eagle Creek, Hwy 12 – BA, 01122A ..2
Earnest Covered Bridge – LA, 39C176 ..152
East Fork Birch Creek, Hwy 28 – UM, 02561266
East Fork Hood River, Hwy 281 – HO, 0193997
East Fork Humbug Creek, Hwy 47 – CP, 0183239
East Multnomah Falls Viaduct – MU, 00841216
Easton Canyon #4, County Rd 10 – WO, 65C05291
Eddyville Bridge – LC, 00683 ...162
Eightmile Creek, Lower Eightmile Rd at MP 1.48 – WO, 00896......287
Eightmile Creek, Lower Eightmile Rd at MP 3.24 – WO, 00895......287
Eightmile Creek, Lower Eightmile Rd at MP 3.94 – WO, 00894......287
Eightmile Creek, Lower Eightmile Rd at MP 4.19 – WO, 00893......287
Eightmile Creek, Old Dufur South – WO, 65C34.................................283
Eightmile Creek, Davis Cutoff – WO, 65C19.................................283
Elk Creek, County Rd 1 – DO, 19C480..82
Elliott Lane Bridge – CR, 13C12..59
Ellsworth St Bridge – BE, 01025D..9
Estacada Bridge – CK, 02208...25
Euchre Creek, County Rd 510 – CU, 15C31.................................283

F
Fall Creek, Jasper Lowell Rd – LA, 014721......................................148
Fall Creek, Pengra Rd – LA, C39004...151
Ferry Street Bridge – LA, 06648...158
Fifteen Mile Creek Viaduct – WO, 003080.....................................286
Fifteenmile Creek, Boyd Loop Rd – WO, 01095.............................289
Fish Hatchery Bridge – CP, 06524...41
Fisher School Covered Bridge – LC, 41C27......................................161
Five Point Creek, Hwy 6 Frontage Rd Lt – UN, 00718.................272
Five Rivers, Pedestrian – LC, 41C27...161
Florence Bridge – LA, 01821E..143
Foots Creek, Hwy 60 – JA, 01349...103
Foster Creek, County Rd 375 – CU, 15C29.................................64
Fremont Bridge – MU, 02529..238
Furnish Ditch, Rieth Rd at MP 2.96 – UM, 59C706..........................260
Furnish Ditch, Rieth Rd at MP 3.79 – UM, 59C708..........................260
Furnish Ditch, Rieth Rd at MP 4.94 – UM, 59C721..........................260
Furnish Ditch, Rieth Rd at MP 5.14 – UM, 59C752..........................260
Furnish Ditch, Rieth Rd at MP 5.92 – UM, 59C751..........................260

G
Gales Creek, Gales Creek Rd – WN, 671275..................................296
Gallon House Covered Bridge – MN, 05381....................................188
Galls Creek, Lampman Rd – JA, 0M342...102
Gilkey Covered Bridge – LN, 12943..176
Glenwood Private Rd, Hwy 9 – CP, 01468......................................34
Gold Beach Bridge – CU, 01172...62
Gold Hill Bridge – JA, 00576...105
Goodpasture Covered Bridge – LA, 39C118..................................150
Gorton Creek Bridge – HO, 27C35...92
Grande Ronde River and UPRR, Hwy 6 Frontage Rd – UN, 00626. 275
Grande Ronde River, Hwy 10 Frontage Rd – UN, 00799..............273
Grande Ronde River, Redmond Grade Rd – WL, 32C62...............277
Grande Ronde River, Yarrington Rd – UN, 61C16..........................270
Grave Creek Covered Bridge – JO, 141005....................................119
Grave Creek, Sunny Valley Loop – JO, 141005.............................119
H
Half Viaduct, Hwy 9 – TI, 01951 ...249
Hannah Covered Bridge – LN, 12948 ..174
Harris Covered Bridge – BE, 01441 ...13
Hawthorne Bridge – MU, 02757 ...209
Hay Creek, Old Hwy 97 – JE, 00813 ..114
Hayden Covered Bridge – BE, 14538 ..7
Hell Gate Bridge – LA, 01626 ...144
High Bridge – JE, 00600 ..114
Hoffman Covered Bridge – LN, 01724 ..173
Hog Creek Canyon Bridge (Rowena Dell) – WO, 00523284
Hood River, Hwy 281 – HO, 01600 ..96
Hoquart Slough, Hwy 9 – TI, 01500 ..302
Horse Tail Falls Bridge – MU, 04543 ..216
Hunter Creek, Hunter Creek Rd – CU, 15C01062
Huntington Overcrossing – BA, 00700 ...302
Hwy 273 and COR, Hwy 273 – JA, 03780 ..105
Hwy 31, Hwy 58 – LN, 02447 ...177
Hwy 4, Riverside St – KL, 09693 ..125
Ind
Indian Creek, Philberg Rd – UN, 61C40 ...274
Interstate Bridge – MU, 01377A ...221
Irish Bend Covered Bridge – BE, 14169 ..16
Isaac Lee Patterson Bridge – CU, 01172 ...62
J
Jackson Creek, Hwy 1W – BE, 00420A ...8
Jacob Conser Bridge – MN, 01582 ...193
Jefferson Bridge – MN, 01582 ...193
John Day River, Moon Creek Rd #45 – GR, 23C45190
Johnson Creek, SE Ochoco St – MU, 25BS8 ..236
Jordan Rd, Hwy 2 – MU, 06945 ...303
Juniper Point Half Viaduct – UM, 01629 ..264
Juno Bridge – TI, 00505 ...251
L
Lakeside Bridge – CO, 00949A ..57
Larwood Covered Bridge – LN, 12876 ..175
Latourell Creek Bridge – MU, 04527 ...214
Lewis and Clark Bridge – CA, 02046 ..49
Lewis and Clark River, Hwy 105 – CP, 0071132
Little Nestucca River, Hwy 130 at MP 4.15 – TI, 01861253
Little River, CR 82 – DO, 19C018 ..84
Longview Bridge – CA, 02046 ...49
Lost Creek Covered Bridge – JA, 29C262 ...108
Lost Creek, Parvin Road – LA, 39C643 ...131
Lost Creek, Pedestrian – JA, 29C262 ...108
Lostine River, Lostine River Rd – WL, 63C23280
Lowell Covered Bridge – LA, 06649 ..154
Luckiamute River, Helmick Rd – PO, S3C122243

