Standard Distribution
Date of Issue: Jan 2025

William Woods, PE Senior Standards Engineer

This is the January 2025 release of the 2024 Oregon Standard Drawings.

For ODOT Projects, the details in the standard drawings will be effective on the **June 1, 2025** bid opening where these drawings are called for in the project plans.

These drawings are for use with projects using the **2024 Oregon Standard Specifications**.

The drawing "effective date" is located below the title block on each Standard Drawing. The bid opening date of a project should be in the effective date window of the drawings. This will ensure the correct drawings are being used on the projects.

Electronic PDF files with the effective date for each drawing are on the web at:

http://www.oregon.gov/ODOT/Engineering/Pages/Standards.aspx

Each standard drawing has a corresponding Standard Drawing Reports that contains useful information for the designer as well as updates that occur on the drawing. The link to the report is the title of the specific drawing on the webpage.

The following Standard Drawings were updated for the January 2025 release:

Drawing Number	Comment
RD548A	
RD548B	
RD900	
RD901	
RD902	
RD904	
RD905	
RD906	
RD908	
RD909	
RD910	
RD912	
RD913	
RD916	
RD920	
RD922	

Drawing Number	Comment
RD930	
RD932	
RD936	
RD938	
RD940	
RD950	
RD952	
RD960	
BR203	
BR207	
BR216	
BR220	
BR230	
BR233	
BR250	
BR270	
BR273	
BR286	
BR291	
TM454	
TM457	
TM470	
TM471	Discontinued Drawing
TM472	Discontinued Drawing
TM482	
TM485	
TM493	
TM607	
TM615	
TM622	
TM628	
TM676	
TM694	
TM700	New Drawing
TM701	New Drawing
TM702	New Drawing

DRAWING	REVISION	DRAWING	REVISION	DRAWING	REVISION
DRAWING NUMBER	DATE	NUMBER	DATE	NUMBER	DATE

RD100	1/2024	RD344	RI	0420	1/2024
RD101	1/2024	RD345	RI	0421	
RD110		RD346	RI	0435	
RD115		RD348	RI	0436	
RD120		RD350	RI	0437	
RD130		RD352	RI	0438	7/2024
RD140		RD354	RI)440	
RD150		RD356	RI)442	1/2024
RD160		RD358	RI)443	1/2024
RD170		RD360	RI)444	1/2024
RD250		RD362	RI)445	
RD254		RD363		0450	
RD255		RD364		0451	1/2024
RD258		RD365		0470	.,
RD262		RD366		0471	1/2024
RD266		RD367		0472	.,
RD270		RD368		0473	
RD274		RD370		0474	
RD278		RD371		0481	
RD282		RD372		0482	
RD286		RD373		484A	7/2024
RD300		RD374		484B	7/2024
RD302		RD376		490A	7/2024
RD304		RD378		490B	7/2024
RD306		RD380		490C	7/2024
RD308		RD382		490D	7/2024
RD310		RD384		490E	7/2024
RD312		RD386		490F	7/2024
RD316		RD388		490G	7/2024
RD317		RD390		490H	7/2024
RD318		RD391		0500	1/2024
RD319		RD393		0501	1/2024
RD320		RD398		0502	7/2024
RD321		RD399		0503	112024
RD322	1/2024	RD400		0505	
RD324	1/2024	RD400		0510	
RD325	1/2024	RD401)515	
RD326		RD402		0516	
RD320		RD404		0520	
RD327 RD328		RD405		0526	
RD326		RD406		0530	
RD330		RD407		0535	
RD332		RD408		0536	
RD334		RD409		0545	7/2024
RD336		RD410		0546	7/2024
RD338		RD412		548A	1/2025
RD339		RD415		548B	1/2025
RD339 RD340					1/2023
RD340 RD342		RD416		0550	
		RD417 RD419		0560	
RD343		ND419	RL	0570	

DRAWING	REVISION	DRAWING	REVISION	DRAWING	REVISION
DRAWING NUMBER	DATE	NUMBER	DATE	NUMBER	DATE

RD575		RD910	1/2025	BF	R206	
RD576		RD912	1/2025	BF	R207	1/2025
RD580		RD913	1/2025	BF	R208	1/2024
RD581		RD916	1/2025	BF	R209	7/2024
RD590		RD920	1/2025	BF	R212	
RD595		RD922	1/2025	BF	R214	
RD596		RD930	1/2025		R216	1/2025
RD602		RD932	1/2025		R220	1/2025
RD610		RD936	1/2025		R221	
RD615		RD938	1/2025		R222	
RD700		RD940	1/2025		R223	
RD701		RD950	1/2025		R226	1/2024
RD702	1/2024	RD952	1/2025		R230	1/2025
RD705	172021	RD960	1/2025		R233	1/2025
RD706		RD1000	172020		R236	172020
RD707		RD1005	7/2024		R240	
RD710		RD1006	112024		R241	
RD711		RD1010			R242	
RD715		RD1015			R245	
RD720		RD1030			R246	
RD721		RD1030			R250	1/2025
RD721		RD1031			R253	1/2023
RD725		RD1033			R256	
RD730		RD1040			R260	
RD735		RD1045			R263	
RD740		RD1045			R266	
RD745		RD1055			R270	1/2025
RD750		RD1055			R273	1/2025
RD770		RD1065			R275	1/2023
RD771		RD1005			R285	1/2024
	1/2024	RD1070				1/2025
RD780		RD1140			R286	1/2023
RD781	1/2024				R290 R291	4/0005
RD782	1/2024	DD44 <i>E</i>	4/2024			1/2025
RD810		BR115	1/2024		R300	
RD815		BR133			R310	
RD820		BR135			R321	
RD825		BR136			R325	
RD830		BR139			R330	
RD832		BR140			R335	
RD835		BR141			R340	
RD840		BR145			R350	
RD845	4/000=	BR157	4/0604		R360	
RD900	1/2025	BR165	1/2024		R365	
RD901	1/2025	BR175			R375	
RD902	1/2025	BR182			R400	
RD904	1/2025	BR190			R405	
RD905	1/2025	BR191			R410	
RD906	1/2025	BR195			R415	
RD908	1/2025	BR200	1/2024		R420	
RD909	1/2025	BR203	1/2025	BF	R422	

DRAWING	REVISION	DRAWING	REVISION	DRAWING	REVISION
NUMBER	DATE	NUMBER	DATE	NUMBER	DATE

BR425	
BR430	
BR435	
BR440	
BR445	
BR500	1/2024
BR505	.,
BR520	
BR525	
BR550	
BR705	1/2024
BR706	1/2024
BR707	
BR708	4/2024
BR709	1/2024
BR730	
BR740	
BR750	
BR751	
BR760	
BR800	
BR805	
BR820	1/2024
BR825	
BR830	
BR835	
BR840	
BR841	
BR970	
BR971	
BR972	
TM200	
TM201	
TM204	
TM204	
TM211	
TM212	
TM220 TM221	
TM222	4/0004
TM223	1/2024
TM224	
TM225	1100
TM226	1/2024
TM230	
TM231	
TM232	
TM233	

TM240	7/2024
TM300	
TM301	
TM302	1/2024
TM303	1/2024
TM450	7/2024
TM452	7/2024
TM453	.,
TM454	1/2025
TM456	1/2020
TM457	1/2025
TM460	7/2024
TM462	1/2024
TM466	7/2024
TM467	7/2024
TM470	1/2025
TM471	Discontinued
1.141-7.1	1/2025
TM472	Discontinued
	1/2025
TM482	1/2025
TM485	1/2025
TM492	
TM493	1/2025
TM500	
TM501	
TM502	
TM503	
TM504	
TM505	
TM515	
TM516	
TM517	
TM517	
TM520	
TM530	
TM531	
TM539	
TM547	
TM551	
TM560	
TM561	
TM570	
TM571	
TM575	
TM576	
TM577	
TM600	
TM601	1/2024
TM602	-
	l .

TM606	
TM607	1/2025
TM608	
TM609	
TM610	
TM611	
TM612	
TM614	
TM615	1/2025
TM616	
TM617	
TM618	
TM619	
TM620	
TM621	7/2024
TM622	1/2024
TM623	1/2023
TM624	
TM625	
TM626	
TM627	4/0005
TM628	1/2025
TM629	7/0004
TM630	7/2024
TM631	
TM635	
TM650	1/2024
TM651	
TM652	1/2024
TM653	
TM654	
TM655	1/2024
TM656	
TM657	
TM658	
TM670	1/2024
TM671	
TM672	
TM675	
TM676	1/2025
TM677	,====
TM678	7/2024
TM679	.,
TM680	1/2024
TM681	1/2027
TM687	
TM688	
TM689	
TM690	
TM691	

DRAWING	REVISION	DRAWING	REVISION	DRAWING	REVISION
DRAWING NUMBER	DATE	NUMBER	DATE	NUMBER	DATE

TM693	
TM694	1/2025
TM695	
TM696	
TM697	
TM698	
TM700	1/2025
TM701	1/2025
TM702	1/2025
TM800	7/2024
TM810	
TM820	
TM821	
TM822	
TM830	7/2024
TM831	
TM832	
TM833	
TM840	
TM841	7/2024
TM842	1/2024
TM843	
TM844	
TM845	
TM850	
TM851	
TM852	
TM853	
TM854	
TM855	
TM860	
TM861	
TM862	
TM870	
TM871	
TM880	

- Δ -

Access and Ventilation

Hardware for Concrete Box Girders BR135, BR136

Air Release/Air Vacuum Assembly,

Water System	RD266, RD270
Anchors, Pipe Slope	RD330, RD332
Approaches	RD715

- B -

Barricades	(Types	I, II,	& III)	TM820
------------	--------	--------	--------	-------

Barrier, Concrete, Median

35" cast-in-place RD590

Barrier, Concrete, Standard (32" Height)

Around Median Obstacle	RD535, RD536
At Bridge Expansion Joints	BR263
Buried in Backslope	RD526
Cast-In-Place	RD505
Median Barrier Anchoring	RD515
Precast	RD500, RD501, RD502
Scuppers (Precast)	RD595, RD596
Securing Barrier To Roadway	RD516
Temporary Inst. and Maintenance	RD503, RD515, RD516,
	RD530
Terminals	RD510

	Transition To Bridge Rail	RD520
	Transition To Guardrail	RD530, RD580
Barrie	er, Concrete, Tall (42" Height)	,
	Around Median Obstacle	RD575, RD576
	Modified Reinforcing	RD548A, RD548B
	Precast	RD545, RD546.
		RD548A RD548B
	Securing Barrier To Roadway	RD516
	Transition to Bridge Rail	RD550
	Transition To Standard Barrier	RD560
	Transition To Guardrail	RD570, RD581
Barrie	r, Metal Median	RD400, RD405, RD408
Bollard	ds	RD130, RD255
		•
Bike I	_ane	
	Curb	RD702
	Crossing	RD1140
Boy C	wheat Consusts	
вох С	ulvert, Concrete	
	Cast-in-place	BR820, BR825,
		BR830, BR835
	Double Box Culverts	BR840, BR841
	Extensions	BR805
	Modified Type 2A Guardrail	BR266

BR800

Boxes

Trapezoidal Box Reinforcement BR133

Bridge End Panel BR165

Bridge Concrete Parapet

Wingwalls

32" Vertical BR221
42" Vertical BR222
With Steel Post BR214

ı

Bridge Preservation		- C -	
Concrete Repair	BR500	G	
General Cathodic Protection	BR520		
Reinforcement Continuity	BR525	Cathodic Protection, General	BR520
Reinforcing Bar Repair	BR505	Cattle Cuand	
Rivet Replacement	BR550	Cattle Guard	DD110
Bridge Rail		Painted Steel Tube	RD110 BR175
2-Tube Curb Mount 2-Tube Side Mount 3-Tube Curb Mount Combination Concrete Post and Beam	BR206, BR207 BR226, BR230 BR208, BR209 BR223 BR212	Cattle Pass Check Dams Concrete Pavement	RD110 RD1005, RD1006
Flush Mount Combination Pedestrian Pedestrian On Sidewalk Mount Parapet	BR220 BR246 BR250	Plain Dowelled Reinforced Concrete Repair, Bridge Concrete Truck Wash Out Construction Entrances	RD600 RD600 BR500 RD1070 RD1000
Rail Buttress 42 Inch Sidewalk Mount Combination Sidewalk Mount Parapet with Chain Link Fence Thrie Beam Thrie Beam Retrofit Trailing End Connection	BR275 BR216 BR253 BR233 BR273	Coupling Bands for Corrugated Metal Pipe Cross Slopes, Roadway Superelevations Crosswalk Closure Curb Inlets Curbs, Various Types Drainage Bike Lane	
To Guardrail Transition From Guardrail Transition To Guardrail Transition To Guardrail, 3'-6" Height Type F Type F 3'-6" Height Type F with Chain Link Type F with Rectangular Tube	BR236 BR270, BR275 BR203 BR291 BR200 BR290 BR260 BR256 BR285, BR286	Curb Ramp Blended Transition Combination Components Corner Identification Detectable Warning Surface Detectable Guide Strip End of Walk	RD940 RD930, RD932, RD936, RD938 RD900 RD901 RD902, RD904, RD905 RD906, RD908 RD909 RD950, RD952

Gutter Transition At Inlet

RD363

Parallel Perpendicular Unique Cutbanks, Rounding Crossing	RD920, RD922 RD910, RD912, RD913, RD916 RD960 RD150	Driveways Curb Line Sidewalk Non-Sidewalk Separated Sidewalk	RD730, RD735 RD745, RD750 RD715 RD725, RD740
Bike Lane	RD1140	-E-	
-D-		End Pieces, Guardrail Energy Dissipater	RD415, RD417 RD1045, RD1050
Delineators		Erosion Control	
Installation Freeways Non-Freeway Special Applications Layout And Posts Types Steel Post Details	TM575 TM576 TM577 TM570 TM571	Check Dams Concrete Truck Wash Out Construction Entrances Energy Dissipater Inlet Protection Matting Scour Basin, Temporary	RD1005, RD1006 RD1070 RD1000 RD1045, RD1050 RD1010, RD1015 RD1055 RD1050
Detectable Warning Devices	RD902, RD904, RD905, RD906, RD908,RD909	Sediment Barrier Sediment Fence	RD1030 RD1030, RD1031, RD1032, RD1033 RD1040
Drainage Details		Sediment Trap	RD1065
Bore Casing Concrete Encasement, Cradle, And Cap	RD308 RD306	Slope Drains, Temporary Tire Wash Facility	RD1045 RD1060
Locator Post Street Cut Trench Backfill	RD300 RD334 RD302 RD300	Expansion Joints, Bridge	BR139, BR140, BR141, BR145

-F-		Bulb-T BT90 And BT96 Temporary Diaphragm Beam	BR310, BR360, BR365, BR375 BR321 BR350
Feathering A.C. Over Existing Pavement	RD610	Type II Type III	BR325 BR330
Fences		Type IV Type V	BR335 BR340
Barbed & Woven Wire (Types 1, 1-5W And 2) Chain Link Gates Pedestrian	RD810 RD815 RD820 RD780, RD781, RD782	Grade Crossing, Railroad Grate Inlets	RD445 RD365, RD378
Protective	BR240, BR241, BR242, BR245	Manhole	RD356
Snow, Metal Wildlife	RD825 RD830, RD832, RD835, RD840, RD845	Guardrail	
	KD040, KD043	29″ Rail Height	See Guardrail - 29" Rail Height
Field Marker, Storm Water Treatment And Storage Facilities Flag Board Mounting Details Flashing Beacon (RRFB) Assemblies	RD399 TM204 TM493	31" Rail Height	See Midwest Guardrail system
- G -		Short Radius	See Short Radius Guardrail system
Gates, Fence	RD820, RD832	Anchors, Steel (Types 1 And 1 Mod.)	RD450
Gateway	RD810	Bridges/Rails	(See Rails)
Girders		Installation At Railroad Crossing Placement of Guardrail on Slopes	RD445 RD406
Precast Prestressed Boxes	BR425, BR430, BR435, BR440, BR445	Post, Stiffening Layouts Posts, Wood Breakaway Thrie Beam	RD484A, RD484B RD451 RD409, RD410
Bulb-I	BR300		•

Guardrail - 29" Rail Height

Adjustment	RD400
Assembly Details	RD400
Blocks	RD405
End Pieces, Types B And C	RD415
Guardrail and Transitions	RD400, RD481
	RD530, RD570
Installation At Bridge Ends	RD440
Over Low-Fill Culverts	RD470
Parts	RD415
Posts	RD405
Terminals, Bridges	RD440
Terminals, Cut And False Cut	RD435
Types 1, 2A, 3 & 4	RD400

Guardrail - 31" Rail Height

See Midwest Guardrail system

Guide Posts	(See Delineators)
Gutter Transition at Inlet	RD363
Reduced Post Spacing Installation	RD484A, RD484B

Guardrail - Short Radius Guardrail System

Alternate Radii Layouts	RD490F
Eyebolt Spacing Details	RD490D, RD490E
Installation at Main Road	RD490B
Installation at Side Road	RD490C
Installation Overview	RD490A
Miscellaneous Details	RD490G, RD490H

	L		
-	Г	1	-

Handrail	
Metal	RD770, RD771
Stairway	RD120
Hydrant Installation	RD254

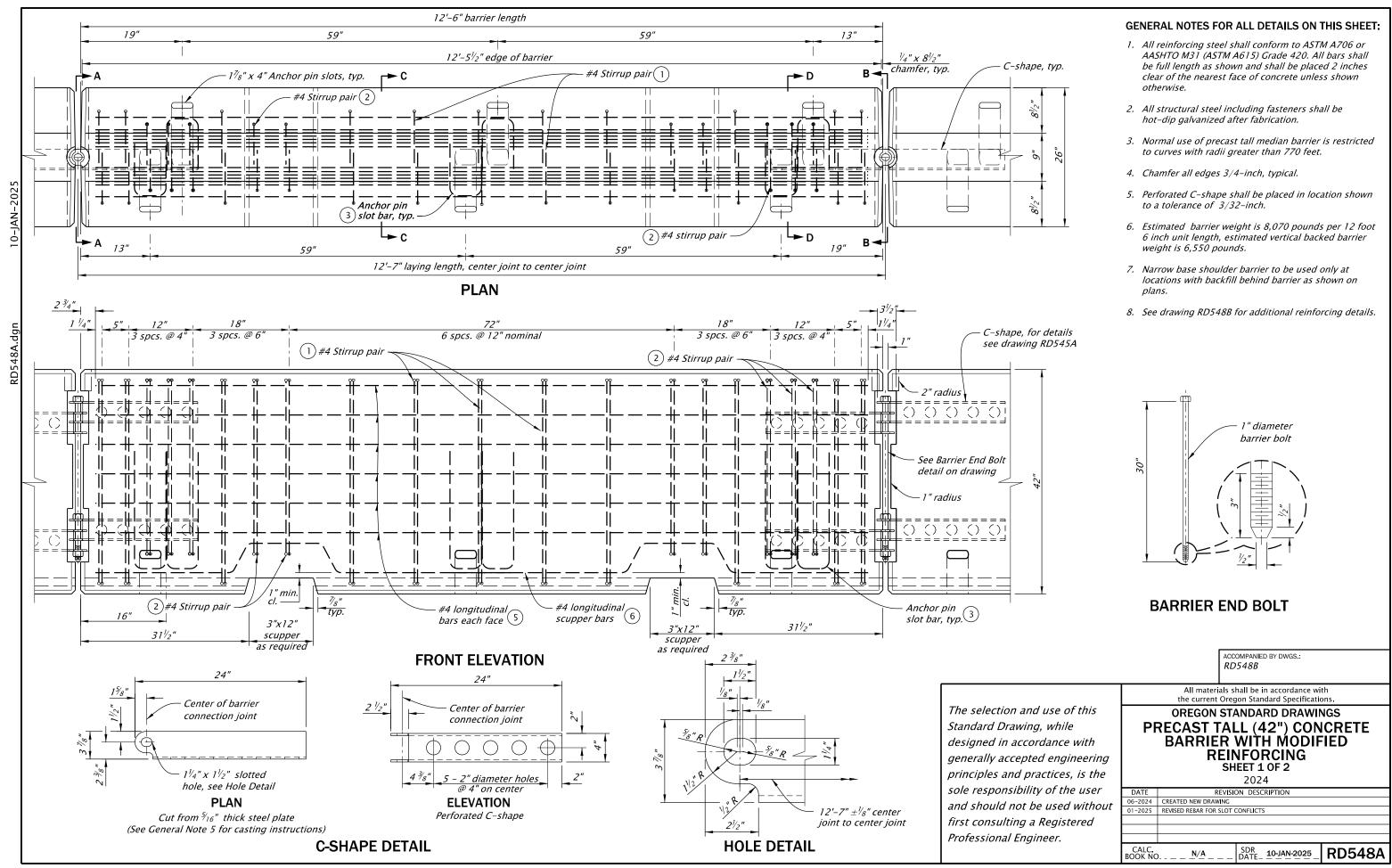
-1-

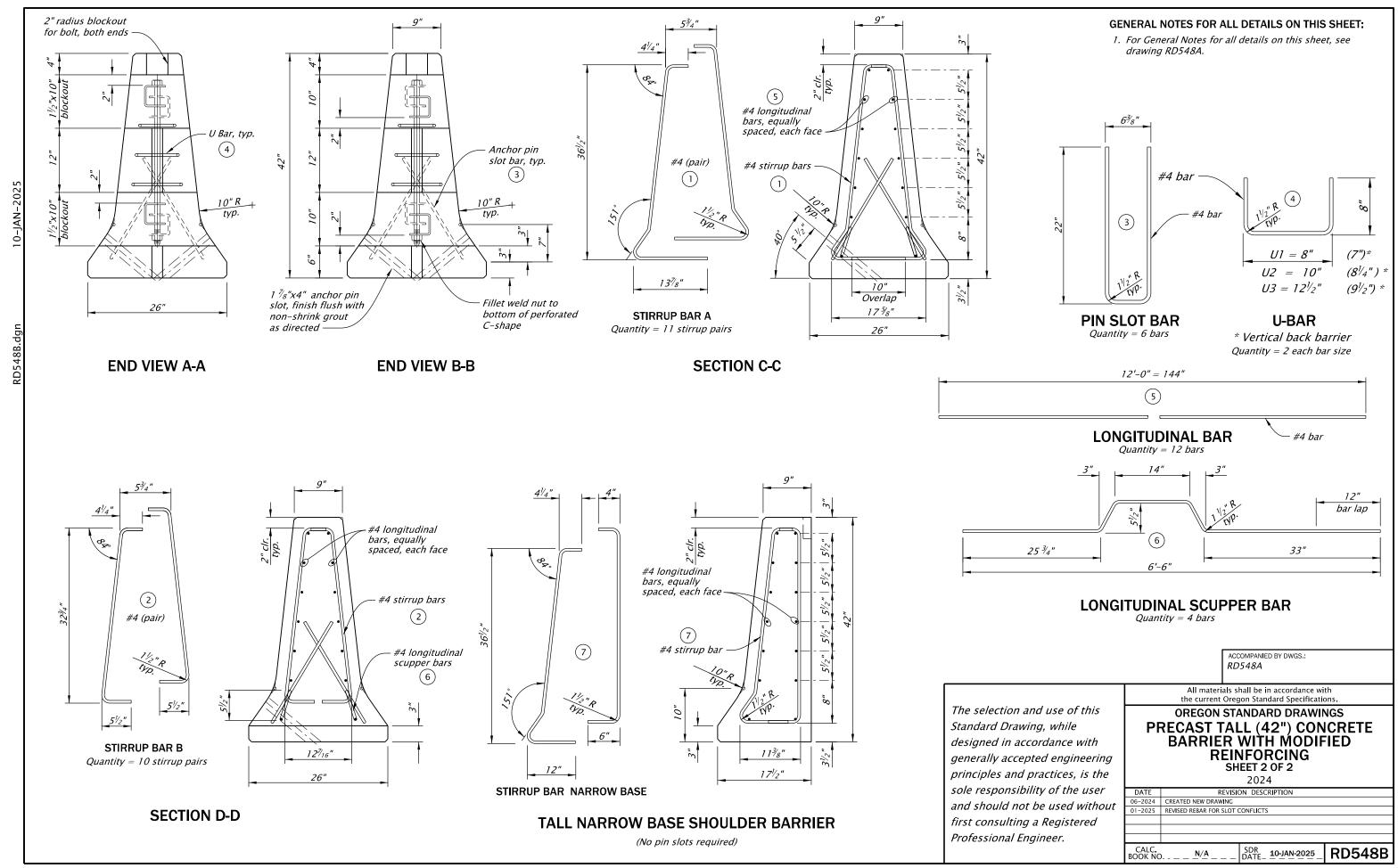
ID Marker, Culvert	RD398
ID Marker, Bridge	BR195
Illumination	TM300, TM301
	TM302,TM303

Inlets

Adjusting Existing	RD376
Concrete Cap	RD376
Concrete Type CG-3	RD371, RD372,
	RD373
Concrete Types G, & G-2M	RD364
Concrete Types CG	RD366
Curb Inlet Channel	RD367
Concrete Types M-E, M-O, And B	RD368
Ditch, Type D	RD370
Field or Area Drainage Basin	RD374
Frames and Grates	RD365
Pipe to Structure Connections	RD339
Slotted CMP Drain	RD328
Type 3	RD378
Inlet Protection	RD1010, RD1015

Islands		Manhole, Concrete	
Accessible Route	RD710	24" Manhole	RD343
Accessible Route Channelized	RD711	Base, Cast-In-Place And Precast	RD344
Traffic	RD705	Carry Through, Storm Sewer	RD354
Nose Treatments	RD707	Cover and Frame	RD356
		Grate	RD356
		Frame Adjustment	RD360
-J-		Inside Drop, Sanitary	RD350
- U -		Outside Drop	RD352
		Pipe to Manhole Connections	RD345
		Precast, Large	RD346
Joint Seal, Asphaltic Plug	BR157	Precast, Pollution Control	RD340
Also see Expansion Joints, Bridge	DK13/	Precast, Sanitary Sewer	RD338
Also see Expansion Joints, Bridge		Precast, Storm Sewer	RD335
		Shallow	RD342
_		Slope Protector	RD358
-L-		Steps	RD336
		With Inlet	RD348
Locator Post	RD334	Matting	RD1055
Luminaire Poles		Median Barrier, Metal	
Breakaway Location Guidelines	TM635	Barrier and Transitions	RD400, RD408, RD481,
Fixed and Slip Base Supports	TM629, TM630,TM631		RD530, RD570
Mounting On Structures	BR970, BR971, BR972		RD580, RD581
3 · · · · · · · · · · · · · · · · · · ·	,	Assembly Details	RD400, RD408
Lifeline, Fall Arrest	BR190, BR191	Blocks	RD403, RD404, RD405
,	,	Bridge Deck Expansion Joint	RD400, RD412
		Parts	RD415, RD416, RD417
-M-		Posts	RD403, RD404, RD405
		Median and Shoulder Barriers, Concr	ete
		Anchoring	RD515
Mail Bass Commant	DD100	Cast-In-Place	RD505
Mail Box Support	RD100	Precast	RD500
Mail Box Installation	RD101	Securing Barrier To Roadway	RD516


Terminals	RD510	Transition to Bridge Rail	BR270
Meter Assembly, Water System Milepost Signing Details Moment Slab on MSE Wall Monument Box Multi-Use Path	RD278 TM221, TM222 BR760 RD115 RD602	Types Metal Median Barrier Thrie beam W-beam	RD402 RD408 RD409, RD410 RD407, RD482
Midwest Guardrail System Adjustment	RD401	Typical Layouts At Bridge Ends For Embankments For Fixed Objects	RD442 RD443 RD444
Assembly Details Blocks Box Culvert Embedded Anchor Steel Post	RD407, RD408 RD403, RD404 RD472	-P-	RDTTT
Bolt-Thru Anchor Steel Post Bridges/Rails Buried in Backslope	RD473 (See Rails) RD436, RD437	Pavement	
Curb And Omitted Post End Pieces, Types B and C Guardrail and Transitions	RD474 RD417 RD412, RD482 RD580, RD581	Asphalt Pavement Details Multi-Layer Construction Surface Edge Details	RD610, RD615 RD615 RD615
Height Conversion Over Low-Fill Culverts Omitted Post	RD481 RD471	Pavement Markings	
Parts Posts Reduced Post Spacing Short Radius	RD416, RD417 RD403, RD404 RD484A, RD484B RD490A, RD490B, RD490C, RD490D, RD490E, RD490F, RD490G, RD490H	Alignment Layout Durable Markings Freeway Ramp Intersection High Performance Markings Left Turn and Median Railroad Crossing	TM560, TM561 TM520, TM521 TM547, TM551 TM530 TM521 TM539 TM505
Terminals, Bridges Terminals, Buried in Backslope Terminals, Downstream Anchor Terminals, Energy Absorbing Terminals, Grading	RD442 RD436, RD437 RD438 RD420, RD421 RD419	Raised Marking Details Recessed Marking Details Standard Details Blocks Turn Arrow	TM515, TM516 TM517 TM500, TM501, TM502, TM503, TM504, TM510 TM531


			Poles		
Pedes	strian		ı	uminaire Fixed and	
	Aluminum Fence	RD780, RR781, RD782	-	Slip Base Supports	TM629, TM630,TM631
	Metal Handrail	RD770, RD771	т	Fraffic Signals	TM650, TM651, TM652
		·		Turre Signals	TM653,TM654
Pipe			Portable	e Barricade	TM820
-	Backfill/Compaction Details	RD300, RD304	1 Ortable	Darricade	111020
	Connection Details, Unlike Pipe	RD325, RD326, RD327			
	Corrugated Metal Coupling Bands	RD325, RD326, RD327		_	
	Culvert Embankment Protection	RD317		-R-	
	Culvert ID Marker	RD398			
	Miscellaneous Culvert Details	RD319	Railroad	At Grade Crossing	RD445
	Multiple Installations	RD300		Sidewalk	RD910, RD920, RD930,
	Paved End Slopes	RD320			RD940, RD950, RD960
	Paved End Slopes		Reinforc	cement Continuity	BR525
	With Removable Safety Bars	RD321		cing Bar Repair	BR505
	Safety End Sections, Concrete Pipe			eplacement	BR550
	Safety End Sections, Metal Pipe	RD322		y Cross Slopes	BRSSO
	Skew Diagram	RD316		Superelevated Sections	RD140
	Slope Anchors	RD330, RD332			RD140 RD150
	Sloped Ends, Concrete Pipe	RD318		ng Of Cutbanks	
	Sloped Ends, Metal Pipe	RD316		rrier, Water Pipe	RD286
	Slotted Drain, Metal Pipe (CMP)	RD328	Roundal	bout Curb Placement	RD170
	, , ,				
				6	
D: 1	**** ***** * ****			-S-	
Pipe i	Fill Height Tables	DD306			
	Concrete	RD386			
	Corrugated HDPE	RD390	Safety E	∃dge	RD615
	Metal, Arch	RD382			
	Metal, Round	RD380	Sanitar	y Sewer	
	Metal, Spiral Rib	RD384		Clean Out	RD362
	Polypropylene	RD393		Manhole	RD338
	Poly Vinyl Chloride (PVC)	RD388		Piped Inside Drop Connection	RD350
	Reinforced HDPE	RD391		Sampling Station, Water System	RD282
				Sanitary Sewer,	
		I	_	James, Johnson	

Service Connections	RD310	Sign Supports	
Scour Basin, Temporary Sediment Barrier	RD1050 RD1030, RD1031,	Breakaway Location Guidelines Cantilever	TM635 TM621, TM622, TM623,
Sediment Fence	RD1030, RD1031, RD1032, RD1033 RD1040		TM624, TM625, TM626, TM627, TM628, TM690,
Sediment Trap	RD1065	Multi-Post Breakaway	TM691 TM600, TM601
Sidewalk	RD720, RD721, RD722	Sign Bridge	TM600, TM601 TM614, TM615, TM616, TM617, TM618, TM619,
Short Radius Guardrail System			TM620, TM693, TM694, TM695, TM696, TM697
See Guard Rail - Short Radius Gu	ardrail System	Square Tube	TM681, TM687, TM688, TM689
Signs		Temporary	TM822
Aluminum Panel	TM675	Triangular Base Breakaway	TM602
Attachment	TM676	Variable Message Sign	TM606, TM607, TM608,
Bracing Details	TM206		TM609, TM610, TM611,
Directional Sign Layout	TM223, TM224, TM226 TM225		TM612, TM621, TM622,
Exit Flag Board Mounting Details	TM223 TM204		TM623, TM624, TM625, TM626, TM626, TM627, TM628,
Installation Details	TM204 TM200, TM201		TM690, TM691, TM693,
Mileposts	TM220, TM201 TM221, TM222		TM694, TM695, TM696,
Mounts	TM677, TM678, TM679		TM697
Multi-Post Installations Removable Legend	TM220	Wood Post	TM670
Mounting Details	TM230, TM231,	Service Connection, Water System	RD274
-	TM232, TM233	Siphon Box	RD376
		Slabs, Precast Prestressed	BR400, BR405, BR410,
Signs Con't			BR415, BR420, BR422, BR445
Route Makers			
Interstate Route Shields	TM211		
Oregon Highways	TM212	Slope	
U.S. Route Shields	TM211	Drains, Temporary Paving Pipe Anchors	RD1045 BR115 RD330, RD332
		'	•

