

**Oregon
Department
of Transportation**

Pavement Markings Manual

Delivery & Operations Division | Traffic Engineering Section
January 2026

ODOT is an Equal Employment Opportunity and Affirmative Action Employer.

This information can be made available in alternative format by contacting 503-986-3568

ODOT does not discriminate based on disability in admission or access to our programs, services, activities, hiring and employment practices. Questions: 1-877-336-6368 (EEO-ODOT) or through Oregon Relay Service at 7-1-1.

Oregon Department of Transportation
Engineering & Technical Services Branch
Traffic Engineering Section
555 13th ST NE
Salem, Oregon 97301-6867
503-986-3568
[Traffic Engineering Website](#)

This page has been intentionally left blank.

Preface

Table of Contents

Introduction	Chapter 1
Human Factors	Chapter 2
Design Standards & Guidelines	Chapter 3

Foundational Elements

Pavement Marking Plans	Section 101
Design Flexibility	Section 102
Colors	Section 110
Functions, Widths, and Patterns of Longitudinal Lines	Section 120
Transverse Markings	Section 125
Raised Pavement Markers	Section 130
RPMs Used for Supplementation	Section 131
RPMs Used for Positioning Guides	Section 132
Typical Layouts for RPMs	Section 133
Tubular Markers and Lane Separators	Section 140
Delineators	Section 145
Other Channelizing Devices	Section 146
Stop Bars	Section 150
Yield Lines	Section 151
Lane Use Arrows	Section 160

Roadway Segments

Center Lines	Section 210
No-Passing Zone Markings	Section 211
Lane Lines	Section 220
Edge Lines	Section 230
Longitudinal Rumble Strips: General	Section 240
Longitudinal Rumble Strips: Rural Freeways and Divided Highways	Section 241
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways	Section 242
Longitudinal Rumble Strips: Urban Highways	Section 243
Transverse Rumble Strips	Section 245
Lane Reduction Transitions	Section 250
Lane Addition Transition & No-Passing Zones in 3-Lane Sections	Section 251
Traversable Medians	Section 260
Two-Way Left Turn Lanes	Section 261
Channelizing Lines and Traversable Channelizing Islands	Section 270
Approach to a Fixed Obstruction	Section 280
Non-Traversable Medians & Channelizing Islands	Section 281

Intersections

Left Turn Lanes	Section 310
Added Right Turn Lanes	Section 320
Channelized Right-Turn Lanes	Section 321

At-Grade Acceleration Lanes	Section 322
Dropped Lanes and Auxiliary Lanes on Conventional Roads.....	Section 330
Line Extensions Through Intersections	Section 340
Roundabouts	Section 350
Interchange Ramps: Exit & Entrance Ramps	Section 360
Interchange Ramps: Ramp Terminals	Section 361

Biking & Walking Facilities

Bicycle Lanes	Section 410
Bicycle Lane End Transitions	Section 411
Bicycle Lane Buffers	Section 412
Colored Pavement in Bicycle Lanes	Section 413
Intersection Bicycle Box	Section 414
Two-Stage Turn Bicycle Box	Section 415
Bicycle Detector Markings	Section 416
Shared Lane Markings	Section 420
Marked Crosswalks	Section 430
Shared-Use Path Markings	Section 440

Rail & Transit Facilities

Railroad Crossing Markings	Section 510
Bus Pullouts	Section 520
Preferential Lane Markings.....	Section 530
Colored Pavement in Transit Lanes	Section 531

Miscellaneous Standards

School Markings	Section 610
Ramp Meters	Section 620
Parking Space and Curb Markings	Section 630
Freeway Median Crossovers.....	Section 640
Cattle Guard Markings	Section 650
Slow Moving Vehicle Turnouts	Section 660

Placeholder Appendix.....	Appendix A
ODOT Pavement Marking Contacts	Appendix B
Critical Locations for Signing & Pavement Marking Coordination	Appendix C
References	Appendix D
Traffic Line Manual Revision History	Appendix E

This page has been intentionally left blank.

Chapter 1

1 Pavement markings provide important information for road users. In some cases, markings are
2 used to supplement other traffic control devices such as traffic signs or signals. Markings can
3 also be used alone in other applications to communicate regulations, guidance, or warnings
4 more effectively than is possible with other devices, such as no-passing zones. Uniform
5 application of pavement markings improves roadway safety and efficiency throughout the
6 state.

7 Pavement markings have limitations. They could be covered by snow, could be hard to see
8 when wet, and could be worn away when exposed to heavy traffic. In spite of these limitations,
9 they have the advantage of communicating warning, guidance, and other information to road
10 users without diverting their attention away from the roadway. Audible and tactile features
11 such as raised pavement markers or surface profile changes can be added to alert the road user
12 that a line on the roadway is being crossed.

1.1 Scope

15 The Pavement Markings Manual sets parameters, provides policies, establishes uniform
16 methods, and communicates vital information about pavement markings on the Oregon State
17 Highway System. The Traffic Engineering Section publishes the Pavement Markings Manual
18 under the authority delegated to the state traffic engineer under Delegation Order EB-06.

19 This edition supersedes previous edition of the Pavement Markings Manual effective January 1,
20 2026 and applies to all pavement marking work except in-kind maintenance of existing
21 pavement markings on the existing pavement surface (e.g.: does not apply to re-tracing
22 longitudinal lines, replacing worn stop bars or turn arrows, etc.), unless otherwise specified in
23 this manual. Design parameters and figures in this manual are intended to provide guidance
24 and flexibility for a variety of roadway designs currently in service. New content presented in
25 this edition does not imply that existing ODOT facilities, including but not limited to traffic
26 control devices, are unsafe, nor does it mandate the initiation of improvement projects unless
27 otherwise specified. Prior to the 2026 publication of the Pavement Markings Manual, the
28 Pavement Markings Manual was known as the Traffic Line Manual.

29 The Pavement Markings Manual supports and complements the application of sound
30 engineering judgement by transportation professionals. The intended audience of the Pavement
31 Markings Manual is transportation professionals practicing traffic engineering related to
32 pavement markings on Oregon state highways.

33 The Traffic Manual refers to subject-specific ODOT publications when appropriate instead of
34 duplicating information. The Pavement Markings Manual does not contain roadway, signal, or
35 signing design policies and practices; see the appropriate manuals for that information.

36 In support of its mission, ODOT has committed to be at the forefront of the integration of
37 sustainable intermodal transportation. Pavement markings are some of the most fundamental
38 traffic control devices and their use extends to nearly all modes of Oregon's transportation

Introduction**Chapter 1**

39 system. As such, this manual provides multi-modal design standards and guidance related to
40 pavement markings – in support of the agency’s mission and adopted plans – based on the
41 latest national standards, best practices, and research.

42 **1.2 Availability**

43 This manual is a web-only document that can be accessed and printed in its entirety from the
44 ODOT engineering website.

45 The traffic markings and sign engineer maintains the Pavement Markings Manual. Send
46 comments or questions on this document to frank.belleque@odot.state.or.us

47 Traffic Markings & Sign Engineer

48 ODOT Traffic Engineering Section

49 555 13th St NE

50 Salem, OR 97301-6867

51 **1.3 Updates**

52 This manual will be updated continually and revisions will be made as necessary, typically on a
53 yearly basis, but could occur at any time. Contact the pavement markings and sign engineer to
54 be placed on the notification update list.

55 **1.4 References**

56 This manual has been adapted primarily from the 11th Edition of the Manual on Uniform Traffic
57 Control Devices (MUTCD), Oregon MUTCD Supplements, ODOT policy and guidelines, and
58 other relevant national design guides and published research. Key references used for design
59 topics are referenced in individual sections to help identify where design parameters come
60 from.

61

1 Human Factors

Chapter 2

2 Marking the road surface is a visual and sometimes tactile traffic control tool that communicates
3 information about the roadway's operation (i.e.: lane uses) and path. The safety and operational
4 benefits of pavement markings rely completely on road users' ability to see and understand the
5 markings. Because of this limitation, it is important to understand how human factors relate to
6 pavement markings in order to maximize effectiveness and appreciate limitations.

7 Road users continuously seek information from pavement markings for guidance and control of
8 their vehicle – approximately 90 percent of all driver tasks are obtaining visual information, and
9 visual fixation is predominantly in their own lane (1). Road users have limited attention and
10 ability to process information, and their response to markings are primarily based on what they
11 have previously experienced; design standards can enhance learned behavior and system
12 expectations (1) (2). For example, road users expect a left turn lane to include a left turn arrow
13 marked in the lane, a solid line separating the lane from through traffic, and a stop bar to show
14 where they are expected to stop, if required to stop. When expectations are not met, road users
15 are more likely to make mistakes (2).

16 Human factors studies estimate road users need to be able to preview the road for a minimum
17 of 3 seconds ahead to maintain their lane position and recommend 5 seconds ahead to
18 accommodate proper anticipated steering behavior (1). For example, pavement markings
19 communicate a curve's severity as drivers approach a curve and are best for providing short-
20 range steering control cues once drivers enter a curve (1). In order for pavement markings to
21 serve this need, road users need pavement sight distance (i.e.: object height = 0.0 feet). Not all
22 locations can provide this sight distance, like at some vertical curves, so other devices like
23 delineators and road alignment signing can fill in to provide additional preview of the road.

24 Pavement markings must be visible in a variety of driving conditions in order to provide the
25 greatest safety benefit. Darkness, fog, rain, glare from sun or headlights, dirt and debris, ice, and
26 snow all affect marking visibility to varying degrees or completely obscure pavement markings.
27 For example, heavy rain that obscures pavement markings can significantly increase the
28 standard deviation of a driver's lane position (3). There are strategies to address some of these
29 issues; road users will need to rely on other traffic control devices for navigation and control
30 during conditions that completely obscure markings.

31 Pavement markings become less visible as drivers age, mostly due to sensitivity to contrast and
32 retroreflectivity (4). Contrast sensitivity is a key component of human vision to detect pavement
33 markings. Contrast sensitivity is the ability to detect small differences in brightness between an
34 object and its background. This ability tends to decline with age due to normal changes in the
35 eye lens and higher occurrence of ocular disease; additional contrast between markings and the
36 road surface becomes more important for these road users (5) (6). On light colored pavements
37 like new concrete, black borders around white and yellow markings can increase contrast and
38 improve marking visibility (7).

39 Retroreflectivity is key for nighttime visibility; it is a property of a surface that allows a large
40 portion of the light coming from a point source to be returned directly back to a point near its

41 origin (8). Retroreflectivity of pavement markings comes from glass spheres or beads on the
42 marking's surface. Over many years of study, research is providing consistent evidence that
43 nighttime safety can increase by specifying and maintaining adequate pavement marking
44 retroreflectivity; however, exactly how this improves safety is still not fully understood (9).
45 FHWA updated the MUTCD with minimum standards for maintenance of pavement marking
46 retroreflectivity in 2022.

47 Additional information on human factors related to pavement markings is available in the
48 support sections of this manual, NCHRP Report 600 (1), the Highway Safety Manual (2), the
49 Handbook for Designing Roadways for the Aging Population (5), and other human factors –
50 pavement marking research (9) (10).