M

MacLeay Park, NW Thurman St – MU, 25B15206
Malheur River, Warm Springs Reservoir Rd – MH, 45C405185
Marys River, Harris Rd – BE, 0144113
Marys River, Harris Rd – BE, 03C17303
Marys River, Hwy 191 – BE, 02625A15
Marys River, Hwy 1W NB – BE, 0070612
Maupin Bridge – WO, 00966 ...290
Mays Creek, County Rd 148 – WO, 65C36291
McCullough Memorial Bridge – CO, 0182354
McKee Covered Bridge – JA, 29C471107
McKenzie River, Goodpasture Rd – LA, 39C118150
McKenzie River, King Rd West – LA, 39C123159
McKenzie River, Leaburg Dam Rd – LA, 18744136
McKenzie River, Public Rd – LA, 18753302
McLaughlin Bridge – CK, 0161720
Mendenhall Creek, Old Hwy 199 – JO, 530205122
Middle Fork Willamette River, Pedestrian – LA, 06649154
Mill Creek, 15th St NE – MN, 470226190
Mill Creek, Cottage St NE – MN, 470214192
Mill Creek, Front St NE – MN, 470202187
Mill Creek, Mill Creek Rd at MP 3.23 – WO, 06566291
Mill Creek, Mill Creek Rd at MP 3.91 – WO, 06565291
Mill Creek, Mill Creek Rd at MP 5.00 – WO, 06564291
Mill Creek, Old Military Rd – PO, S3C063240
Mill Creek, State St – MN, 470238192
Mill Creek, Summer St NE – MN, 470218192
Mill Creek, Wendling Rd – LA, 39C174149
Mill Creek, West 6th St – WO, 00464286
Mill Creek, Winter St NE – MN, 470216190
Mills Bridge – TI, 01868 ..255
Mills St, Hwy 123 – MU, 06498232
Moffett Creek Bridge – MU, 02194216
Mohawk River, Paschelke Rd – LA, 39C176152
Mohler Bridge – TI, 01217251
Molalla River, Hwy 1E NB – CK, 0206121
Morrison Bridge – MU, 02758237
Mosby Creek Covered Bridge – LA, 39C24130
Mosby Creek, Layng Rd – LA, 39C241130
Mosby Creek, Pedestrian – LA, 39C243138
Mosier Creek Bridge – WO, 00498284
Muddy Creek, McFarland Rd at MP 5.30 – BE, 1413510
Multnomah Creek Bridge – MU, 04534216
Myers Creek, Hwy 255 – CU, 0095563
Myrtle Creek Bridge – DO, 19CS1375
Myrtle Creek, County Rd 386 – DO, 19CS1475
<table>
<thead>
<tr>
<th>Location</th>
<th>County</th>
<th>ZIP Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Columbia Blvd & UPRR, Hwy 1W – MU</td>
<td></td>
<td>04518</td>
</tr>
<tr>
<td>Neahkahnie Mountain Bridge – TI</td>
<td></td>
<td>02723</td>
</tr>
<tr>
<td>Neal Lane Covered Bridge – DO</td>
<td></td>
<td>19C220</td>
</tr>
<tr>
<td>Neawanna Creek, Hwy 9 – CP</td>
<td></td>
<td>01305</td>
</tr>
<tr>
<td>Necanicum River, Hwy 9 – CP</td>
<td></td>
<td>01481</td>
</tr>
<tr>
<td>Necanicum River, W Broadway – CP</td>
<td></td>
<td>07C11</td>
</tr>
<tr>
<td>Necarney Creek, Hwy 9 – Ti</td>
<td></td>
<td>02311</td>
</tr>
<tr>
<td>Neahalem River & Hwy 103, Hwy 47 – CP</td>
<td></td>
<td>02165</td>
</tr>
<tr>
<td>Neahalem River, Hwy 102 at MP 61.28 – CA</td>
<td></td>
<td>02323</td>
</tr>
<tr>
<td>Neahalem River, Hwy 46 – Ti</td>
<td></td>
<td>02171</td>
</tr>
<tr>
<td>New Young’s Bay – CP</td>
<td></td>
<td>08306</td>
</tr>
<tr>
<td>Newport Avenue Bridge – CR</td>
<td></td>
<td>16636</td>
</tr>
<tr>
<td>Nice Creek Viaduct – CA</td>
<td></td>
<td>09C01</td>
</tr>
<tr>
<td>Nice Creek, C Street West – CA</td>
<td></td>
<td>09C01</td>
</tr>
<tr>
<td>North Fork Alsea River, Hwy 201 – BE</td>
<td></td>
<td>02305</td>
</tr>
<tr>
<td>North Fork Alsea River, Hwy 27 – BE</td>
<td></td>
<td>01204</td>
</tr>
<tr>
<td>North Fork Necanicum River, Hwy 47 at MP 7.07 – CP</td>
<td>06524</td>
<td>41</td>
</tr>
<tr>
<td>North Fork Neahalem River, Hwy 46 at MP 7.74 – CP</td>
<td>02319</td>
<td>34</td>
</tr>
<tr>
<td>North Fork Rogue River, County Rd 797 – JA</td>
<td></td>
<td>29C281</td>
</tr>
<tr>
<td>North Fork Yachts Covered Bridge – LC</td>
<td></td>
<td>12037</td>
</tr>
<tr>
<td>North Fork Yachts River, North Yachts River Rd – LC</td>
<td></td>
<td>12037</td>
</tr>
<tr>
<td>North Middle Fork Willamette River, County Rd 6129 – LA</td>
<td>39C650</td>
<td>153</td>
</tr>
<tr>
<td>North Myrtle Creek, County Park Rd – DO</td>
<td></td>
<td>19C525</td>
</tr>
<tr>
<td>North Powder River, Bidwell Rd – BA</td>
<td></td>
<td>00661</td>
</tr>
<tr>
<td>North Umpqua River, Hwy 234 – DO</td>
<td></td>
<td>00839</td>
</tr>
<tr>
<td>North Unit Canal, Coyote Rd – DE</td>
<td></td>
<td>17M001</td>
</tr>
<tr>
<td>North Yamhill River, Hwy 1W SB – YA</td>
<td></td>
<td>00441</td>
</tr>
<tr>
<td>NW Maywood Dr Semi-Viaduct – MU</td>
<td></td>
<td>25B18</td>
</tr>
<tr>
<td>Oak Creek, Pedestrian – BE</td>
<td></td>
<td>14169</td>
</tr>
<tr>
<td>Oakland Bridge – DO</td>
<td></td>
<td>19C519</td>
</tr>
<tr>
<td>Office Covered Bridge – LA</td>
<td></td>
<td>39C650</td>
</tr>
<tr>
<td>Old Rhinehart Bridge – UN</td>
<td></td>
<td>00799</td>
</tr>
<tr>
<td>Old Skipanon River Bridge – CP</td>
<td></td>
<td>01400</td>
</tr>
<tr>
<td>Old Winchester Bridge – DO</td>
<td></td>
<td>00839</td>
</tr>
<tr>
<td>Old Young’s Bay – CP</td>
<td></td>
<td>00330</td>
</tr>
<tr>
<td>Oneonta Gorge Creek Bridge (Old) – MU</td>
<td></td>
<td>04542</td>
</tr>
<tr>
<td>Oregon City Arch – CK</td>
<td></td>
<td>00357</td>
</tr>
<tr>
<td>Owyhee River, Owyhee River Rd – MH</td>
<td></td>
<td>45C611</td>
</tr>
<tr>
<td>Palmer Junction Bridge – UN</td>
<td></td>
<td>61C16</td>
</tr>
<tr>
<td>Parrot Creek, Hwy1E – CK</td>
<td></td>
<td>00580</td>
</tr>
<tr>
<td>Parvin Covered Bridge – LA</td>
<td></td>
<td>39C643</td>
</tr>
<tr>
<td>Pass Creek Covered Bridge – DO</td>
<td></td>
<td>19801</td>
</tr>
<tr>
<td>Pass Creek, Curtin Rd – DO</td>
<td></td>
<td>19C512</td>
</tr>
<tr>
<td>Pass Creek, Pedestrian – DO</td>
<td></td>
<td>19801</td>
</tr>
</tbody>
</table>