Protector, Concrete Manhole	RD358	Impact Attenuator	TM831, TM832, TM833
Rounding	RD150	Intersection Work Zones	TM841, TM842, TM843
Rounding	ND 130	Message Sign	TM800
Slotted Drains, Metal Pipe (CMP)	RD328	Non-Freeway Multi-Lane Sections	TM851, TM852, TM853
Snow Fence, Metal	RD825	Pedestrian Accessible Routing	TM844
		Reflective Pavement Makers	TM810
		Rumble Strips	TM830
Soundwalls		Sign Supports	TM689, TM821
Masonry (Pile Footing)	BR750, BR751	Speed Reduction	,
Masonry (Spread Footing)	BR730	(Moving Operations)	TM880
Precast Concrete	BR740	Tables, Flare Rate, Taper, Spacing	TM800
rrecast concrete	DIC) 40	Temporary Sidewalk Ramps	TM845
Stairway, Concrete	RD120	Temporary Sign Support	TM822
Steps, Manhole Precast	RD336	, , , , , , , , , , , , , , , , , , , ,	
Stop Lane, Truck And Bus	NB330	Thrust Blocking, Water Systems	RD250
At Railroad Crossing	RD445	Tire Wash Facility	RD1060
Storm Water Treatment and	NS 1.15	·	
Storage Facility Field Marker	RD399	Traffic	
Street Cut	RD302	Island	RD705
Subsurface Drain	RD312	Separator, Concrete	RD706
		, ,	
-Т-		Traffic Signals	
		Color Code Chart	TM470
		Controller Cabinet and Foundation	_
Temporary Traffic Control		Fire Preemption Details	TM456
2-Lane, 2-Way Roadways	TM850, TM854	Junction Box/Hand Hole	TM702
Abrupt Edge	TM800	Maintenance Pad Details	RD160
Barricades	TM820	Mast Arm Pole Details	TM450
Blasting Zones	TM871	Mounting Details	111430
Bridge Construction	TM870	Adjustable Signal Head	TM462
Closure Details	TM840	Spanwire	TM456
Concrete Barrier	TM830	Pedestrian Signal	TM457, TM467
Freeway Sections	TM860, TM861,	Pole Footing Details	
	TM862	Mast Arm Pole	TM450
		1	· - •

Strain Pole Pole Mounts Ramp Meter Details	TM452 TM680 TM492	-W-	
Rectangular Rapid Flashing Beac Service Cabinet Spanwire Design Strain Pole Details Supports	_	Walls Retaining, Concrete Soundwall, Masonry Pile Footing Spread Footing Soundwall, Precast	BR705, BR706, BR707, BR708, BR709 BR750, BR751 BR730 BR740
Temporary Conduit Trenching Conduit & Wire/Cable Vehicle Signal Details Vehicle Signal Pedestal Trench Backfill Truck Aprons on Roundabouts Trucks and Bus Stop Lanes At Railroad Crossing Truck Scale Pit Truncated Dome	TM453, TM454, TM456 TM700 TM701 TM460 TM457 RD300 RD170 RD445 BR182 RD902	Water Systems Air Release Assembly, Manual Air Release/Air Vacuum Valve Assembly Hydrant Installation Main Dead-End Blowoff Assembly Root Barrier Thrust Blocking Valve Box And Operator Extension Assembly Water Meter Assembly Water Sampling Station	RD266 RD270 RD254 RD262 RD286 RD250 RD258 RD278 RD278 RD282
Valve Box And Operator Extension Assembly VMS Walk-In Bridge	RD258 TM698	Water Service Connection Wingwalls, Concrete Box Culverts Wind Pressure Map Wind Speed Map	RD274 BR800 TM671 TM672

CURB RAMP INDEX			
STANDARD DRAWING NUMBER	STANDARD DRAWING TITLE		
RD900	Curb Ramp Components and Legend		
RD901	Curb Ramp Legend and Corner Identification		
RD902	Detectable Warning Surface Details		
RD904	Detectable Warning Surface Placement For Curb Ramps		
RD905	Detectable Warning Surface Placement For Directional Curbs		
RD906	Detectable Warning Surface Placement For Accesible Route Island		
RD908	Detectable Warning Surface Placement For Rail		
RD909	Detectable Guide Strip Placement at Bike Ramps		
RD910	Perpendicular Curb Ramp		
RD912	Perpendicular Curb Ramp		
RD913	Perpendicular Curb Ramp With Closure		
RD916	Perpendicular Curb Ramp Single Ramp		
RD920	Parallel Curb Ramp		
RD922	Parallel Curb Ramp Single Ramp		
RD930	Combination Curb Ramp		
RD932	Combination Curb Ramp		
RD936	Combination Curb Ramp		
RD938	Combination Curb Ramp Single Ramp		
RD940	Blended Transition Curb Ramp Single Ramp		
RD950	End of Walk Curb Ramp		
RD952	End of Walk Curb Ramp		
RD960	Unique Curb Ramp		

LEGEND:

Warked or intended crossing location

Sidewalk or other traversable surface

Detectable warning surface (DWS)

Level area (Turning space/landing)

Cross slope 1.5% maximum

(Maximum 2.0% finished surface slope)

(Normal sidewalk cross slope)

Running slope 4.0% maximum (Maximum 4.9% finished surface slope)

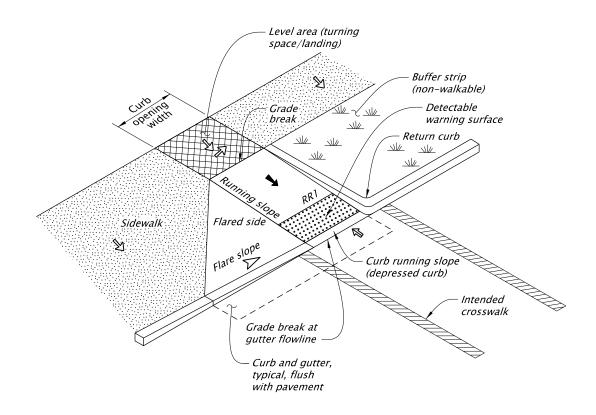
Running slope 7.5% maximum
(Maximum 8.3% finished surface slope)

Counter slope 4.0% maximum ascending or descending (Maximum 5.0% finished surface slope)
Slope as required for drainage

← Flare slope

(Maximum 10.0% finished surface slope)

4'x4' clear space


Ramp Run position 1

INTERSECTION CONDITION TYPES

MB = Midblock, less than or equal to roadway grade finished gutter flow slope

SU = Signalized or uncontrolled, maximum 5.0% finished gutter flow slope

SY = Stop or Yield, maximum 2.0% finished gutter flow slope

TYPICAL CURB RAMP SYSTEM COMPONENTS

(PERPENDICULAR TYPE SHOWN)

The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered
Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

CURB RAMP COMPONENTS AND LEGEND

2024

DATE	REVISION	N DESCRIPTION	
1-2023	REVISED LEGEND		
1-2025	UPDATED CAD STANDARDS		
CALC. OOK NO		SDR DATE_ 10-JAN-2025 _	RD900

LINEAR REFERENCING METHOD (LRM) NUMBER

Use ODOT FACS-STIP web based application, turn on layers Roadside > ADA Corners and ADA Ramps to see LRM and corner position number of curb ramps inventoried. Select "Identify Features" and click on Map Position to see Information.

This is a code to identify the intersection on a specific state highway. There is a four part format for the code: Highway Number; Highway Suffix; Roadway ID, Mileage Type.

- 1) The Highway Number is a 3-digit number (not the route number) assigned to all state highways by ODOT. Valid numbers are 001 through 493.
- 2) Highway Suffix is a letter format assigned to frontage roads and connections to identify the unique connection, for example AA or AB. Use the Identify Features tool on the ODOT FACS-STIP web based application, Road Network layer > Hwy Network-Colored layer for visual reference. Select "Identify Features" and click on Map Position to see Information. If the intersection is not located on a connection use 00 for the code.
- 3) Roadway ID is a one letter code used to identify alignment. There are two possible letter codes; "I" for increasing mile point direction and "D" for decreasing mile point direction. For most highways, the "I" direction is south and east. Note I-5 does not follow this rule. Generally "I" will be used. When there is a separated highway there will be an "I" roadway and a "D" roadway. Check the Digital Video Log to be sure of the direction.
- 4) Mileage Type is used when there are multiple locations of the same mile point on a section of highway. Overlay lapping mileage is listed as "z" mileage.

Example: Hw

Hwy No. ID Suffix Type

Milepoint of an intersection is based on the mile point of the center of the intersection listed to the hundredth of a mile.

Corner Position is based on traveling in the increasing mile point direction, beginning with the first corner on the right and proceeding counterclockwise around the intersection, numbering consecutive 1 through the end of corners. An "A" is added to the number for an island. For example an island between corner positions 1 and 2 and is closer to corner 2 has a corner position number of 2A (see corner position and curb ramp position diagram).

<u>Curb Ramp Position</u> is a number given to each curb ramp beginning with Corner Position 1. The first curb ramp encountered in the increasing mile point direction is number ramp 1. Then proceeds counterclockwise around the corner, numbering in consecutive order. Proceed following the pedestrian route and in Corner Position Number order (see corner position and curb ramp position diagram).

STANDARD ABBREVIATION FOR CURB RAMP DETAILS

G = Finish Grade (elevation ft.) i.e. FG XXX.XX'

TFC = Top Face of Curb (elevation ft.)

TBC = Top Back of Curb (elevation ft.)

BFC = Bottom Face of Curb (elevation ft.)

gtr. = Gutter (elevation ft.)

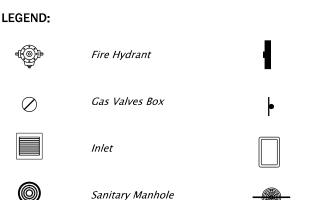
GS = Gutter Slope (%), i.e. X.X%

E = Curb Exposure (inch), i.e. X"

CS = Counter Slope on gutter pan (%)

RRN = Ramp Run Number, i.e. RRX

cl.sp. = Clear Space

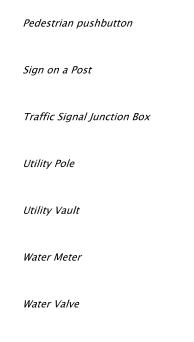

TS = Turning Space

XS = Cross Slope

LA = Level Area

DWS = Detectable Warning Surface

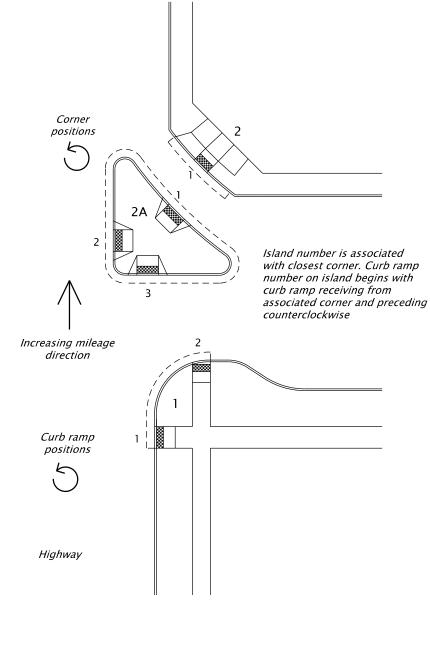
PAR = Pedestrian Access Route



Storm Manhole

Pole Anchor

Pole Base


Pedestrian Pedestal

Crosswalk Closure Support

Cross

Street

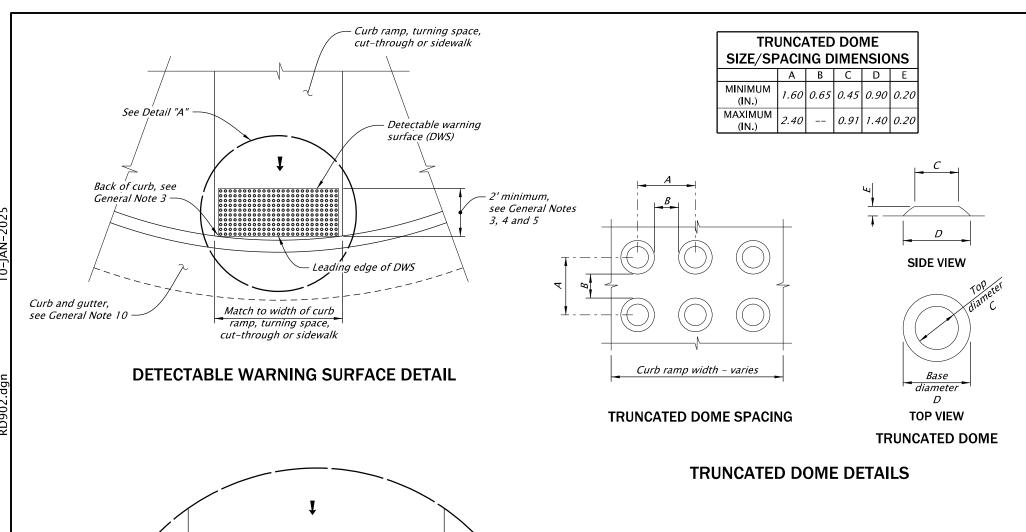
CORNER POSITION AND CURB RAMP POSITION DIAGRAM

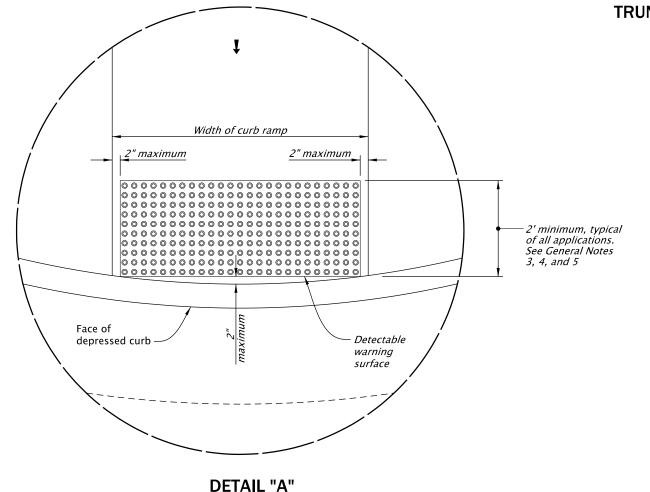
FOR ADDITIONAL RAMP AND RAMP RUN NUMBERING CONVENTIONS, SEE ODOT EXHIBIT A

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer. All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

CURB RAMP LEGEND AND CORNER IDENTIFICATION


2024


DATE REVISION DESCRIPTION

12-2023 REVISED NOTES

01-2025 UPDATED CAD STANDARDS

CALC. BOOK NO. _ N/A _ DATE 10-JAN-2025 RD901

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Detectable warning surface details and locations are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs.
- 3. The detectable warning surface shall extend the full width of the curb ramp opening, shared use path, blended transition, turning space, or other roadway entrance as applicable. A gap of up to 2 inches on each side of the detectable warning surface is permitted (measured at the leading edge of the detectable warning surface panel as shown in Detail "A").
- 4. Detectable warning surface shall be placed at the back of curb for a minimum depth of 2 feet in the direction of pedestrian travel at curb ramps that are adjacent to traffic. Detectable warning surface may be radial or rectangular, but must comply with the truncated dome size and spacing standards. Detectable warning surface may be cut to meet necessary shape as shown in plans. Detectable warning surface across a grade break is prohibited. Place abutting panels within 1/4-inch of each other and install anchors, as specified by manufacturers, along cut edge.
- 5. Color to be safety yellow, if no color specified in construction note. Alternative colors require a design exception on or along state highways.
- 6. Detectable warning surface shall be used in the following locations:
 - a) Curb ramps at street crossings
 - b) Crossing islands (Accessible Route Islands)
 - c) Rail crossings
- 7. Where public transportation stations (rail, bus, etc.) use platform boarding, detectable warning surface shall be placed along the full edge length of the station, when not protected by platform screens or guards. See drawing RD908.
- 8. Detectable warning surface shall not be used on the following locations:
 - a) End of sidewalk transitions that are not at a crosswalk. See drawings RD950, RD952 and RD960.
 - b) Driveways, unless constructed with curb return or are signalized.
 -) Parking lots, access aisles and passenger loading zones where curb ramp does not lead to vehicular way.
- 9. Where no curb is present, the detectable warning surface shall be placed at the edge of the roadway.
- 10. On or along state highways, curb and gutter is required at curb ramps.

LEGEND:

Detectable warning surface

 \Diamond

Cross slope 1.5% maximum (Maximum 2.0% finished surface slope) (Normal sidewalk cross slope)

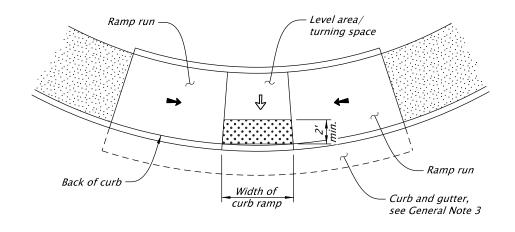
←

Running slope 7.5% maximum (Maximum 8.3% finished surface slope)

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS


DETECTABLE WARNING SURFACE DETAILS

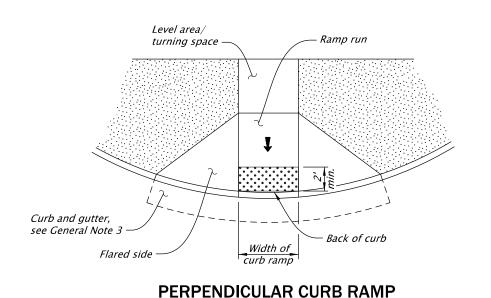
2024


DATE REVISION DESCRIPTION

01-2025 UPDATED CAD STANDARDS

CALC.
BOOK NO. N/A DATE 10-JAN-2025 RD902

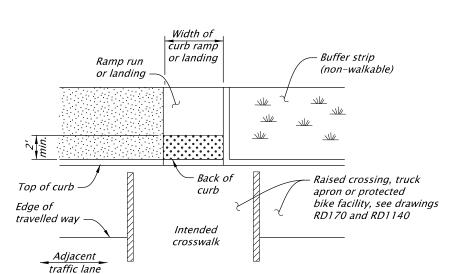
PARALLEL CURB RAMP



Full width of pathway

Edge of pavement

Edge of travelled way


Shared-use path < 5.0% finish surface slope

GRADE BREAK IN FRONT OF CURB

SHARED-USE PATH CONNECTION OR CURBLESS WALKWAY

· Paved shoulder

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Detectable warning surface details and locations are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawing RD902 for detectable warning surface installation details.
- 3. On or along state highways, curb and gutter is required at curb ramps.
- 4. Detectable warning surface placement for perpendicular ramps vary as shown.

LEGEND:

Marked or intended crossing location

Detectable warning surface

Cross slope 1.5% maximum (Maximum 2.0% finished surface slope) (Normal sidewalk cross slope)

Running slope 7.5% maximum
(Maximum 8.3% finished surface slope)

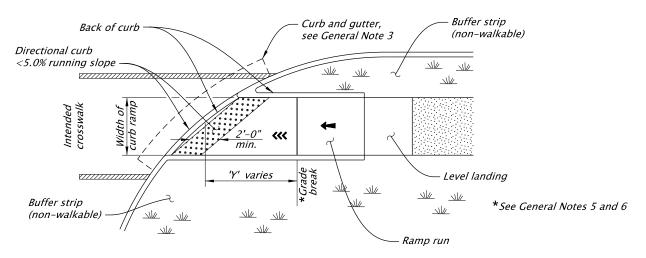
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

DETECTABLE WARNING SURFACE PLACEMENT FOR CURB RAMPS

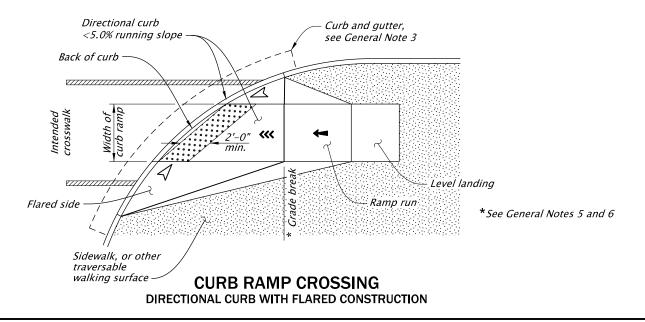
2024

DATE REVISION DESCRIPTION
01-2025 UPDATED CAD STANDARDS

CALC.
BOOK NO. N/A DATE 10-JAN-2025 RD904


All materials shall be in accordance with

the current Oregon Standard Specifications.


OREGON STANDARD DRAWINGS

Effective Date: June 1, 2025 - November 30, 2025

CURB RAMP CROSSING GRADE BREAK ≤ 5 FEET FROM BACK OF CURB

CURB RAMP CROSSING GRADE BREAK > 5 FEET FROM BACK OF CURB

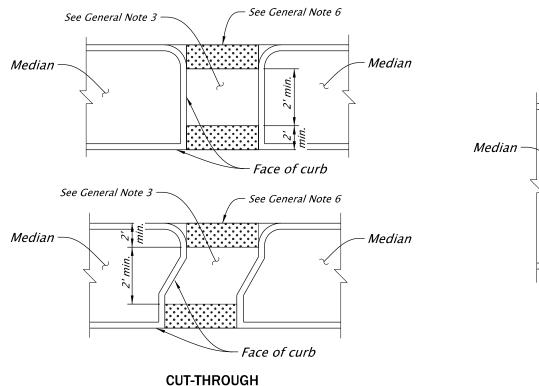
GENERAL NOTES FOR ALL DETAILS THIS SHEET:

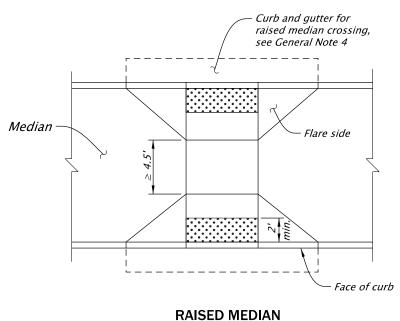
- 1. Detectable warning surface details and locations are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawing RD902 for detectable warning surface installation details.
- 3. On or along state highways, curb and gutter is required at curb ramps.
- 4. Detectable warning surface placement for perpendicular ramps vary as shown.
- 5. Detectable warning surface placement across the grade break is prohibited.
- 6. Where the 'Y' distance is greater than 5 feet anywhere in front of ramp run grade break, the detectable warning surface placement shall be placed at the back of curb line.

LEGEND: Marked or intended crossing location Sidewalk Detectable warning surface Running slope 7.5% maximum (Maximum 8.3% finished surface slope) ✓ Flare slope (Maximum 10.0% finished surface slope) ≪ Running slope 4.0% maximum (Maximum 4.9% finished surface slope)

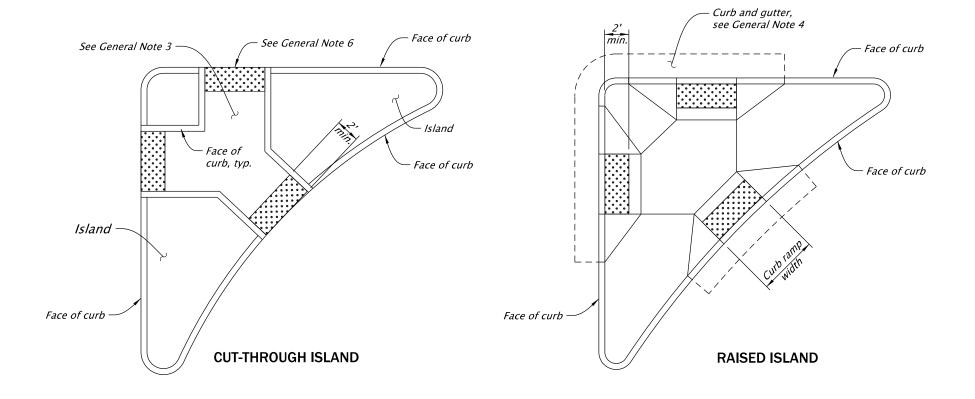
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.


OREGON STANDARD DRAWINGS


DETECTABLE WARNING SURFACE PLACEMENT FOR

DIRECTIONAL CURBS


2024

	REVISION DESCRIPTION	DATE
	UPDATED CAD STANDARDS	1-2025
RD905	N/A SDR 10-JAN-2025	CALC. OOK NO

MEDIAN CROSSING

CHANNELIZATION ISLAND

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Detectable warning surface details and locations are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawings RD710 and RD711 for accessible route island. See drawing RD902 for detectable warning surface installation details.
- 3. Detectable warning surfaces shall be separated by a 2-foot minimum length of walkway without detectable warnings. Site conditions normally require a project specific design. See project plans for details not shown. Omit detectable warning surfaces if less than 2 feet.
- 4. On or along state highways, curb and gutter is required at curb ramps.
- 5. Details intended for pedestrian route only. For protected bike lanes on multi-use paths, see project plans for specific details.
- 6. Where the island has no depressed curb, the detectable warning surface shall be placed at the edge of roadway. Detectable warning surface shall be full width where radial return curbs are installed.

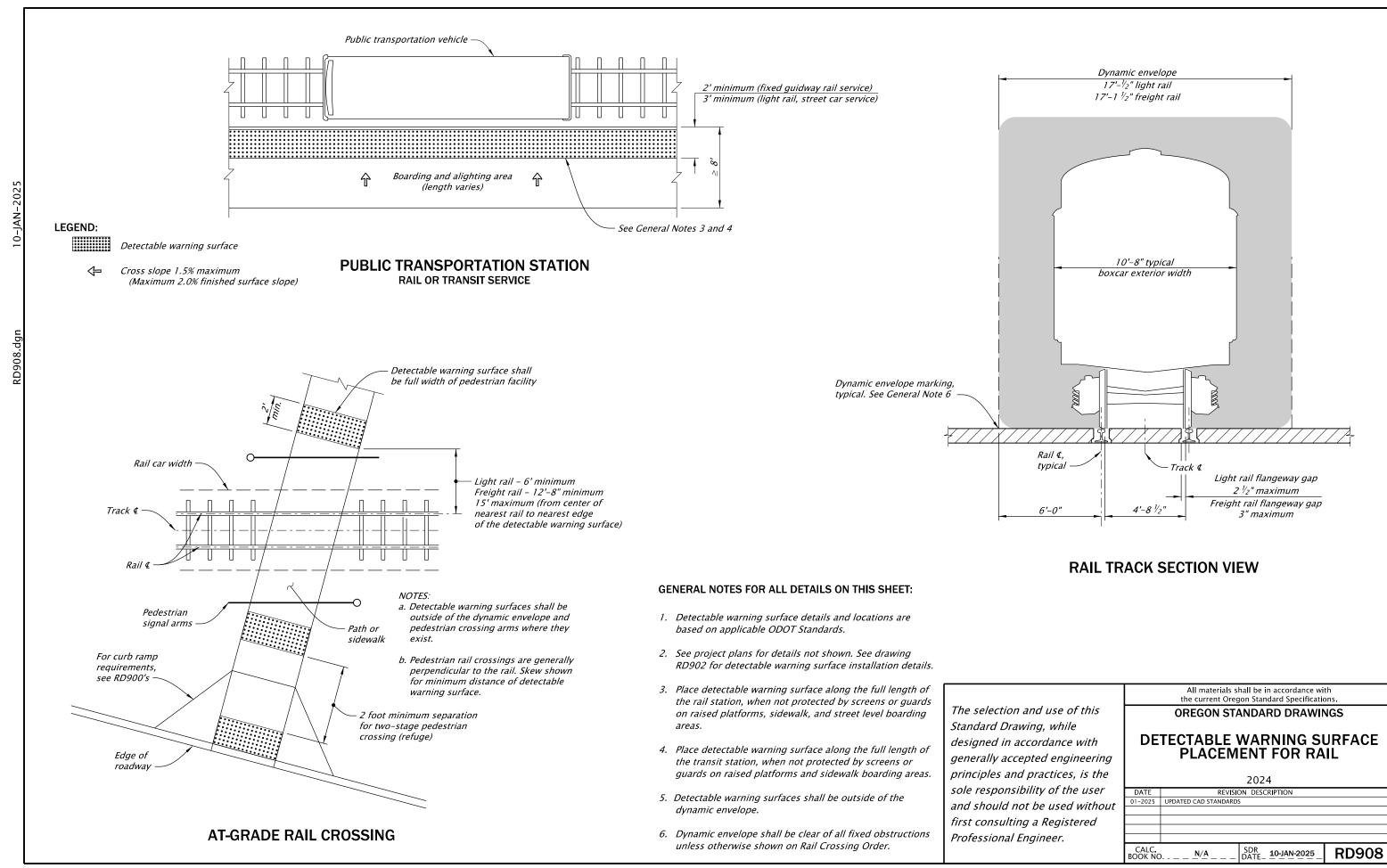
LEGEND:

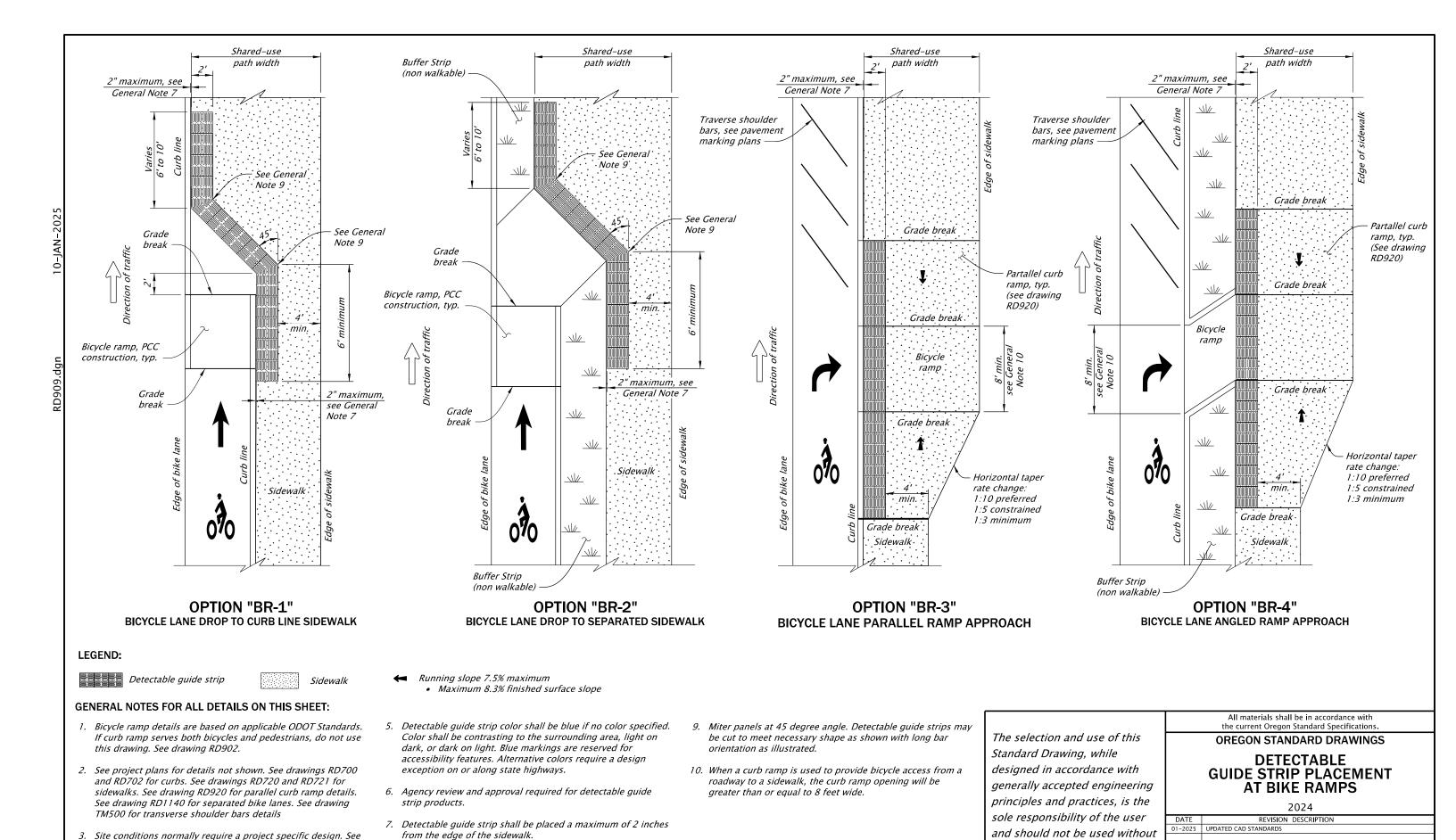
Detectable warning surface

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS


PLACEMENT FOR ACCESSIBLE ROUTE ISLAND


202

DATE REVISION DESCRIPTION

01-2025 UPDATED CAD STANDARDS

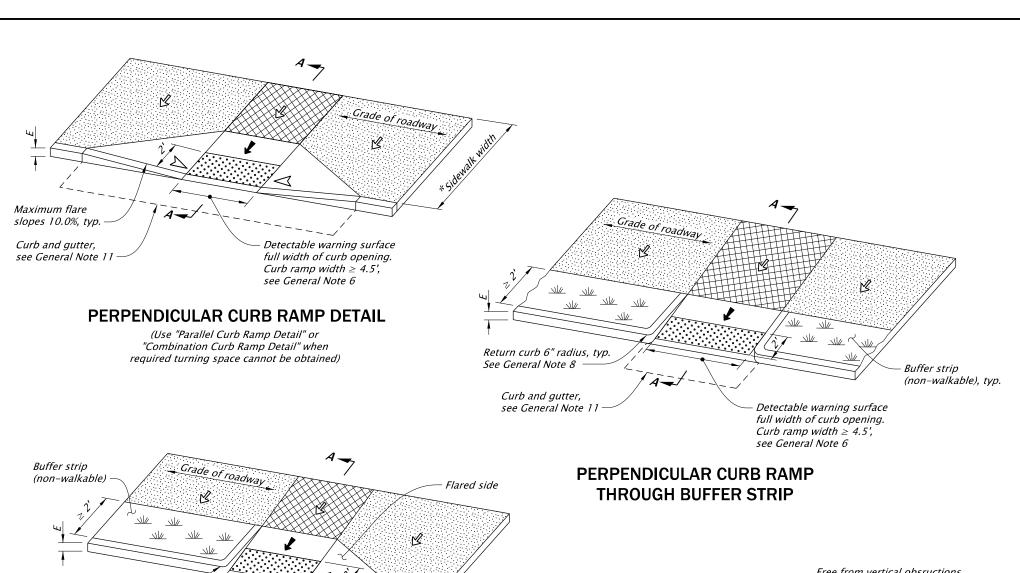
CALC.
BOOK NO. _ N/A _ DATE 10-JAN-2025 RD906

Site conditions normally require a project specific design. See

Curb ramps for shared use paths intersecting a roadway shall

8. Place abutting panels within 1/4-inch of each other and

project plans for details not shown.


be full width of path, excluding flares.