51 Key References

- 52 1. Campbell, J. L., A. Fraser, C. Monk, J. L. Brown, J. Lee, M. G. Lichty, D. M. Prendez, C. M. Richard, A. Romo, I. Potts, D. Torbic, J. Graham, D. Harwood, J. Hutton, and M. O'Laughlin. NCHRP Report 1148: Human Factors Guidelines for Road Systems. 2025. <https://nap.nationalacademies.org/read/29158/chapter/1>. Accessed November 13, 2025.
- 53 2. American Association of State Highway and Transportation Officials. *Highway Safety Manual*, 1st ed. AASHTO, Washington, D.C., 2010.
- 54 3. Ghasemzadeh, A., and M. M. Ahmed. Drivers' Lane-Keeping Ability in Heavy Rain: Preliminary Investigation using SHRP 2 Naturalistic Driving Study Data. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2663, 2017, pp. 99-108. <https://doi.org/10.3141/2663-13>.
- 55 4. Zwahlen, H. T., and T. Schnell. Visibility of Road Markings as a Function of Age, Retroreflectivity Under Low-Beam and High-Beam Illumination at Night. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1692, 1999, pp. 152-163. <http://trrjournalonline.trb.org/doi/abs/10.3141/1692-16>. DOI: <https://doi.org/10.3141/1692-16>
- 56 5. Brewer, M., D. Murillo, and A. Pate. Handbook for Designing Roadways for the Aging Population. Washington, D.C., FHWA-SA-14-015, 2014. http://safety.fhwa.dot.gov/older_users/handbook/aging_driver_handbook_2014_final%20.pdf.
- 57 6. Migletz, J., and J. Grahm. NCHRP Synthesis 306: Long-Term Pavement Marking Practices. Washington, D.C., 2002. <http://www.trb.org/Main/Blurbs/152126.aspx>.
- 58 7. Hawkins, H. G., A. H. Parham, and K. N. Womack. NCHRP Report 484: Feasibility Study for an All-White Pavement Marking System. Texas Transportation Institute, Washington, D.C., ISBN 0-309-06772-3, 2002. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_484.pdf.
- 59 8. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 60 9. Carlson, P. J. Synthesis of Pavement Marking Research. Texas A&M Transportation Institute, College Station, Texas, FHWA-SA-15-063, 2015. https://safety.fhwa.dot.gov/roadway_dept/night_visib/pavement_marking/pvmnt_mrkg_synth.pdf.
- 61 10. Zwahlen, T. H., and T. Schnell. Driver Eye-Scanning Behavior as Function of Pavement Marking Configuration. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1605, 1997, pp. 62-72. <http://trrjournalonline.trb.org/doi/abs/10.3141/1605-08>. DOI: <http://dx.doi.org/10.3141/1605-08>

1 Design Standards & Guidelines

Chapter 3

2 Chapter 3 contains design standards and guidelines for the Oregon State Highway System
3 related to pavement markings and other traffic control devices in Part 3 of the MUTCD.

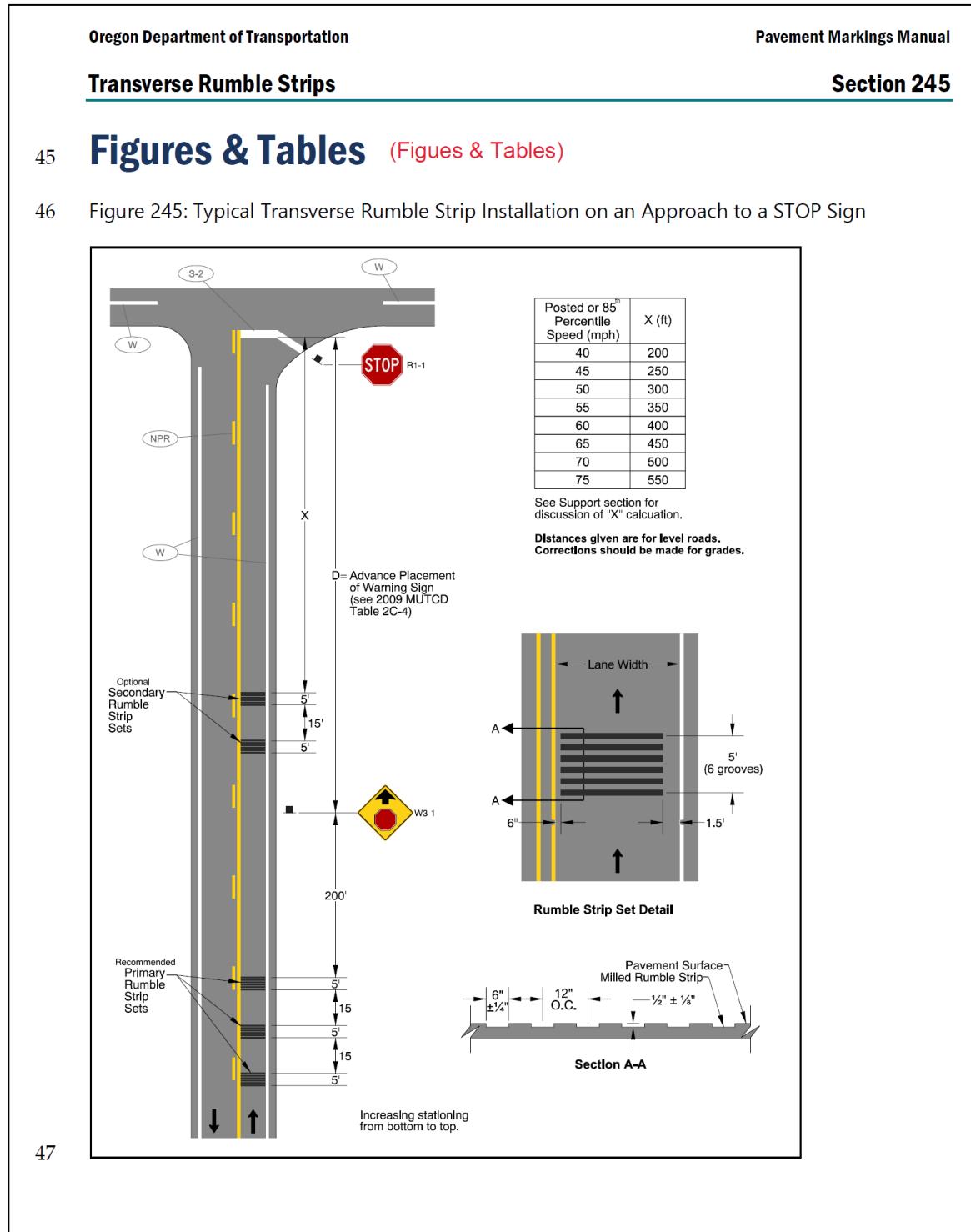
4 The chapter is organized in the following categories:

Section	Category
100s	Foundational Elements
200s	Roadway Segments
300s	Intersections
400s	Biking & Walking Facilities
500s	Rail & Transit Facilities
600s	Miscellaneous Standards

5 Individual sections use a format that is adapted from NCHRP Report 600. This layout is
6 intended to provide a consistent display of design information in a concise manner. Some
7 sections build on the information contained in other sections in order to keep information
8 focused and brief for the benefit of the reader and reduce redundancy. A cross reference section
9 is included in each section listing other topics that the current section built on or is related to.

10 A sample section is shown in Figures 1-4; detailed description of each subsection is provided
11 after the figures.

Design Standards & Guidelines**Chapter 3**


12 Figure 1: Example Subject Heading, Section #, Introduction, Relevant MUTCD Sections, Design
13 Parameters, Required Approvals, and Design Issues

<p>Oregon Department of Transportation (Subject Heading)</p> <h2>1 Transverse Rumble Strips</h2> <h3>2 Introduction (Introduction)</h3> <p>3 Transverse rumble strips are placed perpendicular to the direction of travel to enhance other 4 traffic control devices and warn road users of an unusual situation. This section does not apply 5 to temporary transverse rumble strips used in work zones.</p> <h3>6 Relevant MUTCD Sections (Relevant MUTCD Sections)</h3> <p>7 See the following sections for standards, guidance, and options not found in this manual:</p> <ul style="list-style-type: none">8 • MUTCD 11th Edition: Chapter 3K Rumble Strip Markings <h3>9 Design Parameters (Design Parameters)</h3> <p>10 01 Permanent milled-in transverse rumble strips may be installed on an approach to a "STOP" 11 sign (R1-1) where crash history indicates a significant number of intersection crashes would 12 be treatable with transverse rumble strips and where more conventional treatments have 13 proved ineffective.</p> <p>14 02 <i>If used, permanent milled-in transverse rumble strips should be installed on new or existing</i> 15 <i>bituminous pavement in sufficiently good condition.</i></p> <p>16 03 <i>If used on an approach to a "STOP" sign (R1-1), permanent milled-in transverse rumble strips should</i> 17 <i>be installed according to Figure 245. The three primary rumble strip sets shown in Figure 245 should</i> 18 <i>be used as a minimum where transverse rumble strips are installed.</i></p> <p>19 04 If used on an approach to a "STOP" sign (R1-1), the two secondary rumble strip sets shown 20 in Figure 245 may be used based on engineering judgement of local site conditions.</p> <h3>21 Required Approvals (Required Approvals)</h3> <p>22 An engineering study and region traffic engineer approval is required for installation of 23 transverse rumble strips associated with "Stop Ahead" (W3-1) warning signs on state highways 24 or local public road approaches to a state highway.</p> <p>25 An engineering study and state traffic-roadway engineer approval is required for all other 26 installation of transverse rumble strips on state highways.</p> <p>27 Engineering studies on transverse rumble strips must document a safety problem correctable 28 with the use of transverse rumble strips and consider noise impacts if located near residences or 29 campgrounds.</p> <h3>30 Design Issues (Design Issues)</h3> <p>31 Contact the Construction Section's Pavement Services Unit to determine if the pavement surface 32 is in sufficiently good condition to install transverse rumble strips.</p>	<p>Pavement Markings Manual (Section #)</p> <h2>Section 245</h2>
---	--

14

January 2026

15 Figure 2: Example Figures & Tables

16

Design Standards & Guidelines

Chapter 3

17 Figure 3: Example Support

	Oregon Department of Transportation	Pavement Markings Manual
	Transverse Rumble Strips	Section 245
48	Support (Support)	
49	Transverse rumble strips provide a warning to drivers of an approaching condition, but the	
50	rumble strips themselves do not communicate what action needs to be taken in response to that	
51	condition (2).	
52	Many different configurations of transverse rumble strips have been tested across a variety of	
53	studies, including milled-in and preformed thermoplastics of various widths, thickness/depth,	
54	and patterns. The design shown in Figure 245 is based on a design used by Minnesota DOT.	
55	This design was one of two contributing designs studied for development of crash modification	
56	factors by Srinivasan, Baek, and Council (3). Srinivasan, Baek, and Council found the milled-in	
57	transverse rumble strips they studied can be effective at reducing fatal and serious injury	
58	crashes at minor road stop-controlled intersections. They also found these rumble strips might	
59	increase property-damage-only crashes, though the reason for this increase could not be	
60	determined at the time. One theory from other sources (2) (4) is the rumble strips increase speed	
61	variability which might increase rear-end crashes.	
62	Transverse rumble strips generally do not have a practical effect on reducing vehicle speed at	
63	approaches to stop-controlled intersections (\leq 1-2 mph) (2) (5) (6) and in speed transition zones	
64	(7).	
65	Transverse rumble strips need to be positioned to provide enough advance warning time for	
66	drivers to respond and take an appropriate action (2). The design in Figure 245-A sets the	
67	distance of the first grouping of rumble strip sets 200 feet in advance of the Stop Ahead sign	
68	(W3-1). This alerts the driver before the sign legibility distance used by the 2009 MUTCD (8) for	
69	this warning condition (180 feet). This also positions the rumble strip sets approximately at	
70	stopping sight distance given in the AASHTO Green Book (9).	
71	The last two rumble strip sets crossed by an approaching driver are positioned to give a final	
72	warning with a sufficient distance to make a hard stop. This distance assumes the driver is alert	
73	from the previous rumble strip sets and has a brake reaction time of 1.0 second. This also	
74	assumes that if the driver hasn't started to decelerate at this point, he or she will decelerate	
75	more aggressively than the deceleration rates used to calculate advance warning sign placement	
76	and stopping sight distance (11.2 ft/s ²). The discussion of braking distance in the AASHTO	
77	Green Book says the literature shows most drivers decelerate at a rate greater than 14.8 ft/s ²	
78	when confronted with the need to stop for an unexpected object in the roadway. This was the	
79	deceleration rate used to calculate braking distance in this case.	
80	The design assumptions discussed above places these rumble strip sets in a location consistent	
81	with Iowa DOT's design for a 50-55 mph approach speed. The groove depth, width, and	
82	spacing matches Iowa DOT's design as well to create the same level of vibration and noise	
83	associated with crash modification factors developed from the design (3).	