326
Pengra Covered Bridge – LA, C39004 ... 151
Pioneer Bridge – JA, 01992 ... 112
POTB RR, Hwy 9 – TI, 00505 ... 251
Powers Bridge – CO, 01942A ... 53
Prairie Creek, Depot St – WL, 638016 ... 279
Prairie Creek, West 2nd St – WL, 638012 ... 279
Prineville Bridge – LA, 39C501 .. 129
Pringle Creek, 13th St SE – MN, 470620 ... 192
Pringle Creek, Commercial St – MN, 470602 302
Pringle Creek, Cross St SE – MN, 470614 ... 190
Pringle Creek, Liberty St SE – MN, 470604 .. 190
Pringle Creek, Winter St SE – MN, 470610 192
Pringle Creek/Shelton Ditch, Church St SE – MN, 470608 190
Prospect Arch – JA, 29C281 ... 111
Pudding River, Hwy 1E – CK, 02743 ... 279
Pudding River, Monitor McKee Rd NE – MN, 47C37 189

R

Reedsport Bridge – DO, 01822 ... 79
Remote Covered Bridge – CO, 00482 ... 52
Rhea Creek, Brenner Canyon Rd – MO, 49C23 200
Rhea Creek Bridge – MO, 49C23 ... 200
Rhea Creek, Spring Hollow Rd – MO, 49C05 198
Richardson Bridge – LA, 39C501 ... 129
Rinehart Creek, Hwy 9 – CU, 07514 ... 279
Ritner Creek Covered Bridge – PO, 01251 ... 242
Ritner Creek, Pedestrian – PO, 01251 .. 242
Rochester Covered Bridge – DO, 19C487 ... 81
Rock Creek Bridge – WO, 65C63 ... 284
Rock Creek, Hwy 102 – CA, 01508 .. 48
Rock Creek, Hwy 41 – WH, 01469 ... 298
Rock Creek, Hwy 300 – Gl, 01792 ... 88
Rock Point Bridge – JA, 00332A ... 103
Rock Slide Viaduct – HO, 00504 ... 92
Rocky Creek, Hwy 9 Frontage Rd – LC, 01089 164
Rogue River, Hwy 25 S8 – JO, 01418 ... 120
Rogue River, Hwy 271 – JA, 00332A ... 103
Rogue River, Hwy 271 – JA, 00576 .. 105
Rogue River, Hwy 9 – CU, 01172 ... 62
Rome Bridge – MH, 45C611 ... 184
Ross Island Bridge – MU, 05054 ... 226
Row River, Pedestrian – LA, 39C242 ... 133
Row River, Shoreview Dr – LA, 18139 ... 155
Ruckel Creek Bridge – HO, - ... 92
Ruthon Point Viaduct – HO, 00273 ... 92