Professional Engineer. install anchors, as specified by manufacturers, along cut edge. CALC BOOK NO

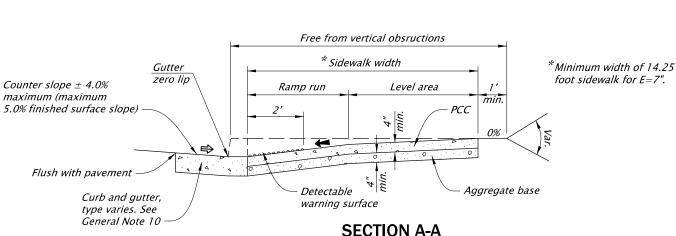
SDR DATE 10-JAN-2025

RD909

first consulting a Registered

Maximum flare

slopes 10.0%


Detectable warning surface full width of curb opening. Curb ramp width $\geq 4.5'$, see General Note 6

PERPENDICULAR CURB RAMP

WITH SINGLE FLARE

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Curb ramp details are based on applicable ODOT standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawings RD902 through RD908 for detectable warning surface installation details. See drawings RD912 through RD916 for curb ramp placement options.
- 3. Site conditions normally require a project specific design. See project plans for details not
- 4. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 5. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 6. Place detectable warning surface at the back of curb for a minimum depth of 2 feet in the direction of pedestrian travel full width of curb ramp opening that is adjacent to traffic.
- 7. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush.
- 8. Return curb may be provided in lieu of flared slope only if protected from traverse travel by softscape, see drawing RD721. Return curb shall not reduce width of approaching sidewalk.
- 9. Curb ramps for shared use paths intersecting a roadway shall be full width of path. excluding flares. When a curb ramp is used to provide bicycle access from a roadway to a sidewalk, the curb ramp opening will be greater than or equal to 8 feet wide. See drawings RD904 and RD909 for additional details.
- 10. Place an inlet at upstream side of curb ramp or perform other approved design mitigation. Check the gutter flow depth at curb ramp locations to assure that the design flood does not overtop the back of sidewalk.
- 11. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.

LEGEND:

Sidewalk

Return curb 6" radius, typ. See General Note 8

see General Note 11

Curb and gutter,

Detectable warning surface (DWS)

Level area (Turning space/landing) Unobstructed 4.5' x 4.5'

With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing).

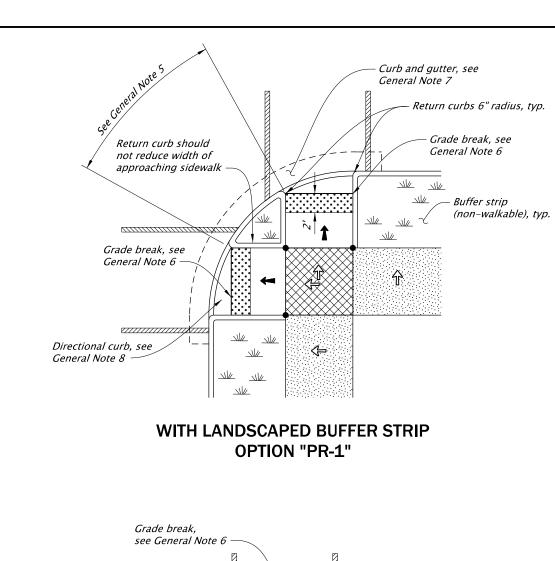
For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level.

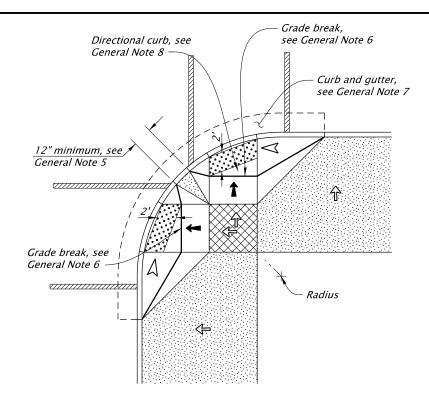
Cross slope 1.5% maximum (Maximum 2.0% finished surface slope) (Normal sidewalk cross slope)

Running slope 7.5% maximum (Maximum 8.3% finished surface slope)

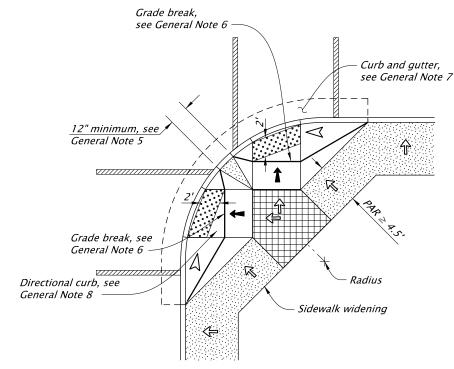
Counter slope 4.0% maximum ascending or descending (Maximum 5.0% finished surface slope) Slope as required for drainage

Flare slope (Maximum 10.0% finished surface slope)

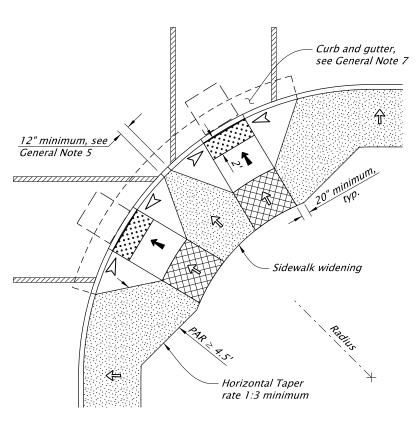

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.


OREGON STANDARD DRAWINGS PERPENDICULAR CURB RAMP 2024 REVISION DESCRIPTION

DATE 01-2025 UPDATED CAD STANDARDS CALC BOOK NO SDR DATE 10-JAN-2025 **RD910**


All materials shall be in accordance with

the current Oregon Standard Specifications.



FOR WIDE SIDEWALKS OPTION "PR-2"

FOR NARROW SIDEWALKS
OPTION "PR-3"

FOR NARROW SIDEWALKS
OPTION "PR-4"

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Curb ramp details are based on applicable ODOT standards.
- 2. See project plans for details not shown. See drawings RD700 and RD 701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawing RD910 for perpendicular curb ramp details. See drawings RD902 through RD908 for detectable warning surface installation details.
- 3. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 4. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 5. When two curb ramps are immediately adjacent, the curb exposure (E) between the adjacent side flare may range between 3-inch and full design exposure.
- 6. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush.
- 7. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.
- 8. Directional Curb and depressed curb with running slope less than 5.0% finished surface slope in the direction of pedestrian travel. See drawing RD905.

LEGEND:			
<i>7777777</i> 2	Marked or intended crossing location		4'x4' clear space
	Sidewalk	ι <u> </u>	Pedestrian Access Rout
	Detectable warning surface (DWS)	•	Zero curb exposure
	Level area (Turning space/landing) Unobstructed 4.5' x 4.5'	•	

With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing).

For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level.

Cross slope 1.5% maximum
(Maximum 2.0% finished surface slope)
(Normal sidewalk cross slope)

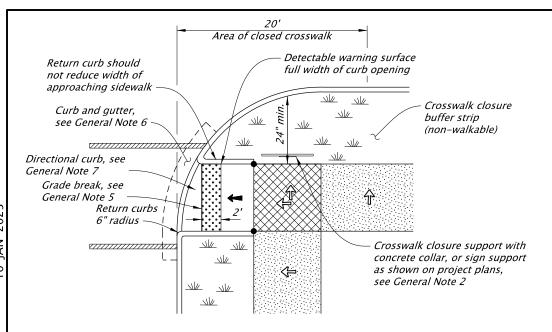
Running slope 4.0% maximum (Maximum 4.9% finished surface slope)

← Running slope 7.5% maximum

(Maximum 8.3% finished surface slope)

✓ Flare slope

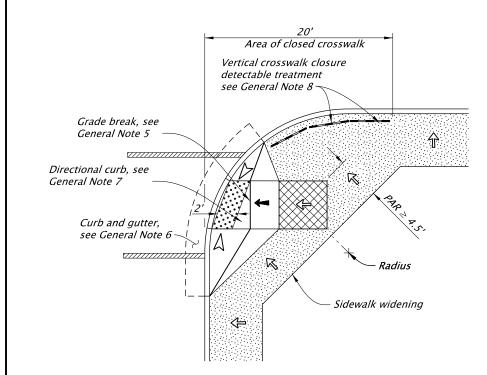
(Maximum 10.0% finished surface slope)

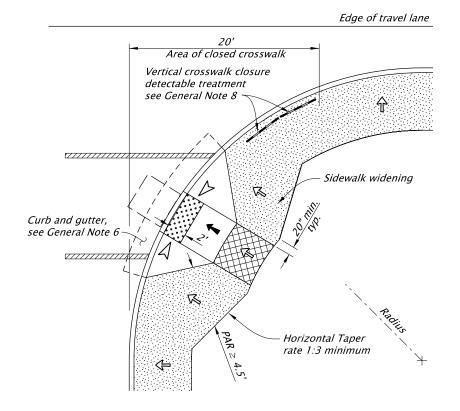

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

the current Oregon Standard Specifications.	
OREGON STANDARD DRAWINGS	
PERPENDICULAR	
CURB RAMP	

2024

All materials shall be in accordance with


2021					
	ON DESCRIPTION	REVISIO	DATE		
	S	UPDATED CAD STANDARDS	01-2025		
RD912	SDR DATE_ 10-JAN-2025 _	D	CALC.		


Directional curb, see General Note 7 Vertical crosswalk closure detectable treatment see General Note 5 Curb and gutter, see General Note 6 Radius

CROSSWALK CLOSURE WITH LANDSCAPE BUFFER STRIP OPTION "PR-5"

CROSSWALK CLOSURE FOR WIDE SIDEWALK OPTION "PR-6"

CROSSWALK CLOSURE FOR NARROW SIDEWALK OPTION "PR-7"

CROSSWALK CLOSURE OPTION "PR-8"

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

LEGEND:

- 1. Curb ramp details are based on applicable ODOT standards.
- 2. See project plans for details not shown. See drawings RD700 and RD 701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawing RD910 for perpendicular curb ramp details. See drawings RD902 through RD908 for detectable warning surface installation details. See drawing TM240 for crosswalk closure details. See drawing RD100 for concrete collar details.
- 3. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 4. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 5. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush.
- 6. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.
- 7. Directional Curb and depressed curb with running slope less than 5.0% finished surface slope in the direction of pedestrian travel. See drawing RD905.
- 8. Install crashworthy vertical crosswalk closure detectable treatment approved by road authority.

Marked or intended crossing location Sidewalk Detectable warning surface (DWS)

Level area (Turning space/landing) Unobstructed 4.5' x 4.5'

With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing).

For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level.

Cross slope 1.5% maximum (Maximum 2.0% finished surface slope) (Normal sidewalk cross slope)

← Running slope 7.5% maximum (Maximum 8.3% finished surface slope)

(Maximum 10.0% finished surface slope)

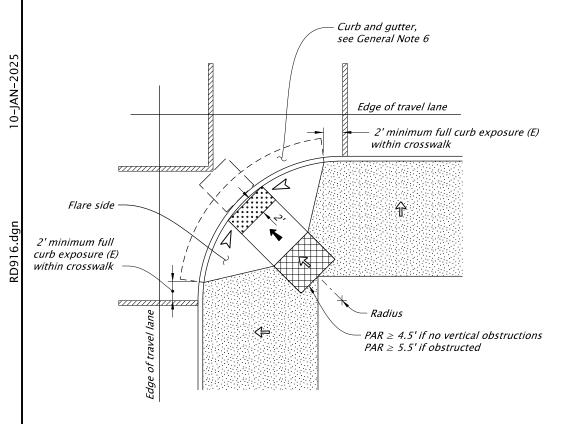
PAR Pedestrian Access Route

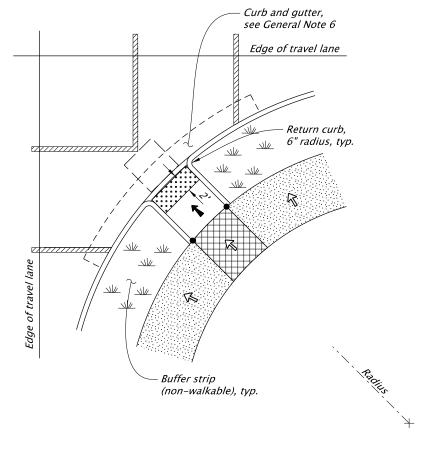
Zero curb exposure

The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered
Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS


PERPENDICULAR CURB RAMP WITH CLOSURE


2024

DATE REVISION DESCRIPTION

01-2025 UPDATED CAD STANDARDS

CALC.
BOOK NO. ____N/A ____ SDR DATE 10-JAN-2025 RD913

DIAGONAL CURB RAMP FOR WIDE SIDEWALKS **OPTION "PR-9"**

(Use only when site constraints prohibit installing two curb ramps and both crosswalks are open)

DIAGONAL CURB RAMP WITH LANDSCAPED BUFFER STRIPS OPTION "PR-10"

(Use only when site constraints prohibit installing two curb ramps and both crosswalks are open)

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Curb ramp details are based on applicable ODOT standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawing RD910 for perpendicular curb ramp details. See drawings RD902 through RD908 for detectable warning surface installation details.
- 3. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 4. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 5. Only use curb ramp options allowed by jurisdiction. Single ramps require design exception on or along state highways.
- 6. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.

LEGEND:

Marked or intended crossing location ////////

Sidewalk

Detectable warning surface (DWS)

Level area (Turning space/landing) Unobstructed 4.5' x 4.5'

> With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing).

For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level.

Cross slope 1.5% maximum (Maximum 2.0% finished surface slope)

(Normal sidewalk cross slope)

Running slope 7.5% maximum (Maximum 8.3% finished surface slope)

Flare slope

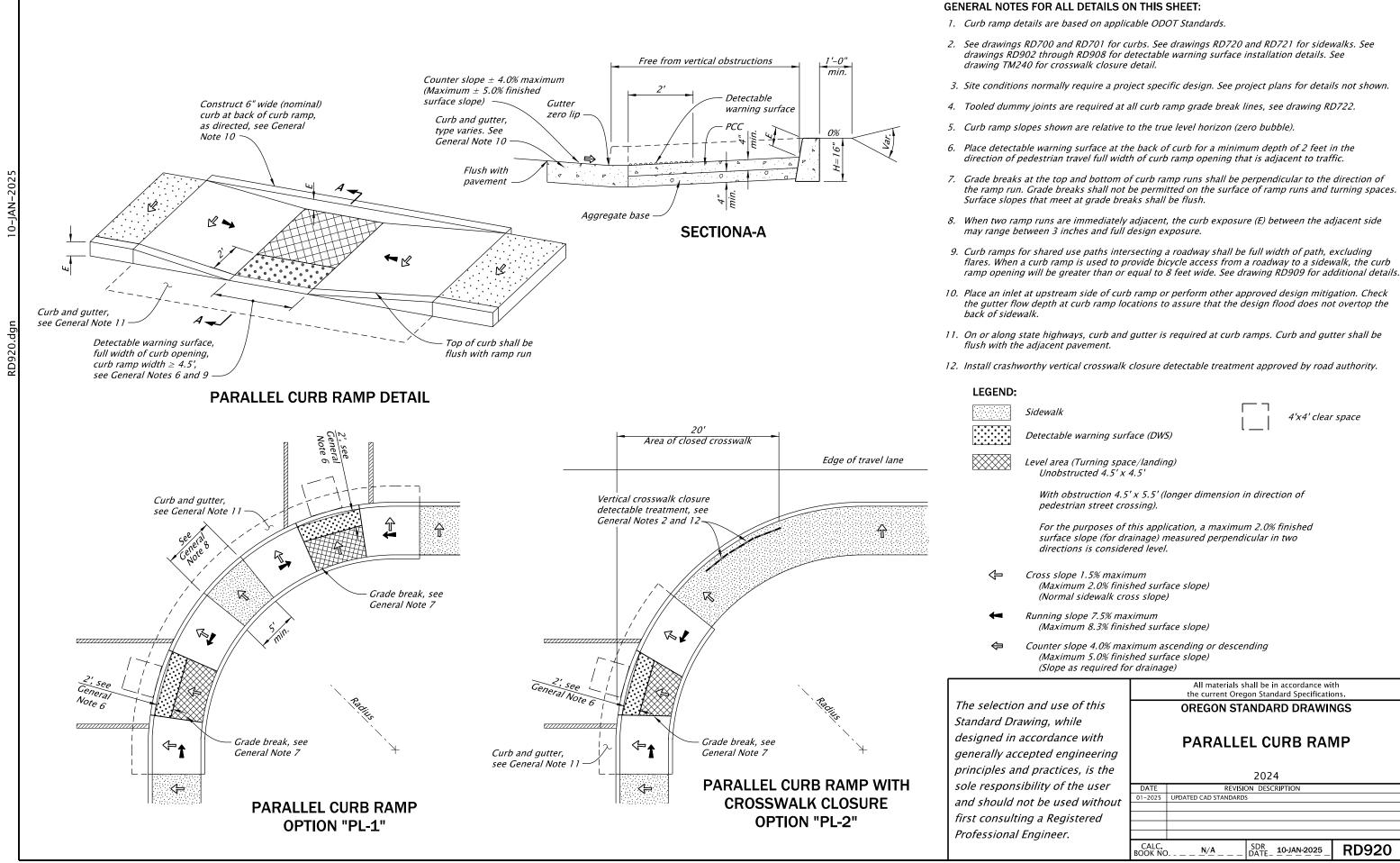
(Maximum 10.0% finished surface slope)

4'x4' clear space

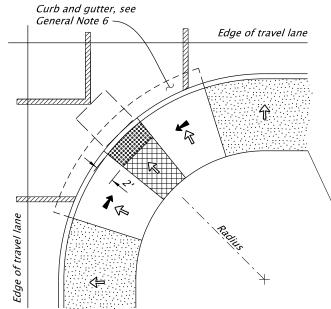
PAR Pedestrian Access Route

Zero curb exposure

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

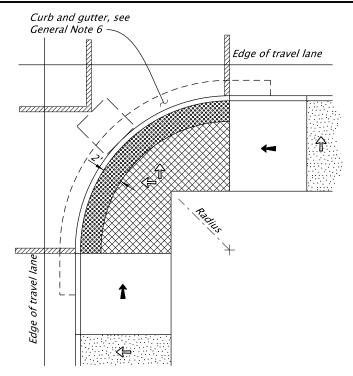

All materials shall be in accordance with the current Oregon Standard Specifications.

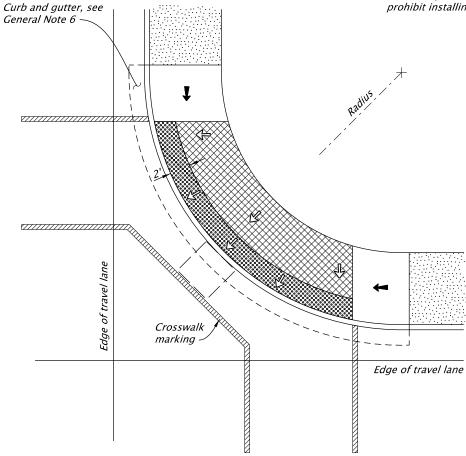
OREGON STANDARD DRAWINGS


PERPENDICULAR CURB RAMP **SINGLE RAMP**

2024

	REVISION DESCRIPTION	DATE
	DATED CAD STANDARDS	01-2025
RD916	N/A SDR 10-JAN-2025	CALC.




DIAGONAL PARALLEL CURB RAMP OPTION "PL-3"

(Use only when site constraints prohibit installing two curb ramps and both crosswalks are open)

DEPRESSED CURB RAMP SMALL RADIUS OPTION "PL-4"

(Use only when site constraints prohibit installing two curb ramps)

DEPRESSED CURB RAMP LARGE RADIUS OPTION "PL-5"

(Use only when site constraints prohibit installing two curb ramps)

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Curb ramp details are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawings RD902 through RD908 for detectable warning surface installation details. See drawing RD920 for parallel curb ramp details.
- 3. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 4. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 5. Place an inlet at upstream side of curb ramp or perform other approved design mitigation. Check the gutter flow depth at curb ramp locations to assure that the design flood does not overtop the back of sidewalk.
- 6. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.
- 7. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush.
- 8. Only use curb ramp options allowed by jurisdiction. Single ramps requires design exception on or along state highways.

LEGEND:

Marked or intended crossing location

Sidewalk

Detectable warning surface (DWS)

Level area (Turning space/landing) Unobstructed 4.5' x 4.5'

With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing).

For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level.

Cross slope 1.5% maximum
(Maximum 2.0% finished surface slope)
(Normal sidewalk cross slope)

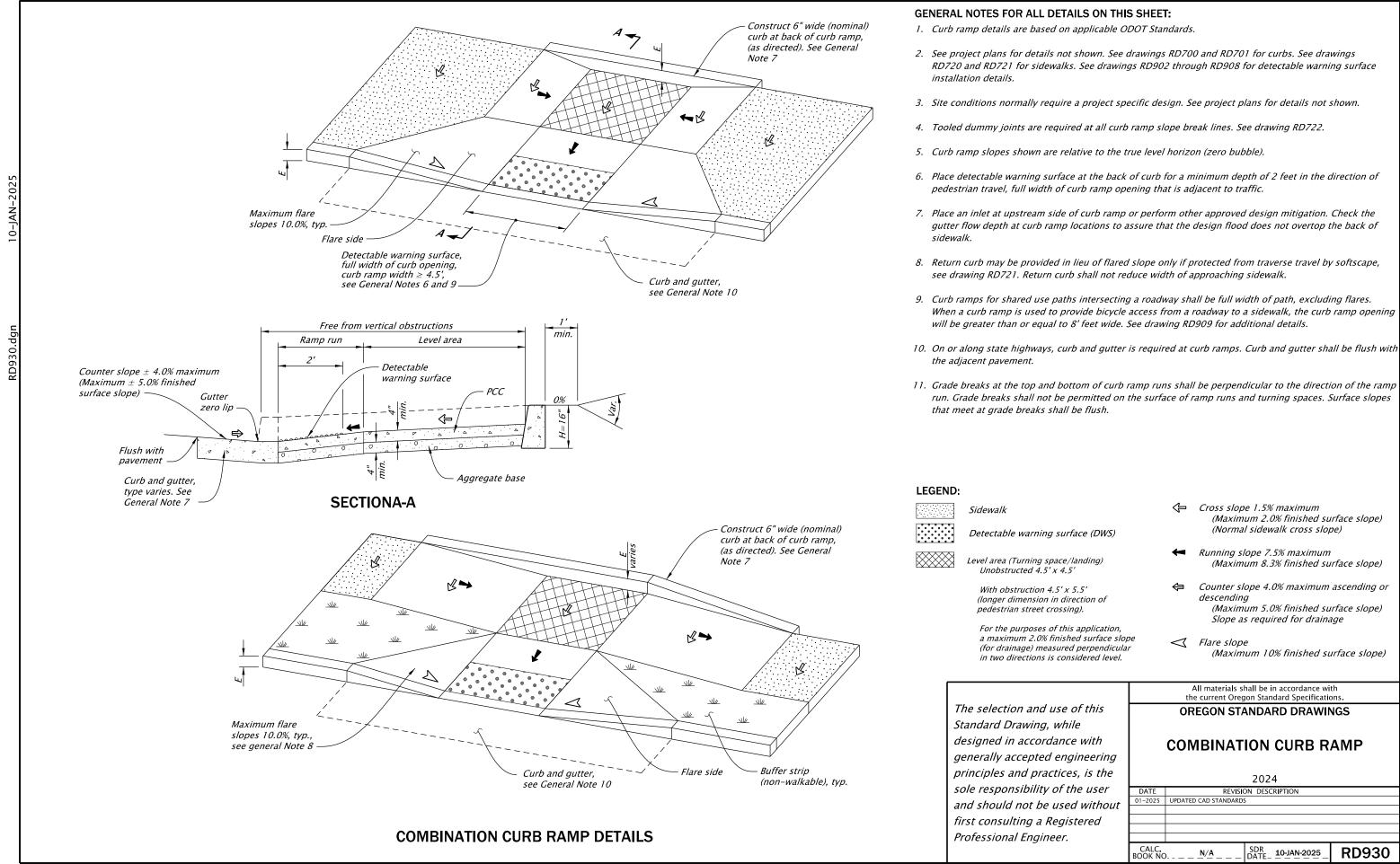
Running slope 7.5% maximum (Maximum 8.3% finished surface slope)

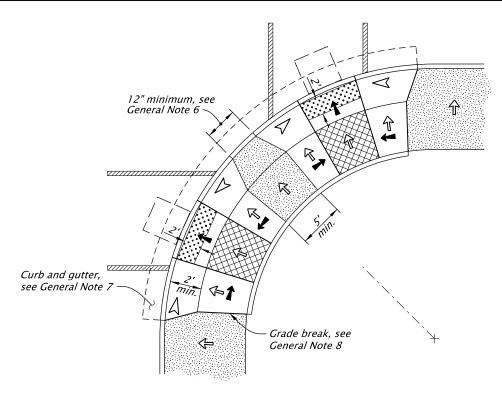
4'x4' clear space

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS


PARALLEL CURB RAMP SINGLE RAMP


2024

DATE REVISION DESCRIPTION

01-2025 UPDATED CAD STANDARDS

CALC.
BOOK NO. ____N/A ___ SDR DATE 10-JAN-2025 RD922

COMBINATION CURB RAMP OPTION "CC-1"

COMBINATION CURB RAMP

WITH CROSSWALK CLOSURE

OPTION "CC-2"

Curb and gutter, see General Note 7

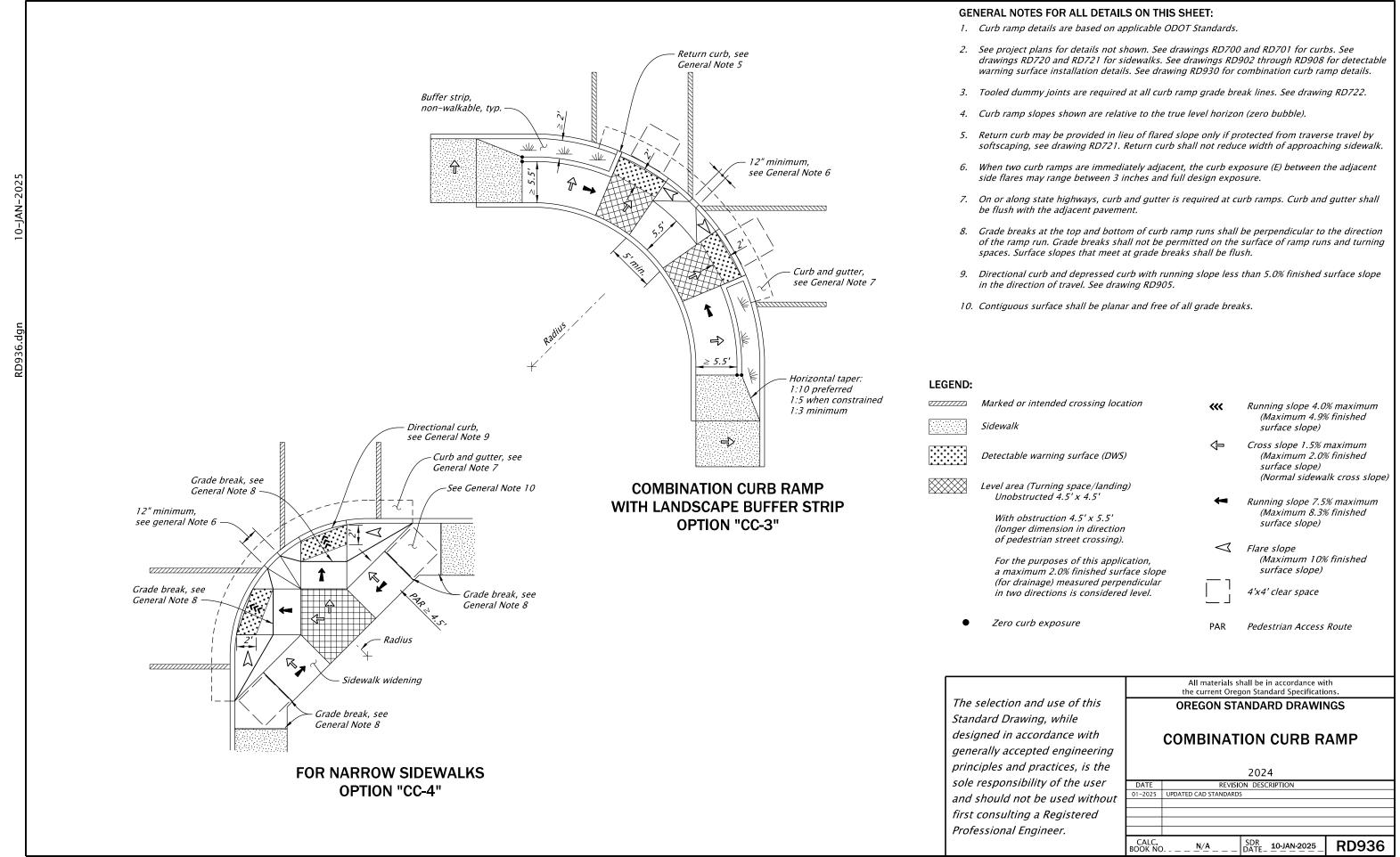
Curb and gutter, see General Note 7

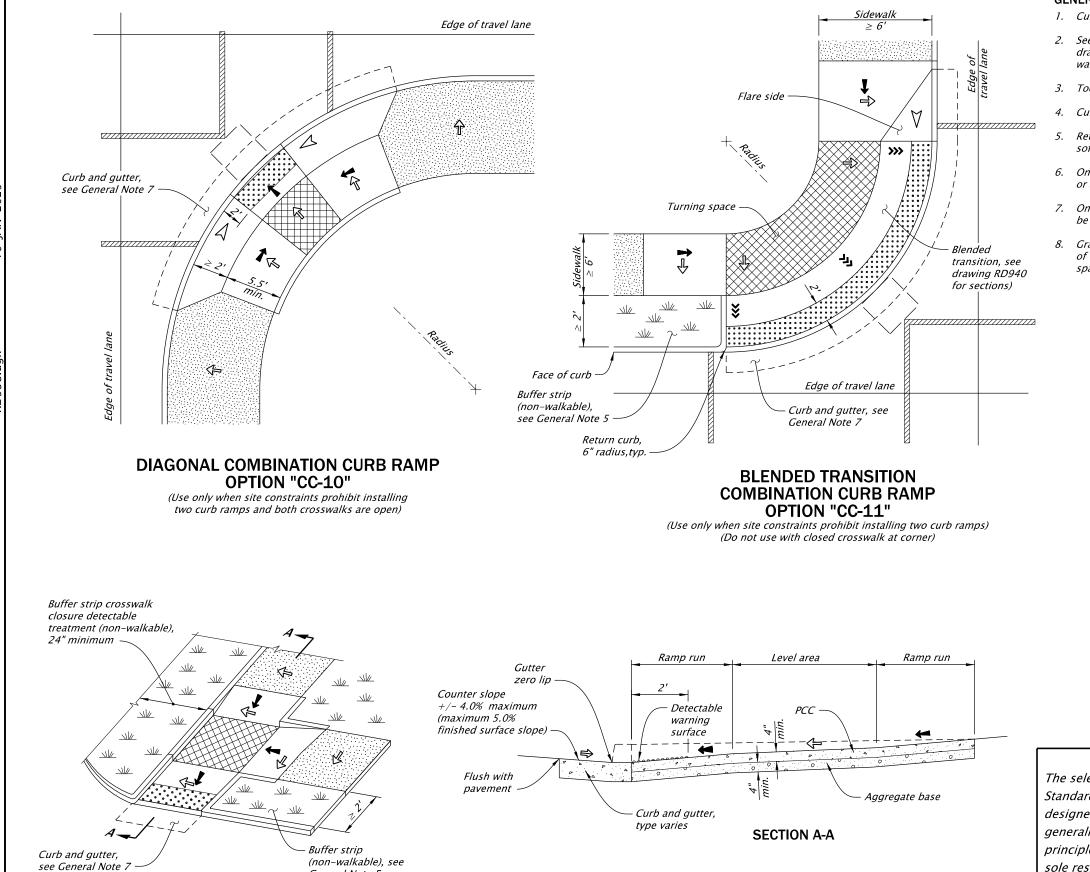
Carade break, see General Note 8

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

- 1. Curb ramp details are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawings RD902 through RD908 for detectable warning surface installation details. See drawing RD930 for combination curb ramp details. See drawing TM240 for crosswalk closure detail.
- 3. Site conditions normally require a project specific design. See project plans for details not shown.
- 4. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 5. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 6. When two curb ramps are immediately adjacent, the curb exposure (E) between the adjacent side flares may range between 3 inches and full design exposure.
- 7. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.
- 8. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush.
- 9. Install crashworthy vertical crosswalk closure detectable treatment approved by road authority.

LEGEND: Marked or intended crossing location Sidewalk Detectable warning surface Level area (Turning space/landing) Unobstructed 4.5' x 4.5' With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing). For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level. Cross slope 1.5% maximum (Maximum 2.0% finished surface slope) (Normal sidewalk cross slope) Running slope 7.5% max. (Maximum 8.3% finished surface slope) Flare slope (Maximum 10% finished surface slope) 4'x4' clear space All materials shall be in accordance with the current Oregon Standard Specifications.


The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered
Professional Engineer.