January 2026

18

Design Standards & Guidelines**Chapter 3**

19 Figure 4: Example Cross References and Key References

Oregon Department of Transportation	Pavement Markings Manual
Transverse Rumble Strips	Section 245
84 A 15-foot gap between rumble strip sets provides a minimal pause in the noise generated from 85 the rumble strips for passenger cars (85th percentile vehicle length in the U.S. fleet is about 17 86 feet (10)).	
87 A 1.5-foot clear space between the rumble strip and the edge line shown in Figure 245 gives 88 people on bikes a minimal gap to avoid the transverse rumble strips to the right.	
89 In 2021, IOWA DOT completed a synthesis of transverse rumble strips at rural stop-controlled 90 intersections (11). This synthesis is a good source of information on how other states use 91 transverse rumble strips.	
Cross References (Cross References)	
92 Transverse Markings..... Section 125	
93 Stop Bars Section 150	
Key References (Key References)	
94 1. Miles, J. D., M. P. Pratt, and P. J. Carlson. Evaluation of Erratic Maneuvers Associated with Installation of Rumble 95 Strips. <i>Transportation Research Record: Journal of the Transportation Research Board Online</i> , Vol. 1973, 2006, pp. 73-79. 96 http://trjournalonline.trb.org/doi/abs/10.3141/1973-11. DOI: https://doi.org/10.3141/1973-11	
97 2. Brian, R., W. Kittleson, J. Knudsen, B. Nevers, P. Ryus, K. Sylvester, I. Potts, D. Harwood, D. Gilmore, D. Torbic, 98 F. Hanscom, J. McGill, and D. Stewart. <i>NCHRP Report 613: Guidelines for Selection of Speed Reduction Treatments at 99 High-Speed Intersections</i> . Transportation Research Board of the National Academies, Washington, D.C., 2008. http:// 100 www.trb.org/Publications/Blurbs/160046.aspx.	
101 3. Srinivasan, R., J. Baek, and F. Council. Safety Evaluation of Transverse Rumble Strips on Approaches to Stop- 102 Controlled Intersections in Rural Areas. in <i>2010 Annual Meeting of the Transportation Research Board</i> , Washington, 103 D.C., September 2010.	
104 4. Isebrands, H., S. Hallmark, and N. Hawkins. Effects of Approach Speed at Rural High-Speed Intersections: 105 Roundabouts Versus Two-Way-Stop Control. <i>Transportation Research Record: Journal of the Transportation Research 106 Board Online</i> , Vol. 2402, 2014, pp. 67-77. http://trjournalonline.trb.org/doi/abs/10.3141/2402-08. DOI: 107 https://doi.org/10.3141/2402-08	
108 5. Thompson, T. D., M. W. Burris, and P. J. Carlson. Speed Changes Due to Transverse Rumble Strips on 109 Approaches to High-Speed Stop-Controlled Intersections. <i>Transportation Research Record: Journal of the 110 Transportation Research Board Online</i> , Vol. 1973, 2006, pp. 1-9. http://trjournalonline.trb.org/doi/abs/10.3141/1973- 111 03. DOI: 10.3141/1973-03	
112 6. Yang, L., H. Zhou, L. Zhu, and H. Qu. Operation Effects of Transverse Rumble Strips on Approaches to High- 113 Speed Intersections. <i>Transportation Research Record: Journal of the Transportation Research Record Online</i> , Vol. 2602, 114 2016, pp. 78-87. http://trjournalonline.trb.org/doi/abs/10.3141/2602-10. DOI: 10.3141/2602-10	
115 7. Torbic, D. J., D. K. Gilmore, K. M. Bauer, C. D. Bokenkroger, D. W. Harwood, L. M. Lucas, R. J. Frazier, C. S. 116 Kinzel, D. L. Petree, and M. D. Forsberg. <i>NCHRP Report 737: Design Guidance for High-Speed to Low-Speed Transition 117 Zones for Rural Highways</i> . Transportation Research Board of the National Academies, Washington, D.C., 2012. 118 http://www.trb.org/Publications/Blurbs/168309.aspx.	
119 8. Federal Highway Administration. <i>Manual on Uniform Traffic Control Devices for Streets and Highways</i> , 2009 ed. 120 Federal Highway Administration, Washington, D.C., 2012. https://mutcd.fhwa.dot.gov/.	
121 9. American Association of State Highway and Transportation Officials. <i>A Policy on Geometric Design of Highways and 122 Streets</i> , 6th ed. Washington, D.C., 2011.	
123	
124	

January 2026

20

3.1 Section Elements

Subject Heading

The main design element being discussed is centered and bolded at the top of each page. See Figure 1 for example “Subject Heading.”

Introduction

Briefly introduces the subject. For example, definitions fundamental to the subject might be given in this subsection. This subsection is for information only and does not convey any degree of mandate, recommendation, authorization, prohibition, or enforceable condition. See Figure 1 for example “Introduction.”

Relevant MUTCD Sections

This subsection directs users to the appropriate section of the MUTCD for that subject for any additional standards, guidance, or options that may be useful.

Design Parameters

This subsection gives the design parameters for the subject. Design parameters are the design standards, guidance, and options for the subject using the verbs “shall,” “should,” and “may.” The design parameters are immediately after the “Introduction” for a section. Each paragraph in the Design Parameters section is numbered for reference. See Figure 1 for example “Design Parameters.”

Required Approvals

This subsection lists any needed approvals to install or remove a feature. This includes any state traffic engineer approvals or region traffic engineer/manager approvals. Required approvals are always presented prominently directly below the “Design Parameters” section. See Figure 1 for example “Required Approvals.”

Design Issues

This subsection presents special design considerations associated with a particular subject, if needed. These special considerations may include design goals from the perspective of other disciplines (e.g.: signal, signing, roadway, etc.), interactions with other subjects, special difficulties associated with the subject’s conceptualization or measurement, or special performance implications associated with the subject. The design issues subsection is for information only and does not convey any degree of mandate, recommendation, authorization, prohibition, or enforceable condition. See Figure 1 for example “Design Issues.”

52 **Figures and Tables**

53 This subsection provides a figure or table to augment the design parameters. This figure or table
54 provides information considered particularly important to the conceptualization and use of the
55 design parameters. It provides a visual representation of the design parameters (or some aspect
56 of the design parameters themselves), which are text based.

57 Design elements addressed in that section's design parameters have bubble call-outs that are
58 not grey-scaled and include a "required," "recommended," or "optional" header. Design
59 elements addressed in other sections or are included for context only have grey-scaled bubble
60 call-outs. See Figure 2 for example "Figures & Tables."

61 **Support**

62 This subsection briefly summarizes the rationale behind the design parameters. In particular,
63 the support subsection explains the logic, premises, assumptions, and related literature
64 associated with development of the design parameters. The focus is on information deemed
65 relevant to the subject. The support subsection can take many forms, including a brief review of
66 applicable literature, references to traditional design practice, or an analysis of relevant
67 information. See Figure 3 for example "Support."

68 The support subsection is presented primarily to help readers understand, explain, and justify
69 the design parameters. Also, because these design parameters are expected to be revised as
70 national standards are revised and as additional research results become available, this
71 subsection will be useful in future revisions of the Pavement Markings Manual. In particular,
72 the support subsection helps future developers determine how new information on pavement
73 marking design can or should be integrated into the existing design parameters.

74 The support subsection is for information only and does not convey any degree of mandate,
75 recommendation, authorization, prohibition, or enforceable condition.

76 **Cross References**

77 This subsection lists the subject titles and section numbers of other sections within the
78 Pavement Markings Manual that are relevant to the subject. See Figure 4 for example "Cross
79 References."

80 **Key References**

81 This subsection lists the references cited in the "Support" subsection. Each of these references
82 will have an assigned reference number that was used to note it within the "Support"
83 subsection. A complete reference section of all references used in the Pavement Markings
84 Manual is provided in the appendix. See Figure 4 for example "Key References."

85 3.2 Definitions

86 Terms used in this chapter are defined in MUTCD Section 1C.02 as modified by Section 1A.13 in
87 the Oregon Supplement to the MUTCD, with the exception of the following:

88 **Standard** – a statement of required, mandatory, or specifically prohibitive practice regarding a
89 traffic control device. All standard statements appear in bold type in design parameters
90 sections. The verb “shall” is typically used. The adjective “required” is typically used in figures
91 to illustrate standard statements. The verbs “should” and “may” are not used in standard
92 statements. The adjectives “recommended” and “optional” are only used in standard
93 statements to describe recommended or optional design features as they relate to required
94 design features. Standard statements are sometimes modified by options.

95 **Guidance** – a statement of recommended practice in typical situations, with deviations allowed
96 if engineering judgement or engineering study indicates the deviation to be appropriate. All
97 guidance statements appear in italicized type in design parameters sections. The verb “should”
98 is typically used. The adjective “recommended” is typically used in figures to illustrate
99 guidance statements. The verbs “shall” and “may” are not used in guidance statements. The
100 adjectives “required” and “optional” are only used in guidance statements to describe required
101 or optional design features as they relate to recommended design features. Guidance statements
102 are sometimes modified by options.

103 **Option** – a statement of practice that is a permissive condition and carries no requirement or
104 recommendation. Option statements sometimes contain allowable modifications to a standard
105 or guidance statement. All option statements appear in plain non-bold, non-italicized type in
106 design parameters sections. The verb “may” is typically used. The adjective “optional” is
107 typically used in figures to illustrate option statements. The verbs “shall” and “should” are not
108 used in option statements. The adjectives “required” and “recommended” are only used in
109 option statements to describe required or recommended design features as they relate to
110 optional design features.

111 **Support** – an informational statement that does not convey any degree of mandate,
112 recommendation, authorization, prohibition, or enforceable condition. Support statements are
113 labeled and the text appears in plain non-bold, non-italicized type. The words “shall,”
114 “required,” “should,” “recommended,” “may,” and “optional” are not used in support
115 statements.

116 3.3 Markings Used for Asset Management

117 Culvert locations are identified with pavement markings and ID markers to support
118 maintenance of these facilities. These markings and/or markers are not traffic control devices
119 and are beyond the scope of this manual; see the ODOT Hydraulics Manual for culvert field
120 marking requirements.