S

Salmon River, Brightwood Loop Rd – CK, 01438 23
Salmon River, Elk Park Rd – CK, 06574 ... 19
<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Location</th>
<th>Milepost</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmon River, Hwy 39 - LC, 04192</td>
<td></td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>Sam Hill Memorial Bridge - SH, 00849A</td>
<td></td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>Sam Reed Bridge - TI, 02311</td>
<td></td>
<td></td>
<td>249</td>
</tr>
<tr>
<td>Sandy Creek, Pedestrian - CO, 00482</td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>Sandy River, Historic Columbia River Highway</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Sandy River, Hwy 2 EB - MU, 06875</td>
<td></td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>Sandy River, Lusted Rd - CK, 06580</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Sandy River, Stark St - MU, 11112</td>
<td></td>
<td></td>
<td>213</td>
</tr>
<tr>
<td>Santiam River, Hwy 162 Conn Rt - MN, 02058</td>
<td></td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>Santiam River, Hwy 164 - MN, 01582</td>
<td></td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>Sardine Creek, Hwy 271 - JA, 01937</td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Scottsburg Bridge - DO, 01318</td>
<td></td>
<td></td>
<td>78, 137</td>
</tr>
<tr>
<td>Seaside Bridge - CP, 07C11</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Sellwood Bridge - MU, 06879</td>
<td></td>
<td></td>
<td>302</td>
</tr>
<tr>
<td>Seufert Viaduct - WO, 003080</td>
<td></td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>Shepperd's Dell Bridge - MU, 04528</td>
<td></td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Sheridan Bridge - YA, 02557</td>
<td></td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>Shimanek Covered Bridge - LN, 12965</td>
<td></td>
<td></td>
<td>181</td>
</tr>
<tr>
<td>Short Covered Bridge - LN, 14025</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Short Sand Beach Creek, Hwy 9 - TI, 02312</td>
<td></td>
<td></td>
<td>249</td>
</tr>
<tr>
<td>Siletz River, Hwy 181 at MP 24.10 - LC, 00853A</td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Silvies River, Hwy 9 - LA, 00982</td>
<td></td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>Siuslaw River, Hwy 9 - LA, 01821E</td>
<td></td>
<td></td>
<td>143</td>
</tr>
<tr>
<td>Skiberene Bridge - CP, 01481</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Skipanon River, Hwy 104 Spur - CP, 01400</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Soap Creek, Hwy 1W - PO, 00872A</td>
<td></td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>Soapstone Creek, Hwy 46 - CP, 01319</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Soda Fork, Hwy 16 - LN, 01706</td>
<td></td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>South Fork Coquille River, Hwy 242 at MP 18.22</td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>South Myrtle Creek, County Rd 124 - DO, 19C220</td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>South Santiam River, High Deck Rd - LN, 14025</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>South Umpqua River, County Rd 386 - DO, 19C513</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>South Umpqua River, Hwy 35 EB - DO, 01923</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>South Umpqua River, Stewart Park Rd - DO, 26T05</td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>South Yamhill River, Hwy 30 - PO, 02081</td>
<td></td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Spanish Hollow Creek, Hwy 2 Frontage Rd - SH, 02133</td>
<td></td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>Springfield Bridge - LA, 01223</td>
<td></td>
<td></td>
<td>78, 137</td>
</tr>
<tr>
<td>St. Johns Bridge - MU, 06497</td>
<td></td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>Stark Street Viaduct - MU, 11113</td>
<td></td>
<td></td>
<td>219</td>
</tr>
<tr>
<td>Steamboat Channel, Bundy Rd - BE, 14160</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Steel Bridge - MU, 06683</td>
<td></td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Steinman Overcrossing - JA, 03780</td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Stewart Covered Bridge - LA, 39C243</td>
<td></td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>Stillwell Bridge - TI, 05640A</td>
<td></td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>SW Bertha Blvd, SW Capitol Hwy - MU, 2ST01</td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>SW Jefferson St, SW Vista Ave - MU, 25B36</td>
<td></td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>SW Multnomah Blvd, Hwy 1W - MU, 02010</td>
<td></td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>SW Multnomah Blvd, SW Capitol Hwy - MU, 2ST03</td>
<td></td>
<td></td>
<td>227</td>
</tr>
<tr>
<td>SW Newbury St Viaduct, Hwy 1W - MU, 01983</td>
<td></td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Bridge Name</td>
<td>Location</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>SW Vermont St Viaduct, Hwy 1W – MU, 01984</td>
<td></td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Swing Log Covered Bridge – LA, 39C409</td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahkenitch Creek, Hwy 9 – DO, 01602</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Tanner Creek Bridge – MU, 02062</td>
<td></td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Tenmile Creek & CBRL, Hwy 9 & Frtg Rd – CO, 00949A</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Tenmile Creek, Hwy 9 – LA, 01181</td>
<td></td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>The Dalles Bridge – WO, 06635Q</td>
<td></td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Thomas Creek, Camp Morrison Rd – LN, 12948</td>
<td></td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Thomas Creek, County Rd 629 – LN, 12943</td>
<td></td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Thomas Creek, Hwy 9 – CU, 08459</td>
<td></td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Thomas Creek, Richardson Gap Rd North – LN, 12965</td>
<td></td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Tide Creek Bridge – CA, 00338</td>
<td></td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Toothrock Viaduct – MU, 17490</td>
<td></td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Trail Creek, Hwy 280 – JA, 02453</td>
<td></td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Trail Creek, Old Hwy 62 – JA, 00831</td>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Trask River, Hwy 131 – Ti, 05640A</td>
<td></td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Troutdale Bridge – MU, 02019</td>
<td></td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>Troy Bridge – WL, 32C62</td>
<td></td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Tuatulatin River, Hwy 1W SB – WN, 01417S</td>
<td></td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Tucker Bridge – HO, 01600</td>
<td></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Tumalo Irrigation Canal, Sisemore Rd – DE, 17C02</td>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umatilla Bridge – UM, 02230A</td>
<td></td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>Umatilla River Bridge – UM, 00624A</td>
<td></td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Umatilla River, Lee Street Grade Rd – UM, 59C111</td>
<td></td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Umpqua River & McIntosh Slough, Hwy 9 – DO, 01822</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Umpqua River, Hwy 45 – DO, 01318</td>
<td></td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Unity Covered Bridge – LA, 014721</td>
<td></td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Upper Perry Arch – UN, 00626</td>
<td></td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>UPRR & SPRR, N Burgard St – MU, 25801</td>
<td></td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>UPRR, Hwy 1E – MU, 05290</td>
<td></td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>UPRR, N Vancouver Ave – MU, 25806</td>
<td></td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>US Feed Canal, Rieth Rd at MP 2.21 – UM, 59C705</td>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Buren Bridge – BE, 02728</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Vista Avenue Viaduct – MU, 25836</td>
<td></td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahkeena Creek Bridge (Gordon Creek) – MU, 04533</td>
<td></td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>Walla Walla River, Birch Creek Rd – UM, 59C483</td>
<td></td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Wallace Bridge – PO, 02081</td>
<td></td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Wallowa River, Deer Creek Rd – WL, 63C114</td>
<td></td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>Wendling Covered Bridge – LA, 39C174</td>
<td></td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>West Beaver Creek, Hwy 9 – Ti, 02202</td>
<td></td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>West Fork Horse Creek, Delta Rd – LA, 398164</td>
<td></td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>West Humbug Creek, Hwy 47 – CP, 01831</td>
<td></td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
West Multnomah Falls Viaduct – MU, 0084 ...216
White Salmon Bridge – HO, 06645..94
Whitewater Bridge – CK, 08991 ...27
Wildcat Creek Covered Bridge – LA, 39C446 ..134
Wildcat Creek, Austa Rd – LA, 39C446 ..134
Wildhorse Creek, Adams Rd – UM, 59C356 ...263
Wildhorse Creek, Commercial St – UM, 59C568262
Willamette River & Hwy 1 & OPR, Hwy 26 – MU, 05054................226
Willamette River & Hwy 1E, Hwy 3 – CK, 00357.................................21
Willamette River & Hwy 2W NB & UPRR, Hwy 123 – MU, 06497..231
Willamette River & Hwy 3 NB, SE Tacoma St – MU, 06879302
Willamette River, Broadway St – MU, 06757 ..212
Willamette River, Burnside St – MU, 00511 ...225
Willamette River, Coburg Rd – LA, 06648 ..158
Willamette River, Hawthorne Ave – MU, 02757209
Willamette River, Hwy 15 WB – LA, 01223 ..137
Willamette River, Hwy 18 Frontage Road – LA, 01626...............144
Willamette River, Hwy 1W – MU, 06683 ...210
Willamette River, Hwy 31 EB – BE, 01025D9
Willamette River, Hwy 61 – MU, 02529 ..238
Willamette River, Morrison St – MU, 02758 ...237
Willamette River, Van Buren Ave – BE, 027286
Williams Creek, Hwy 272 – JO, 02379 ...118
Willow Creek, Riverside Ave – MO, 49B09 ..199
Wilson River Overflow, Boquist Rd – TI, 57C60251
Wilson River Slough, Hwy 9 – TI, 01498 ..251
Wilson River, Hwy 37 at MP 5.78 – TI, 01868255
Wilson River, Hwy 9 – TI, 01499 ..252
Winston Bridge – DO, 01923 ..75
Wolf Creek, Edgewood Rd – JO, 114005 ...120

Y

Yamhill River, Bridge St – YA, 02557 ..301
Yaquina Bay Bridge – LC, 01820 ..166
Yaquina Bay, Hwy 9 – LC, 01820 ..166
Yaquina River, Chitwood Rd – LC, 41C09 ...163
Yaquina River, Hwy 33 – LC, 00683 ...162
Youngs Bay, Hwy 105 – CP, 00330..32
Youngs Bay, Hwy 9 – CP, 08306 ..42
Youngs Creek Bridge – MU, 04528 ..214
Index by Structure Number