COMBINATION CURB RAMP

OREGON STANDARD DRAWINGS

2024

DATE	REVISION DESCRIPTION	
01-2025	UPDATED CAD STANDARDS	
CALC. BOOK NO	SDR DATE_ 10-JAN-2025	RD932

DIRECTIONAL COMBINATION CURB RAMP

OPTION "CC-12"

General Note 5

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

LEGEND:

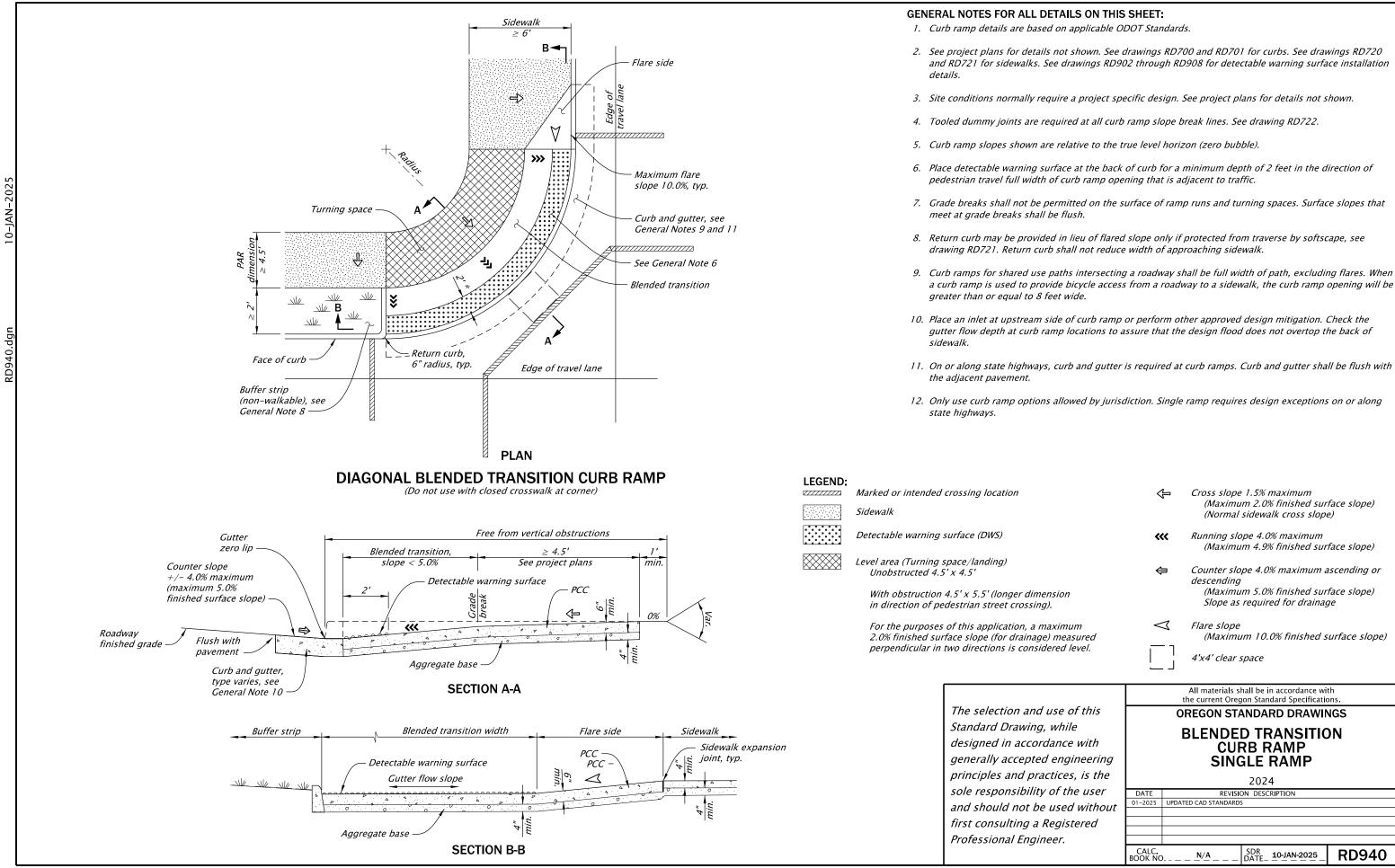
- 1. Curb ramp details are based on applicable ODOT Standards.
- 2. See project plans for details not shown. See drawings RD700 and RD701 for curbs. See drawings RD720 and RD721 for sidewalks. See drawings RD902 through RD908 for detectable warning surface installation details. See drawing RD930 for combination curb ramp details.
- 3. Tooled dummy joints are required at all curb ramp slope break lines. See drawing RD722.
- 4. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
- 5. Return curb may be provided in lieu of flared slope only if protected from traverse travel by softscape. See drawing RD721. Return curb shall not reduce width of approaching sidewalk.
- 6. Only use curb ramp options allowed by jurisdiction. Single ramps require design exception on or along state highway.
- 7. On or along state highways, curb and gutter is required at curb ramps. Curb and gutter shall be flush with the adjacent pavement.
- 8. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush.

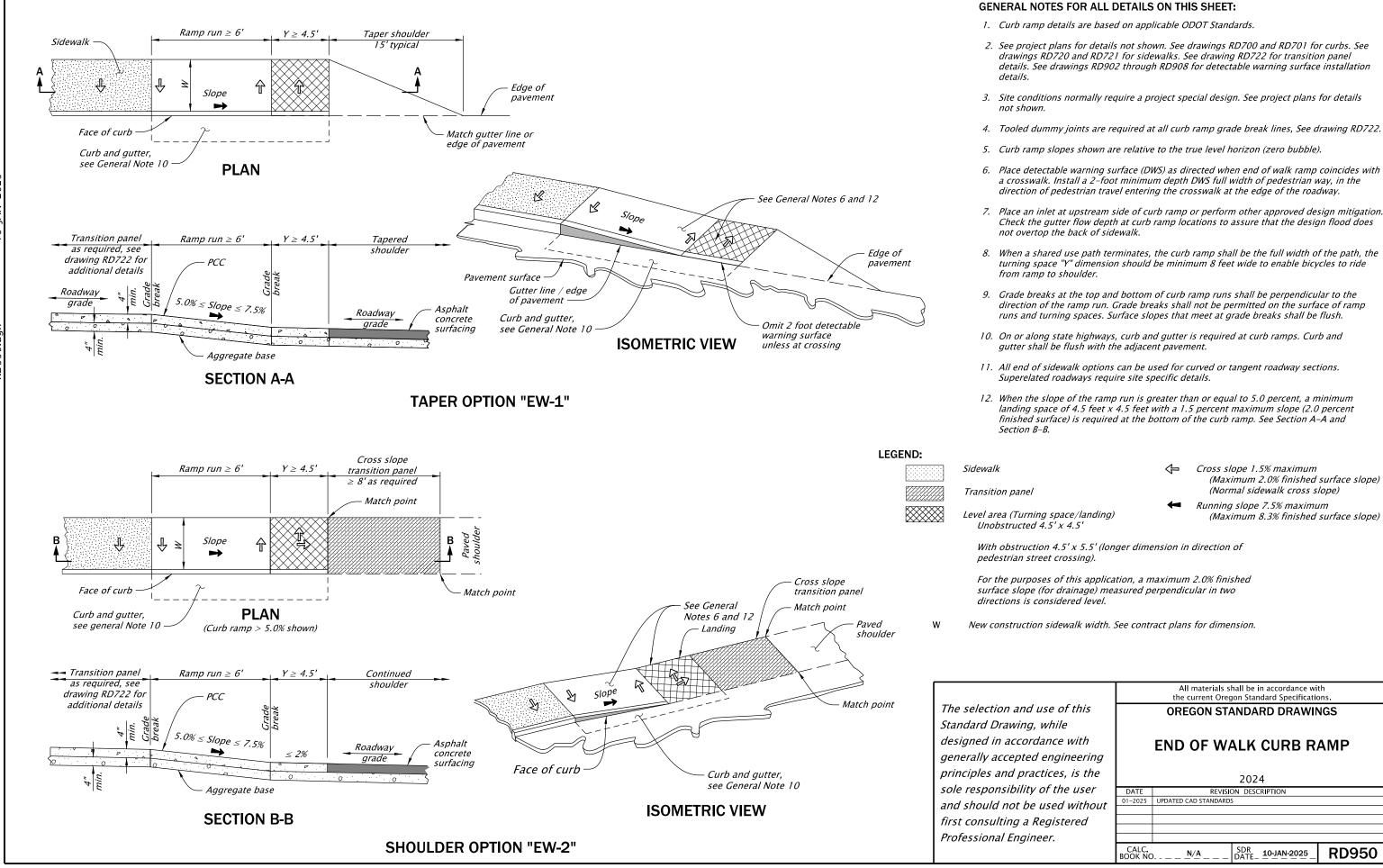
Marked or intended crossing location Detectable warning surface (DWS) Level area (Turning space/landing) Unobstructed 4.5' x 4.5' With obstruction 4.5' x 5.5' (longer dimension in direction of pedestrian street crossing). For the purposes of this application, a maximum 2.0% finished surface slope (for drainage) measured perpendicular in two directions is considered level. Cross slope 1.5% maximum (Maximum 2.0% finished surface slope) (Normal sidewalk cross slope) Running slope 4.0% maximum (Maximum 4.9% finished surface slope) Running slope 7.5% maximum (Maximum 8.3% finished surface slope) Counter slope 4.0% maximum ascending or (Maximum 5.0% finished surface slope) Slope as required for drainage Flare slope (Maximum 10.0% finished surface slope) 4'x4' clear space All materials shall be in accordance with

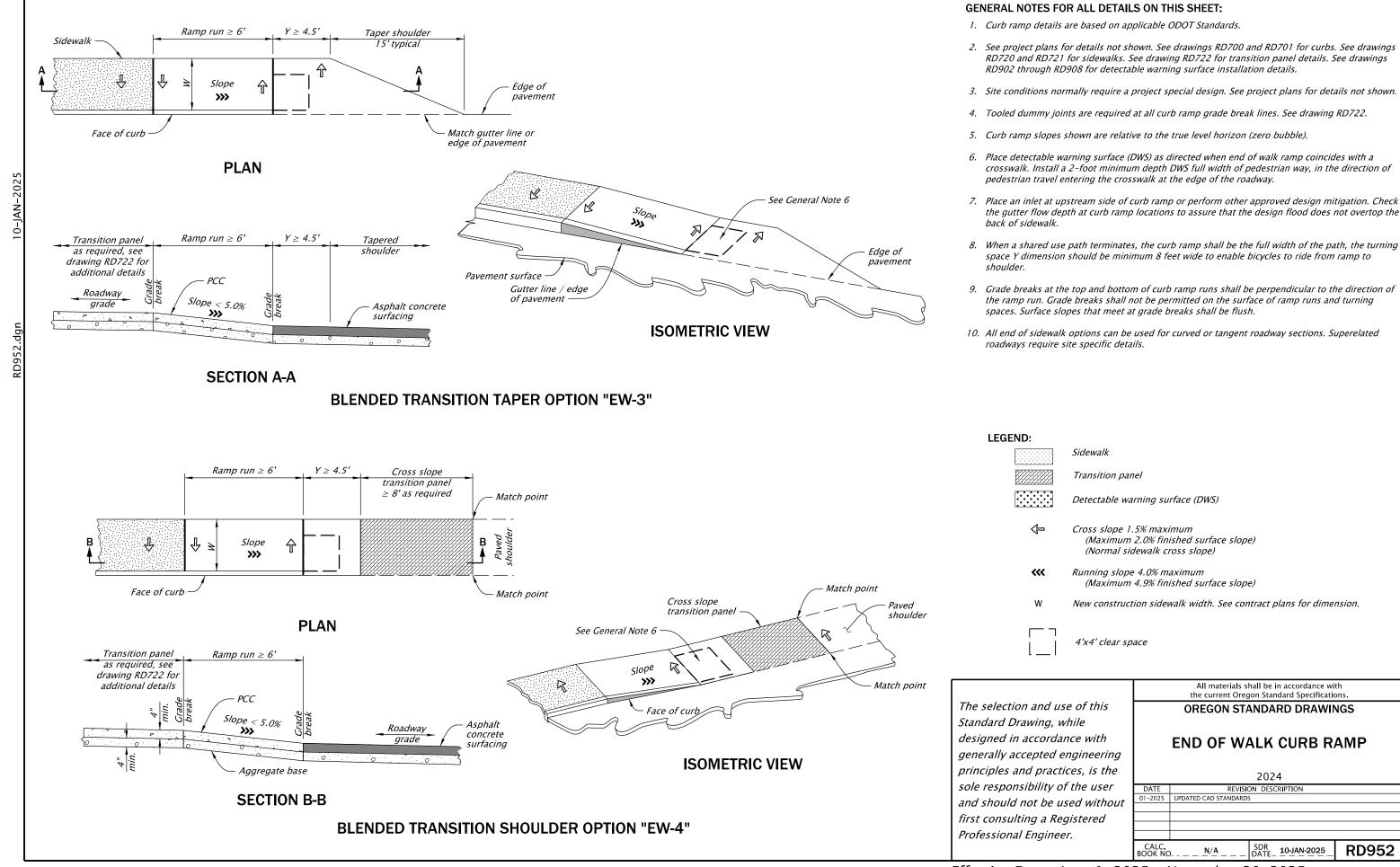
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

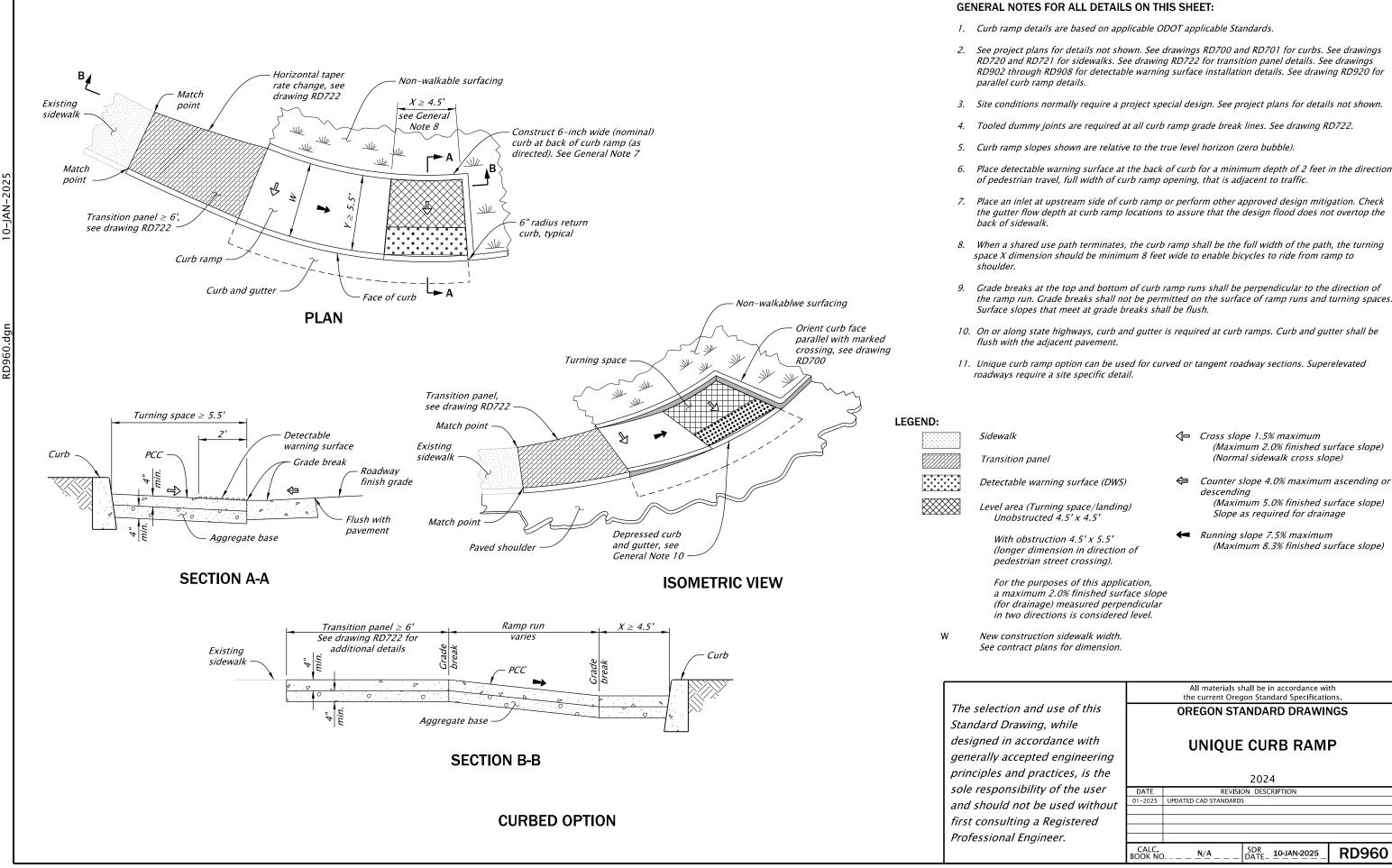
COMBINATION CURB RAMP SINGLE RAMP

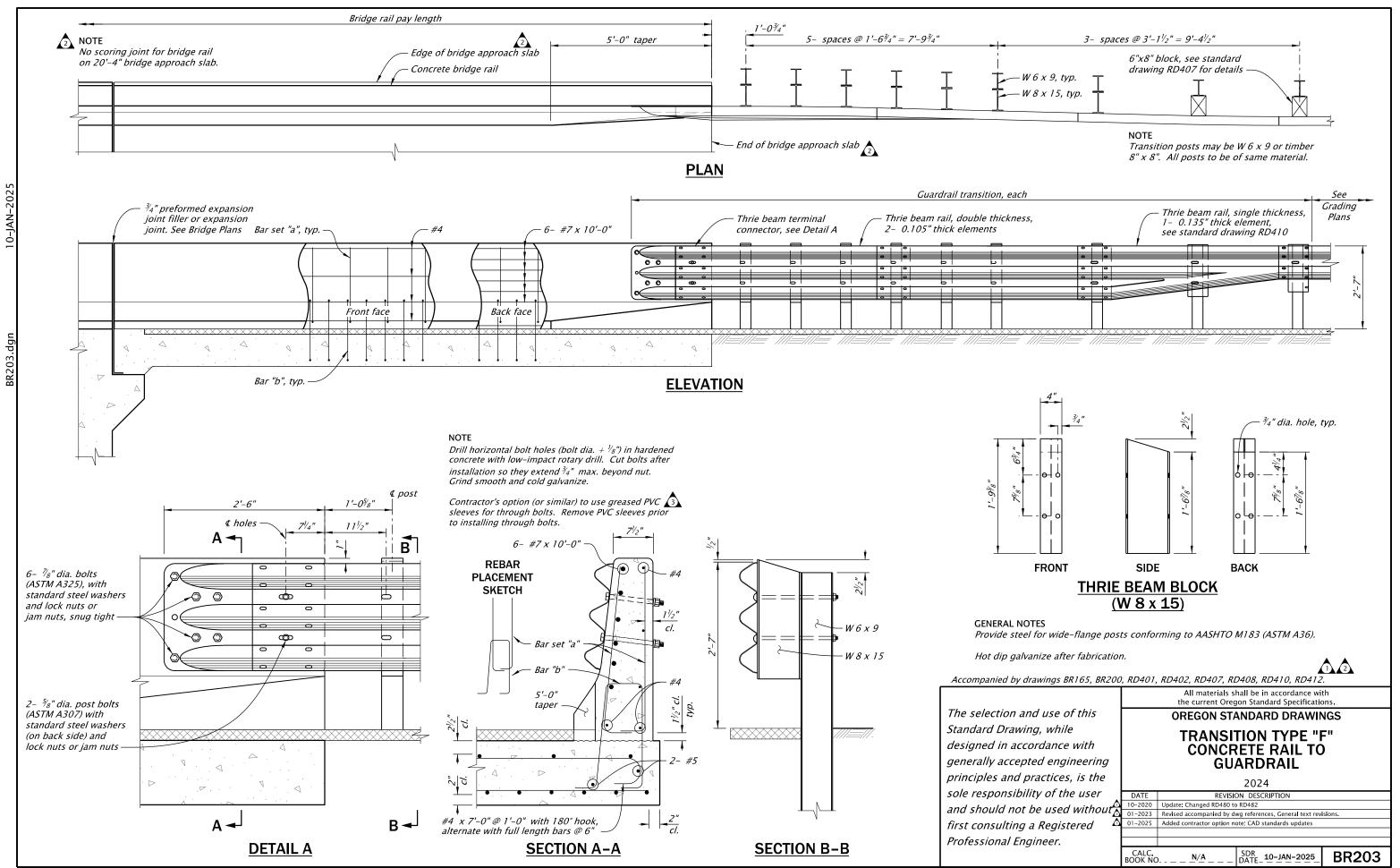
the current Oregon Standard Specifications.