1 Pavement Marking Plans

Section 101

2 Introduction

3 Developing pavement marking plans is an opportunity to make sure layouts meet the standards
4 outlined in this manual and document how markings need to be installed or re-installed.

5 Relevant MUTCD Sections

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • MUTCD 11th Editions: 1A.04 Use of the MUTCD

8 Design Parameters

9 01 Pavement marking plans sealed by a registered professional engineer shall be developed
10 where existing pavement markings will be modified.

11 02 Pavement marking plans sealed by a registered professional engineer should be developed where
12 existing pavement markings will be replaced in-kind.

13 03 If pavement marking plans are not developed, a registered professional engineer should verify that
14 existing pavement markings conform to current standards and document existing pavement markings
15 to allow replacement-in-kind.

16 Support

17 Developing pavement marking plans is an opportunity to make sure pavement markings
18 conform to current standards (e.g.: verify and correct no-passing zones, legends, etc.), aids field
19 crews during construction, reduces the chance of installation errors, helps develop a more
20 accurate cost estimate, and documents the decisions of the engineer of record. Preservation
21 projects are the perfect time to consider changes to the existing pavement markings to address

Pavement Marking Plans**Section 101**

22 safety and efficiency issues (e.g.: changing a 4-lane section to 2-lanes with bike lanes and a two-
23 way left turn lane).

24 See the ODOT Pavement Marking Design Guidelines (1) for information on developing
25 pavement marking plans and information on pavement marking materials.

26 Pavement marking plans (including drawings, details, sketches, etc.) need a registered
27 professional engineer's seal according to ODOT policy, ODOT directives, and Oregon law (ORS
28 672.020).

29 **Key References**

30 1. Oregon Department of Transportation. *ODOT Pavement Marking Design Guidelines*, 2nd ed. Oregon Department of
31 Transportation, Salem, Oregon, 2011. http://www.oregon.gov/ODOT/Engineering/Documents_TrafficStandards/Pavement-Marking-Design-Guide.pdf.

33

1 Design Flexibility

Section 102

2 Introduction

3 Pavement markings communicate critical information to road users for safety and operations of
4 the road. Consistent and uniform use of markings is meant to provide a clear and effective way
5 to communicate this information to road users. Given the sheer number of road users that must
6 correctly receive and act on this information in a short amount of time, uniformity helps
7 improve understanding of these important messages.

8 However, just as language changes over time, it is important to provide a process to deviate
9 from design parameters to allow continuing advances in design techniques following research,
10 to allow the best design solution to a unique problem, and to accommodate evolution of
11 transportation technology.

12 Relevant MUTCD Sections

13 See the following sections for standards, guidance, and options not found in this manual:

- 14 • MUTCD 11th Edition: 1A.04 Use of the MUTCD

15 Design Parameters

16 01 A deviation from a guidance ("should") statement may be made if engineering judgement or
17 an engineering study indicates the deviation is appropriate.

18 02 *Deviations from guidance ("should") statements should be documented in a design narrative or
19 similar format and filed with the Region Traffic office.*

20 Required Approvals

21 Deviations from standard ("shall") statements require state traffic engineer approval. In some
22 cases, these deviations might also require an experimental approval from FHWA following the
23 experimentation process in MUTCD Section 1A.10.

24 The level of approval needed for a deviation from a guidance ("should") statement needs to be
25 based on a risk assessment of the deviation in consultation with the region traffic
26 engineer/manager.

27 Support

28 To a large extent, the traveling public relies heavily on pavement markings for guidance,
29 vehicle positioning, and information. Road users could be confused and uncertain of the
30 purpose of a marking unless the same marking always conveys the same meaning. The
31 experimental process helps ensure new devices are introduced in a controlled and well
32 documented way so engineers can learn what works and what doesn't, what effect new devices
33 have on road users, and how the device should be implemented in the future, if at all. The
34 experimentation process is outlined in MUTCD (1) Section 1A.10.

35 Key References

36 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
37 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

38

1 Colors

Section 110

2 Introduction

3 Pavement marking colors convey specific messages to road users.

4 Relevant MUTCD Sections

5 See the following sections for standards, guidance, and options not found in this manual:

- 6 • [MUTCD 11th Edition: 3A.03 Colors](#)
- 7 • [MUTCD 11th Edition: Chapter 3H. Colored Pavement](#)
- 8 • [MUTCD 11th Edition: Chapter 3F. Markings for Toll Plazas](#)

9 Design Parameters

10 01 The color for markings shall conform to the standard highway colors specified in the
11 "Color Specifications for Retroreflective Sign and Pavement Marking Materials"
12 (appendix to subpart F of Part 655 of Title 23 of the Code of Federal Regulations).

13 02 Pavement markings shall be yellow, white, red, blue, purple, or green in color. Unless
14 otherwise specified in this manual, the colors for pavement markings shall conform to
15 standard highway colors and the following basic concepts:

- 16 • When used, yellow lines separate opposing flows of traffic; the left edge of the
17 roadways of divided and one-way highways and ramps; and the separation of two-
18 way left turn lanes and reversible lanes from other lanes.
- 19 • When used, white lines separate lanes of traffic flowing in the same general
20 direction, mark the right edge of travel lanes, or mark both the right-hand and left-
21 hand edge of a reversible roadway. Transverse markings (crosswalks, words,
22 symbols, etc.) shall be white unless otherwise specified in this manual.
- 23 • When used, red raised pavement markers delineate one-way roadways, ramps, or
24 travel lanes that shall not be entered or used in the direction from which the markers
25 are visible (i.e. wrong way treatments), and truck escape ramps.
- 26 • When used, blue markings supplement white markings for parking spaces for
27 persons with disabilities.
- 28 • When used, purple markings shall be in accordance with the provisions of Chapter
29 3F of the MUTCD to identify toll plaza approach lanes restricted to use only by
30 vehicles with registered electronic toll collection accounts.
- 31 • When used, green colored pavement supplements bicycle lane markings to enhance
32 the conspicuity of a bicycle lane or extension of a bicycle lane.

Colors

Section 110

33 • When used, red colored pavement enhances the conspicuity of travel lanes and
34 locations reserved for the exclusive use of transit vehicles.

35 03 Black may be used as a border color of the five colors above where a light-colored pavement
36 does not provide sufficient contrast with the markings.

37 04 Colored truck aprons may be used on the state highway system.

Required Approvals

39 State traffic engineer approval is required for use of colored truck aprons on the state highway
40 system. See the Traffic Manual Section 310.7 for more details.

41 See cross referenced sections for more details on other markings that may require approvals.

Design Issues

43 Improper use of colors can lead to conspicuity issues for visually impaired users. See Section
44 630 for more information around markings on curbs and near detectable warning surfaces. Also
45 see the ODOT Highway Design Manual Section 821.1.2 for more information on detectable
46 warning surfaces.

Support

48 Standard color specifications are set in Federal Regulations under 23 CFR 655 and are available
49 on the MUTCD website (1) and in ASTM D6628 (2).

50 The color of longitudinal lines are generally effective at conveying one- or two-way
51 directionality of a roadway, though road users tend to use signs and other traffic as primary
52 cues to determine directionality (3).

53 Green colored and red colored markings have been added to the 11th edition of the MUTCD and
54 are no longer interim approvals. See Section 413 for more information on green colored
55 markings and Section 531 for more information on red colored markings.

56 The use of red-backed RPMs is covered in Section 361 Interchange Ramps: Ramp Terminals. See
57 Section 361 for use and approvals required for red-backed RPMs.

Cross References

59 Design Flexibility	Section 102
60 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
61 Transverse Markings	Section 125
62 Raised Pavement Markers	Section 130
63 RPMs Used for Supplementation	Section 131
64 RPMs Used for Positioning Guides	Section 132
65 Typical Layouts for RPMs	Section 133
66 Tubular Markers & Lane Separators	Section 140

Colors**Section 110**

67	Other Channelizing Devices	Section 146
68	Stop Bars	Section 150
69	Yield Lines	Section 151
70	Lane Use Arrows	Section 160
71	Center Lines	Section 210
72	No-Passing Zone Markings	Section 211
73	Lane Lines	Section 220
74	Edge Lines	Section 230
75	Lane-Reduction Transitions	Section 250
76	Traversable Medians	Section 260
77	Two-Way Left Turn Lanes	Section 261
78	Channelizing Lines and Traversable Channelizing Islands	Section 270
79	Approach to a Fixed Obstruction	Section 280
80	Non-Traversable Medians & Channelizing Islands	Section 281
81	Left Turn Lanes	Section 310
82	Added Right Turn Lanes	Section 320
83	Channelized Right-Turn Lanes	Section 321
84	Dropped Lanes and Auxiliary Lanes on Conventional Roads	Section 330
85	Line Extensions Through Intersections	Section 340
86	Roundabouts	Section 350
87	Interchange Ramps: Exit & Entrance Ramps	Section 360
88	Interchange Ramps: Ramp Terminals	Section 361
89	Bicycle Lanes	Section 410
90	Bicycle Lane End Transitions	Section 411
91	Bicycle Lane Buffers	Section 412
92	Colored Pavement in Bicycle Lanes	Section 413
93	Intersection Bicycle Box	Section 414
94	Shared-Lane Markings	Section 420
95	Marked Crosswalks	Section 430
96	Shared-Use Path Markings	Section 440
97	Railroad Crossing Markings	Section 510
98	Bus Pullouts	Section 520
99	Preferential Lane Markings	Section 530
100	Colored Pavement in Transit Lanes	Section 531
101	School Markings	Section 610
102	Ramp Meters	Section 620
103	Parking Space and Curb Markings	Section 630
104	Freeway Median Crossovers	Section 640
105	Cattle Guard Markings	Section 650
106	Slow Moving Vehicle Turnouts	Section 660

Key References

1. Federal Highway Administration. MUTCD Color Specifications. *Manual on Uniform Traffic Control Devices*, October 20, 2015. <http://mutcd.fhwa.dot.gov/kno-colorspec.htm>. Accessed November 24, 2015.

Colors**Section 110**

110 2. ASTM International. (2016) ASTM D6628: Standard Specification for Color of Pavement Marking Materials.
111 [Online]. <https://www.astm.org/cgi-bin/resolver.cgi?D6628>. DOI: <https://doi.org/10.1520/D6628-16>

112 3. Parham, A. H., K. N. Womack, and H. G. Hawkins Jr. Driver Understanding of Pavement Marking Colors and
113 Patterns. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol.
114 1844, 2003, pp. 35-44. <http://trrjournalonline.trb.org/doi/abs/10.3141/1844-05>. DOI: <http://dx.doi.org/10.3141/1844-05>

115

116

1 Functions, Widths, and Patterns 2 of Longitudinal Lines

Section 120

3 Introduction

4 The width and pattern of longitudinal lines communicate different meanings to road users and
5 define how the road will be used.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3A.04 Functions, Widths, and Patterns of Longitudinal Pavement](#)
9 [Markings](#)
- 10 • [Oregon Supplement to the MUTCD- 11th Edition Section 3A.04 Functions, Widths, and](#)
11 [Patterns of Longitudinal Pavement Markings](#)

12 Design Parameters

13 01 The general functions of longitudinal lines shall be:

- 14 • A solid line discourages or prohibits crossing.
- 15 • A double line indicates maximum or special restrictions.
- 16 • A broken line indicates a permissive condition.
- 17 • A dotted lane line provides warning of a downstream change in lane function.
- 18 • A dotted line used as a lane line or edge line extension guides vehicle through an
19 intersection, a taper area, or an interchange ramp area.