<table>
<thead>
<tr>
<th>Structure Number – Bridge Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – Cascade Gorge Creek Bridge</td>
<td>110</td>
</tr>
<tr>
<td>N/A – Ruckel Creek Bridge</td>
<td>92</td>
</tr>
<tr>
<td>00142 – Beaver Creek, Old Hwy 30 at MP 9.28</td>
<td>46</td>
</tr>
<tr>
<td>00144 – Beaver Creek, Old Hwy 30 at MP 8.48</td>
<td>46</td>
</tr>
<tr>
<td>00273 – Ruthon Point Viaduct</td>
<td>92</td>
</tr>
<tr>
<td>003080 – Fifteen Mile Creek Viaduct</td>
<td>286</td>
</tr>
<tr>
<td>00330 – Youngs Bay, Hwy 105</td>
<td>32</td>
</tr>
<tr>
<td>00332A – Rogue River, Hwy 271 (Rock Point)</td>
<td>103</td>
</tr>
<tr>
<td>00338 – Tide Creek Bridge</td>
<td>46</td>
</tr>
<tr>
<td>00357 – Willamette River & Hwy 1E, Hwy 3</td>
<td>21</td>
</tr>
<tr>
<td>00420A – Jackson Creek, Hwy 1W</td>
<td>8</td>
</tr>
<tr>
<td>00441 – North Yamhill River, Hwy 1W SB</td>
<td>300</td>
</tr>
<tr>
<td>00464 – Mill Creek, West 6th St</td>
<td>286</td>
</tr>
<tr>
<td>00482 – Sandy Creek, Pedestrian</td>
<td>52</td>
</tr>
<tr>
<td>00498 – Mosier Creek Bridge</td>
<td>284</td>
</tr>
<tr>
<td>00504 – Rock Slide Viaduct</td>
<td>92</td>
</tr>
<tr>
<td>00505 – POTB RR, Hwy 9</td>
<td>251</td>
</tr>
<tr>
<td>00511 – Willamette River, Burnside St</td>
<td>225</td>
</tr>
<tr>
<td>00523 – Hog Creek Canyon Bridge (Rowena Dell)</td>
<td>284</td>
</tr>
<tr>
<td>00524 – Dry Canyon Creek Bridge</td>
<td>286</td>
</tr>
<tr>
<td>00548A – Canyon Creek, South Main St</td>
<td>75</td>
</tr>
<tr>
<td>00576 – Rogue River, Hwy 271 (Gold Hill)</td>
<td>105</td>
</tr>
<tr>
<td>00600 – Crooked River Bridge</td>
<td>114</td>
</tr>
<tr>
<td>00624A – Umatilla River Bridge</td>
<td>264</td>
</tr>
<tr>
<td>00626 – Grande Ronde River and UP RR, Hwy 6 Frontage Rd</td>
<td>275</td>
</tr>
<tr>
<td>00661 – North Powder River, Bidwell Rd</td>
<td>3</td>
</tr>
<tr>
<td>00683 – Yaquina River, Hwy 33</td>
<td>162</td>
</tr>
<tr>
<td>00700 – Burnt River & UP RR, Hwy 449</td>
<td>302</td>
</tr>
<tr>
<td>00706 – Marys River, Hwy 1W NB</td>
<td>12</td>
</tr>
<tr>
<td>00711 – Lewis and Clark River, Hwy 105</td>
<td>32</td>
</tr>
<tr>
<td>00718 – Five Point Creek, Hwy 6 Frontage Rd Lt</td>
<td>272</td>
</tr>
<tr>
<td>00799 – Grande Ronde River, Hwy 10 Frontage Rd</td>
<td>273</td>
</tr>
<tr>
<td>00813 – Hay Creek, Old Hwy 97</td>
<td>114</td>
</tr>
<tr>
<td>00823 – Bridal Veil Falls Bridge</td>
<td>216</td>
</tr>
<tr>
<td>00831 – Trail Creek, Old Hwy 62</td>
<td>110</td>
</tr>
<tr>
<td>00839 – North Umpqua River, Hwy 234</td>
<td>73</td>
</tr>
<tr>
<td>00840 – West Multhomah Falls Viaduct</td>
<td>216</td>
</tr>
<tr>
<td>00841 – East Multnomah Falls Viaduct</td>
<td>216</td>
</tr>
<tr>
<td>00849A – Columbia River, Hwy 42</td>
<td>247</td>
</tr>
<tr>
<td>00853A – Siletz River, Hwy 181 at MP 24.10</td>
<td>169</td>
</tr>
<tr>
<td>00871A – Berry Creek, Hwy 1W</td>
<td>241</td>
</tr>
<tr>
<td>00872A – Soap Creek, Hwy 1W</td>
<td>241</td>
</tr>
<tr>
<td>00893 – Eightmile Creek, Lower Eightmile Rd at MP 4.19</td>
<td>287</td>
</tr>
<tr>
<td>00894 – Eightmile Creek, Lower Eightmile Rd at MP 3.94</td>
<td>287</td>
</tr>
<tr>
<td>00895 – Eightmile Creek, Lower Eightmile Rd at MP 3.24</td>
<td>287</td>
</tr>
<tr>
<td>00896 – Eightmile Creek, Lower Eightmile Rd at MP 1.48</td>
<td>287</td>
</tr>
</tbody>
</table>
00949A – Tenmile Creek & CBRL, Hwy 9 & Frtg Rd
00955 – Myers Creek, Hwy 255
00966 – Deschutes River & BNSF, Hwy 4
00982 – Siltcoos River, Hwy 9
01025D – Willamette River, Hwy 31 EB
01089 – Rocky Creek, Hwy 9 Frontage Rd
01095 – Fifteenmile Creek, Boyd Loop Rd
01113 – Cape Creek, Hwy 9
01114 – China Creek, Hwy 9 at MP 175.68
01122A – Eagle Creek, Hwy 12
01172 – Rogue River, Hwy 9
01175 – Cape Perpetua Half Viaduct, Hwy 9
01180 – Big Creek, Hwy 9 at MP 175.02
01181 – Tenmile Creek, Hwy 9
01182 – Cummins Creek, Hwy 9
01204 – North Fork Alsea River, Hwy 27
01214 – Abernethy Creek, Redland Rd (West)
01215 – Abernethy Creek, Redland Rd (East)
01217 – Nehalem River, Hwy 46
01223 – Willamette River, Hwy 15 WB
01251 – Ritner Creek, Pedestrian
01305 – Neawanna Creek, Hwy 9
01318 – Umpqua River, Hwy 45
01319 – Soapstone Creek, Hwy 46
01349 – Fools Creek, Hwy 60
01377A – Columbia River, Hwy 1 NB
01377C – Columbia Slough, Hwy 1E
01400 – Skipanon River, Hwy 104 Spur
01409 – Alder Creek, County Rd 539 (Old US 30)
01417S – Tualatin River, Hwy 1W SB
01418 – Rogue River, Hwy 25 SB
01438 – Salmon River, Brightwood Loop Rd
01441 – Marys River, Harris Rd
01468 – Glenwood Private Rd, Hwy 9
01469 – Rock Creek, Hwy 41
014721 – Fall Creek, Jasper Lowell Rd
01481 – Necanicum River, Hwy 9
01498 – Wilson River Slough, Hwy 9
01499 – Wilson River, Hwy 9
01500 – Hoquarten Slough, Hwy 9
01508 – Rock Creek, Hwy 102
01582 – Santiam River, Hwy 164
01600 – Hood River, Hwy 281
01602 – Tahkenitch Creek, Hwy 9
01617 – Clackamas River, Hwy 1E
01626 – Willamette River, Hwy 18 Frontage Rd
01629 – Juniper Point Half Viaduct
01706 – Soda Fork, Hwy 16
01724 – Crabtree Creek, Hungry Hill Dr...173
01755 – Creek, Hwy 229 (Multiple)..145
01792 – Rock Creek, Hwy 300...88
01797 – Arch Cape Creek & Webb Ave, Hwy 9.........................36
01820 – Yaquina Bay, Hwy 9..166
01821E – Siuslaw River, Hwy 9...143
01822 – Umpqua River & McIntosh Slough, Hwy 9...............79
01823 – Coos Bay, Hwy 9...54
01831 – West Humbug Creek, Hwy 47 ..39