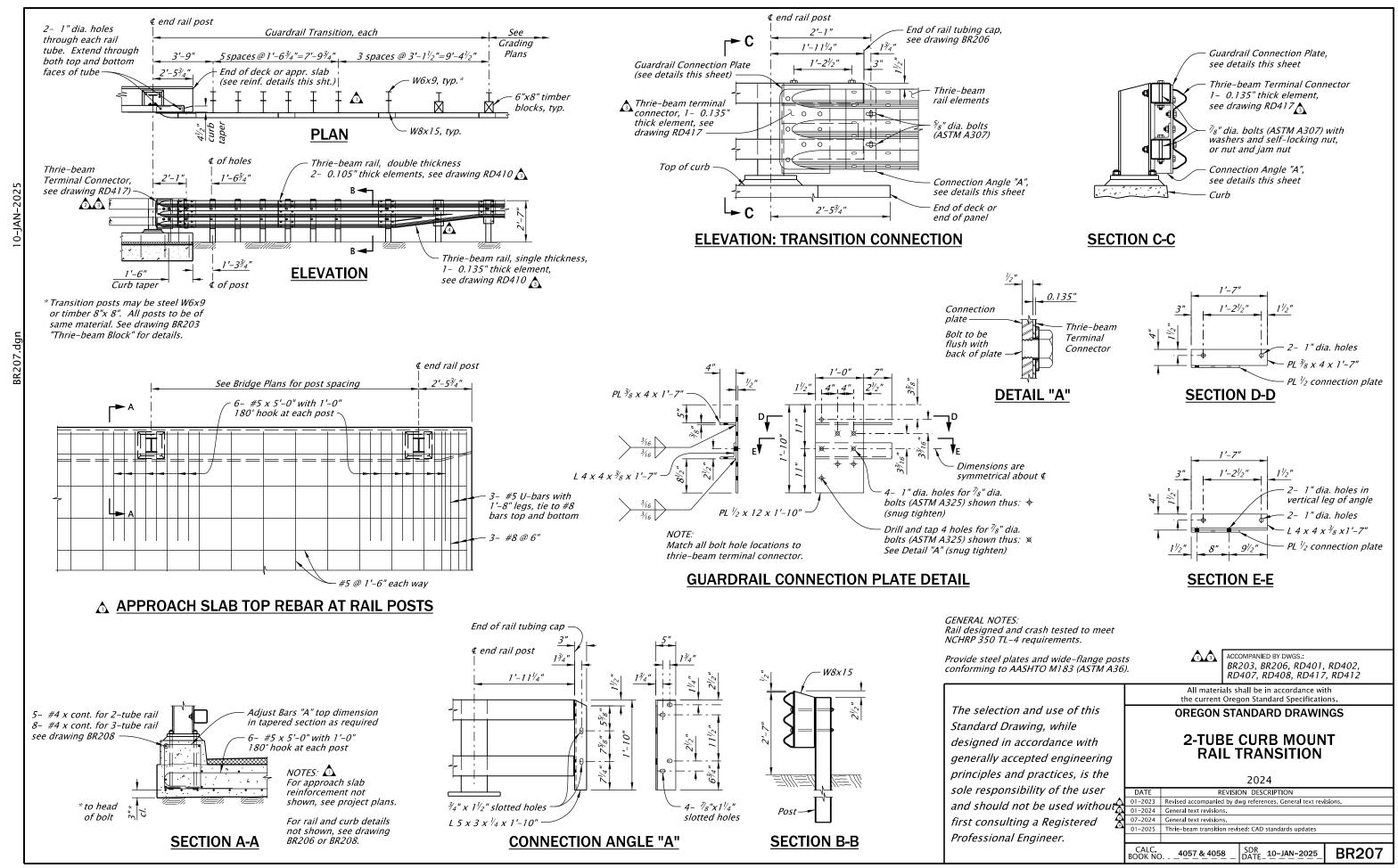

OREGON STANDARD DRAWINGS

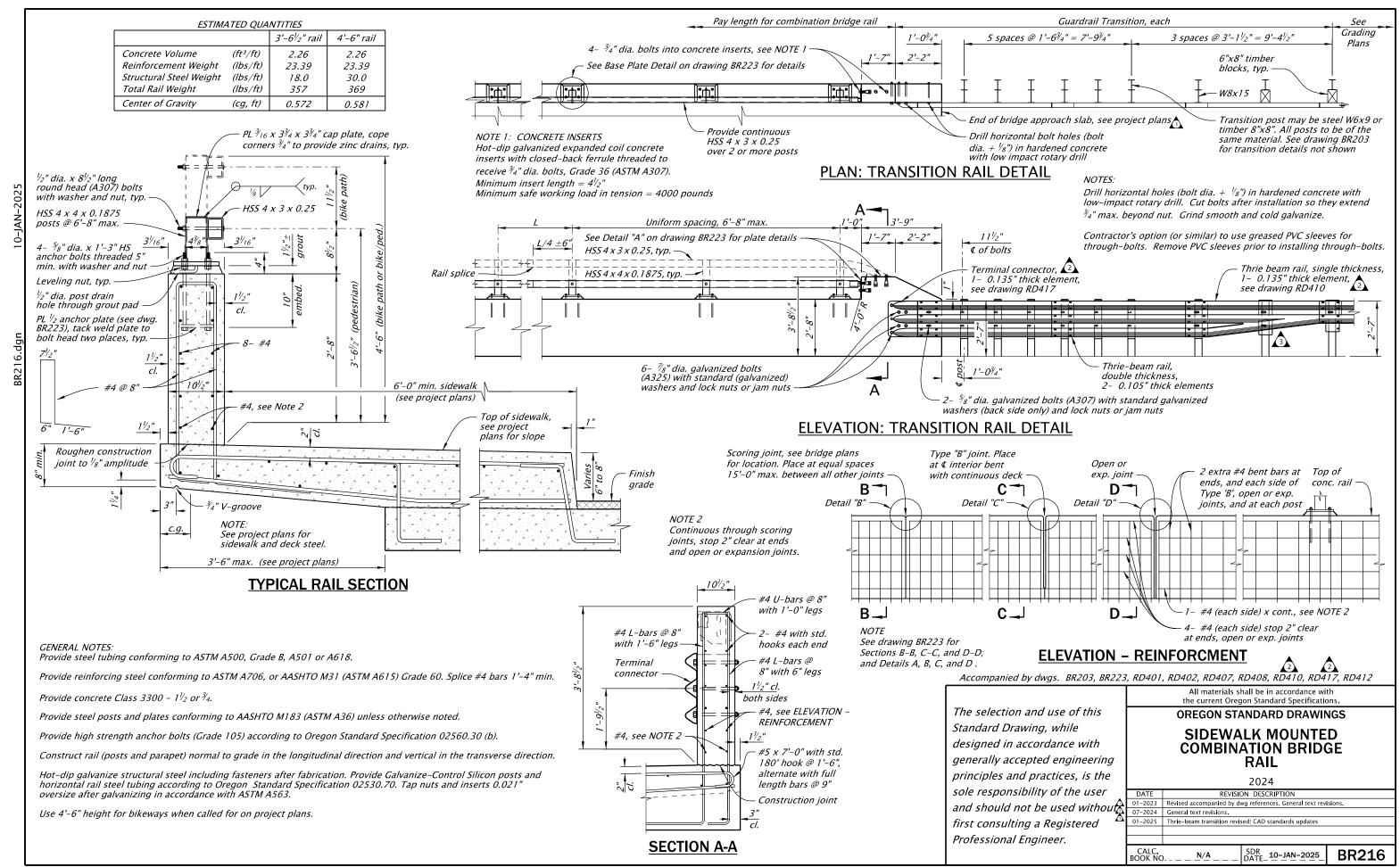

2024

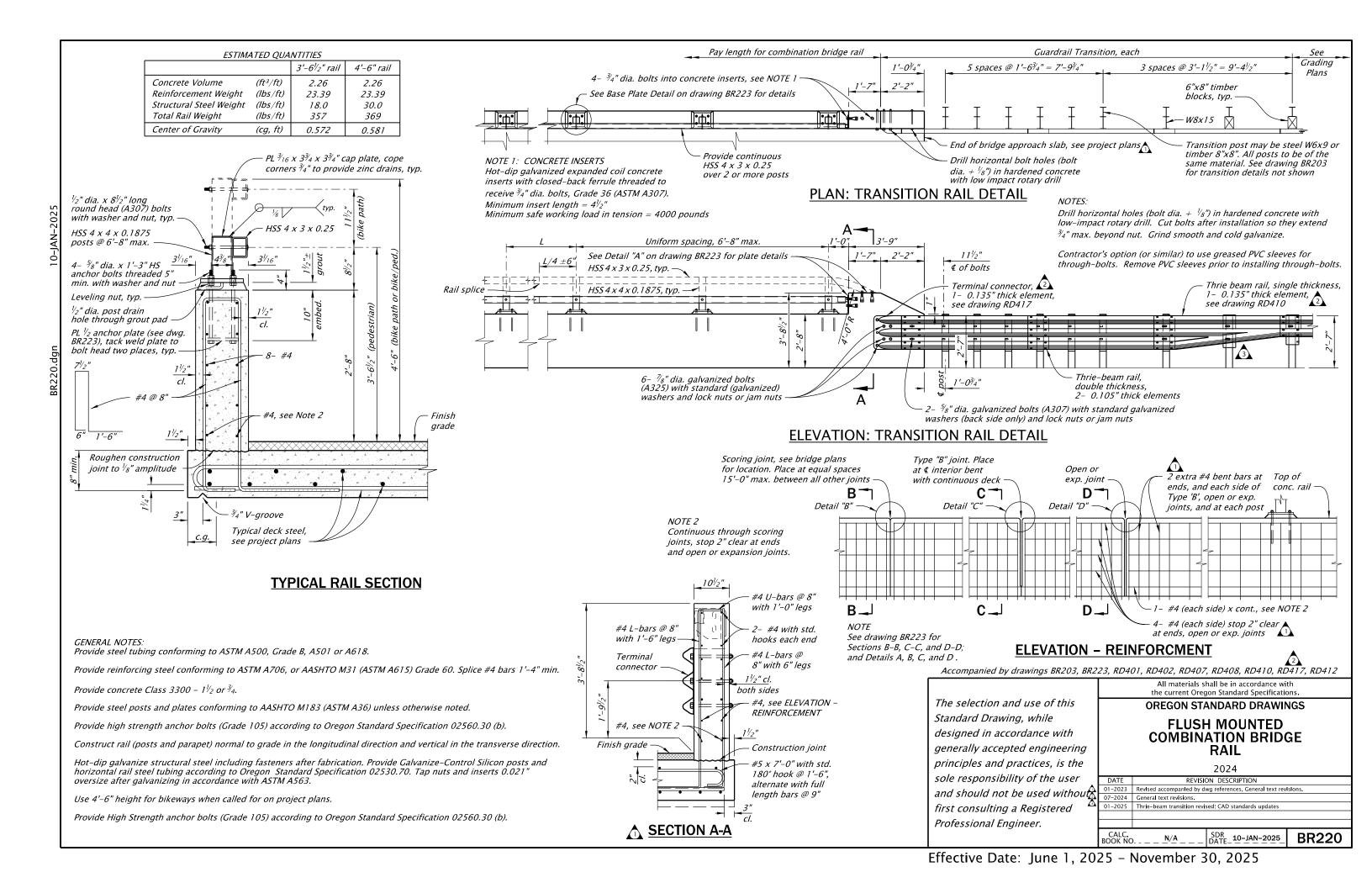

DATE REVISION DESCRIPTION

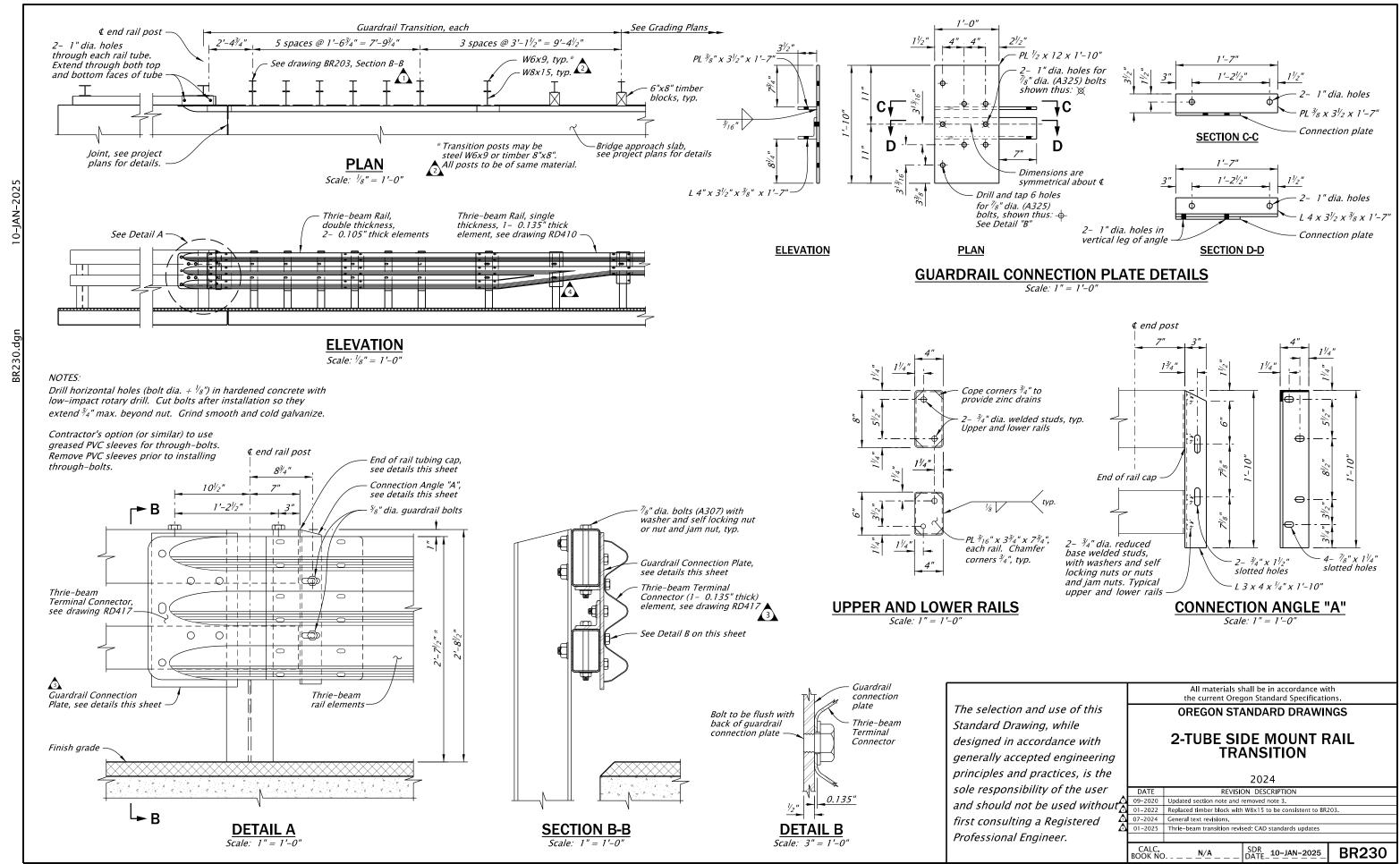

01-2025 UPDATED CAD STANDARDS

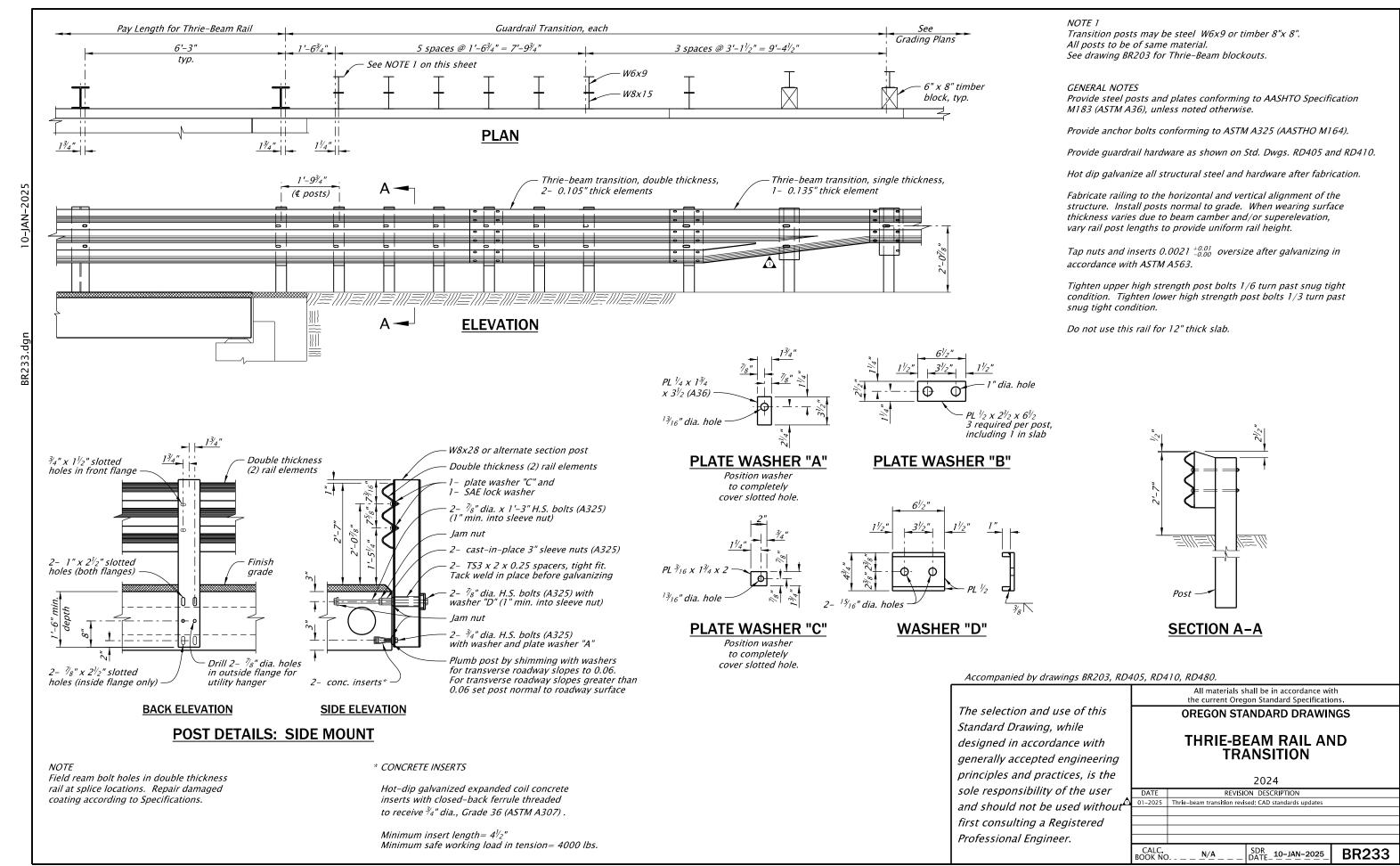

CALC.
BOOK NO. ____N/A ____ SDR DATE 10-JAN-2025 RD938

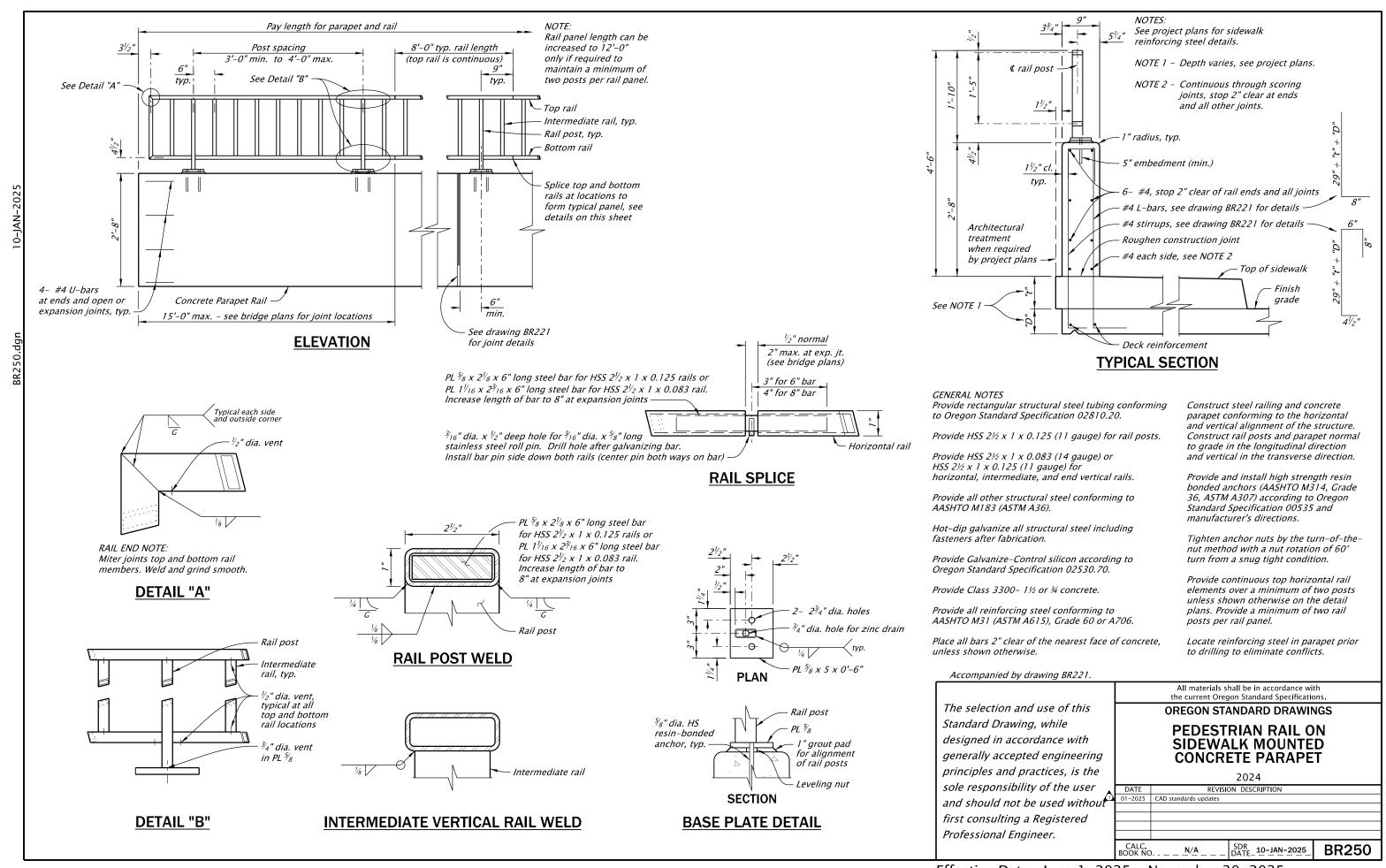


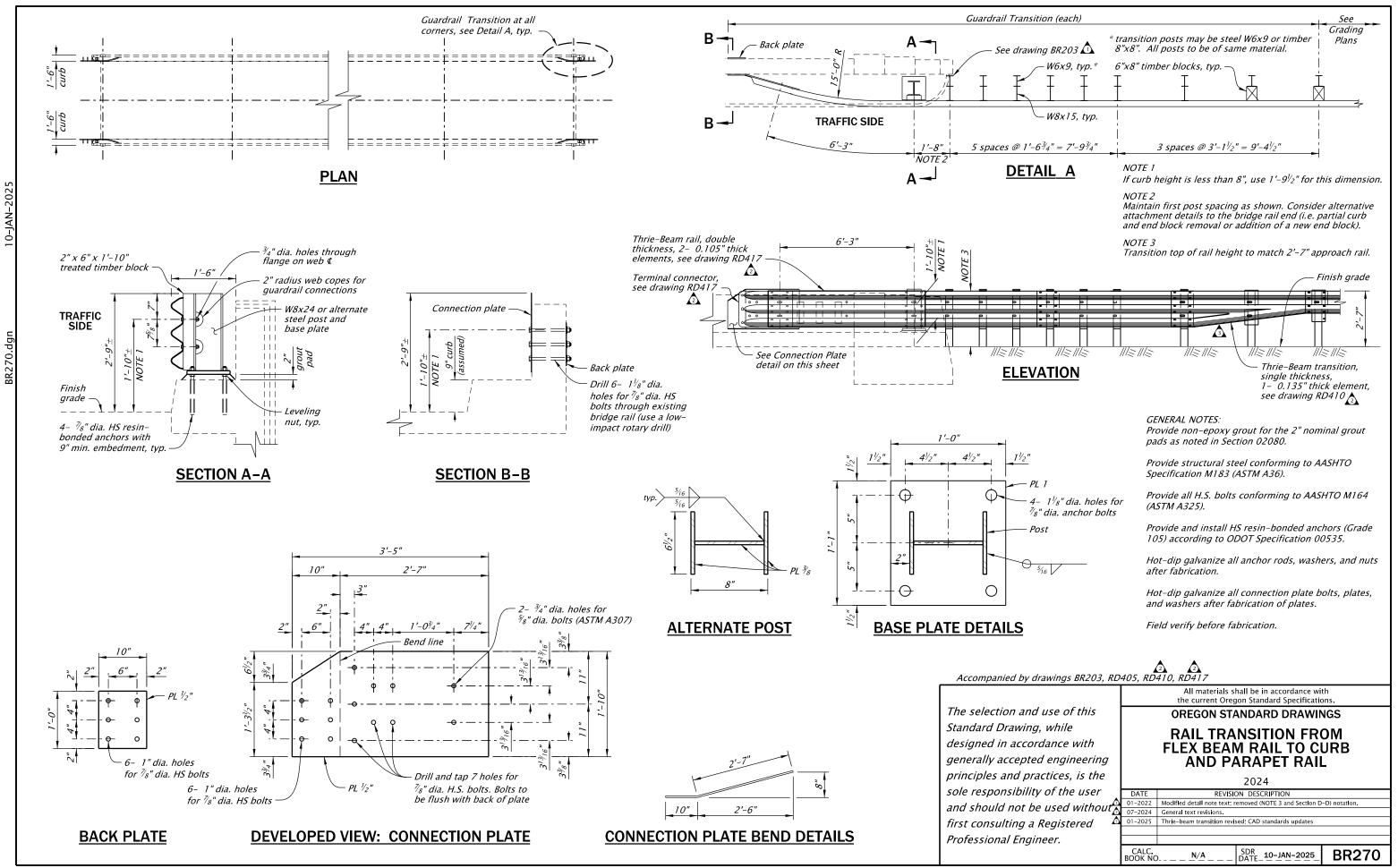


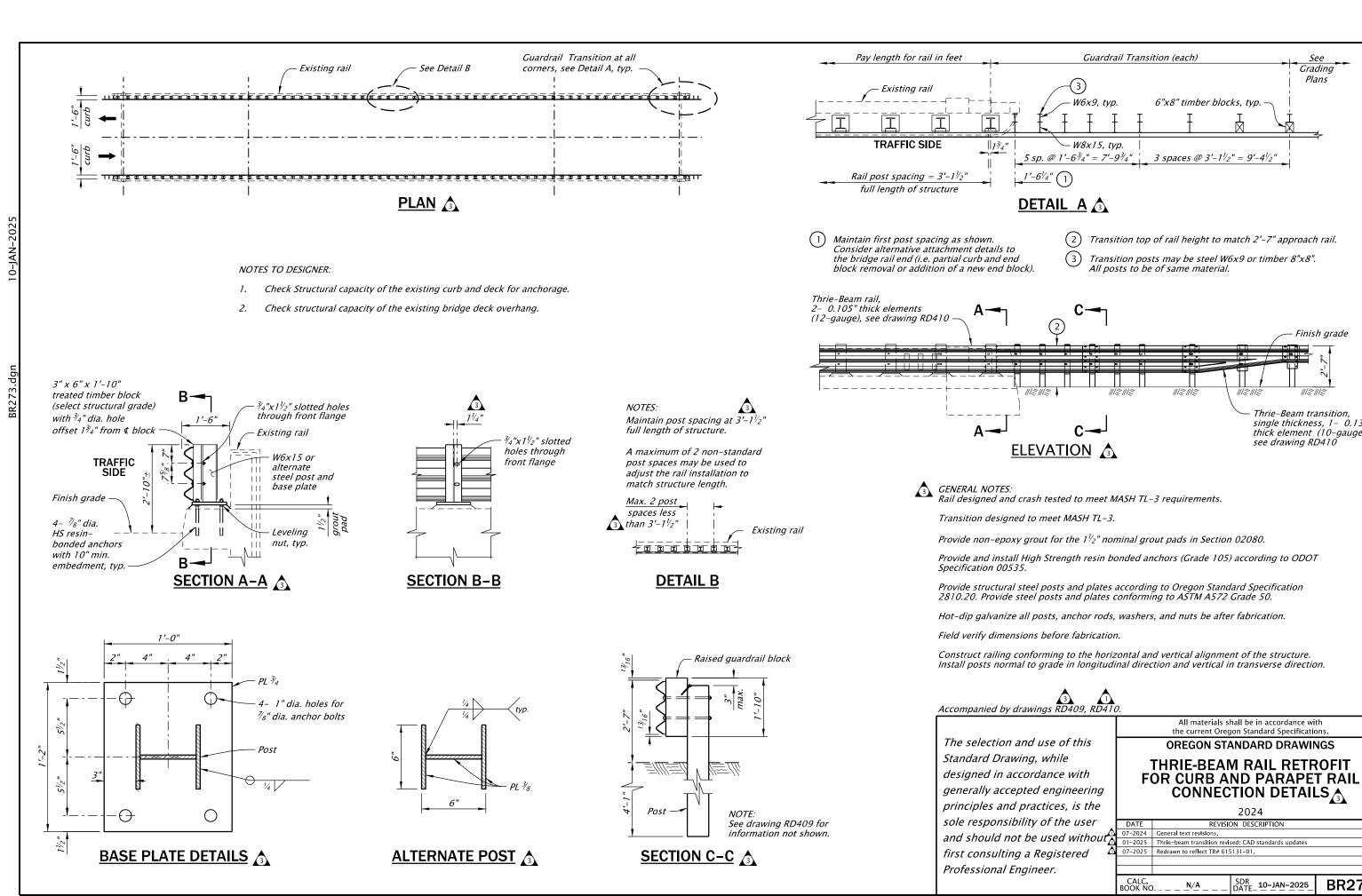








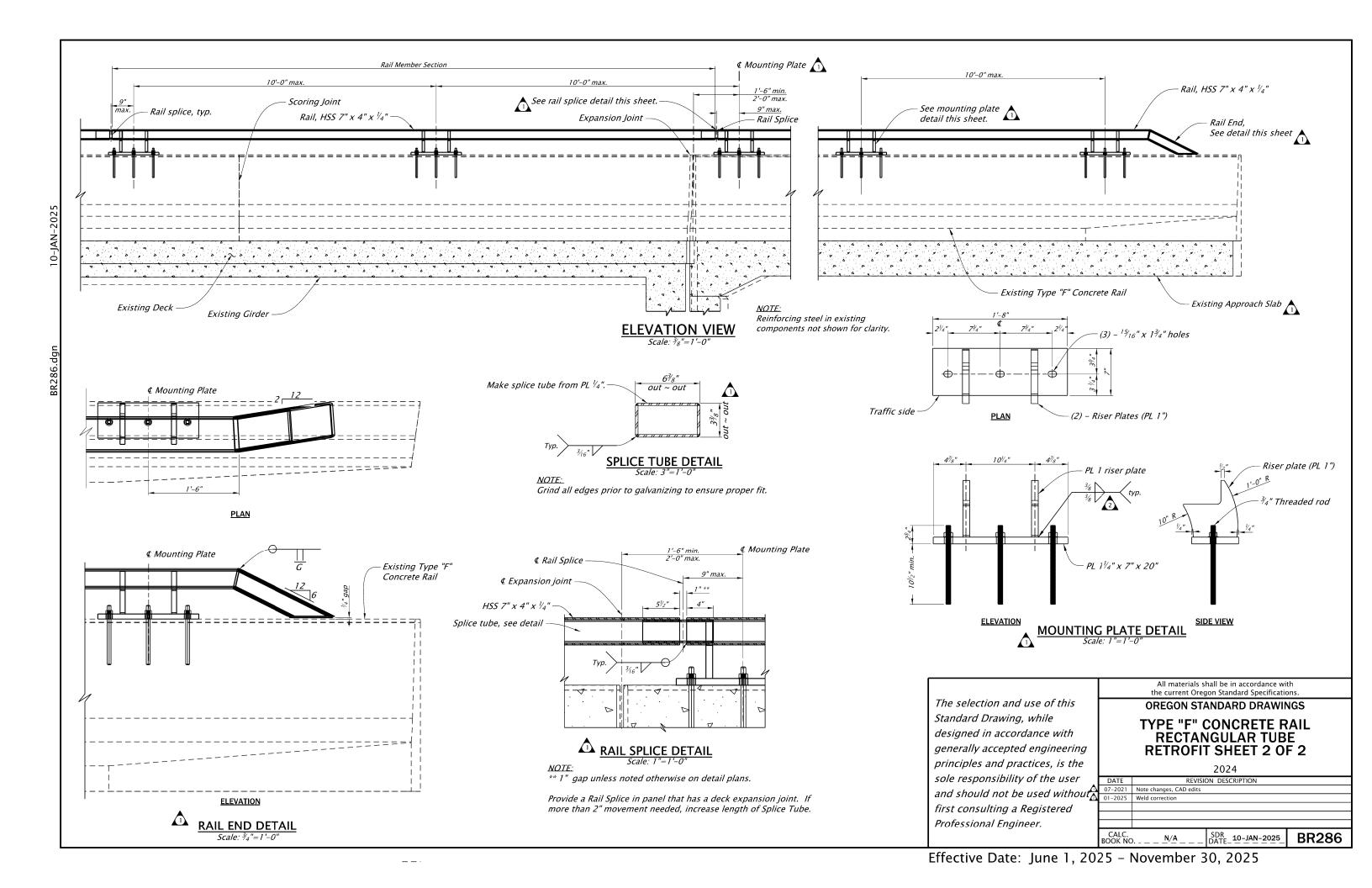


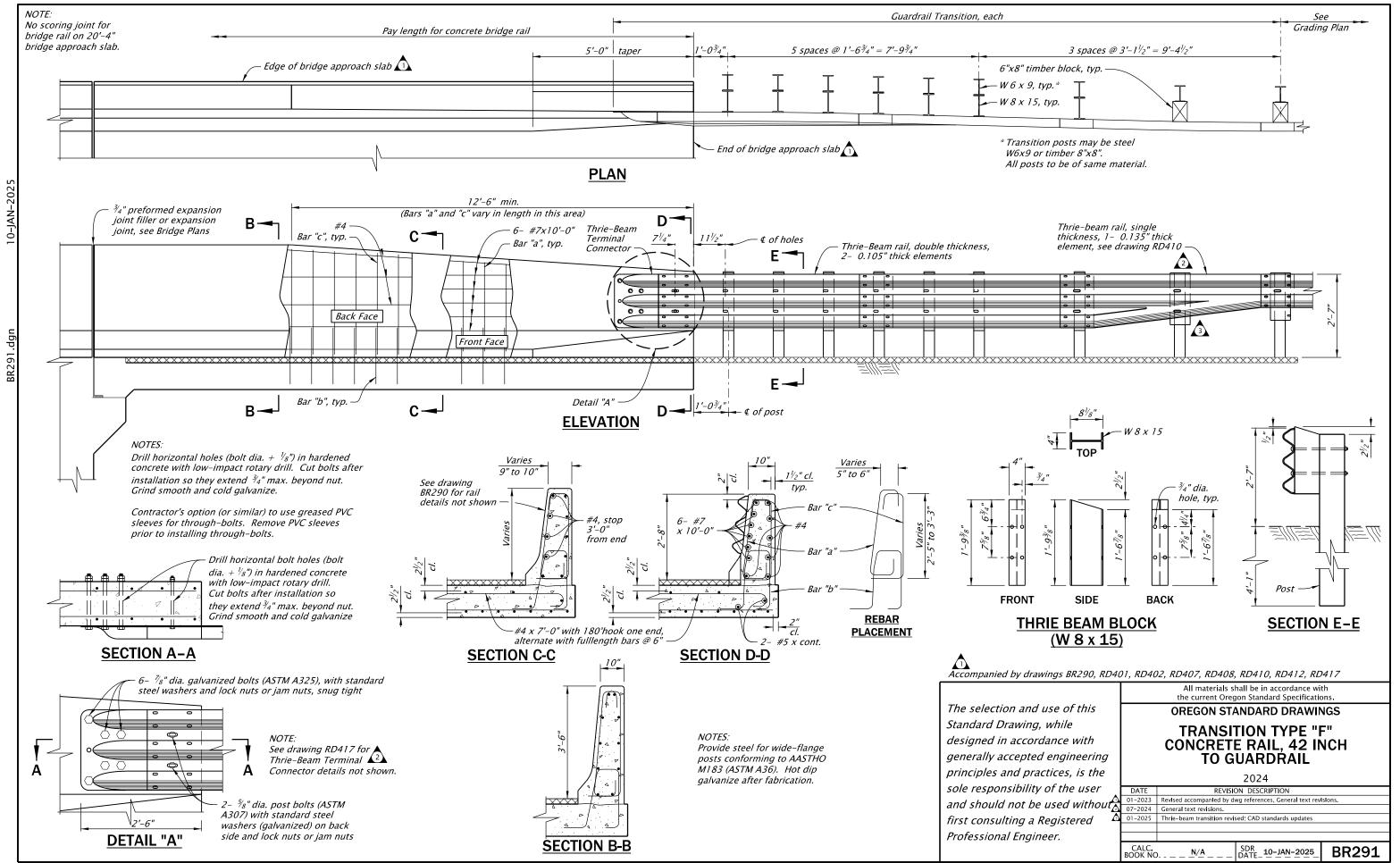


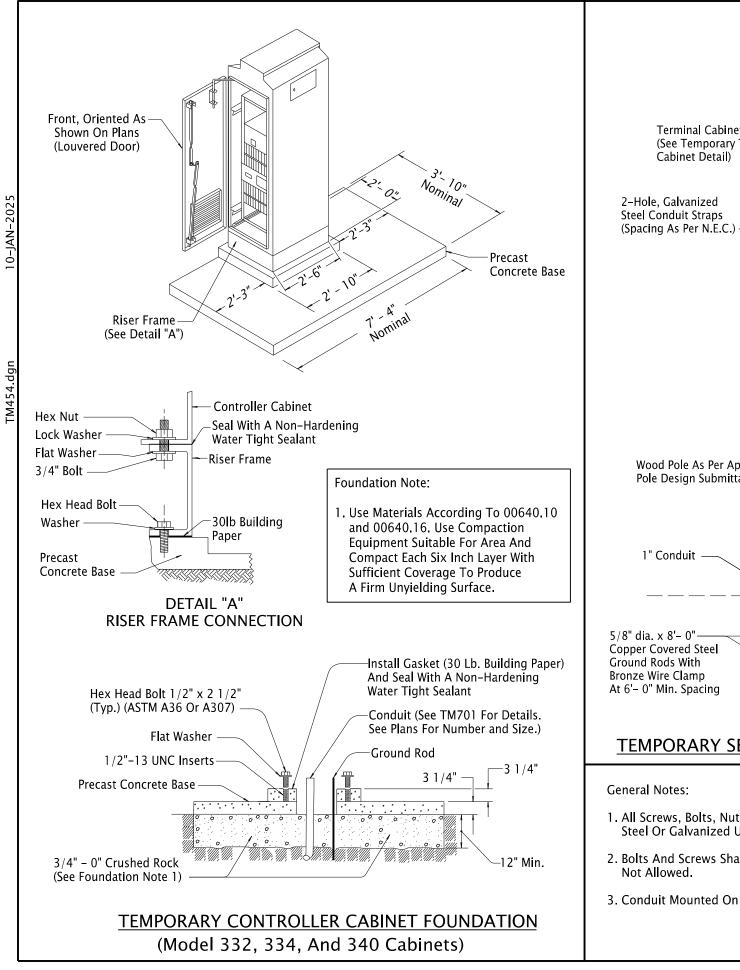
Grading Plans

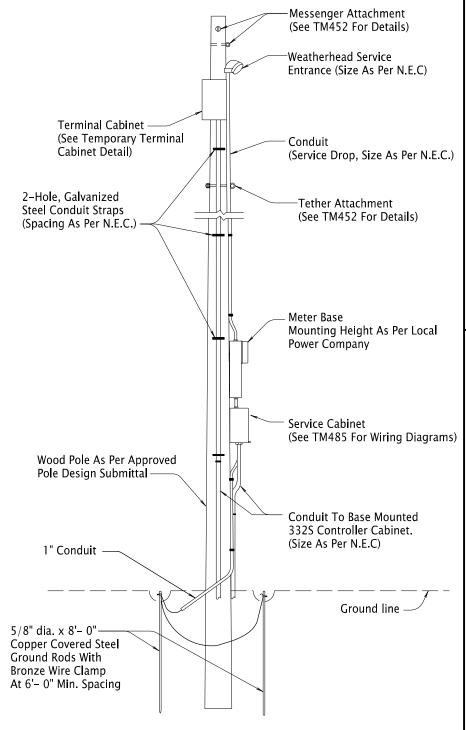
Finish grade

Thrie-Beam transition,


All materials shall be in accordance with


REVISION DESCRIPTION


SDR DATE_10-JAN-2025

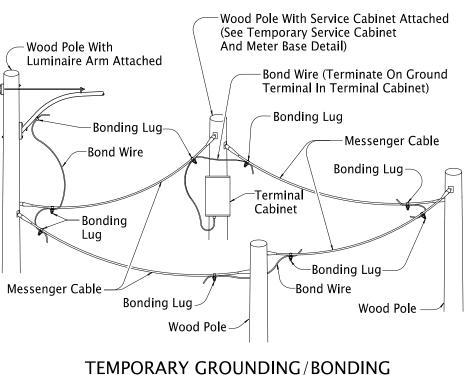

BR273

single thickness, 1 - 0.135" thick element (10-gauge), see drawing RD410

TEMPORARY SERVICE CABINET AND METER BASE

- 1. All Screws, Bolts, Nuts And Washers Shall Be Type 304 Or 316 Stainless Steel Or Galvanized Unless Noted Otherwise.
- 2. Bolts And Screws Shall Have Hex Or Square Heads. Allen Head Fasteners Not Allowed.
- 3. Conduit Mounted On Wood Poles/Posts May Be Liquid Tight Flex Conduit.

Terminal Cabinet
(Orient As Shown
On Plans)


3/8" Dia. x 4" Long
Lag Screw With Washer

Weatherproof Compression
Fitting(s) Shall Be Installed
In Bottom Of Cabinet.

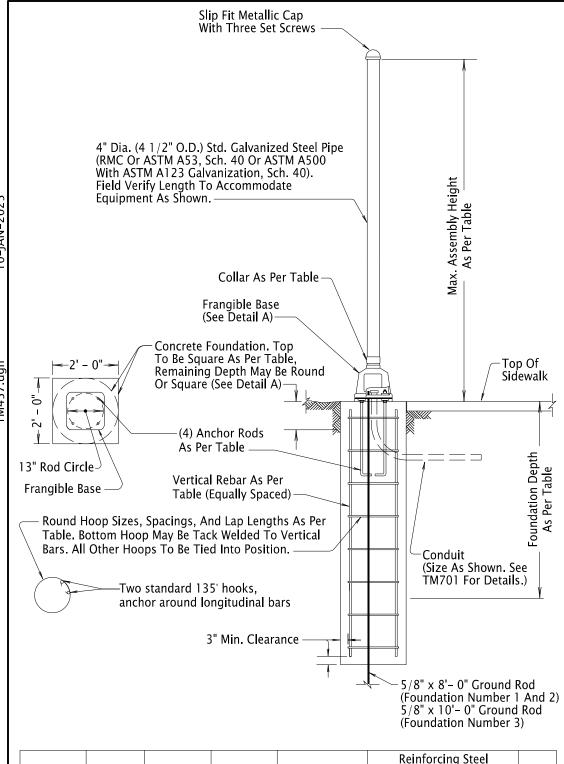
Terminal Cabinet General Notes:

- Install The Number Of Terminal Blocks Needed For The Circuits. Evenly Distribute All The Terminal Blocks Among The Mounting Brackets.
- 2. Terminate Only One Wire In Each Termination Point. Use Additional Terminals With A Factory Jumper Between The Terminals If Additional Taps Are Necessary.
- 3. Label The Marking Strip In The Terminal Cabinet With The Wire Number And/Or Letter As Coded In The Controller Cabinet Terminal Block, Use Only Mechanically Printed Labels.

TEMPORARY TERMINAL CABINET

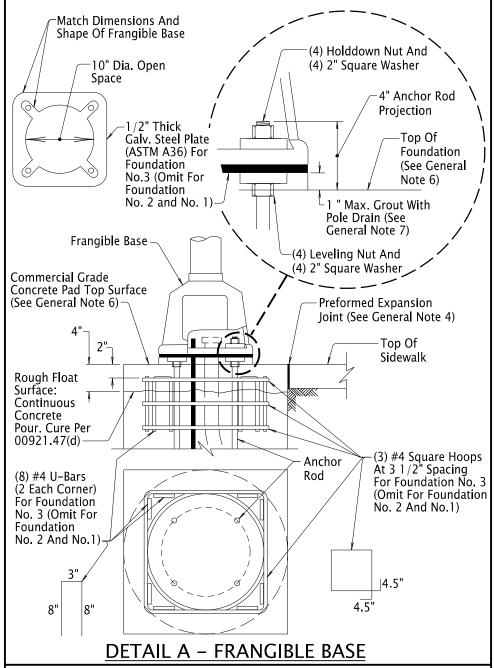
TEMPORARY GROUNDING BONDING

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

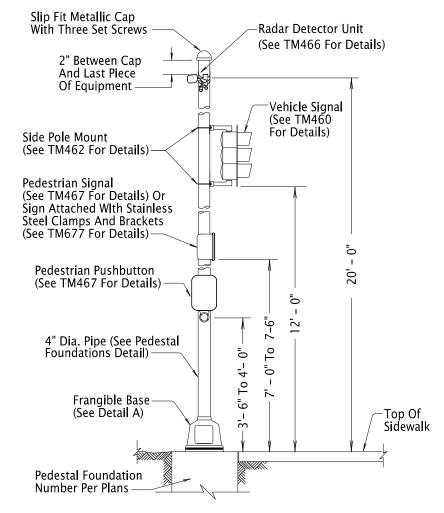

OREGON STANDARD DRAWINGS
TEMPORARY
CONTROLLER CABINET,
SERVICE CABINET, METER BASE, &
TERMINAL CABINET

All materials shall be in accordance with

the current Oregon Standard Specifications.