20 02 The widths and patterns of longitudinal lines shall be as follows:

- 21 • Normal line – 4 inches wide.
- 22 • Wide line – 8 inches wide.
- 23 • Double line – two normal-width parallel lines separated by 12 inches for a standard
24 double line or 4 inches for a narrow double line.
- 25 • Broken line – 10-foot segments of normal width line separated by 30-foot gaps.
- 26 • Dotted line – 2-foot line segments separated by shorter gaps than used for a broken
27 line. The width of a dotted line extension shall be at least the same as the width of
28 the line it extends.
- 29 • A dotted line for line extensions within an intersection or taper area should have 2- to 6-foot
30 gaps.

Functions, Widths, and Patterns of Longitudinal Lines

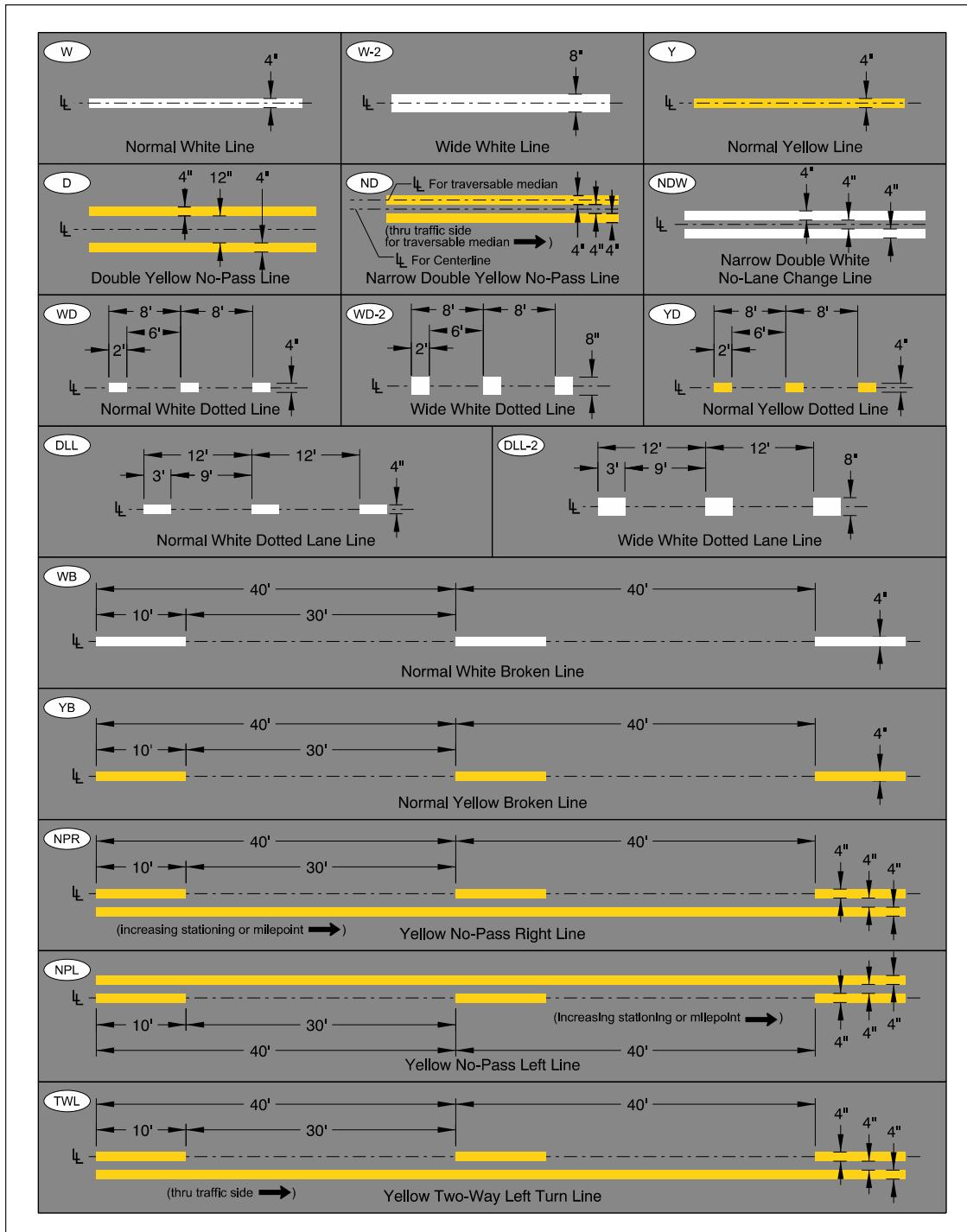
Section 120

31 • Dotted lane line – 3-foot line segments separated by 9-foot gaps.

32 • One-direction no-passing line or a two-way left turn line – a normal width solid line

33 parallel to a broken line separated by a 4-inch space.

Design Issues


35 Solid double white lines are not defined in statute as prohibiting lane changes; these restrictions
36 are communicated through signing. Signing associated with lane line crossing prohibitions,
37 such as "NO LANE CHANGES NEXT XXXX FT" (OR22-16) and/or "NO LANE CHANGES
38 NEXT ½ MILE" (OR22-17) signs, can be found in the Sign Policy and Guidelines.

Functions, Widths, and Patterns of Longitudinal Lines

Section 120

Figures & Tables

40 Figure 120: Longitudinal Line Types

Functions, Widths, and Patterns of Longitudinal Lines

Section 120

42 Support

43 Line patterns and widths come from Section 3A.04 of the 11th Edition MUTCD (1).
44 The MUTCD only requires parallel double lines be separated by a “discernable” gap and
45 recommends a gap not exceeding two times the width of a single line. In the Oregon
46 supplement to the MUTCD Oregon has changed the recommendation to be not greater than 12
47 inches instead. ODOT’s standard gap of 12 inches for standard double lines and 4 inches for
48 narrow double lines has been used since at least 1976. There is no documentation why 12 inches
49 was chosen for standard double lines, but there are several possible reasons it has remained
50 standard practice, including:

- 51 1) Keeps the location of centerlines constant as the pattern transitions between YB, NPR,
52 NPL, and D lines by using a 3-gun equipment setup.
- 53 2) Striping equipment capabilities.
- 54 3) Aesthetically pleasing.
- 55 4) Provides slightly more separation between opposing traffic (12 inches vs. 4 inches).

56 Possible reasons for the 4-inch gap for narrow double lines includes consistency with the width
57 of normal lines and easier re-trace compared to narrower gaps (the 1966 Traffic Line Manual
58 used a gap as small as 2.5 inches). Even though a wider gap results in a visually wider target,
59 increasing the gap width does not appear to significantly affect the distance at which road users
60 can first detect the line (2).

61 Much like bold typeface, the wide lines communicate greater emphasis (1). For example, wide
62 lines are used at gore points to provide greater visual guidance that a ramp splits away from the
63 mainline road at that point. Similarly, a wide dotted lane line is used prior to a dropped lane as
64 an added emphasis that the lane will be taking the road user somewhere else soon (like an exit
65 only lane or right turn only lane).

66 Longitudinal line patterns have remained uniform at 1:3 for many decades; however, past
67 editions of the MUTCD used a 3:5 ratio (as late as the 1970s). This was based on long-standing
68 practice by states for rural highways using a 15-foot long line with a 25-foot gap for a total cycle
69 length of 40 feet (3).

70 The energy crisis in the mid-1970s caused the cost of traffic paint to double or triple and
71 suppliers were unable to furnish enough paint to sustain basic pavement marking operations.
72 Several states experimented with alternative skip-gap pattern lengths to reduce paint
73 consumption while still conveying the same meaning as the 3:5 ratio. That experimentation
74 resulted in the 1:3 ratio used today, which provides logistical and financial benefits with no
75 discernible negative effects on safety compared to the 3:5 ratio. Most states adopted the 1:3
76 ratio or switched to that ratio to achieve financial savings, and the National Committee on

Functions, Widths, and Patterns of Longitudinal Lines

Section 120

77 Uniform Traffic Control Devices adopted the ratio in 1974 resulting in a change to the 1978
78 MUTCD (3).

79 Dotted lines first appeared in the 1971 MUTCD to extend a line through an intersection or
80 interchange area. Today, these are used to extend lines through breaks for intersections and
81 other conflict areas. Dotted lines are 2 feet long with a 6-foot gap; ODOT plans use the WD
82 bubble note for white dotted lines and YD for yellow dotted lines.

83 Dotted lane lines first appeared in the 2003 MUTCD following research in the mid-1990s (4) (5)
84 on ways to improve road user understanding of an impending change in the function of a lane
85 (e.g.: dropped lane). These are used as a different pattern on a lane line to communicate a
86 change in the function of a lane. Dotted lane lines are 3 feet long with a 9-foot gap; ODOT plans
87 use the DLL bubble note for white dotted lane lines and DLL-2 for wide white dotted lane lines.

Cross References

89 Colors	Section 110
90 Raised Pavement Markers	Section 130
91 RPMs Used for Supplementation.....	Section 131
92 RPMs Used for Positioning Guides.....	Section 132
93 Center Lines	Section 210
94 No-Passing Zone Markings.....	Section 211
95 Lane Lines	Section 220
96 Edge Lines.....	Section 230
97 Lane Reduction Transitions	Section 250
98 Lane Addition Transition & No-Passing Zones in 3-Lane Sections	Section 251
99 Traversable Medians.....	Section 260
100 Two-Way Left Turn Lanes	Section 261
101 Channelizing Lines and Traversable Channelizing Islands.....	Section 270
102 Non-Traversable Medians & Channelizing Islands	Section 281
103 Left Turn Lanes	Section 310
104 Added Right Turn Lanes	Section 320
105 Channelized Right-Turn Lanes	Section 321
106 At-Grade Acceleration Lanes	Section 322
107 Dropped Lanes and Auxiliary Lanes on Conventional Roads.....	Section 330
108 Line Extensions Through Intersections	Section 340
109 Roundabouts	Section 350
110 Interchange Ramps: Exit & Entrance Ramps	Section 360
111 Interchange Ramps: Ramp Terminals	Section 361
112 Bicycle Lanes.....	Section 410
113 Bicycle Lane End Transitions	Section 411
114 Bicycle Lane Buffers	Section 412
115 Marked Crosswalks	Section 430
116 Shared-Use Path Markings	Section 440
117 Railroad Crossing Markings	Section 510

Functions, Widths, and Patterns of Longitudinal Lines

Section 120

118	Bus Pullouts	Section 520
119	Ramp Meters	Section 620
120	Slow Moving Vehicle Turnouts	Section 660

121 Key References

- 122 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. 123 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 124 2. Zwahlen, H. T., T. Schnell, and T. Hagiwara. Effects of Lateral Separation Between Double Center-Stripe 125 Pavement Markings on Visibility Under Nighttime Driving Conditions. *Transportation Research Record: Journal of* 126 *the Transportation Research Board of the National Academies*, Vol. 1495, 1995, pp. 87-98. <http://onlinepubs.trb.org/> 127 [Onlinepubs/trb.org/1995/1495/1495-011.pdf](http://onlinepubs.trb.org/1995/1495/1495-011.pdf).
- 128 3. Federal Highway Administration. Frequently Asked Questions - Part 3 - Markings. *Manual on Uniform Traffic 129 Control Devices*, October 20, 2015. http://mutcd.fhwa.dot.gov/knowledge/faqs/faq_part3.htm. Accessed July 6, 130 2016.
- 131 4. Fitzpatrick, K., M. Ogden, and T. Lienau. Motorists' Comprehension of Exit Lane Drop Signs and Markings. 132 *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1464, 1994, pp. 51-59. <http://onlinepubs.trb.org/Onlinepubs/trb.org/1994/1464/1464-007.pdf>.
- 134 5. Fitzpatrick, K., M. Lance, and T. Lienau. Effects of Pavement Markings on Driver Behavior at Freeway Lane Drop 135 Exits. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1495, 1995, pp. 17-27. <http://onlinepubs.trb.org/Onlinepubs/trb.org/1995/1495/1495-003.pdf>.