01832 – East Fork Humbug Creek, Hwy 47...............................39
01861 – Little Nestucca River, Hwy 130 at MP 4.15...............253
01868 – Wilson River, Hwy 37 at MP 5.78255
01878 – Austins Point Half Viaduct, Hwy 9..............................36
01923 – South Umpqua River, Hwy 35 EB.................................75
01937 – Sardine Creek, Hwy 271...105
01939 – East Fork Hood River, Hwy 281..............................97
01942A – South Fork Coquille River, Hwy 242 at MP 18.22...53
01950 – CBRL, Hwy 9..54
01951 – Half Viaduct, Hwy 9...249
01983 – SW Newbury St Viaduct, Hwy 1W.............................234
01984 – SW Vermont St Viaduct, Hwy 1W.............................234
01992 – Applegate River, Hwy 272 at MP 18.04.........................112
02010 – SW Multnomah Blvd, Hwy 1W.................................234
02019 – Sandy River, Historic Columbia River Hwy...........211
02046 – Columbia River, Hwy 2W Conn.................................49
02058 – Santiam River, Hwy 162 Conn Rt.................................194
02061 – Molalla River, Hwy 1E NB...21
02062 – Tanner Creek Bridge..218
02063A – Eagle Creek Bridge...218
02081 – South Yamhill River, Hwy 30...244
02133 – Spanish Hollow Creek, Hwy 2 Frontage Rd...........246
02165 – Nehalem River & Hwy 103, Hwy 47..............................40
02194 – Moffett Creek Bridge..216
02202 – West Beaver Creek, Hwy 9..252
02208 – Clackamas River, Hwy 161..25
02230A – Columbia River, Hwy 70 EB....................................267
02305 – North Fork Alsea River, Hwy 201.................................14
02311 – Necarney Creek, Hwy 9...249
02312 – Short Sand Beach Creek, Hwy 9..............................249
02319 – North Fork Nehalem River, Hwy 46 at MP 7.74.........34
02323 – Nehalem River, Hwy 102 at MP 61.28.........................50
02373 – Calapooia River, Main St..179
02379 – Williams Creek, Hwy 272..118
02380 – City Street & UPRR, Hwy 58.......................................177
02418 – Beltline Overcrossing...32
02447 – Hwy 31, Hwy 58..177
02453 – Trail Creek, Hwy 230...82
02459 – Depoe Bay, Hwy 9..164
<table>
<thead>
<tr>
<th>Bridge Name</th>
<th>Location</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willamette River, Hwy 61</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>Yamhill River, Bridge St</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>East Fork Birch Creek, Hwy 28</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>Columbia River & Hwy 100, Toll Br</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Marys River, Hwy 191</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Neahkahnie Mountain Bridge</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Willamette River, Van Buren Ave</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Pudding River, Hwy 1E</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Willamette River, Hawthorne Ave</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>Willamette River, Morrison St</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>Beaver Creek, Hwy 9 at MP 80.32</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>Hwy 273 and COR, Hwy 273</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>COR, Hwy 273</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Marys River, Harris Rd</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>Salmon River, Hwy 39</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>Columbia Slough & N Schmeer Rd Conn, Hwy 1W</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>N Columbia Blvd & UPRR, Hwy 1W</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>Beaver Creek, Historic Columbia River Hwy</td>
<td></td>
<td>211</td>
</tr>
<tr>
<td>Crown Point Viaduct</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Latourell Creek Bridge</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Youngs Creek Bridge (Shepperds Dell)</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>Wahkeena Creek Bridge (Gordon Creek)</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Multnomah Creek Bridge</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Oneonta Gorge Creek Bridge (Old)</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Horsetail Falls Bridge</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Buck Creek, Hwy 32</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>Willamette River & Hwy 1 & OPR, Hwy 26</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>Coast Fork Willamette River, Hwy 18</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>UPRR, Hwy 1E</td>
<td></td>
<td>229</td>
</tr>
<tr>
<td>Abiqua Creek, Gallon House Rd NE</td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>Trask River, Hwy 131</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>Abernethy Creek, Holly Ln</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Willamette River & Hwy 2W NB & UPRR, Hwy 123</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>Mills St, Hwy 123</td>
<td></td>
<td>232</td>
</tr>
<tr>
<td>North Fork Necanicum River, Hwy 47 at MP 7.07</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Mill Creek, Mill Creek Rd at MP 5.00</td>
<td></td>
<td>291</td>
</tr>
<tr>
<td>Mill Creek, Mill Creek Rd at MP 3.91</td>
<td></td>
<td>291</td>
</tr>
<tr>
<td>Mill Creek, Mill Creek Rd at MP 3.23</td>
<td></td>
<td>291</td>
</tr>
<tr>