DATE REVISION DESCRIPTION
07-2023 ADDED POLE DESIGN SUBMITTAL INFO. DRAFTING REVISIONS. CHANGED NOTE 1.
01-2025 UPDATED STANDARD DRAWING REFERENCES

CALC.
BOOK NO. NA DATE 10-JAN-2025 TM454


					Reinforcing Steel			
Pedestal Foundation Number	Max. Assembly Height	Foundation Depth	Depth of Square Foundation	Anchor Rods (ASTM F 1554 Grade 36)	Vertical Rebar	Hoop Size & Spacing	Hoop Lap Length	Collar
1	6' - 0"	2' - 0"	4"	3/4" x 18" x 4"	N/A	N/A	N/A	N/A
2	10' - 0"	3' - 0"	4"	(6" Thread)	IN/A	IN/A	N/A	IN/A
3	20' – 6"	8' - 0"	12"	1" x 36" x 4" (6" Thread)	8-#6	#4-12"	6" with 2 hooks	Req'd

PEDESTAL FOUNDATIONS

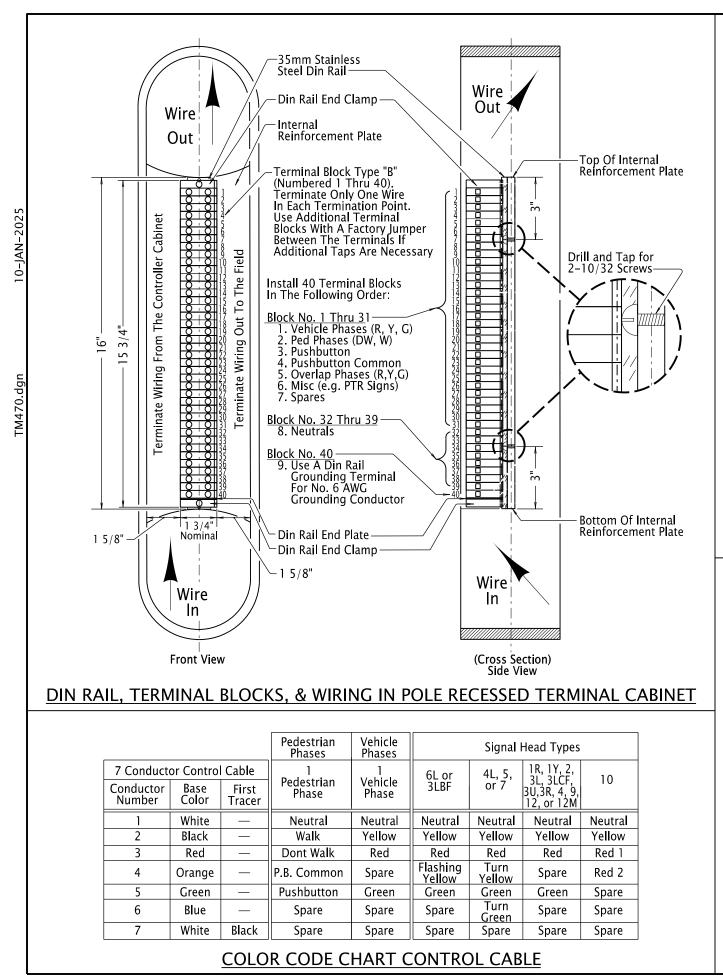
General Notes:

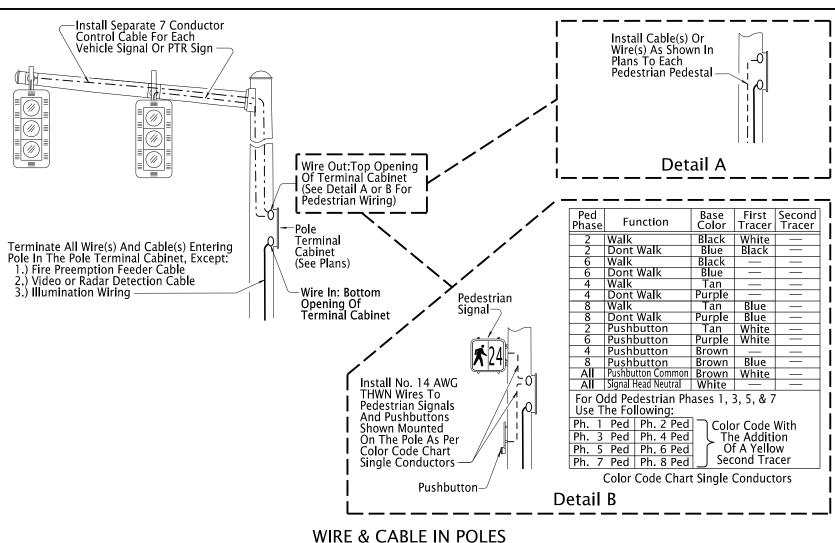
- . All Bolts, Nuts And Washers To Conform To 02560.20 And Be Galvanized Steel According To 02560.40 Unless Noted Otherwise.
- 2. All Anchor Rods To Be Galvanized Steel Conforming To 02560.30.
- 3. All Pole Entrances Containing Wiring To Be Smooth.
- 4. Install 1/4" Thick Preformed Expansion Joint Filler Around Footing In Sidewalk Areas
- 5. The Entire Foundation To Be Located On A Single Plane With Less Than 2% Slope. The Flat Edge(s) Of The Foundation May Be Adjacent To The Turn Space, Back Of Walk, Or A Curb Ramp Grade Break Line.
- 6. Install Commercial Grade Concrete Pad Above Rough Float Surface With Top Surface Matching Sidewalk Grade And Less Than 1/4 "Vertical Exposure From Adjacent Grade. Clean Rough Float Surface Prior To Placing Fresh Concrete By Removing All Scum, Laitance, Loose Gravel, And Sediment. Pour During Sidewalk Installation After Installing Pipe And Appurtenances.
- 7. Non–Shrink High Early Strength Grout (Non–Ferrous) with 3/4" Diameter Pole Drain And A Minimum Strength of 5000 psi. Do Not Use Footing Concrete.

Notes:

- 1. Equipment Shown In the Assembly Detail Is An Example Of The Equipment That May Be Mounted. Install Equipment As Shown.
- 2. See TM492 For Ramp Meter Pedestal Mounting Details.
- 3. See TM493 For RRFB Pedestal Mounting Details.

TRAFFIC SIGNAL PEDESTAL ASSEMBLY


The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer. All materials shall be in accordance with the current Oregon Standard Specifications.


OREGON STANDARD DRAWINGS

PEDESTAL FOUNDATION AND TRAFFIC SIGNAL ASSEMBLY

2024

CALC. N/A		SDR	10-JAN-2025	TM457
01-2025	TYPO CORRECTION. UPDATED STANDARD DRAWING REFERENCES			
	TEXT CHANGES FOR CLARITY.			
07-2023	NOTE 5 - CHANGED TO 2% SLOPE. ADDED RMC AS PIPE OPTION. MINOR			
07-2022	COMPLETE REDESIGN OF FOUNDATION AND INSTALLATION PROCEDURE			
01-2021	UPDATED ALL ANCHOR ROD DETAILS. CORRECTED STD. DWG. REFERENCE			
DATE	REVISIO	ON DESC	CRIPTION	

General Notes:

Type 2 Signal Head

Install No. 14 AWG THWN Wires To The

Type 8 Signal Head

Type 8 Signal Head

Terminate All Wire(s) And Cable(s) Entering Pedestal

In The Type 2 Signal Head

WIRE & CABLE IN

RAMP METER PEDESTALS

- 1. See TM701 For Additional Wire/Cable Installation Requirements That Apply To All Electrical Systems.
- 2. Install All Wire And Cable Between Terminal Blocks Without Splicing
- 3. Mark Phase Number Or Identification On All Cable In Junction Boxes, Terminal Cabinets, Service Cabinets, & Controller Cabinets With Permanent Tags. Overlaps Shall Be Labeled (OLA, OLB, OLC, OLD).
- 4. Mark Phase Number & Function Or Identification On All Wires Terminated In Controller Cabinet And Terminal Cabinet With Permanent Tags. Overlaps Shall Be Labeled (OLA, OLB, OLC, OLD).
- A.) 6 Feet In The First Junction Box Nearest The Controller Cabinet B.) 6 Feet In Controller Cabinet And Service Cabinet
- Junction Boxes, Terminal Cabinets, Service Cabinets, And Controller Cabinets.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

WIRE/CABLE INSTALLATION

All materials shall be in accordance with

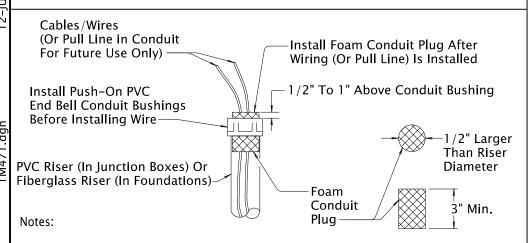
the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

2024

DATE	REVISION DESCRIPTION					
01-2024	REVISED SIGNAL HEAD TYPES IN COLOR CODE CHART CONTROL CABLE DETAIL					
07-2024	ADDED GEN. NOTE 3, ADDED PED COLOR CODE, ADDED FACTORY JUMPERS					
01-2025	MOVED GENERAL ELECTRICAL CONTENT TO TM701. REFORMATTED CONTENT					
CALC. BOOK NO						

5. Leave Slack In Each Wire And Cable As Follows:

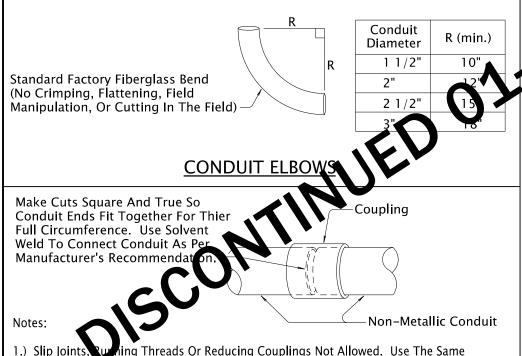

6. At Existing Installations Re-wire And Re-label New And Existing Control Cables And Wires, In All

	Minimum Cover From Top of Finished Surface (Use Permit Depth If Greater Than These)				
Type Of Conduit	Type Of Conduit Roadway & Shoulders				
Metallic	24"	18"			
Non-Metallic	30"(See Note 2)	18"			

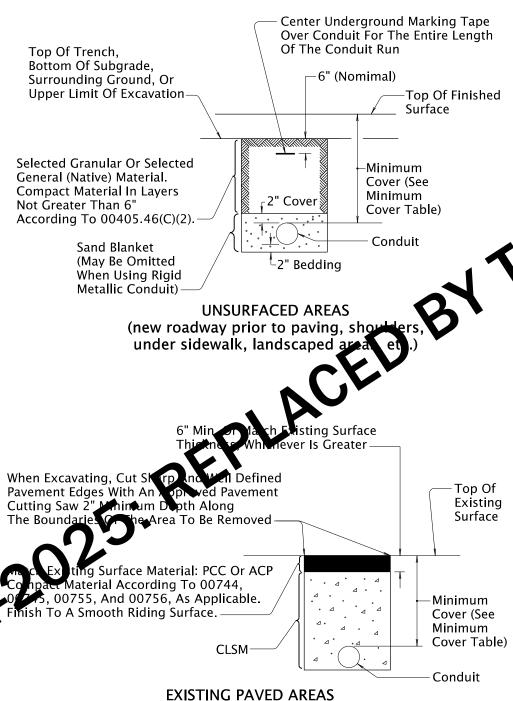
Notes:

- 1.) Additional Cover Depth May Be Necessary Near Foundations And Junction Boxes To Accommodate The Minimum Radius ("R") Of The Conduit Elbow. See "Conduit Elbow", "Conduit Installation In Foundations" And "Conduit Installation In Junction Boxes" Details For More Information.
- 2.) For Non-Metallic Conduit Under Roadway & Shoulders Installed Horizontally Into Fiber Optic Hand Hole As Per TM472. The Minimum Cover Depth Is 24 Inches.

MINIMUM COVER FROM FINISHED SURFACE

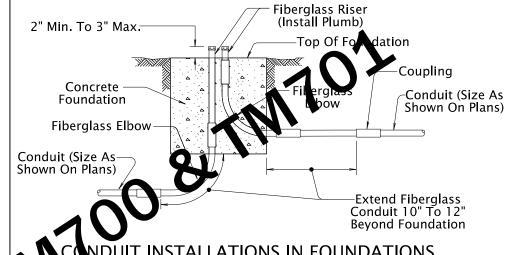


1.) Ream Conduit Ends To Remove Rough Edges And Burrs

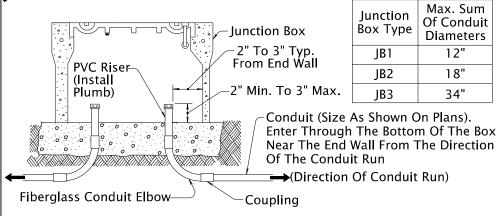

Size Conduit For The Entire Length, Outlet To Outlet.

2.) Temporarily Plug Or Cap Conduit Ends At All Times To Keep Debris Out

CONDUIT ENDS AND BUSHINGS


CONDUIT COUPLINGS

Trenching & Backfill Notes:


- 1. Excavate According To 00960.40. In Areas To Be Paved Or Landscaped, Place All Conduit Before Paving Or Landscaping.
- 2. Hold Trench Width To A Practical Minimum
- 3. Do Not Backfill Trenches Until Inspected By The Engineer
- 4. Furnish Backfill Materials According To 00960.10

CONDUIT OPEN TRENCH EXCAVATION & BACKFILL

IT INSTALLATIONS IN FOUNDATIONS

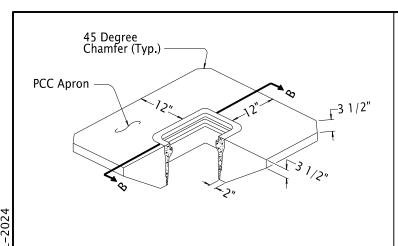
oplicable for Pole, Pedestal, Post, Service Cabinet and Controller Cabinet Foundations)

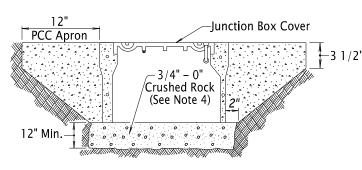
CONDUIT INSTALLATION IN JUNCTION BOXES

General Notes

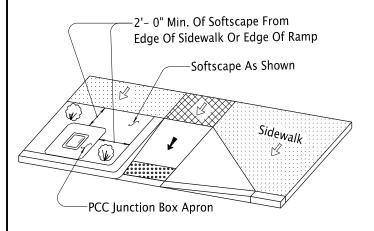
- 1. Install Non-Metallic Conduit Unless Otherwise Shown. Conduit Runs Shall Be Continous Between Any Pole, Junction Box, Or Cabinet.
- 2. Install Conduit By Open Trench Method, Horizontal Directional Drilling, Or As Shown
- 3. Conduit Runs Shown On Plans Are For Bidding Purposes Only. Locations May Be Changed To Avoid Obstructions.
- 4. Larger Conduit Than Specified May Be Used At The Option And Cost Of The Contractor If Max. Sum Of Conduit Diameters In Junction Box Is Not Exceeded.

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

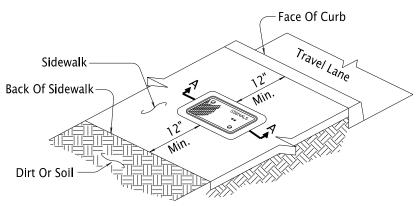

OREGON STANDARD DRAWINGS TRENCHING & CONDUIT

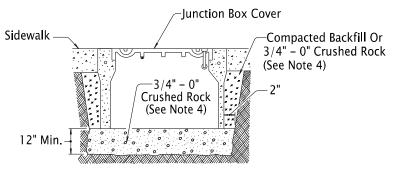

All materials shall be in accordance with

the current Oregon Standard Specifications.


INSTALLATION

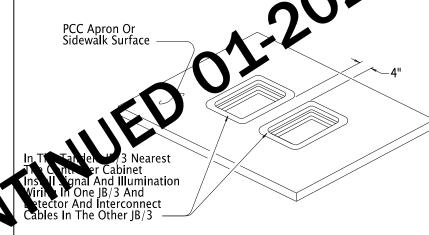
2024 REVISION DESCRIPTION 01-2021 ADDED NOTE 1 TO "MINIMUM COVER FROM FINISHED SURFACE" DETAIL SDR DATE_ 12-JUL-2024 TM471




SECTION B-B

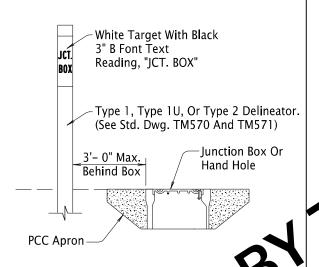
JUNCTION BOX INSTALLATION IN UNSURFACED AREA

(This Detail Only Applicable for Junction Boxes Located In Incidental Travel Areas; Gravel Shoulders Behind Guardrail, Etc. Do Not Install In Travel Paved Shoulders, Or Other Areas Exposed To

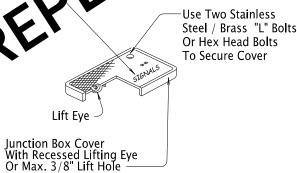


SECTION A-A

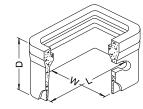
JUNCTION BOX INSTALLATION IN PCC SIE EWALK


(This Detail Only Applicable for Junction Boxes Lecated In Flat Areas Of Sidewalks. Do Not Install In Slopes Of Pamps Of Driveways)

TANDEM JB/3A JUNCTION BOX DETAILS


GENERAL NOTES:

- 1. Install Top of Junction Box And Land Lole Flush With The Sidewalk, Surrounding Grade, Or Top Of Curb. For Hand Holes Installed In The Roadway Or Shoulder, Leave The Top Of The Hand Hole 1/2" Below The Pavement Surface.
- 2. Install Junction Boxes And Hand Holes At The Approximate Locations Shown, Or If Not Shown, No More Than 300 Feet Apart For Junction Boxes And No More Than 1000 Feet Apart For Hand Holes.
- 3. More Junction Boxes And Hand Holes Than Specified May Be Installed To Facilitate The Work At The Option And Cost Of The Contractor
- 4. Use Materials According To 00640.10 and 00640.16. Use Compaction Equipment Suitable For Area And Compact Each Six Inch Layer With Sufficient Coverages To Produce A Firm Unyielding Surface. Do Not Install Conductors Until Surface Has Been Constructed.



DELINEATION OF JUNCTION BOX & HAND HOLE IN UNSURI, AC ED AREA

Cover To Be Marked
"SIGNALE" For Traffi Signal,
"ILLUMIN TO SIN Illumination,
G. "ELEC P'CA." For ITS/Misc. Electrical
Systems (Letter Height 1" Min.)

JUNCTION BOX COVER DETAILS

Ty	/pe*	L	W	D
Ι.	JB1	17"	10"	12"
Γ.	B2	22"	12"	12"
	IB3	30"	17"	12"
Н	H-1	24"	30"	24"
Н	H-2	30"	48"	24"
H	H-3	30"	48"	36"

*Junction Box Or Handhole Type As Shown On Plans

DIMENSION TABLE

Coil 50'- 0" minimum of slack fiber optic cable in handholes. Take care not to pinch the fiber optic cable when installing handhole lid.

3/4" - 0" Crushed Rock (See Note 4)

Bell End Or End Piece, Typ.

2 Type 304 Ss Bolts (Hex Head) Per Box. Recess In Cover For Nut, Typ.

Polymer concrete cover for non-delibrate traffic.

12" Min.

Hand Hole

Polymer Concrete

-PVC Conduit (See TM471 for cover depth exception)

Covers must be marked "FIBER OPTICS"

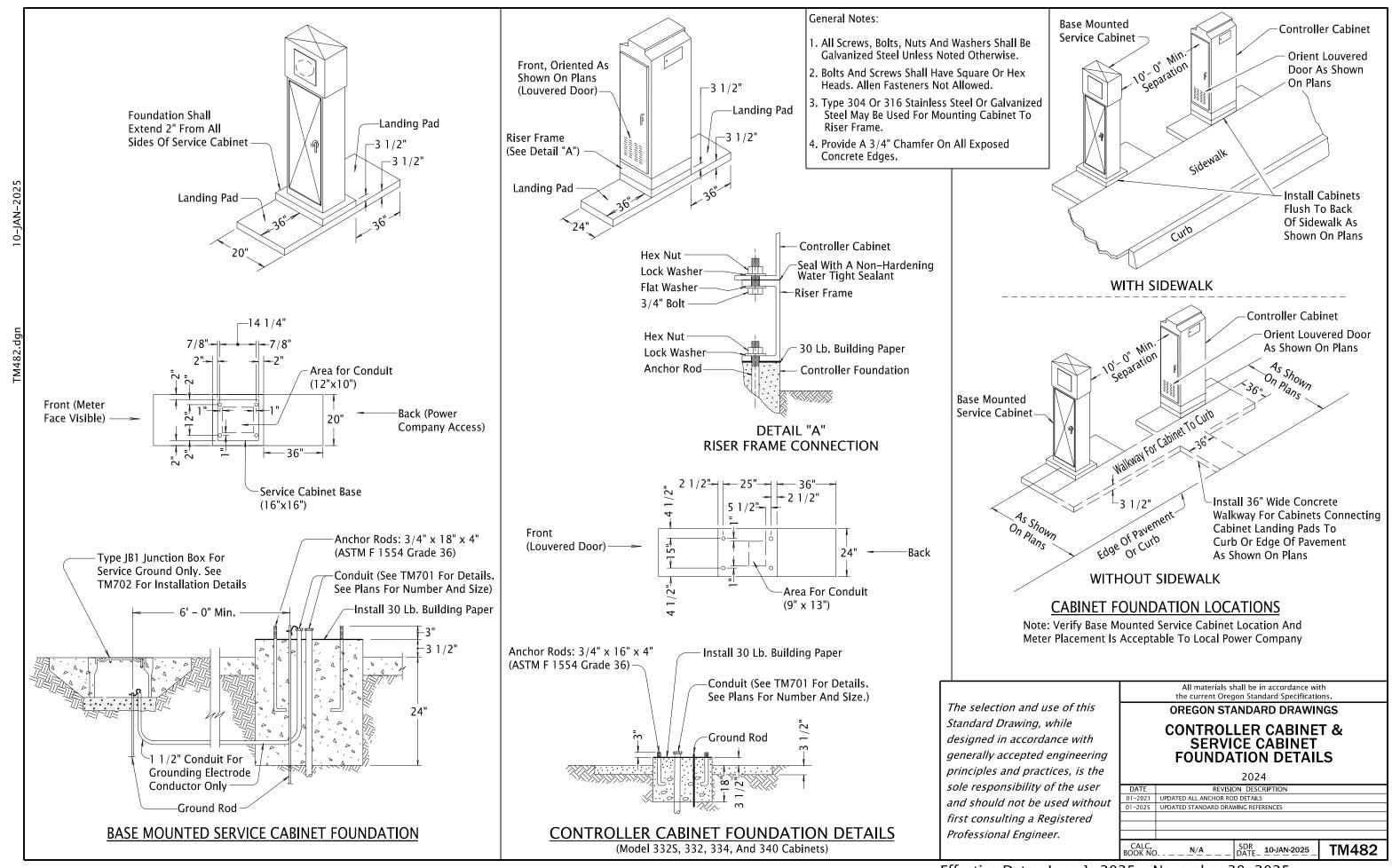
with min. letter height of 1".

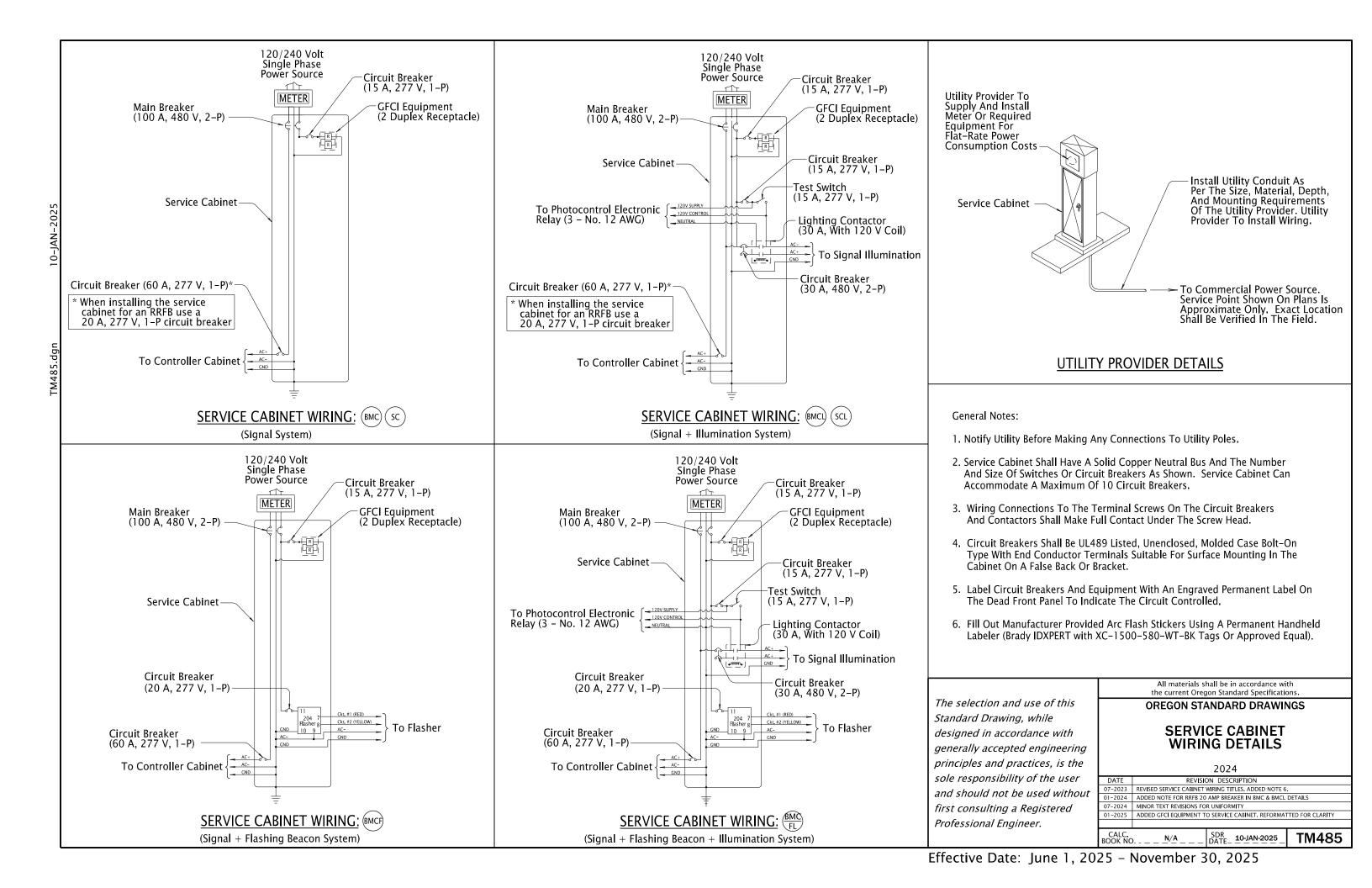
-PVC conduit

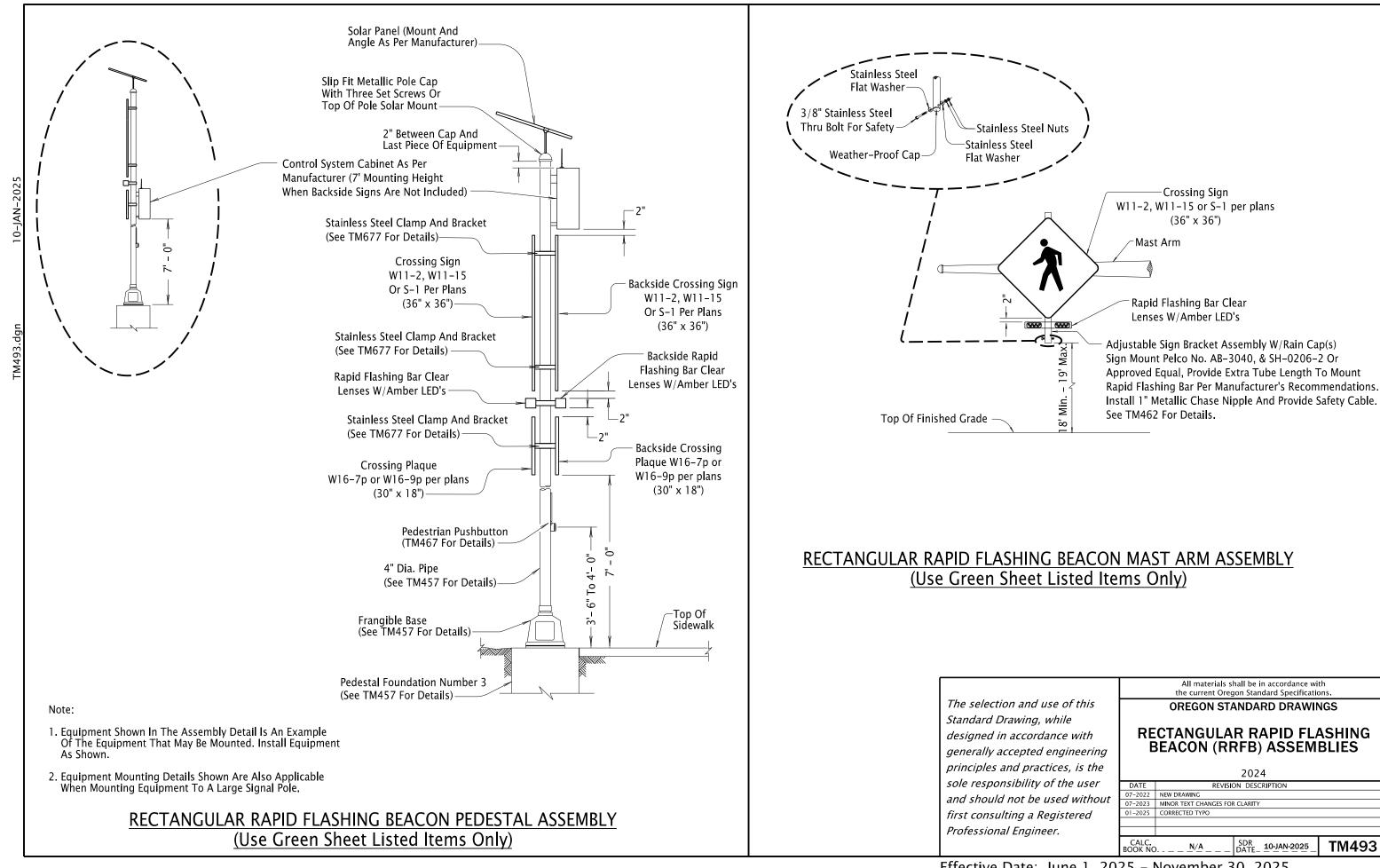
PCC apron

FIBER OPTIC CABLE HAND HOLE INSTALLATION

TOP VIEW


The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer. All materials shall be in accordance with the current Oregon Standard Specifications.


OREGON STANDARD DRAWINGS


JUNCTION BOXES/HAND HOLES

2024

CALC.	N/A	SDR	12-JUL-2024	TM472
07-2024	CHANGED SOFTSCAPE MIN. FROM 3' TO 2'. ADDED HAND HOLE CONDUIT NOTE			
01-2024	CHANGED DIMENSION FOR JB DELINEATION			
07-2022	ADDED NEW MARKING (ILLUMINATION & ELECTRICAL) FOR JB COVER			
DATE	REVISI	ON DESC	CRIPTION	

Standard Truss Type VMS Bridges are designed in accordance with AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals 4th edition, 2001 and 2002 interim revisions.

Basic wind speed (3 second gust) used for sign bridge design is 110 mph. G = 1.14, L = 1.0 (50 year recurrence interval) and Exposure C were used for design C = 1.7.

 $I_r = 1.0$ (50 year recurrence interval) and Exposure C were used for design. $C_0 = 1.7$ was used for the VMS.

Material for square hollow structural sections (HSS) members shall be ASTM A500 Grade B, or ASTM A500 Grade C.

The design Type One VMS sign mass is 4250 lbs (not including W 6 x 15 support arms and walkway). The design sign is "XL" feet from the left End Truss and "XR" feet from the right End Truss. The bridge has been designed for all possible positioning of the sign on the span. The sign is to be positioned in coordination with Traffic/ITS designer. Chord end connection plates and truss field splice plates shall conform to ASTM A709, Grade 50 or ASTM A572, Grade 50.

Notch toughness of all structural steel members and plates greater than $\frac{1}{2}$ " thick shall conform to Zone 2 non-fracture critical requirements of ASTM A709.

All other structural steel shall conform to ASTM A36. or A992.

High strength bolts shall conform to ASTM A325, Type 1.

Nuts for high strength bolts shall be heavy hex and conform to ASTM A563 Grade DH, with supplementary requirements "51" and "52".

Bolts and rods connecting galvanized steel members to aluminum members shall meet the requirements of ASTM A193 Class 2 Grade B8M. Nuts used with A193 bolts shall be heavy hex, and shall meet the requirements of ASTM A194 Grade 8M with supplementary requirement "S1". Use a stainless steel flatwasher and double nut at each bolt.

Hardened steel washers shall conform to ASTM F436, Type 1. Use washers under turning element in tightening unless otherwise specified.

Final elevations shall be field verified prior to the fabrication of the end truss members and footing reinforcement.

All fasteners, except mechanically galvanized direct tension indicator (DTI) washers, shall be hot-dip galvanized (except stainless steel and non-ferrous fasteners).

All structural steel shall be hot-dip galvanized after fabrication, unless noted otherwise.

The silicon content of the base metal shall be in the ranges of 0.0% to 0.06% or 0.13% to 0.25% for all hot-dip galvanized steel, unless noted otherwise. The maximum carbon equivalent (CE) is 0.40% for the base metal. Use the AWS D1.1 CE formula. Preheat according to AWS D1.5 Annex F using the hydrogen control method and high degree of restraint when the carbon equivalent (CE) of the steel exceeds 0.40%.

All H.S. bolts shall be considered slip critical and tightened according to 00930.40(d)(2)a, unless noted otherwise. Design slip resistance for bolts shall conform to the Bolt Specifications for Class C slip coefficient = 0.33.

Selection of the End Truss Posts shall be based on the larger "HP" in the case of unequal post heights. All End Truss Posts shall be the same cross section. This Standard Truss Type VMS Bridge has been designed for both equal and unequal post heights.

This Standard Truss Type VMS Bridge has been designed for the stated loading only. No additional signs or additional loadings are permitted. Other uses and loadings shall be considered non-standard, and are outside the scope of this design.

Welded splices in posts or chords and welds connecting posts or chords to base connection plates shall be full penetration welds as shown on Dwgs.# TM608 and TM609.

Root gap for T-Y-K tubular connections welds shall not exceed $\frac{1}{16}$ ".

Fabrication drawings shall show the weight of all parts.

Conduit diameters shown on plans are nominal or trade sizes.