137

1 Transverse Markings

Section 125

2 Introduction

3 Transverse markings include shoulder markings, word and symbol markings, arrows, stop
4 bars, yield lines, crosswalk bars, speed hump markings, and parking space markings, among
5 others. They are used for the purpose of regulating, warning, and guiding traffic.

6 Relevant MUTCD Sections

7 See the following for additional standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: 3B.19 through 3B.30
- 9 • MUTCD 11th Edition: 3C Crosswalk Markings
- 10 • Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines

11 Design Parameters

12 01 Pavement Marking letters, numerals, symbols, and arrows shall be white in color, except
13 as provided in Section 3B.20 of the 11th Edition of the MUTCD, and in conformance with
14 the design details in the Pavement Markings chapter of FHWA's "Standard Highway
15 Signs and Markings" publication.

16 02 Word and symbol markings should be centered within the lane to which they apply.

17 03 If a pavement marking word message consists of more than one line of information, it should read in
18 the direction of travel. The first word of the message should be nearest to the road user.

19 04 Except for the word message "BIKE LANE," pavement marking word messages meant for
20 bicyclists may read against the direction of travel (the first word of the message may be
21 farthest from the bicyclist).

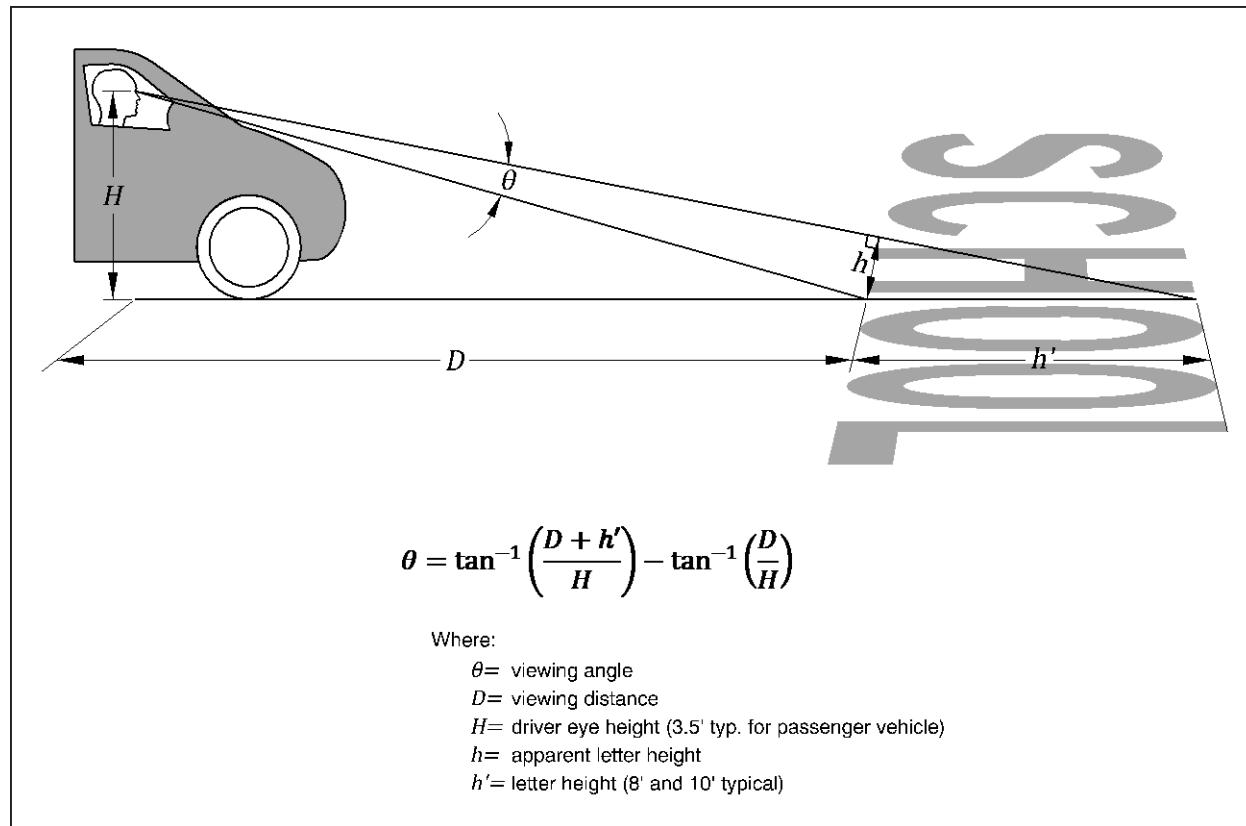
22 05 Except for the two opposing white arrows of a two-way left turn lane marking and the pavement word
23 marking messages described in Items B and D of Paragraph 2 of MUTCD section 3B.26, the
24 longitudinal space between word, symbol, and or arrow markings that are used together to formulate
25 one interrelated message should be at least four times the height of the characters for low-speed roads,
26 but no more than ten times the height of the characters under any conditions.

27 06 Except for the SCHOOL word marking (see Section 610), pavement word, symbol, and arrow
28 markings should be no more than one lane in width.

29 07 The word STOP shall not be placed on the pavement in advance of a stop line, unless
30 every vehicle is required to stop at all times.

31 Design Issues

32 Design parameters related to specific transverse markings are provided throughout the Traffic
33 Line Manual. See the cross references of this section.


Transverse Markings**Section 125**

34 Warning message word legends like SCHOOL XING and STOP AHEAD are typically placed at
35 the same location as the warning signs they supplement.

36 Green colored pavement is a type of transverse marking treatment. See Section 413 for design
37 parameters and more information.

Figures & Tables

39 Figure 125: Viewing Angle of Transverse Pavement Marking

Support

42 Approximately 90 percent of the driving task is related to obtaining visual information from the
43 road to maneuver the vehicle safely. Drivers' visual fixations are predominantly within their
44 own lane – approximately 80 percent of driver fixations are within the central 15 degrees of
45 visual field (1). Additionally, when drivers experience a high-stress situation or are presented
46 with too much information, drivers tend to focus on more important tasks and focus on the
47 road ahead and less on side or overhead-mounted signing (1). Transverse markings have the
48 unique ability to place regulation, warning, and guidance messages centered within the drivers'
49 visual field, even in complex driving situations.

Transverse Markings

Section 125

50 One illustration of this benefit is a STOP AHEAD legend. At stop-controlled intersections with a
51 high frequency of right-angle and rear-end crashes, particularly where driver awareness might
52 be an issue, adding a STOP AHEAD legend on approaches controlled by a STOP sign can
53 significantly reduce total and injury crashes (2).

54 Transverse markings are elongated along the direction of approaching traffic because of the low
55 approach angles at which pavement markings are viewed. As a road user approaches a
56 transverse marking, the transverse marking appears to get taller (apparent height is a tangent
57 function of the distance the marking is being viewed at, shown in Figure 125). Elongating
58 transverse markings along the direction of approaching traffic increases the distance road users
59 can see, recognize, and act upon a transverse marking's message (3) (4) (5), though there is a
60 practical limit to how much a transverse marking can be elongated before it becomes distorted
61 (5).

62 If used, word markings typically supplement standard signs because word markings will
63 provide less reading time of the message compared to standard signs (6). For example, the
64 minimum MUTCD recommendation for letter height on signs is 1 inch of letter height per 30
65 feet of legibility distance (7) (angle of about 9.5 minutes of visual arc), which accommodates
66 drivers with compromised vision (human factors research has suggested a person with 20/20
67 vision can correctly identify objects that encompass about 0.5 minutes of visual arc (6)). Using a
68 passenger vehicle driver eye height of 3.5 feet, a standard 8-foot tall word legend will achieve
69 the minimum MUTCD sign letter viewing angle at approximately 95 feet from the legend; a 10-
70 foot tall legend will achieve this at approximately 105 feet. Even at lower speeds, this only
71 accommodates 2-3 seconds of reading time before the driver passes over the marking.

72 Pavement marking arrows also provide a shorter viewing distance than lane use arrows on
73 signs (3). This is one reason multiple arrows are used at turn lanes, or if just one arrow is used,
74 it is used at the beginning of the turn lane. Providing early guidance in the turn lane gives road
75 users time to choose the appropriate lane before reaching the intersection.

76 Diagonal crosshatch markings are transverse markings. The color depends on the direction of
77 traffic relative to the chevron and diagonal crosshatch marking. See Sections 260 and 270 for
78 more information.

Cross References

79

80 Colors	Section 110
81 Stop Bars	Section 150
82 Yield Lines	Section 151
83 Lane Use Arrows	Section 160
84 Lane Reduction Transitions	Section 250
85 Lane Addition Transition & No-Passing Zones in 3-Lane Sections	Section 251
86 Traversable Medians	Section 260
87 Two-Way Left Turn Lanes	Section 261
88 Approach to a Fixed Obstruction	Section 280
89 Left Turn Lanes	Section 310

Transverse Markings**Section 125**

90	Added Right Turn Lanes	Section 320
91	Channelized Right-Turn Lanes	Section 321
92	Dropped Lanes and Auxiliary Lanes on Conventional Roads.....	Section 330
93	Roundabouts.....	Section 350
94	Interchange Ramps: Ramp Terminals	Section 361
95	Bicycle Lanes	Section 410
96	Bicycle Lane Buffers	Section 412
97	Colored Pavement in Bicycle Lanes	Section 413
98	Intersection Bicycle Box	Section 414
99	Bicycle Detector Markings	Section 416
100	Shared Lane Markings	Section 420
101	Marked Crosswalks	Section 430
102	Railroad Crossing Markings	Section 510
103	Bus Pullouts	Section 520
104	Preferential Lane Markings.....	Section 530
105	School Markings	Section 610
106	Ramp Meters	Section 620
107	Parking Space and Curb Markings	Section 630
108	Cattle Guard Markings	Section 650

Key References

1. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.
2. Gross, F., R. Jagannathan, C. Lyon, and K. Eccles. Safety Effectiveness of "Stop Ahead" Pavement Markings. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2056, 2008, pp. 25-33. <http://trrjournalonline.trb.org/doi/abs/10.3141/2056-04>. DOI: <http://dx.doi.org/10.3141/2056-04>
3. Zwahlen, H. T., T. Schnell, and S. Miescher. Recognition Distances of Different Pavement Arrow Designs During Daytime and Nighttime. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1692, 1999, pp. 119-128. <http://trrjournalonline.trb.org/doi/pdf/10.3141/1692-13>. DOI: <http://dx.doi.org/10.3141/1692-13>
4. Ullman, B. R., M. D. Finley, S. T. Chrysler, N. D. Trout, A. A. Nelson, and S. Young. Guidelines for the Use of Pavement Marking Symbols at Freeway Interchanges. Texas Transportation Institute, College Station, TX, FHWA/TX-10/0-5890-1, 2010. <http://tti.tamu.edu/documents/0-5890-1.pdf>.
5. Chitturi, M. V., I. Alsghan, K. R. Santiago, and D. A. Noyce. Field Evaluation of Elongated Pavement Marking Signs. *Transportation Research Record: Journal of the Transportation Research Board Online*, Vol. 2624, 2017, pp. 28-37. <http://trrjournalonline.trb.org/doi/abs/10.3141/2624-04>. DOI: <https://doi.org/10.3141/2624-04>
6. Chrysler, S. T., and S. D. Schrock. Field Evaluations and Driver Comprehension Studies of Horizontal Signing. Texas Transportation Institute, College Station, Texas, FHWA/TX-05/0-4471-2, 2005. <http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-4471-2.pdf>.
7. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 2009 ed. Federal Highway Administration, Washington, D.C., 2012. <https://mutcd.fhwa.dot.gov/>.