<td>Bull Run River, Bull Run Rd</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Salmon River, Elk Park Rd</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Sandy River, Lusted Rd</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Columbia River, Hwy 4</td>
<td></td>
<td>293</td>
</tr>
<tr>
<td>Columbia River, Hwy 2 Conn</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Willamette River, Coburg Rd</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>Middle Fork Willamette River, Pedestrian</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>Willamette River, Hwy 1W</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Willamette River, Broadway St</td>
<td></td>
<td>212</td>
</tr>
<tr>
<td>Sandy River, Hwy 2 EB</td>
<td></td>
<td>303</td>
</tr>
</tbody>
</table>
06879 – Willamette River & Hwy 3 NB, SE Tacoma St 302
06945 – Jordan Rd, Hwy 2 ... 303
07108A – Oneonta Gorge Creek, Hwy 100 .. 216
07176 – Coos River, Hwy 241 ... 56
07333 – Columbia River, Hwy 1 S8 ... 221
07514 – Rinehart Creek, Hwy 9 ... 65
07949 – Columbia River (Astoria) .. 42
07C11 – Necanicum River, W Broadway .. 38
07C13 – Bear Creek, Old Hwy 30 ... 37
08306 – Youngs Bay, Hwy 9 ... 42
08459 – Thomas Creek, Hwy 9 ... 66
08988 – Clackamas River, Hwy 171 at MP 38.77 27
08989 – Clackamas River, Hwy 171 at MP 39.16 27
08990 – Clackamas River, Hwy 171 at MP 45.83 27
08991 – Clackamas River, Hwy 171 at MP 44.88 27
09685 – BNSF, NE Columbia Blvd ... 207
09693 – Hwy 4, Riverside St ... 125
09963 – Champoeg Creek, Park Rd .. 196
09C01 – Nice Creek, C Street West ... 45
09C57 – Beaver Creek, Old Hwy 30 .. 46
0M089 – BNSF, N Lombard Street (US 30 Bypass) 207
0M274 – Ashland Creek, Hwy 63 SB .. 100
0M342 – Galls Creek, Lampman Rd ... 102
11112 – Sandy River, Stark St ... 213
11113 – Draw, Stark Street ... 219
114005 – Wolf Creek, Edgewood Rd ... 120
12037 – North Fork Yachats River, North Yachats River Rd 168
12819 – Calapooia River, Pedestrian .. 171
12876 – Crabtree Creek, Fish Hatchery Dr .. 175
12943 – Thomas Creek, County Rd 629 ... 176
12948 – Thomas Creek, Camp Morrison Rd 174
12965 – Thomas Creek, Richardson Gap Rd North 181
13C12 – Canal, Pedestrian Path .. 59
13C12 – Crooked River, Pedestrian Path ... 59
14025 – South Santiam River, High Deck Rd 180
141005 – Grave Creek, Sunny Valley Loop ... 119
14135 – Muddy Creek, McFarland Rd at MP 5.30 10
14160 – Steamboat Channel, Bundy Rd ... 10
14169 – Oak Creek, Pedestrian ... 16
14538 – Alsea River, Hayden Rd ... 7
15C010 – Hunter Creek, Hunter Creek Rd ... 62
15C29 – Foster Creek, County Rd 375 ... 64
15C31 – Euchre Creek, County Rd 510 ... 62
16636 – Crooked River, Pedestrian (Conant Basin Rd) 60
16C01 – Deschutes River, Jordan Rd ... 116
16C06 – Crooked River, Jordan Rd ... 116
17490 – Toothrock Viaduct ... 218
17492 – Eagle Creek Viaduct ... 218
17C02 – Tumalo Irrigation Canal, Sisemore Rd ... 68
17M001 – North Unit Canal, Coyote Rd .. 69
18139 – Row River, Shoreview Dr ... 155
18744 – McKenzie River, Leaburg Dam Rd .. 136
18753 – McKenzie River, Public Rd ... 302
19B01 – Pass Creek, Pedestrian ... 77
19C018 – Little River, CR 82 ... 84
19C215 – Cow Creek, County Rd 39 .. 86
19C220 – South Myrtle Creek, County Rd 124 ... 83
19C418 – Calapooya Creek, Hinkle Creek Rd #281 86
19C480 – Elk Creek, County Rd 1 ... 82
19C487 – Calapooya Creek, County Rd 10A .. 81
19C512 – Pass Creek, Curtin Rd ... 73
19C513 – South Umpqua River, County Rd 386 ... 75
19C514 – Myrtle Creek, County Rd 386 ... 75
19C519 – Calapooya Creek & SPRR, Shady Hwy 73
19C525 – North Myrtle Creek, County Park Rd ... 72
20189 – Catherine Creek, Woodruff Lane .. 271
23C451 – John Day River, Moon Creek Rd #45 ... 90
25B01 – UPRR & SPRR, N Burgard St ... 229
25B06 – UPRR, N Vancouver Ave ... 229
25B14 – Canyon, NW Alexander Ave .. 223
25B15 – Macleay Park, NW Thurman St ... 206
25B18 – NW Maywood Dr Semi-Viaduct ... 233
25B36 – SW Jefferson St, SW Vista Ave ... 224
25B58 – Johnson Creek, SE Ochoco St ... 236
25T01 – SW Bertha Blvd, SW Capitol Hwy ... 220
25T03 – SW Multnomah Blvd, SW Capitol Hwy 227
26T04 – Deer Creek, Jackson St .. 75
26T05 – South Umpqua River, Stewart Park Rd .. 85
27C35 – Gorton Creek Bridge ... 92
29C202 – Antelope Creek, Pedestrian ... 109
29C237 – Big Butte Creek, Cobleigh Rd #949 ... 101
29C262 – Lost Creek, Pedestrian ... 108
29C279 – Copco Penstocks, County Rd 797 .. 110
29C281 – North Fork Rogue River, County Rd 797 111
29C471 – Applegate River, McKee Bridge Rd .. 107
32C62 – Grande Ronde River, Redmond Grade Rd 277
39B164 – West Fork Horse Creek, Delta Rd .. 156
39C118 – McKenzie River, Goodpasture Rd .. 150
39C123 – McKenzie River, King Rd West ... 159
39C174 – Mill Creek, Wendling Rd .. 149
39C176 – Mohawk River, Paschelke Rd ... 152
39C183 – Blue River, Blue River Dr .. 135
39C241 – Mosby Creek, Layng Rd ... 130
39C242 – Row River, Pedestrian ... 133
39C243 – Mosby Creek, Pedestrian ... 138
39C409 – Coyote Creek, Battle Creek Rd .. 132
<table>
<thead>
<tr>
<th>Code</th>
<th>Bridge Name</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39C446</td>
<td>Wildcat Creek, Austa Rd</td>
<td>...</td>
<td>134</td>
</tr>
<tr>
<td>39C501</td>
<td>Amazon Creek, Fern Ridge Trail</td>
<td>...</td>
<td>129</td>
</tr>
<tr>
<td>39C551</td>
<td>Deadwood Creek, Deadwood Loop Rd</td>
<td>...</td>
<td>147</td>
</tr>
<tr>
<td>39C643</td>
<td>Lost Creek, Parvin Rd</td>
<td>...</td>
<td>131</td>