Wherever possible truss member centerlines shall intersect at a common work point, unless shown otherwise on these standards. Where it is not possible to line up member centerlines at a common work point, the maximum allowable centerline eccentricity is 2 inches. Verify that tops of pedestals are level and at correct elevations, prior to vertical end truss installation.

A preconstruction meeting is recommended to make sure the contractor understands ODOT requirements and that ODOT understands the contractor's plan.

If a 20 minute rolling traffic stop is used to install the overhead sign support truss bridge, the rolling stop shall meet the following requirements:

- a) Verify (prior to span truss lift) adequate crane capacity and boom length to perform complete installation from side of road.
- b) Set crane(s) on side of road and do not re-set crane during lift.
- c) Verify (prior to span truss lift) that lifting equipment and lifting points meet requirements of plans.
- d) Verify (prior to span truss lift) that vertical end trusses are at the correct elevations, plumb, and that the (hole to hole) distance between the two end trusses matches the span truss (hole to hole) length.
- e) Pre-assemble span truss within reach of crane(s).
- f) Rig lift before beginning rolling stop.
- g) Make sure all required tools and hardware are on site.
- h) Do not resume traffic until span truss to saddle bolts are at least snug tight.
- i) Rolling stops shall be at night and shall conform to the Special Provisions.
- j) Follow all required safety procedures.

If required, installation of temporary guard rail or temporary barrier should preceed any other work involving the construction of the footing.

Use single self locking nuts or double nuts on non-high strength (H.S.) bolts, unless otherwise shown or specified.

See Dwg.# TM608 for typical high strength bolt connection.

At ends of square HSS, welding shall be carried continuously around corners, with corners fully built up and all weld starts and stops within flat faces. Perform magnetic particle testing of areas within 2 inches of welds prior to pickling, and report findings to ODOT. If cracks are found, do not galvanize until directed to do so. Perform a detailed 100% visual inspection of the entire structure after galvanizing.

Prior to galvanizing, the fabricator shall assemble the span truss and measure the camber and the horizontal span distance between the four centers of the outside slotted saddle holes, in the presence of the ODOT inspector. With the span truss resting on its side and the camber in the horizontal direction, a string line shall be used to check the camber. The allowable variation from required camber at shop assembly is -0% to +25%. The length between the saddle holes shall be measured using a steel tape or other approved measuring method and shall have an allowable variation of -1/8" to +1/8".

FOUNDATION NOTES:

Provide shoring for each footing if required.

Top surface of concrete pedestal (including area under base plate and around anchor bolts) shall be floated and troweled to a flat and level surface. This surface shall not vary more than $\frac{1}{8}$ " from a horizontal plane. Provide a $\frac{3}{4}$ " chamfer on all exposed edges of the pedestal.

All concrete shall be Class 4000 – 3/4" structural concrete.

Place bars 2 inches clear of the nearest face of concrete, unless shown otherwise. Concrete shall be placed using a tremie when free fall exceeds 4'-0". Cold joints shall be cause for rejection of the foundation, except between footing and pedestal. All reinforcing steel shall conform to ASTM A706 or A615 Gr. 60.

Anchor rods shall conform to ASTM F1554, Gr. 55, with supplementary requirements "S2" that includes grade and manufacturer's identification and "S4".

Anchor rod washers shall conform to ASTM F436.

Anchor rod nuts shall conform to ASTM A563 Grade DH with supplementary requirements "51" and "52".

Anchor rod template, temporary support members, and anchor plate shall conform to ASTM A36.

Anchor rods shall be hot-dip galvanized full length.

Where the footing of a Std. Truss Type VMS Bridge interferes with guard rail posts the depth of footing may be increased to the maximum shown on Dwg.#TM611, or concrete barrier may be used instead of guard rail, or guard rail posts may be attached to footing in accordance with Dwg.# BR266. All buried steel shall be coated for immersion exposure with an approved product from the qualified products for structural coatings. Prepare and coat surfaces according to Section 00594 of Oregon Standard Specifications.

The elevation and location of anchor rods is critical. Use survey techniques to verify the elevation, location, and orientation of anchor bolt groups prior to placement of foundation concrete.

CONSTRUCTION PROCEDURE AND SEQUENCE:

- 1. Construct foundation according to plans. Verify elevation, location and orientation of anchor bolts. Steel templates shall be used to accurately locate and hold the anchor rods plumb and in proper alignment. Hole diameter in template shall be the nominal bolt diameter plus \$\int_{16}^{\circ}\$. This template shall be in place during concrete placement and shall remain in place for a minimum of 24 hours after the concrete placement has been complete. Out of position anchor rods and anchor rods greater than 1:40 out of plumb are cause for rejection of the foundation. Bending of anchor rods to straighten or move them into position, or alterations of the base plate shall not be permitted and are cause for rejection of the foundation and/or post weldment. See Template Detail on Dwg.#TM610.
- 2. After 7 days min. of spread footing concrete cure time (excluding days when the surrounding temperature is below 40° Fahrenheit for over 4 hours) and when tests indicate that the concrete has reached full design strength (100%), the pedestal pour may begin. The post erection may begin after 7 days of concrete cure time of the pedestal and when test indicate that the concrete pedestal has reached full design strength (100%).
- 3. Install bearing nuts on anchor rods. Level the bearing nuts. Install hardened flat washers above bearing nuts.
- 4. Use crane to lift end truss onto anchor rods. Maintain crane connection as a safety measure until post installation is 100% complete. No grout shall be used under the base plate. Install hardened flat washers above base plate.
- 5. Generously apply approved bolting lubricant (Castrol Stick Wax or approved equal) to the top nut bearing surface and internal threads, and install nut on anchor rods to snug tight condition. Snug tight is defined as the condition when all plies are in firm contact and can usually be obtained by the full effort of a worker on a 12 inch long wrench or a few impacts of an impact wrench. Several passes may be required to obtain uniform tightness.
- 6.Tighten bearing nuts upward against base plate in a similar manner, to assure a uniform snug tight condition. Assure that the hole to hole span distance between saddles at opposite ends of the sign bridge matches the hole to hole span distance between opposite ends of the span truss. The end trusses may be up to $\frac{1}{2}$ out of plumb to help accommodate construction
- tolerances and temperature effects. Adjust bearing nut as required and repeat snug tightening. 7. Mark position of each anchor rod and top nut with a felt tip pen so subsequent nut rotation can be verified. Rotate all top nuts an additional 1/6 turn in two passes (1/12 turn per pass).
- 8. Assemble VMS bridge span truss field splices and fully tighten high strength connection bolts according to Section 00930.40(d)(2)(a) of the Standard Specifications and Special Provisions.
 9. Verify positions of saddles relative to VMS bridge chord end connections.
- 10. Assemble vertical VMS mounts, VMS, and span together. Provide adequate time for engineer to inspect the bolt tightening on the assembly in accordance with 00930.40(e) and tighten or replace bolts as required prior to lifting assembly.
- 11. Verify VMS, mounts, and span truss total weight before lifting. Lift the VMS and span truss using one or two cranes as required to meet the following conditions. A qualified person shall be in charge of the lifting operation. VMS and span truss shall be lifted at four equally loaded lift points, see TM606. Extreme care must be used when lifting the assembly the first time to make sure that it does not rotate from the eccentric VMS load.
- 12. Lift the VMS and span truss assembly into position on the saddles.
- 13. Install H.S. saddle bolts and tighten according to Section 00930.40(d)(2)(a).

WALKWAY NOTES:

Grating shall be welded steel grating with $1\frac{1}{2}$ " x $\frac{1}{8}$ " bearing bars spaced at $1\frac{3}{16}$ " centers and $\frac{1}{4}$ " nominal square cross bars (or equivalent) spaced at 4" centers.

Steel plates and bars including grating elements shall conform to ASTM A36 or approved equal.

Rail members and post brackets shall be structural steel tubing conforming to ASTM

Specification A500. Grade A or B.

Grating may be spliced at an interior support by welding $\frac{1}{8}$ " x $\frac{1}{2}$ " bars to ends of bearing bars across full width of grating and bolting bars together with $\frac{1}{4}$ " dia. bolts at 12 inch maximum centers

Top of walkway grating shall not be more than 6 inches below the threshold into the VMS cabinet. Walkway contractor to verify prior to fabrication that walkway, grating and rails do not interfere with VMS door or VMS housing. No gaps greater than 1 inch between walkway rails, grating and toe board, and VMS housing are allowed.

All bolts, including U-bolts, shall conform to ASTM Specification A307, unless otherwise noted.

Accompanied by dwgs. TM606, TM608, TM610, TM611, TM612

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

STANDARD TRUSS TYPE VMS BRIDGE 50' TO 167' SPAN RANGE NOTES

DATE	REVISION DESCRIPTION					
01-2022	UPDATED SILICON CONTEN	UPDATED SILICON CONTENT RANGES AND AWS D1.5 ANNEX G TO ANNEX F				
01-2025	CONCRETE WAS CLASS 3600 – ¾" CLASSIFIED AS A STRUCTURAL ITEM					
CALC. 5014/6133 SDR 10-JAN-2025 TM607						

Standard Truss Type Sign Bridges are designed in accordance with AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals 4th edition, 2001 and 2002 interim revisions.

Basic wind speed (3 second gust) used for sign bridge design is 110 mph. G = 1.14, $I_r = 1.0$ (50 year recurrence interval) and Exposure C were used for design.

Material for square HSS members shall be ASTM A500 Grade B, or ASTM A500 Grade C. 18"x18"x5/8" square tubes shall be fabricated from $^{5}\!8"$ thick ASTM A572 Gr. 50 plate according to the detail shown on TM620.

The maximum design sign area for Standard Sign Bridge Trusses (based on 9'-0" primary sign height plus 2'-6" exit secondary sign heights, above and below primary sign for a maximum total sign height of 14'-0") is shown on Dwg.# TM614. The maximum design length extends over the full width of the possible travel lanes and shoulders.

The signs are to be positioned horizontally in coordination with Traffic Plans and vertically as shown on Dwg.# TM614.

Chord end connection plates and truss field splice plates shall conform to ASTM A709, Grade 50 or ASTM A572, Grade 50.

Notch toughness of all structural steel members and plates greater than $\frac{1}{2}$ " thick shall conform to Zone 2 non-fracture critical requirements of ASTM A709.

All other structural steel shall conform to ASTM A36, or A992.

High strength bolts shall conform to ASTM A325, Type 1.

Nuts for high strength bolts shall be heavy hex and conform to ASTM A563 Grade DH, with supplementary requirements "S1" and "S2".

Hardened steel washers shall conform to ASTM F436, Type 1. Use washers under turning element in tightening unless otherwise specified.

Final elevations shall be field verified prior to the fabrication of the end truss members and footing reinforcement.

All fasteners, except mechanically galvanized direct tension indicator (DTI) washers, shall be hot-dip galvanized (except stainless steel and non-ferrous fasteners).

All structural steel shall be hot-dip galvanized after fabrication, unless noted otherwise.

The silicon content of the base metal shall be in the ranges of 0.0% to 0.06% or 0.13% to 0.25% for all hot-dip galvanized steel, unless noted otherwise. The maximum carbon equivalent (CE) is 0.40% for the base metal. Use the AWS D1.1 CE formula. Preheat according to AWS D1.5 Annex F using the hydrogen control method and high degree of restraint when the carbon equivalent (CE) of the steel exceeds 0.40%.

All H.S. bolts shall be considered slip critical and tightened according to 00930.40(d)(2)a, unless noted otherwise. Design slip resistance for bolts shall conform to the Bolt Specifications for Class C slip coefficient = 0.33.

Selection of the End Truss Posts shall be based on the larger "HP" in the case of unequal post heights. All End Truss Posts shall be the same cross section. This Standard Truss Type Sign Bridge has been designed for both equal and unequal post heights.

This Standard Truss Type Sign Bridge has been designed for the stated loading only.

No additional signs or additional loadings are permitted. Other uses and loadings shall be considered non-standard, and are outside the scope of this design.

Welded splices in posts or chords and welds connecting posts or chords to base connection plates shall be full penetration welds as shown on Dwgs.# TM616 and TM617.

Root gap for T-Y-K tubular connections welds shall not exceed $\frac{1}{16}$ ".

Fabrication drawings shall show the weight of all parts.

Where ever possible truss member centerlines shall intersect at a common work point, unless shown otherwise on these Standards. Where it is not possible to line up member centerlines at a common work point, the maximum allowable centerline eccentricity is 2 inches.

Verify that tops of pedestals are level and at correct elevations, prior to vertical end truss installation.

A preconstruction meeting is recommended to make sure the contractor understands ODOT requirements and that ODOT understands the contractor's plan.

If a 20 minute rolling traffic stop is used to install the overhead sign support truss bridge, the rolling stop shall meet the following requirements:

- a) Verify (prior to span truss lift) adequate crane capacity and boom length to perform complete installation from side of road.
- b) Set crane(s) on side of road and do not re-set crane during lift.
- c) Verify (prior to span truss lift) that lifting equipment and lifting points meet requirements of plans.
- d) Verify (prior to span truss lift) that vertical end trusses are at the correct elevations, plumb, and that the (hole to hole) distance between the two end trusses matches the span truss (hole to hole) length.
- e) Pre-assemble span truss within reach of crane(s).
- f) Rig lift before beginning rolling stop.
- g) Make sure all required tools and hardware are on site.
- h) Do not resume traffic until span truss to saddle bolts are at least snug tight.
- i) Rolling stops shall be at night and shall conform to the Special Provisions.
- j) Follow all required safety procedures.

If required, installation of temporary guard rail or temporary barrier should preceed any other work involving the construction of the footing.

Use single self locking nuts or double nuts on non-high strength (H.S.) bolts, unless otherwise shown or specified.

See Dwg.# TM616 for typical high strength bolt connection.

At ends of square HSS, welding shall be carried continuously around corners, with corners fully built up and all weld starts and stops within flat faces. Perform magnetic particle testing of areas within 2 inches of welds prior to pickling, and report findings to ODOT. If cracks are found, do not galvanize until directed to do so. Perform a detailed 100% visual inspection of the entire structure after galvanizing.

Prior to galvanizing, the fabricator shall assemble the span truss and measure the camber and measure the horizontal span distance between the four centers of the outside slotted holes in the presence of the ODOT inspector. With the span truss resting on its side and the camber in the horizontal direction, a string line shall be used to check the camber. The allowable variation from required camber at shop assembly is -0% to +25%. The length between saddle holes shall be measured using a steel tape, or other approved measuring method, and shall have an allowable variation of -1/8" to +1/8".

FOUNDATION NOTES:

Provide shoring for each footing if required.

Top surface of concrete pedestal (including area under base plate and around anchor bolts) shall be floated and troweled to a flat and level surface. This surface shall not vary more than V_8 " from a horizontal plane. Provide a V_8 4" chamfer on all exposed edges of the pedestal.

All concrete shall be Class 4000 – 3/4" structural concrete.

Place bars 2 inches clear of the nearest face of concrete, unless shown otherwise. Concrete shall be placed using a tremie when free fall exceeds 4'-0". Cold joints shall be cause for rejection of the foundation, except between footing and pedestal. All reinforcing steel shall conform to ASTM A706 or A615 Gr. 60.

Anchor rod washers shall conform to ASTM F436.

Anchor rods shall conform to ASTM F1554, Gr. 55, with supplementary requirements "S2" that includes grade and manufacturer's identification and "S4".

Anchor rod nuts shall conform to ASTM A563 Grade DH with supplementary requirements "\$1" and "\$2".

Anchor rod template, temporary support members, and anchor plate shall conform to ASTM A36.

Anchor rods shall be hot-dip galvanized full length.

The elevation and location of anchor rods is critical. Use survey techniques to verify the elevation, location, and orientation of anchor bolt groups prior to placement of foundation concrete.

Provide 1 –2 inch dia. rigid electrical conduit at each end of bridge as shown on Dwg. #TM617 and as directed. Extend sign support end of conduit to the center of the lower hand hole. If luminaries are not required, extend the other end of the conduit into the nearest illumination circuit junction box and identify conduit by attaching a tag which says "future sign lighting". Install "pull string" in conduit for future use. Install conduit cap on each end. When luminaries are required, extend the other end of conduit per Project Plans.

Where the footing of a Std. Truss Type Sign Bridge interferes with guard rail posts the depth of footing may be increased to the maximum shown on Dwg.# TM619, or concrete barrier may be used instead of guard rail, or guard rail posts may be attached to footing in accordance with Dwg.# BR266. All buried steel shall be coated for immersion exposure with an approved product from the qualified products for structural coatings. Prepare and coat surfaces according to Section 00594 of Oregon Standard Specifications.

CONSTRUCTION PROCEDURE AND SEQUENCE:

- 1. Construct foundation according to plans. Verify elevation, location and orientation of anchor bolts. Steel templates shall be used to accurately locate and hold the anchor rods plumb and in proper alignment. Hole diameter in template shall be the nominal bolt diameter plus \$\frac{1}{16}\$". This template shall be in place during concrete placement and shall remain in place for a minimum of 24 hours after the concrete placement has been complete. Out of position anchor rods and anchor rods greater than 1:40 out of plumb are cause for rejection of the foundation. Bending of anchor rods to straighten or move them into position, or alterations of the base plate shall not be permitted and are cause for rejection of the foundation and/or post weldment. See Template Detail on Dwg.# TM620.
- 2. After 7 days min. of spread footing concrete cure time (excluding days when the surrounding temperature is below 40° Fahrenheit for over 4 hours) and when tests indicate that the concrete has reached full design strength (100%), the pedestal pour may begin. The post erection may begin after 7 days of concrete cure time of the pedestal and when test indicate that the concrete pedestal has reached full design strength (100%).
- 3. Use crane to lift end truss onto anchor rods. Maintain crane connection as a safety measure until post installation is 100% complete. No grout shall be used under the base plate. Install hardened flat washers above base plate.
- 4. Install bearing nuts on anchor rods. Level the bearing nuts. Install hardened flat washers above bearing nuts.
- 5. Generously apply approved bolting lubricant (Castrol Stick Wax or approved equal) to the top nut bearing surface and internal threads, and install nut on anchor rods to snug tight condition. Snug tight is defined as the condition when all plies are in firm contact and can usually be obtained by the full effort of a worker on a 12" long wrench or a few impacts of an impact wrench. Several passes may be required to obtain uniform tightness.
- 6. Tighten bearing nuts upward against base plate in a similar manner, to assure a uniform snug tight condition. Assure that the hole to hole span distance between saddles at opposite ends of the sign bridge matches the hole to hole span distance between opposite ends of the span truss. The end trusses may be up to $\frac{1}{2}$ " out of plumb to help accommodate construction tolerances and temperature effects. Adjust bearing nut as required and repeat snug tightening.
- 7. Mark position of each anchor rod and top nut with a felt tip pen so subsequent nut rotation can be verified. Rotate all top nuts an additional 1/6 turn in two passes (1/12 turn per pass).
- 8. Assemble sign bridge span truss and fully tighten high strength connection bolts according to Section 00930.40(d)(2)(a) of the Standard Specifications and Special Provisions.
- 9. Verify positions of end truss saddles relative to sign bridge chord end connections.
- 10. Assemble vertical sign mounts, signs, and span together. Provide adequate time for engineer to inspect the bolt tightening on the assembly in accordance with 00930.40(e) and tighten or replace bolts as required prior to lifting assembly.
- 11. Verify signs, sign mounts, and span truss total weight before lifting. Lift the signs and span truss using one or two cranes as required to meet the following conditions. A qualified person shall be in charge of the lifting operation. Signs and span truss shall be lifted at four equally loaded lift points, see TM606. Extreme care must be used when lifting the assembly the first time to make sure that it does not rotate from the eccentric sign loads.
- 12. Lift the signs and span truss assembly into position on the saddles.
- 13. Install H.S. saddle bolts and tighten according to Section 00930.40(d)(2)(a).

LUMINAIRE NOTES:

- 1. Hubs, hand holes, grounding terminals, hook and foundation conduit shall always be installed for possible future use. Luminaires, luminaire support arms and luminaire support channels noted on Dwg.# TM618 should only be provided when luminaires are required (see Project Plans).
- 2. Conduit diameters shown on plans are nominal or trade sizes.

Accompanied by dwgs. TM614, TM616, TM617, TM618, TM619, TM620

The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered
Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

STANDARD TRUSS TYPE SIGN BRIDGE 50' TO 167' SPAN RANGE NOTES

2024

DATE	REVISION DESCRIPTION				
01-2022	UPDATED SILLCON CONTENT RANGES AND AWS D1.5 ANNEX G TO ANNEX F				
01-2025	CONCRETE WAS CLASS 3600 – ¾" CLASSIFIED AS A STRUCTURAL ITEM				
CALC. 5071/6134 SDR 10-JAN-2025 TM615					

Standard Monotube Cantilever Sign Support Structures are designed in accordance with AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals 1st edition, 2015 and interim revisions thru 2017.

Basic wind speed (3 second gust) used for Extreme I Limit State is 145 mph. G=1.14,1700 year recurrence interval, fatigue importance factor $I_f=1.0$ and Exposure C were used for design.

The maximum design sign area for the Standard Monotube Cantilever Sign Support Structure is shown on Dwg. TM621. The design sign panel and mounting members weigh 5 pounds per square foot. The design luminaire including mounting channels weighs 20 pounds per linear foot. The design luminaire wind loading area including mounting channels is 1 square foot per linear foot, has rectangular flat side shapes, is as long as the design sign, and the resulting projected area is not part of the maximum sign area. The sign lengths for structure design 1 is 25 feet, for structure designs 2 and 3 are 22 feet, for structural designs 4 through 6 are 17 feet, and for structural designs 7 through 8 are 9 feet.

The allowable variation from field verified working drawing camber is -0% to +25%, post length is -0" to +3", and overall length "LA" is -1/8" to +1/8". The maximum offset of the arm 3/4" square bar from straight shall be +1/8" to -1/8" on each member. These lengths shall be measured prior to galvanizing using a steel tape or other approved measuring method.

The VMS design loads include 100 pounds per linear foot applied from center of vertical post to end of arm for the weight of a walkway along with a 500 pound concentrated live load. The design walkway wind loading area is 1.0 square feet per linear foot, extends from center of vertical post to end of arm, and the resulting projected area is not part of the maximum sign area. VMS dimensions and design loads are shown on TM621.

Snow and ice loads are not included in the design loads. The Engineer shall evaluate the design in regions of heavy snow or ice accumulations.

The signs are to be positioned horizontally as shown on Project Data for Std. Monotube Cantilever Sign Support Sheet and vertically as shown on Dwg. TM621.

Material for circular tube sections shall be ASTM A53 Grade B; ASTM A500 Grade B or C; ASTM A501 Grade A or B; or API 5L PSL2 Grade B, X42, X42M, X52, and X52M. All other structural steel shall conform to ASTM A572 Grade 50, or A992, unless noted otherwise.

Bend tube using induction heating methods in accordance with TPA-IBS-98, "Recommended Standards for Induction Bending of Pipe and Tube."

Notch toughness of all structural steel members and plates greater than V_2 " thick shall conform to Zone 2 fracture critical requirements of ASTM A709.

High strength bolts shall conform to ASTM A325, Type 1. Nuts for high strength bolts shall be heavy hex and conform to ASTM A563 Grade DH, with supplementary requirements "\$1" and "\$2". Hardened steel washers shall conform to ASTM F436, Type 1. Use washers under turning element in tightening unless otherwise specified.

Bolts connecting galvanized steel members to aluminum members shall meet the requirements of ASTM A193 Class 2 Grade B8M. Nuts used with A193 bolts shall be heavy hex and shall meet the requirements of ASTM A194 Grade 8M with supplementary requirement "S1". Use a stainless steel flat washer and double nut at each bolt.

Final elevations shall be field verified prior to fabrication of the post members and footing reinforcement.

All fasteners, except mechanically galvanized direct tension indicator (DTI) washers, shall be hot-dip galvanized (except stainless steel and non-ferrous fasteners). All structural steel shall be hot-dip galvanized after fabrication, unless noted otherwise.

The silicon content of the base metal shall be in the ranges of 0.0% to 0.06% or 0.13% to 0.25% for all hot-dip galvanized steel, unless noted otherwise.

All H.S. bolts shall be considered slip critical and tightened according to Section 00930.40(d)(2)a, unless noted otherwise. Design slip resistance for bolts shall conform to the Bolt Specifications for Class C slip coefficient = 0.33.

This Standard Monotube Cantilever Sign Support has been designed for the stated loading only. No additional signs or additional loadings are permitted. Other uses and loadings shall be considered non-standard, and are outside the scope of this design.

Splices in posts or arms and welds connecting posts or arms to base connection plates shall be full penetration welds as shown on Dwg. TM623.

Fabrication drawings shall show the weight of all parts.

Verify that top of pedestal is level and at correct elevation, prior to post installation.

Install sign mounts and sign on fully erected structure. Do not install sign until after support structure erection and bolt tightening is 100% complete.

A preconstruction meeting is recommended to make sure the contractor understands ODOT requirements and that ODOT understands the contractor's plan.

Use self locking nuts on non-high strength (H.S.) bolts, unless otherwise shown or specified.

See Dwg. TM623 for typical high strength bolt connection.

If a 20 minute rolling traffic stop is used to install the overhead sign support arm, the rolling stop shall meet the following requirements:

- a) Verify (prior to arm lift) adequate crane capacity and boom length to perform complete installation from side of road.
- b) Set crane on side of road and do not re-set crane during lift.
- c) Verify (prior to lift) that lifting equipment and lifting points meet requirements of plans.
- d) Verify (prior to lift) that base plate is level and at the correct elevation.
- e) Rig lift before beginning rolling stop.
- f) Make sure all required tools and hardware are on site.
- g) Do not resume traffic until all arm to post connection bolts are at least snug tight.
- h) Support arm with crane until arm connection bolt tightening is 100% complete.
- i) Another rolling stop will be required to install the sign onto the arm.
- j) Rolling stops shall be at night and shall conform to the Special Provisions.
- k) Follow all required safety procedures.

FOUNDATION NOTES:

Foundation type shall be as shown on Project Plans. Spread footing details are shown on Dwg. TM627 and drilled shaft details are shown on Dwg. TM628.

Provide shoring for the footing if required. Installation of temporary guardrail or barrier should precede any other work involving the construction of the footing.

Top surface of concrete pedestal (including area under base plate and around anchor bolts) shall be floated and troweled to a flat and level surface. This surface shall not vary more than $\frac{1}{8}$ " from a horizontal plane. Provide a $\frac{3}{4}$ " chamfer on all exposed edges of the pedestal.

Concrete for spread footings shall be Class $4000 - \frac{3}{4}$ " structural concrete. Concrete for drilled shafts shall be as noted on Dwg. TM628.

Place bars 2" clear of the nearest face of concrete, unless shown otherwise.

Concrete shall be placed using a tremie when free fall exceeds 4'-0". Cold joints shall be cause for rejection of the foundation, except between footing and pedestal and top of drilled shaft.

All reinforcing steel shall conform to ASTM A706 or A615 Gr. 60, unless shown otherwise

Anchor rods shall conform to ASTM F1554, Gr. 55, with supplementary requirements "S2" that includes grade and manufacturer's identification and "S4". Anchor rod washers shall conform to ASTM F436. Anchor rod nuts shall conform to ASTM A563 Grade DH with supplementary requirements "S1" and "S2".

Anchor rod template, temporary support members, and anchor plate shall conform to ASTM A36.

Anchor rods shall be hot-dip galvanized full length.

Provide 1 –2" dia. rigid electrical conduit as shown on Dwgs. TM627 & TM628 and as directed. Extend sign support end of conduit to the center of the lower hand hole. If luminaires are not required, extend the other end of the conduit into the nearest illumination circuit junction box and identify conduit by attaching a tag which says "future sign lighting". Install "pull string" in conduit for future use. Install conduit cap on each end. When luminaires are required, extend the sign support end of conduit per Project Plans.

The elevation and location of anchor rods are critical. Use survey techniques to verify the elevation, location, and orientation of anchor bolt groups prior to placement of foundation concrete.

Where the footing of a Cantilever Monotube Sign Support interferes with guard rail posts, the depth of footing may be increased to the maximum shown on Dwg. TM627, or concrete barrier may be used instead of guard rail, or guard rail posts may be attached to footing in accordance with Dwg. BR266. All buried steel shall be coated for immersion exposure with an approved product from the qualified products for structural coatings (http://www.odot.state.or.us/tsconstruction/). Prepare and coat surfaces according to Section 00594 of Oregon Std. Specifications for Construction.

CONSTRUCTION PROCEDURE AND SEQUENCE:

- 1. Construct foundation according to plans. Verify elevation, location and orientation of anchor bolts. Steel template, shown on Dwg. TM626, shall be used to accurately locate and hold the anchor rods plumb and in proper alignment. This template shall be in place during concrete placement and shall remain in place for a minimum of 24 hours after the concrete placement has been completed. Out of position anchor rods and anchor rods greater than 1:40 out of plumb are cause for rejection of the foundation.

 Bending of anchor rods to straighten or move them into position, or alterations of the base plate shall not be permitted and are cause for rejection of the foundation and/or post weldment.
- 2. Pedestal pour may begin after spread footing concrete has satisfied Section 00540.52. The post erection may begin after concrete has satisfied Section 00540.52.
- 3. Install bearing nuts on anchor rods. Level the bearing nuts. Install hardened flat washers above bearing nuts.
- 4. Use crane to lift post onto anchor rods. Maintain crane connection as a safety measure until post installation is complete. No grout shall be used under the base plate. Install hardened flat washers above base plate.
- 5. Generously apply an approved lubricant for galvanized fasteners from the QPL to the top nut bearing surface and internal threads, and install nut on anchor rods to snug tight condition. Snug tight is defined as the condition when all plies are in firm contact and can usually be obtained by the full effort of a worker on a 12 inch long wrench or a few impacts of an impact wrench. Several passes may be required to obtain uniform tightness.
- 6. Tighten bearing nuts upward against base plate in a similar manner, to assure a uniform snug tight condition.
- 7. Mark position of each anchor rod and top nut with a felt tip pen so subsequent nut rotation can be verified. Rotate all top nuts an additional $\frac{1}{6}$ turn in two passes ($\frac{1}{12}$ turn per pass).
- 8. Lift the arm into position using a crane. Lubricate arm connection bolts with an approved lubricant for galvanized fasteners from the QPL. Maintain crane support during tightening.
- 9. Evenly tighten arm connection bolts to a snug tight condition, and then fully tension arm connection bolts according to Section 00930.40(d)(2)a.

LUMINAIRE NOTES:

Hubs, handholes, grounding terminals, hook and foundation conduit shall always be installed for possible future use. Luminaires, luminaire support arms and luminaire support channels noted on Dwgs. TM624 & TM625 should only be provided when luminaires are required (See Project Plans).

Conduit diameters shown on plans are nominal or trade sizes.

WALKWAY NOTES:

Grating shall be welded steel grating with $1\frac{1}{2}$ " $x\frac{1}{8}$ " bearing bars spaced at $1\frac{3}{16}$ " centers and $\frac{1}{4}$ " $x\frac{1}{4}$ " nominal square cross bars (or equivalent) spaced at 4" centers. Steel plates and bars including grating elements shall conform to ASTM A36 or approved equal.

Rail members and post brackets shall be structural steel tubing conforming to ASTM Specification A500, Grade A or B.

Grating may be spliced at an interior support by welding V_8 " x $1V_2$ " bars to ends of bearing bars across full width of grating and bolting bars together with V_4 " dia. bolts at 12 inch maximum centers.

Top of walkway grating shall not be more than 6 inches below the threshold into the VMS cabinet.

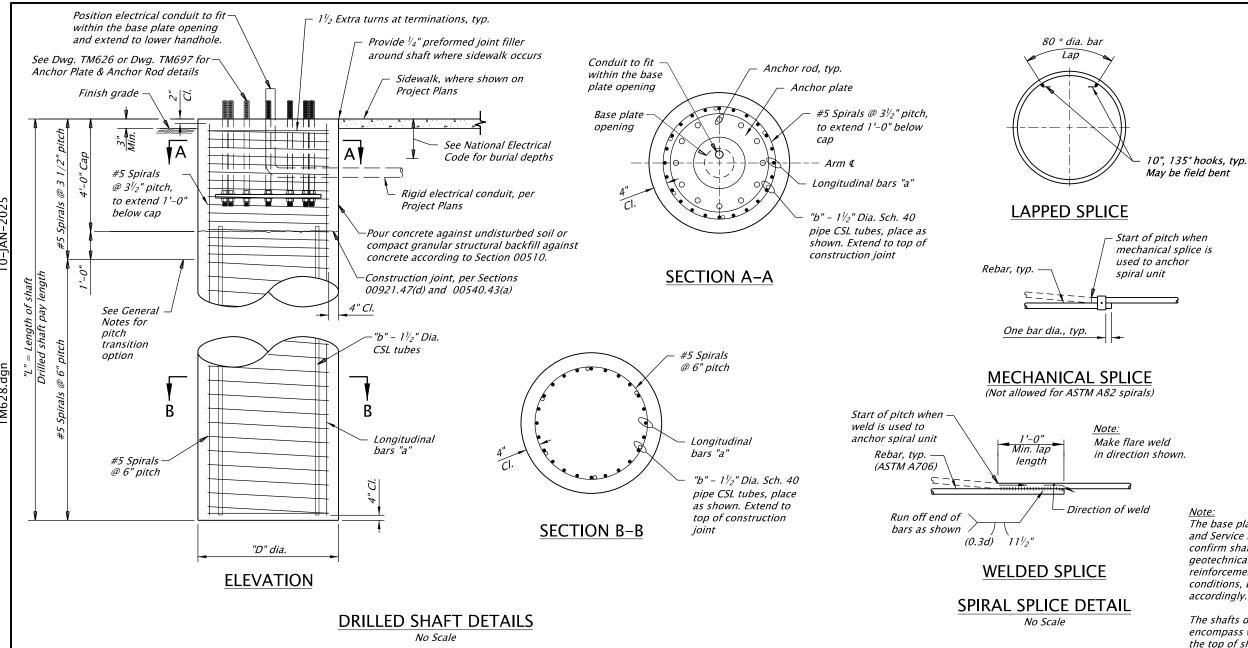
Walkway contractor to verify prior to fabrication that walkway, grating and rails do not interfere with VMS door or VMS housing. No gaps greater than 1 inch between walkway rails, grating and toe board, and VMS housing are allowed. Walkways shall be installed on the structure by the manufacturer to verify physical fit and approved before galvanizing.