1 Raised Pavement Markers

Section 130

2 Introduction

3 Raised pavement markers (RPMs) are raised delineation devices installed on a roadway surface
4 or in a groove to enhance the centerline, lane line(s), and other areas requiring additional
5 emphasis (such as gore areas). RPMs provide better visibility over painted or durable lines
6 during wet-weather conditions, especially at night. They also provide a tactile and auditory
7 warning when vehicle tires cross over them.

8 Relevant MUTCD Sections

9 See the following for additional standards, guidance, and options not found in this manual:

- 10 • MUTCD 11th Edition: 3B.14 through 3B.17

11 Design Parameters

12 01 The color of raised pavement markers under both daylight and nighttime conditions shall
13 conform to the color of the marking for which they serve as a positioning guide, or for
14 which they supplement or substitute. Non-retroreflective RPMs shall not substitute for
15 other types of pavement markings unless accompanied by retroreflective markers.

16 02 On freeways with an average annual daily traffic (AADT) of 20,000 vehicles per day or greater,
17 RPMs should be used to supplement lane lines and wide white channelizing lines at exit gore areas.

18 03 On non-freeways, RPMs should be used in accordance with the Region RPM Plan. The Region RPM
19 Plan should consider using RPMs in locations with a history of wet weather nighttime crashes.

20 04 RPMs should be installed such that directional configurations of reflective and non-reflective surfaces
21 minimize visibility of information to road users that does not apply to them.

22 05 RPMs should not be used within bicycle lanes and should not be used to substitute a line separating
23 bicycle lanes from adjacent travel lanes. At locations where a bicycle lane is adjacent to a line
24 supplemented with RPMs or where RPMs are used as positioning guides, the RPMs should be
25 positioned outside the bicycle lane and the spacing should be long enough to allow safe passage if a
26 bicyclist leaves the bicycle lane.

27 06 If used, RPMs should be recessed in snow zones and on roadways that are frequently plowed (see
28 Figures 130-A and 130-B).

29 07 Where used, RPMs may function as:

- 30 • A supplement for longitudinal pavement markings,
- 31 • Vehicle positioning guides,
- 32 • A location marker for fire hydrants, and
- 33 • Advance warning for freeway median crossovers.

34 08 Blue RPMs may be used to help emergency personnel locate fire hydrants.

Raised Pavement Markers**Section 130**

35 09 RPMs may be used to supplement other markings such as channelizing islands, gore areas,
36 or approaches to obstructions.

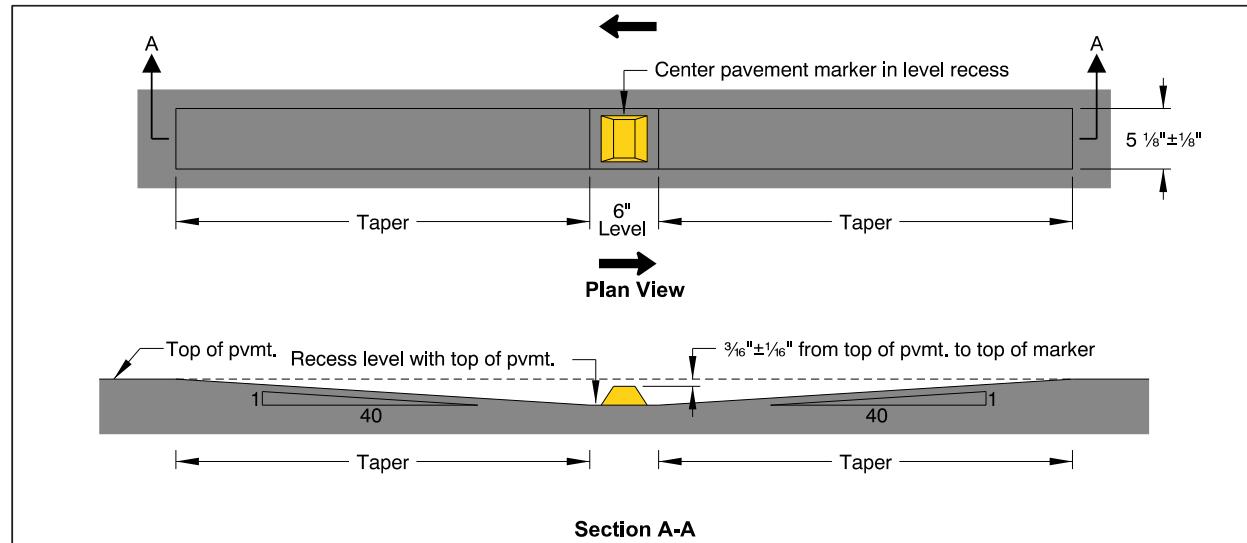
37 10 RPMs may be used in the roadway immediately adjacent to curbed approach ends of raised
38 medians and curbs of islands, or on top of such curbs.

39 **Design Issues**

40 Replacement of RPMs depends mostly on exposure to traffic and is generally within 2-4 years
41 (1).

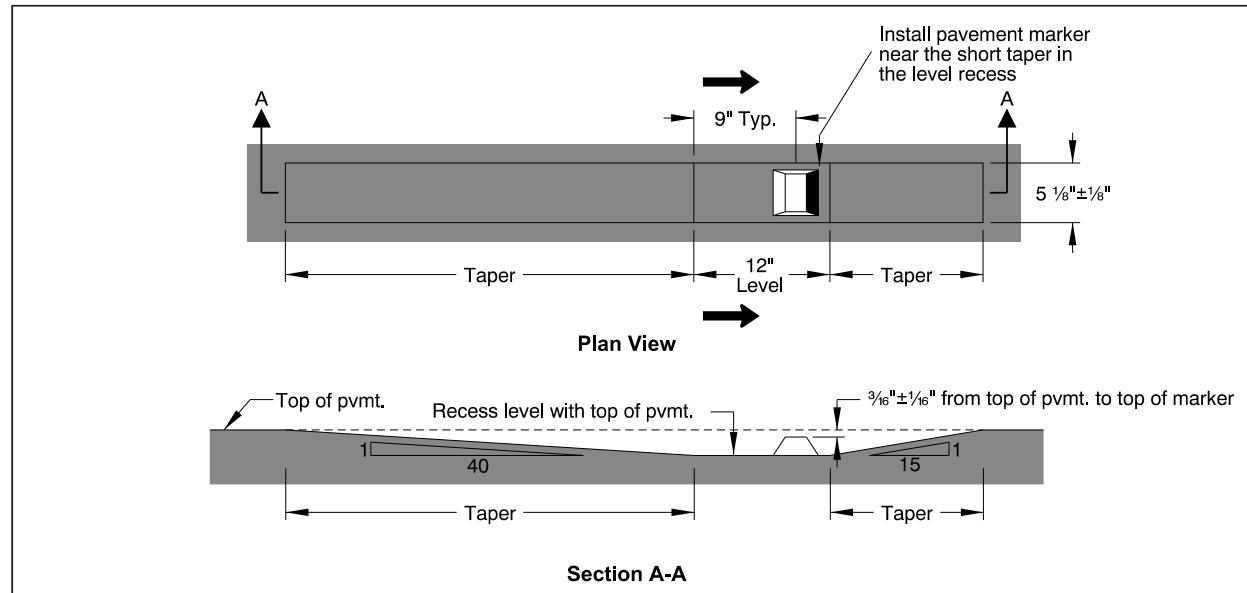
42 Surface-installed RPMs provide better guidance to road users than recessed RPMs in dry and
43 wet weather conditions, but RPMs are susceptible to damage and removal from traffic and
44 plowing. This damage can be reduced by recessing the RPM below the roadway surface (1).

45 Recessed RPMs do not perform as well as raised RPMs under dry and wet weather conditions.
46 Grooves tend to seasonally collect rain, snow, ice, or debris that obscures part of the RPM.
47 Moving traffic helps clean the top of the groove so recessed markers remain visible (1).
48 However, a recessed RPM that collects debris but remains in service through a winter is better
49 than a surface mounted RPM that will be removed by the first plow blade of the season. The
50 groove is designed to reflect part of the RPM's reflective surface from 200 feet with a headlight
51 2.0 feet above the pavement surface. At highway speeds on level roadways, this provides the
52 minimum preview distance for lane keeping (2.0-2.5 seconds).


53 Contact Construction Section's Pavement Services Unit early in the project planning process for
54 all installations of recessed RPMs due to pavement type and condition being considerations in
55 using recessed RPMs.

56 Recessed RPMs are not allowed on concrete bridge decks, see Section 1.9 of the Bridge Design
57 Manual for more information.

58 Edge line RPMs can be mistaken for lane lines if not very close together and can be difficult to
59 ride over on a bicycle. There are areas where it can be beneficial: lane reduction transitions,
60 pinch points of reduced lane width (e.g.: narrow structures), and freeway exit gore areas.


Raised Pavement Markers**Section 130****Figures & Tables**

62 Figure 130-A: Bi-Directional Recessed Pavement Marker Detail

63

64 Figure 130-B: Mono-Directional Recessed Pavement Marker Detail

65

Support

67 At higher speeds, road users need to see the roadway farther ahead. Human factors studies
 68 estimate this distance is 2-3 seconds to maintain lane position; 3-5 seconds to feel comfortable
 69 with changes in the roadway path. Raised pavement markers (RPMs) increase preview distance

Raised Pavement Markers

Section 130

70 and guidance for road users, especially in inclement weather and low-light conditions, and
71 provides a tactile and auditory warning to smaller vehicles when tires hit the RPMs (1).
72 Improved delineation from RPMs affects lane control and speed control – two types of driver
73 behavior that affects safety at night and in poor visibility (1). RPMs provide longer wet-night
74 detection distance than any pavement marking material - even marking materials designed for
75 wet weather performance (2), and visibility of RPMs can be better than visibility of paint under
76 all weather conditions even after the RPMs have been in service for multiple years (1).
77 Well-maintained RPMs can also reduce the need for high levels of pavement marking
78 retroreflectivity. RPMs can provide enough preview information to nighttime drivers that the
79 pavement markings are mainly needed for short-distance visual information required for lateral
80 placement control of the vehicle. Many marking materials can provide sufficient
81 retroreflectivity to accommodate most drivers at 55 mph and lower when the marking is new,
82 but cannot maintain that needed level of retroreflectivity over the life of the material. Adding
83 RPMs makes it possible to accommodate most drivers' preview distance needs, even at high
84 speeds (3).
85 The use of red-backed RPMs is covered in Section 361 Interchange Ramps: Ramp Terminals. See
86 Section 361 for use and approvals required for red-backed RPMs.
87 NCHRP project 05-21 is underway to develop a more robust guide on use and placement of
88 RPMs; design parameters in this section will be updated following publication from this
89 NCHRP project (4).