</tr>
<tr>
<td>39C650</td>
<td>North Middle Fork Willamette River, County Rd 6129</td>
<td>...</td>
<td>153</td>
</tr>
<tr>
<td>41C09</td>
<td>Yaquina River, Chitwood Rd</td>
<td>...</td>
<td>163</td>
</tr>
<tr>
<td>41C27</td>
<td>Five Rivers, Pedestrian</td>
<td>...</td>
<td>161</td>
</tr>
<tr>
<td>45C405</td>
<td>Malheur River, Warm Springs Reservoir Rd</td>
<td>...</td>
<td>185</td>
</tr>
<tr>
<td>45C609</td>
<td>Cow Creek, Danner Rd</td>
<td>...</td>
<td>183</td>
</tr>
<tr>
<td>45C611</td>
<td>Owyhee River, Owyhee River Rd</td>
<td>...</td>
<td>184</td>
</tr>
<tr>
<td>470202</td>
<td>Mill Creek, Front St NE</td>
<td>...</td>
<td>187</td>
</tr>
<tr>
<td>470214</td>
<td>Mill Creek, Cottage St NE</td>
<td>...</td>
<td>192</td>
</tr>
<tr>
<td>470216</td>
<td>Mill Creek, Winter St NE</td>
<td>...</td>
<td>190</td>
</tr>
<tr>
<td>470218</td>
<td>Mill Creek, Summer St NE</td>
<td>...</td>
<td>192</td>
</tr>
<tr>
<td>470226</td>
<td>Mill Creek, 15th St NE</td>
<td>...</td>
<td>190</td>
</tr>
<tr>
<td>470238</td>
<td>Mill Creek, State St</td>
<td>...</td>
<td>192</td>
</tr>
<tr>
<td>470602</td>
<td>Pringle Creek, Commercial Street</td>
<td>...</td>
<td>302</td>
</tr>
<tr>
<td>470604</td>
<td>Pringle Creek, Liberty St SE</td>
<td>...</td>
<td>190</td>
</tr>
<tr>
<td>470608</td>
<td>Pringle Creek/Shelton Ditch, Church St SE</td>
<td>...</td>
<td>190</td>
</tr>
<tr>
<td>470610</td>
<td>Pringle Creek, Winter St SE</td>
<td>...</td>
<td>192</td>
</tr>
<tr>
<td>470614</td>
<td>Pringle Creek, Cross St SE</td>
<td>...</td>
<td>190</td>
</tr>
<tr>
<td>470620</td>
<td>Pringle Creek, 13th St SE</td>
<td>...</td>
<td>192</td>
</tr>
<tr>
<td>471006</td>
<td>Battle Creek, Commercial St SE</td>
<td>...</td>
<td>195</td>
</tr>
<tr>
<td>47C37</td>
<td>Pudding River, Monitor McKee Rd NE</td>
<td>...</td>
<td>189</td>
</tr>
<tr>
<td>49B09</td>
<td>Willow Creek, Riverside Ave</td>
<td>...</td>
<td>199</td>
</tr>
<tr>
<td>49C05</td>
<td>Rhea Creek, Spring Hollow Rd</td>
<td>...</td>
<td>198</td>
</tr>
<tr>
<td>49C23</td>
<td>Rhea Creek, Brenner Canyon Rd</td>
<td>...</td>
<td>200</td>
</tr>
<tr>
<td>509005</td>
<td>Deer Creek, Hogue Drive</td>
<td>...</td>
<td>122</td>
</tr>
<tr>
<td>51T102</td>
<td>BNSF, N Willamette Blvd</td>
<td>...</td>
<td>207</td>
</tr>
<tr>
<td>51T104</td>
<td>BNSF, N Fessenden Street</td>
<td>...</td>
<td>207</td>
</tr>
<tr>
<td>530205</td>
<td>Mendenhall Creek, Old Hwy 199</td>
<td>...</td>
<td>122</td>
</tr>
<tr>
<td>53C063</td>
<td>Mill Creek, Old Military Rd</td>
<td>...</td>
<td>240</td>
</tr>
<tr>
<td>53C122</td>
<td>Luckiamute River, Helmick Rd</td>
<td>...</td>
<td>243</td>
</tr>
<tr>
<td>57C60</td>
<td>Wilson River Overflow, Boquist Rd</td>
<td>...</td>
<td>251</td>
</tr>
<tr>
<td>59C111</td>
<td>Umatilla River, Lee Street Grade Rd</td>
<td>...</td>
<td>258</td>
</tr>
<tr>
<td>59C356</td>
<td>Wildhorse Creek, Adams Rd</td>
<td>...</td>
<td>263</td>
</tr>
<tr>
<td>59C421</td>
<td>Dry Creek, Sams Rd</td>
<td>...</td>
<td>259</td>
</tr>
<tr>
<td>59C483</td>
<td>Walla Walla River, Birch Creek Rd</td>
<td>...</td>
<td>268</td>
</tr>
<tr>
<td>59C568</td>
<td>Wildhorse Creek, Commercial St</td>
<td>...</td>
<td>262</td>
</tr>
<tr>
<td>59C705</td>
<td>US Feed Canal, Rieth Rd at MP 2.21</td>
<td>...</td>
<td>260</td>
</tr>
<tr>
<td>59C706</td>
<td>Furnish Ditch, Rieth Rd at MP 2.96</td>
<td>...</td>
<td>260</td>
</tr>
<tr>
<td>59C708</td>
<td>Furnish Ditch, Rieth Rd at MP 3.79</td>
<td>...</td>
<td>260</td>
</tr>
<tr>
<td>59C721</td>
<td>Furnish Ditch, Rieth Rd at MP 4.94</td>
<td>...</td>
<td>260</td>
</tr>
<tr>
<td>59C751</td>
<td>Furnish Ditch, Rieth Rd at MP 5.92</td>
<td>...</td>
<td>260</td>
</tr>
<tr>
<td>59C752</td>
<td>Furnish Ditch, Rieth Rd at MP 5.14</td>
<td>...</td>
<td>260</td>
</tr>
<tr>
<td>61C16</td>
<td>Grande Ronde River, Yarrington Rd</td>
<td>...</td>
<td>270</td>
</tr>
<tr>
<td>61C40</td>
<td>Indian Creek, Philberg Rd</td>
<td>...</td>
<td>274</td>
</tr>
<tr>
<td>62002</td>
<td>A Canal, 11th St</td>
<td>...</td>
<td>124</td>
</tr>
</tbody>
</table>
63B012 – Prairie Creek, West 2nd St 279
63B016 – Prairie Creek, Depot St .. 279
63C114 – Wallowa River, Deer Creek Rd 278
63C23 – Lostine River, Lostine River Rd 280
65C05 – Easton Canyon #4, County Rd 10 291
65C19 – Eightmile Creek, Davis Cutoff 283
65C34 – Eightmile Creek, Old Dufur South 283
65C36 – Mays Creek, County Rd 148 291
65C57 – Antelope Creek, Upper Tub Springs Rd 291
65C63 – Rock Creek Bridge ... 284
671275 – Gales Creek, Gales Creek Rd 296
C39004 – Fall Creek, Pengra Rd ... 151
Symbology

A set of symbols are used on each bridge page to provide a quick reference to information about the bridge’s status.

The symbols used are as follows:

Owner: The current owner of the bridge. Where it is “Other”, a separate call-out is provided in the text to specify.

Traffic Status: The status of the bridge at the time of this inventory.

Category: Category 1 is used to distinguish the premier historic bridges in the state and Category 2 identifies other potentially historic bridges. The categories and how the bridges were sorted is described more fully in the Methodology chapter.

Eligibility Status: Notes the result of any known historic determinations. These may no longer apply, and do not necessarily reflect the outcome of this inventory.
2013
OREGON'S
HISTORIC BRIDGE
FIELD GUIDE