All bolts, including U-bolts, shall conform to ASTM Specification A307, unless otherwise noted.

Accompanied by dwgs. TM621, TM623, TM624, TM625, TM626, TM627, TM628, TM690, TM691

The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered

Professional Engineer.


OREGON STANDARD DRAWINGS
STD. MONOTUBE SIGN/VMS
CANTILEVER

All materials shall be in accordance with

the current Oregon Standard Specifications.

NOTES 2024

DATE	REVISI	ON DESC	CRIPTION		
07-2020	ADDED ¾ BAR TOLERANCE, WALKWAY FIT-UP, X42M AND X52M				
01-2025	CONCRETE FOR SPREAD FOOTINGS WAS CLASS 3600 – 34" CLASSIFIED AS A				
	STRUCTURAL ITEM				
CALC. 6921-6930, 6974 SDR 10-JAN-2025 TM623				TM622	

Torsion

(ft-lb)

672,000

707,000

517,000

430,000

357.000

240,000

222,000

110,000

745,000

396,000

252,000

128,700

Axial

(lb)

20.500

25,500

16,700

19,800

15.300

11,600

11,800

7,100

24,400

33,400

25,900

21,100

Reaction At Base Plate (Service)

Moment

(ft-lb)

384.000

501,200

293,000

339,200

222.000

171,000

181,000

86,000

498.000

449,600

343,500

261,700

Torsion

(ft-lb)

259.000

279,000

204,000

169,000

140.000

94,000

87,000

44,000

294,000

156,000

99,500

51,000

Shear

(lb)

10.100

8,500

7,700

5,200

5.300

4,900

2,800

2,200

10,500

27,000

17,900

12,100

Reaction At Base Plate (Factored)

Moment

(ft-lb)

839.000

784,200

622,000

500,800

431.600

381,000

268,000

170,000

884,000

952,600

754,700

592,300

Shear

(lb)

26,200

20,000

19,600

13,200

13.400

12,300

7,200

5,600

26,500

40,700

30,300

22,900

Monotube

Cantilever

Design

No.

2

3

4

5

6

8

9

Monotube

VMS/Sign

Bridge

Design No.

Reinf.

Steel

"a"

30 - #9

30 - #9

30 - #9

30 - #9

30 - #9

24 - #9

24 - #9

20 - #9

30 - #9

30 - #9

30 - #9

30 - #9

Shaft

Dia.

"D"

5'-0"

5'-0"

5'-0"

5'-0"

5'-0"

4'-6"

4'-6"

4'-0"

5'-0"

5'-0"

5'-0"

5'-0"

No. of

CSL Tubes

"b"

6

6

6

6

6

5

5

5

6

Axial

(lb)

22,600

28,100

18,400

21,800

16.900

12,800

13,000

7,800

26,900

36,800

28,500

23,200

The base plate reactions shown in the table are worst case Extreme I and Service I loads. Engineer of Record to specify shaft depth and confirm shaft design for local soil conditions based on a site specific geotechnical study and loads shown in table. If shaft size or reinforcement shown in table are not adequate for local soil conditions, Engineer of Record must adjust the shaft design accordingly.

GENERAL NOTES:

by the Engineer.

casing not permitted.

installation.

Use ASTM A706 for all welded splices, except

ASTM A615 Grade 60, ASTM A82 or ASTM A496

may be used if copies of the chemical composition

analysis are submitted and approved as weldable

Anchor spirals at each end or discontinuity with

Where permitted on plans, provide closed hoops

one extra turn and a splice to itself as shown.

conforming to the requirements of this detail.

Use temporary casing as required. Permanent

Cap concrete shall be Class 4000 - 3/4" structural

concrete. Remainder of shaft shall be Class 4000

- 3/8" structural drilled shaft concrete without air

Contractor shall field verify elevations prior to

The transition between the 3 1/2" to 6" pitches

horizontal turns at the start and end of each cage

and the lapped splice details between the cages.

may use two separate spiral cages with $1\frac{1}{2}$

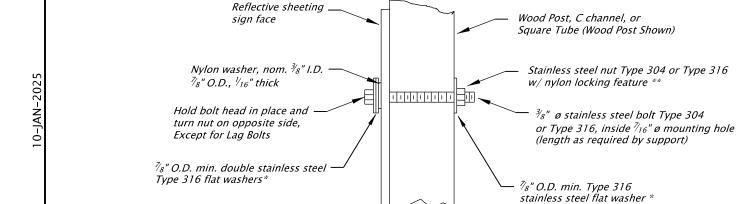
entrainment and with $8 \frac{1}{2}$ " $\pm 1 \frac{1}{2}$ " slump.

Securely tie CSL tubes to reinforcement.

The shafts designs shown in table were based on an analysis to encompass worst case soil conditions by applying Extreme I loads to the top of shaft and analyzing below ground shaft forces using Brom's method for two different soil types. The assumed cohesive soil minimum undrained shear strength, c, is 600 psf. The assumed non-cohesive soil friction angle is 25 degrees and bulk weight is 100 pcf.

Accompanied by dwgs. TM621, TM622, TM623, TM624, TM625, TM626, TM627

The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered
Professional Engineer.

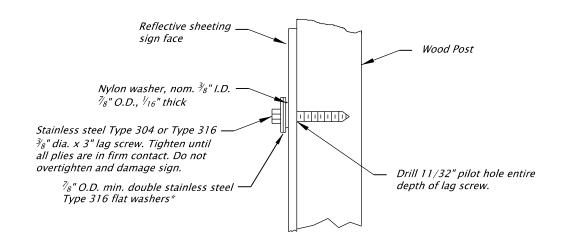

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

STD. MONOTUBE SIGN/VMS SUPPORT DRILLED SHAFT DETAILS

2024

CALC. 6921-6930, 6969- ROOK NO 6972, 6974 SDR 10-JAN-2025 TM628				
AND ADDED "STRUCTURAL DRILLED SHAFT CONCRETE"				
01-2025	CAP CONCRETE WAS CLASS 3600 – 3/4" CLASSIFIED AS A STRUCTURAL ITEM			
07-2022	ADDED SPIRAL TIE NOTES AND CONDUIT BASE PLATE NOTE			
01-2022	SLUMP WAS 8" +/- ½"			
01-2021	CHANGED CONDUIT NOTE			
DATE	REVISIO	ON DESCRIPTION		


Note:

1)When signs are placed on opposing sides of post, $\frac{3}{8}$ " x 3" stainless steel Type 304 or Type 316 lag screws can be used instead of through bolt.

- 2) Use nylon and stainless steel washers when signs are placed on both sides of post.
 3) Burr threads at junction with nut
- when locknuts are not used. 4) Post bolts to extend beyond the tightened nuts within the limits of $\frac{1}{4}$ " to 1".

- * Stainless steel bonded sealing washer with neoprene layer is an acceptable substitue
- ** Acceptable substitute for nylon locking nuts: Stainless steel TRI-LOC® Top Lock Locknut

SIGN ATTACHMENT DETAIL

* Stainless steel bonded sealing washer with neoprene layer is an acceptable substitue

Note: This optional detail is to be used only when specified on a project.

OPTIONAL WOOD POST LAG SCREW DETAIL

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

SIGN ATTACHMENTS

DATE	REVISION DESCRIPTION				
7-2020	ADDED OPTIONAL LAG SCREW DETAIL				
1-2025	ADDED STAINLESS STEEL TO ALL HARDWARE AND REMOVED ANCO PIN- LOC				
CALC.	SDR DATE 10-JAN-2025	TM676			

Standard Monotube VMS/Sign Bridge Structures are designed in accordance with AASHTO LRFD Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals 1st edition, 2015 and interim revisions thru 2017.

Basic wind speed (3 second gust) used for Extreme I Limit State is 145 mph. G=1.14,1700 year recurrence interval, fatigue importance factor $I_f=1.0$ and Exposure C were used for design.

The maximum design sign area for the Standard Monotube VMS/Sign Bridge Structure is shown on Dwg. TM693. The design sign panel and mounting members weigh 5 pounds per square foot. The design luminaire including mounting channels weighs 20 pounds per linear foot. The design luminaire wind loading area including mounting channels is 1 square foot per linear foot, has rectangular flat side shapes, is as long as the design sign, and the resulting projected area is not part of the maximum sign area. Drag coeffcient C_d used for signs is 1.20, for a maximum length/width ration of 5.0.

The allowable variation from field verified working drawing camber is -0% to +25%, post length is -0" to +3", top span length "S" is -1/4" to +1/4", span length between centers of base plates is -1/4" to +1/4", and the vertical distance between base plates "DBP" is -1/4" to +1/4". Verify that the span length between base plates is within $\pm 1/2$ " of the field surveyed span length between centers of anchor rod clusters. The two opposing diagonal distance tolerances measured from 1'-6" below the start of the bend to 6" above the higher baseplate shall be -1/2" to +1/2". The maximum offset of the arm 3/4" square bar from straight shall be +1/8" to -1/8" on each member. The frame lengths shall be measured prior to galvanizing using a steel tape or other approved measuring method.

Drag coeffcient C_d used for VMS is 1.70, and for the walkway is 1.20. The VMS design loads include 100 pounds per linear foot applied from center to center of vertical posts for the weight of a walkway along with a 500 pound concentrated live load. The design walkway wind loading area is 1.0 square feet per linear foot, extends from center to center of vertical posts, and the resulting projected area is not part of the maximum sign area. VMS dimensions and design loads are shown on TM693. The walkway vertical mounts and the VMS vertical mounts are separate.

Snow and ice loads are not included in the design loads. The Engineer shall evaluate the design in regions of heavy snow or ice accumulations.

The signs are to be positioned horizontally as shown on Project Data for Std. Monotube VMS/Sign Bridge Sheet and vertically as shown on Dwg. TM693.

Material for circular tube sections shall be ASTM A53 Grade B; ASTM A500 Grade B or C; ASTM A501 Grade A or B; or API 5L PSL2 Grade B, X42, X42M, X52, and X52M. All other structural steel shall conform to ASTM A572 Grade 50, or A992, unless noted otherwise.

Bend tube using induction heating methods in accordance with TPA-IBS-98, "Recommended Standards for Induction Bending of Pipe and Tube."

Notch toughness of all structural steel members and plates greater than $\frac{1}{2}$ " thick shall conform to Zone 2 fracture critical requirements of ASTM A709.

High strength bolts shall conform to ASTM A325, Type 1. Nuts for high strength bolts shall be heavy hex and conform to ASTM A563 Grade DH, with supplementary requirements "S1" and "S2". Hardened steel washers shall conform to ASTM F436, Type 1. Use washers under turning element in tightening unless otherwise specified.

Bolts connecting galvanized steel members to aluminum members shall meet the requirements of ASTM A193 Class 2 Grade B8M. Nuts used with A193 bolts shall be heavy hex and shall meet the requirements of ASTM A194 Grade 8M with supplementary requirement "S1". Use a stainless steel flat washer and double nut at each bolt.

Final elevations shall be field verified prior to fabrication of the post members and footing reinforcement

All fasteners, except mechanically galvanized direct tension indicator (DTI) washers, shall be hot-dip galvanized (except stainless steel and non-ferrous fasteners). All structural steel shall be hot-dip galvanized after fabrication, unless noted otherwise.

The silicon content of the base metal shall be in the ranges of 0.0% to 0.06% or 0.13% to 0.25% for all hot-dip galvanized steel, unless noted otherwise.

All H.S. bolts shall be considered slip critical and tightened according to Section 00930.40(d)(2)a, unless noted otherwise. Design slip resistance for bolts shall conform to the Bolt Specifications for Class C slip coefficient = 0.33.

This Standard Monotube VMS/Sign Bridge has been designed for the stated loading only. No additional signs or additional loadings are permitted. Other uses and loadings shall be considered non-standard, and are outside the scope of this design.

Splices in posts or arms and welds connecting posts or arms to base connection plates shall be full penetration welds as shown on Dwg. TM623.

Fabrication drawings shall show the weight of all parts.

Verify that top of pedestal is level and at correct elevation, prior to post installation. Install sign mounts and sign on fully erected structure. Do not install sign until after support structure erection and bolt tightening is 100% complete.

A preconstruction meeting is recommended to make sure the contractor understands ODOT requirements and that ODOT understands the contractor's plan.

Use self locking nuts on non-high strength (H.S.) bolts, unless otherwise shown or specified. See Dwg. TM623 for typical high strength bolt connection.

If a 20 minute rolling traffic stop is used to install the overhead sign support arm, the rolling stop shall meet the following requirements:

- a) Verify (prior to arm lift) adequate crane capacity and boom length to perform complete installation from side of road.
- b) Set crane on side of road and do not re-set crane during lift.
- c) Verify (prior to lift) that lifting equipment and lifting
- d) Verify (prior to lift) that vertical end posts are at correct elevations, plumb, and that the distance between the field splices at each post matches the horizontal arm length.
- e) Rig lift before beginning rolling stop.
- f) Make sure all required tools and hardware are on site.
- g) Do not resume traffic until all arm to post connection bolts are at least snug tight.
- h) Support arm with crane until arm connection bolt tightening is 100% complete.
- i) Another rolling stop will be required to install the sign onto the arm.
- *j)* Rolling stops shall be at night and shall conform to the Special Provisions. *k)* Follow all required safety procedures.

FOUNDATION NOTES:

Foundation type shall be as shown on Project Plans. Spread footing details are shown on Dwg. TM627 and drilled shaft details are shown on Dwg. TM628.

Provide shoring for the footing if required. Installation of temporary guardrail or barrier should precede any other work involving the construction of the footing.

Top surface of concrete pedestal (including area under base plate and around anchor bolts) shall be floated and troweled to a flat and level surface. This surface shall not vary more than $\frac{1}{8}$ " from a horizontal plane. Provide a $\frac{3}{4}$ " chamfer on all exposed edges of the pedestal.

Concrete for spread footings shall be Class $4000 - \frac{3}{4}$ " structural concrete. Concrete for drilled shafts shall be as noted on Dwg. TM628.

Place bars 2" clear of the nearest face of concrete, unless shown otherwise.

Concrete shall be placed using a tremie when free fall exceeds 4'-0". Cold joints shall be cause for rejection of the foundation, except between footing and pedestal and top of drilled shaft.

All reinforcing steel shall conform to ASTM A706 or A615 Gr. 60, unless shown otherwise.

Anchor rods shall conform to ASTM F1554, Gr. 55, with supplementary requirements "S2" that includes grade and manufacturer's identification and "S4". Anchor rod washers shall conform to ASTM F436. Anchor rod plate washers shall conform to ASTM A572 Grade 50. Anchor rod nuts shall conform to ASTM A563 Grade DH with supplementary requirements "S1" and "S2".

Anchor rod template, temporary support members, and anchor plate shall conform to ASTM A36.

Anchor rods shall be hot-dip galvanized full length.

Provide 1 –2" dia. rigid electrical conduit as shown on Dwgs. TM627 & TM628 and as directed. Extend sign support end of conduit to the center of the lower hand hole. If luminaires are not required, extend the other end of the conduit into the nearest illumination circuit junction box and identify conduit by attaching a tag which says "future sign lighting". Install "pull string" in conduit for future use. Install conduit cap on each end. When luminaires are required, extend the sign support end of conduit per Project Plans.

The elevation and location of anchor rods are critical. Use survey techniques to verify the elevation, location, and orientation of anchor bolt groups prior to placement of foundation concrete.

Where the footing of a Standard Monotube VMS/Sign Bridge Structure interferes with guard rail posts, the depth of footing may be increased to the maximum shown on Dwg. TM627, or concrete barrier may be used instead of guard rail, or guard rail posts may be attached to footing in accordance with Dwg. BR266. All buried steel shall be coated for immersion exposure with an approved product from the qualified products for structural coatings (http://www.odot.state.or.us/tsconstruction/). Prepare and coat surfaces according to Section 00594 of Oregon Std. Specifications for Construction.

CONSTRUCTION PROCEDURE AND SEQUENCE:

- 1. Construct foundation according to plans. Verify elevation, location and orientation of anchor rods. A steel template, shown on Dwg. TM697, shall be used to accurately locate and hold the anchor rods plumb and in proper alignment. This template shall be in place during concrete placement and shall remain in place for a minimum of 24 hours after the concrete placement has been completed. Submit anchor rod survey information before final fabrication. Out of position anchor rods and anchor rods greater than 1:40 out of plumb are cause for rejection of the foundation. Bending of anchor rods to straighten or move them into position, or alterations of the base plate shall not be permitted and are cause for rejection of the foundation and/or post weldment.
- 2. Pedestal pour may begin after spread footing concrete has satisfied Section 00540.52. The post erection may begin after concrete has satisfied Section 00540.52.
- 3. Install bearing nuts on anchor rods. Level the bearing nuts. Install hardened flat washers above bearing nuts.
- 4. Use crane to lift post onto anchor rods. Maintain crane connection as a safety measure until post installation is complete. No grout shall be used under the base plate. Install hardened flat washers above base plate.
- 5. Generously apply an approved lubricant for galvanized fasteners from the QPL to the top nut bearing surface and internal threads, and install nut on anchor rods to snug tight condition. Snug tight is defined as the condition when all plies are in firm contact and can usually be obtained by the full effort of a worker on a 12 inch long wrench or a few impacts of an impact wrench. Several passes may be required to obtain uniform tightness.
- 6. Tighten bearing nuts upward against base plate in a similar manner, to assure a uniform snug tight condition.
- 7. Lift the arm into position using a crane. Lubricate arm connection bolts with an approved lubricant for galvanized fasteners from the QPL. Maintain crane support during tightening.
- 8. Evenly tighten arm connection bolts to a snug tight condition, and then fully tension arm connection bolts according to Section 00930.40(d)(2)a.
- 9. Verify all bearing nuts and top nuts are snug tight. Mark position of each anchor rod and top nut with a felt tip pen so subsequent nut rotation can be verified. Rotate all top nuts an additional V_6 turn in two passes (V_{12} turn per pass).

LUMINAIRE NOTES:

Hubs, handholes, grounding terminals, hook and foundation conduit shall always be installed for possible future use. Luminaires, luminaire support arms and luminaire support channels noted on Dwgs. TM624 & TM625 should only be provided when luminaires are required (See Project Plans).

Conduit diameters shown on plans are nominal or trade sizes.

WALKWAY NOTES:

Grating shall be welded steel grating with $1\frac{1}{2}$ " $x\frac{1}{8}$ " bearing bars spaced at $1\frac{3}{16}$ " centers and $\frac{1}{4}$ " $x\frac{1}{4}$ " nominal square cross bars (or equivalent) spaced at 4" centers. Steel plates and bars including grating elements shall conform to ASTM A36 or approved equal.

Vertical posts shall be structural steel tubing conforming to ASTM Specification A500, Grade A or B.

Grating may be spliced at an interior support by welding $\frac{1}{8}$ " x $1\frac{1}{2}$ " bars to ends of bearing bars across full width of grating and bolting bars together with $\frac{1}{4}$ " dia. bolts at 12 inch maximum centers.

All bolts, including U-bolts, shall conform to ASTM Specification A307, unless otherwise noted.

Cable shall be $\frac{3}{8}$ " dia. zinc coated 7-strand wire rope conforming to A475, Class A, with a minimum breaking strength of 11,500 lbs.

Walkways shall be installed on the structure by the manufacturer to verify physical fit and approved before galvanizing.

Accompanied by dwgs. TM627, TM628, TM693, TM695, TM696, TM697

The selection and use of this
Standard Drawing, while
designed in accordance with
generally accepted engineering
principles and practices, is the
sole responsibility of the user
and should not be used without
first consulting a Registered
Professional Engineer.

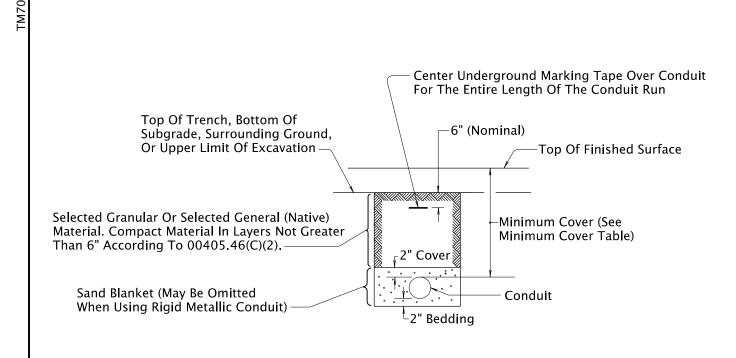
All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS

STD. MONOTUBE VMS/SIGN BRIDGE NOTES

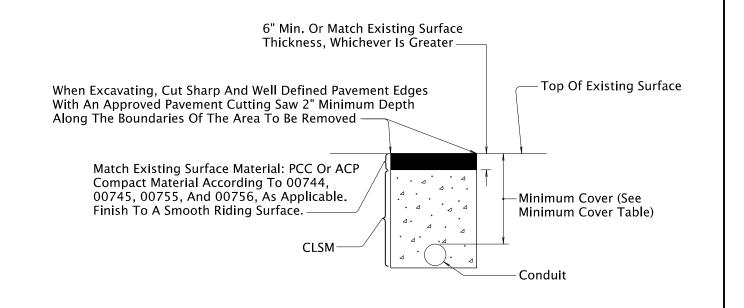
DATE	REVISION DESCRIPTION					
07-2020	ADDED ¾" BAR TOLERANCE	ADDED ¾ BAR TOLERANCE, WALKWAY FIT-UP, X42M, AND X52M.				
01-2025	CONCRETE FOR SPREAD FOOTINGS WAS CLASS 3600 – ¾" CLASSIFIED AS A					
	STRUCTURAL ITEM					
CALC. OOK NO						

	Minimum Cover From Top of Finished Surface (Use Permit Depth If Greater Than These)		
Type Of Conduit	Roadway & Shoulders	Other Areas	
Metallic	24"	18"	
Non-Metallic	30"(See Note 2)	18"	


Notes:

- 1. Additional Cover Depth May Be Necessary Near Foundations And Junction Boxes To Accommodate The Minimum Radius ("R") Of The Conduit Elbow. See TM701 For More Information.
- 2. For Non-Metallic Conduit Under Roadway & Shoulders Installed Horizontally Into Fiber Optic Hand Hole As Per TM702, The Minimum Cover Depth Is 24 Inches.

MINIMUM COVER FROM FINISHED SURFACE


General Notes:

- 1. Install Conduit By Open Trench Method, Horizontal Directional Drilling, Or As Shown
- Conduit Runs Shown On Plans Are For Bidding Purposes Only. Locations May Be Changed To Avoid Obstructions.
- 3. Excavate According To 00960.40. In Areas To Be Paved Or Landscaped, Place All Conduit Before Paving Or Landscaping.
- 4. Hold Trench Width To A Practical Minimum
- 5. Do Not Backfill Trenches Until Inspected By The Engineer
- 6. Furnish Backfill Materials According To 00960.10

CONDUIT OPEN TRENCH EXCAVATION & BACKFILL

UNSURFACED AREAS (new roadway prior to paving, shoulders, under sidewalk, landscaped areas, etc.)

CONDUIT OPEN TRENCH EXCAVATION & BACKFILL EXISTING PAVED AREAS

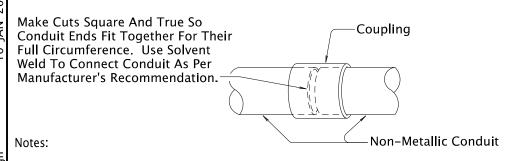
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

All materials shall be in accordance with the current Oregon Standard Specifications.

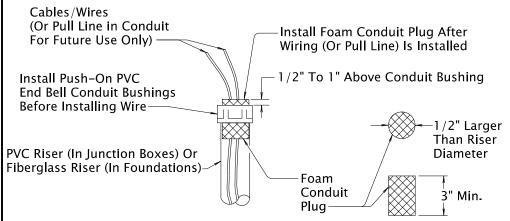
OREGON STANDARD DRAWINGS

GENERAL CONDUIT TRENCHING

2024


DATE REVISION DESCRIPTION
01-2025 NEW DRAWING (CONTENT FROM RETIRED TM471)

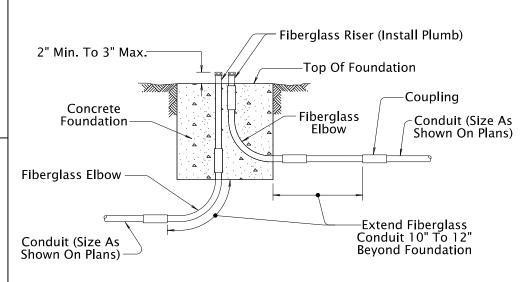
CALC.
BOOK NO. ____N/A ____ SDR DATE 10-JAN-2025 TM700


Conduit Diameter	R (min.)	
1 1/2"	10"	
2"	12"	
2 1/2"	15"	
3"	18"	

CONDUIT ELBOWS

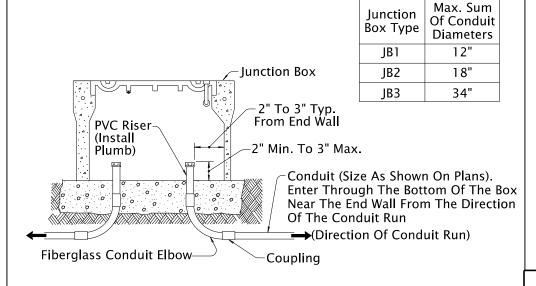
1. Slip Joints, Running Threads Or Reducing Couplings Not Allowed. Use The Same Size Conduit For The Entire Length, Outlet To Outlet.

CONDUIT COUPLINGS

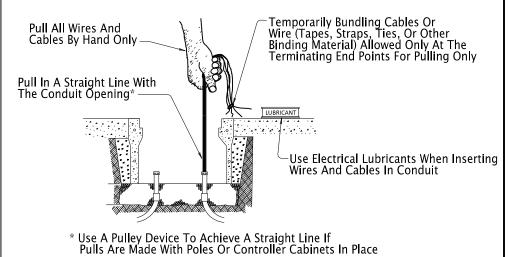

Notes:

- 1. Ream Conduit Ends To Remove Rough Edges And Burrs
- 2. Temporarily Plug Or Cap Conduit Ends At All Times To Keep Debris Out

CONDUIT ENDS AND BUSHINGS


Conduit Installation General Notes:

- 1. Install Non-Metallic Conduit Unless Otherwise Shown. Conduit Runs Shall Be Continuous Between Any Pole, Junction Box, Or Cabinet.
- 2. Larger Conduit Than Specified May Be Used At The Option And Cost Of The Contractor If Max. Sum Of Conduit Diameters In Junction Box Is Not Exceeded.



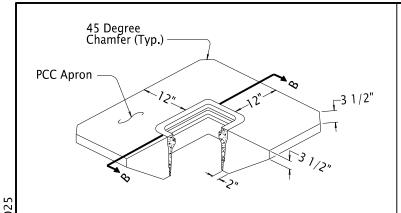
CONDUIT INSTALLATIONS IN FOUNDATIONS

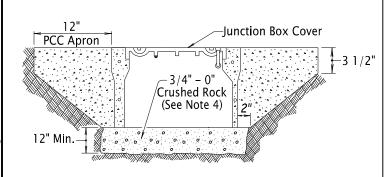
(Applicable for Pole, Pedestal, Service Cabinet and Controller Cabinet Foundations)

CONDUIT INSTALLATION IN JUNCTION BOXES

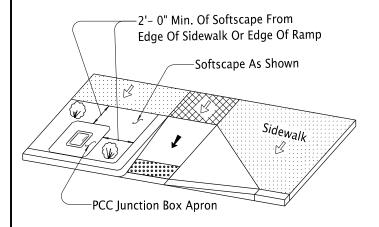
WIRE & CABLE INSTALLATION IN CONDUITS

Wire & Cable Installation General Notes:

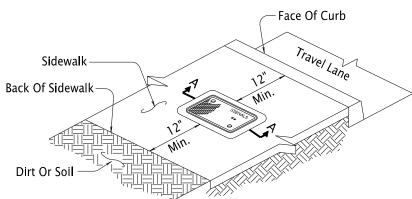

- See TM470 For Additional Wire/Cable Installation Requirements That Apply To Specification Section 00990 Bid Items.
- 2. Label Wires And Cables With Permanent Tags As Shown Or Directed. Use Handheld Labeler (Brady M210 Label Maker With Vinyl B-595 Tape) Unless Otherwise Shown.
- 3. Install No. 16 AWG TFFN Orange Base With Blue Tracertone Wire In All Conduits As A Locate Wire. Leave Slack As Shown Or Directed And Install A Wire Nut. Do Not Join Multiple Locate Wires Under A Common Wire Nut Unless Otherwise Shown.
- 4. Tape The Ends Of Unused Conductors With Insulated Vinyl Plastic Tape.
- 5. Leave A Minimum Of 2 Feet Slack In Each Wire And Cable In Junction Boxes, Poles, Cabinets Unless Otherwise Shown.
- Install Polyethylene Pull Line In All Conduits Noted On The Plans For Future Use (No Wires/Cables In Conduit). Leave 6 Feet Of Slack Pull Line.

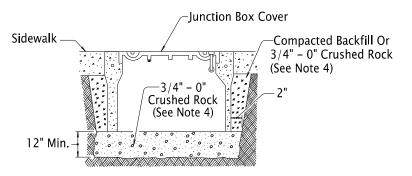

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer. All materials shall be in accordance with the current Oregon Standard Specifications.

OREGON STANDARD DRAWINGS


GENERAL CONDUIT & WIRE/CABLE INSTALLATION

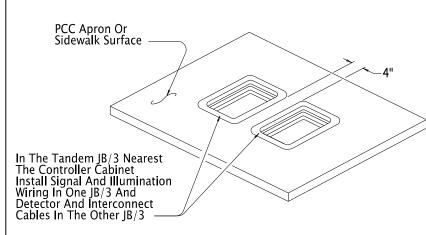
	REVISION DESCRIPTION	REVISIO	DATE
NEW DRAWING (CONTENT FROM RETIRED TM470 & TM471)			01-2025
TM701	SDR 10-JAN-2025 _) <mark>N/A</mark>	CALC. OOK NO




SECTION B-B

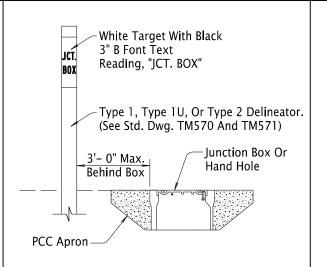
JUNCTION BOX INSTALLATION IN UNSURFACED AREA

(This Detail Only Applicable for Junction Boxes Located In Incidental Travel Areas; Gravel Shoulders, Behind Guardrail, Etc. Do Not Install In Travel Lanes, Paved Shoulders, Or Other Areas Exposed To Traffic.)



SECTION A-A

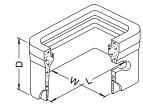
JUNCTION BOX INSTALLATION IN PCC SIDEWALK


(This Detail Only Applicable for Junction Boxes Located In Flat Areas Of Sidewalks. Do Not Install In Slopes Of Ramps Or Driveways)

TANDEM JB/3A JUNCTION BOX DETAILS

GENERAL NOTES:

- 1. Install Top of Junction Box And Hand Hole Flush With The Sidewalk, Surrounding Grade, Or Top Of Curb. For Hand Holes Installed In The Roadway Or Shoulder, Leave The Top Of The Hand Hole 1/2" Below The Pavement Surface.
- 2. Install Junction Boxes And Hand Holes At The Approximate Locations Shown, Or If Not Shown, No More Than 300 Feet Apart For Junction Boxes And No More Than 1000 Feet Apart For Hand Holes.
- 3. More Junction Boxes And Hand Holes Than Specified May Be Installed To Facilitate The Work At The Option And Cost Of The Contractor
- 4. Use Materials According To 00640.10 and 00640.16. Use Compaction Equipment Suitable For Area And Compact Each Six Inch Layer With Sufficient Coverage To Produce A Firm Unyielding Surface. Do Not Install Conductors Until Surface Has Been Constructed.


DELINEATION OF JUNCTION BOX & HAND HOLE IN UNSURFACED AREA

Lift Eye

Junction Box Cover
With Recessed Lifting Eye
Or Max. 3/8" Lift Hole

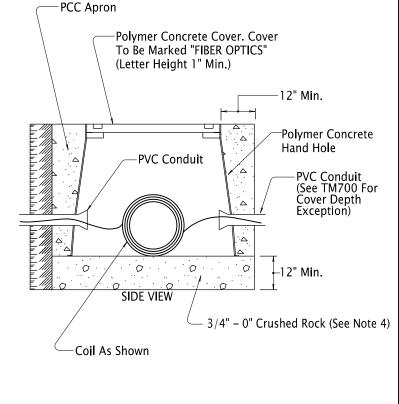
JUNCTION BOX COVER DETAILS

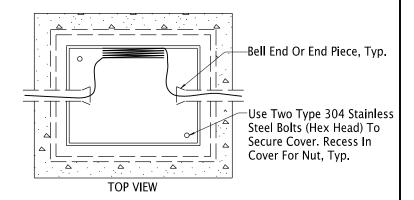
Type* L W D

JB1 17" 10" 12"

JB2 22" 12" 12"

JB3 30" 17" 12"


HH-1 24" 30" 24"


HH-2 30" 48" 24"

HH-3 30" 48" 36"

*Junction Box Or Handhole Type As Shown On Plans

DIMENSION TABLE

FIBER OPTIC CABLE HAND HOLE INSTALLATION

The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without first consulting a Registered Professional Engineer.

OREGON STANDARD DRAWINGS

GENERAL

JUNCTION BOX/HAND HOLE
INSTALLATION

All materials shall be in accordance with the current Oregon Standard Specifications.

2024

DATE REVISION DESCRIPTION
01-2025 NEW DRAWING (CONTENT FROM RETIRED TM472)

CALC.
BOOK NO. ____N/A ___ SDR DATE 10-JAN-2025 TM702