2-Lane Roadways

90 Blanket, non-selective implementation of RPMs on 2-lane roadways does not significantly
91 change frequency of total or nighttime crashes. Locations selected on the basis of wet weather
92 nighttime crash history show positive safety effects for total and nighttime crashes (1).
93 Drivers tend to move away from delineation measures like RPMs. When used with a centerline,
94 this can reduce head-on crashes but could increase run-off-the-road crashes, especially on
95 roadways with narrow or no shoulders (1).
96 Improved delineation decreases driver workload and drivers could compensate by increasing
97 speed. This is most important where drivers already operate close to the side friction margin of
98 safety, such as on sharp curves. RPMs on curves with a degree of curvature greater than 3.5
99 (radius <1600 ft.) could cause an increase in nighttime non-intersection crash frequency on two-
100 lane roads. Conversely, run-off-the-road and head-on crashes during wet nights could be
101 reduced from RPMs on gentle curves where demanded side friction remains well below side
102 friction capacity (1).
103 On sharper curves (radius <1600 ft.) other delineation measures such as delineators and
104 especially chevrons are effective devices to guide road users and reduce road departure crashes
105 (5) (6) (7).

107 **Freeway-Type Facilities**

108 Lane line RPMs on freeway-type facilities decrease nighttime crashes with increasing benefits as
109 traffic volume increases. Most benefits come from a decrease in guidance-related crashes
110 (sideswipe/lane keeping) and decreases in wet-weather-related crashes. RPMs are most effective
111 in reducing nighttime crashes when the AADT exceeds 20,000 vehicles per day. Speed could
112 increase with improved delineation on freeway-type facilities, but these are built to higher
113 standards so it is unlikely that small speed increases will cause drivers to operate at or close to
114 the side friction margin of safety, though increased speed does increase stopping and weaving
115 distances. RPMs in gore areas also reduce the frequency of encroachment in the gore (1).

116 **Cross References**

117 Colors	Section 110
118 RPMs Used for Supplementation	Section 131
119 RPMs Used for Positioning Guides	Section 132
120 Non-Traversable Medians & Channelizing Islands	Section 281
121 Freeway Median Crossovers	Section 640

122 **Key References**

- 123 1. Bahar, G., C. Mollett, B. Persaud, C. Lyon, A. Smiley, T. Smahel, and H. McGee. NCHRP Report 518: Safety
124 Evaluation of Permanent Raised Pavement Markers. Transportation Research Board, Washington, D.C., ISBN 0-
125 309-08790-2, 2004. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_518.pdf.
- 126 2. Carlson, P. J., J. D. Miles, A. M. Pike, and E. S. Park. Evaluation of Wet-Weather and Contrast Pavement Marking
127 Applications: Final Report. Texas Transportation Institute, Texas A&M University System, College Station, TX,
128 FHWA/TX-07/0-5008-2, 2007. <http://tti.tamu.edu/documents/0-5008-2.pdf>.
- 129 3. Migletz, J., and J. Graham. NCHRP Synthesis 306: Long-Term Pavement Marking Practices. Washington, D.C.,
130 2002. <http://www.trb.org/Main/Blurbs/152126.aspx>.
- 131 4. Transportation Research Board. NCHRP 05-21: Safety and Performance Criteria for Retroreflective Pavement
132 Markers. <http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=3859>. Accessed May 4, 2017.
- 133 5. Fitzpatrick, K., K. Balke, D. W. Harwood, and I. B. Anderson. NCHRP Report 440: Accident Mitigation Guide for
134 Congested Rural Two-Lane Highways. Transportation Research Board of the National Academies, Washington,
135 D.C., ISBN 0-309-06627-7, 2000.
- 136 6. Torbic, D. J., D. W. Harwood, D. K. Gilmore, R. Pfefer, T. R. Neuman, K. L. Slack, and K. K. Hardy. NCHRP
137 Report 500 Volume 7: A Guide for Reducing Collisions on Horizontal Curves. Transportation Research Board of
138 the National Academies, Washington, D.C., ISBN 0-309-08760-0, 2004. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v7.pdf.
- 140 7. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and
141 D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.

1 **RPMs Used for Supplementation** **Section 131**

2 **Introduction**

3 Raised pavement markers supplementing longitudinal lines convey information about where
4 lines are located and information about passing and lane-use restrictions.

5 **Relevant MUTCD Sections**

6 See the following for additional standards, guidance, and options not found in this manual:

- 7 • [MUTCD 11th Edition: 3B.16 Raised Pavement Markers Supplementing Other Markings](#)

8 **Design Parameters**

9 01 Raised pavement markers may be used to supplement longitudinal lines as shown in Figure
10 131.

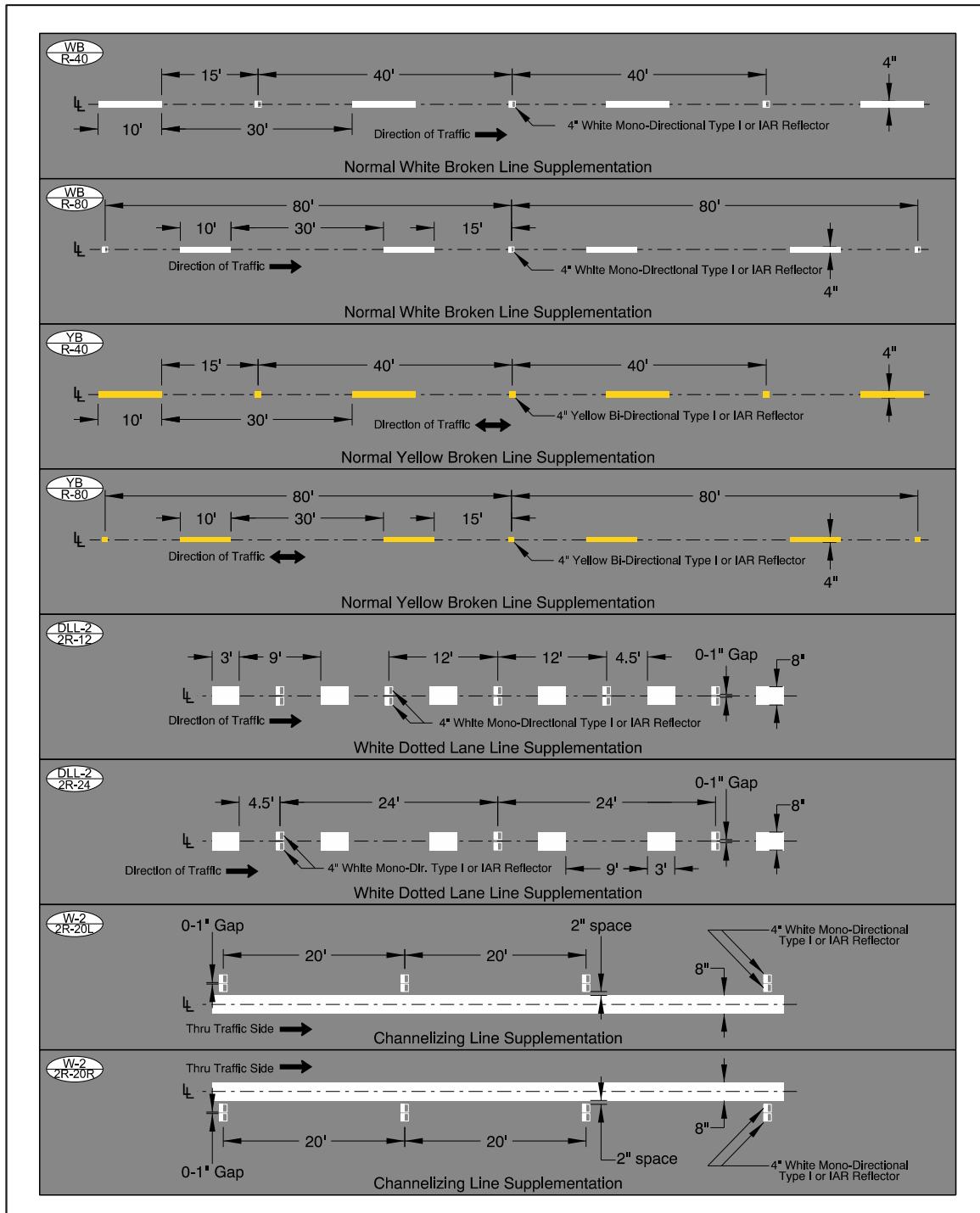
11 02 *When supplementing wide line markings, pairs of raised pavement markers placed laterally adjacent
12 to each other and outside the through travel lane should be used.*

13 03 *When supplementing solid line markings, raised pavement markers should be spaced no greater than
14 40 feet apart, except when supplementing channelizing lines, a spacing no greater than 20 feet should
15 be used, and when supplementing edge lines, a spacing no greater than 10 feet should be used.*

16 04 *When supplementing broken line markings, a spacing no greater than 40 feet should be used.*

17 05 *When supplementing broken line markings on tangent sections, a spacing no greater than 80
18 feet may be used based on engineering judgement.*

19 06 *When supplementing dotted line markings, a spacing no greater than 24 feet should be used.
20 Where engineering judgement determines a need for greater emphasis, a spacing no greater than 12
21 feet should be used.*


22 07 *Raised pavement markers should not supplement right-hand edge lines unless an engineering study or
23 engineering judgement indicates the benefits of enhanced delineation of a curve or other location
24 would outweigh possible impacts on bicyclists using the shoulder, and the spacing of raised pavement
25 markers on the right-hand edge does not simulate a broken line during wet night conditions.*

RPMs Used for Supplementation

Section 131

26 Figures & Tables

27 Figure 131: Longitudinal Line RPM Supplementation Details

28

RPMs Used for Supplementation**Section 131****29 Support**

30 RPMs supplementing longitudinal lines convey information about where lines are located and
31 information about passing or lane-use restrictions (1). For example, supplementation of a wide
32 solid white line uses two RPMs placed next to the painted lines instead of a single RPM,
33 communicating that the solid line is wide and therefore has greater emphasis.

34 Supplementation layouts are primarily based on guidance in the MUTCD (1) and the ITE Traffic
35 Control Devices Handbook (2) (referenced by the MUTCD for RPM spacing). Broken and
36 dotted lane lines have two standard spacings – RPMs placed every cycle or every other cycle (40
37 or 80 feet for broken lines; 12 or 24 feet for dotted lane lines). The ITE Traffic Control Devices
38 Handbook recommends the shorter spacing through horizontal curves to provide enhanced
39 delineation in high driver workload areas and to minimize loss of delineation because of
40 generally higher rates of damage and loss at horizontal curves.

41 Cross References

42 Colors.....	Section 110
43 Functions, Widths, and Patterns of Longitudinal Lines.....	Section 120
44 Raised Pavement Markers	Section 130
45 Typical Layouts for RPMs.....	Section 133

46 Key References

- 47 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
48 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 49 2. Institute of Transportation Engineers. *Traffic Control Devices Handbook*. Institute of Transportation Engineers,
50 Washington, D.C., 2001.

1 **RPMs Used for Positioning Guides Section 132**

2 **Introduction**

3 Raised pavement markers used as positioning guides convey information about where lines are
4 located, but not necessarily information about passing or lane-use restrictions.

5 **Relevant MUTCD Sections**

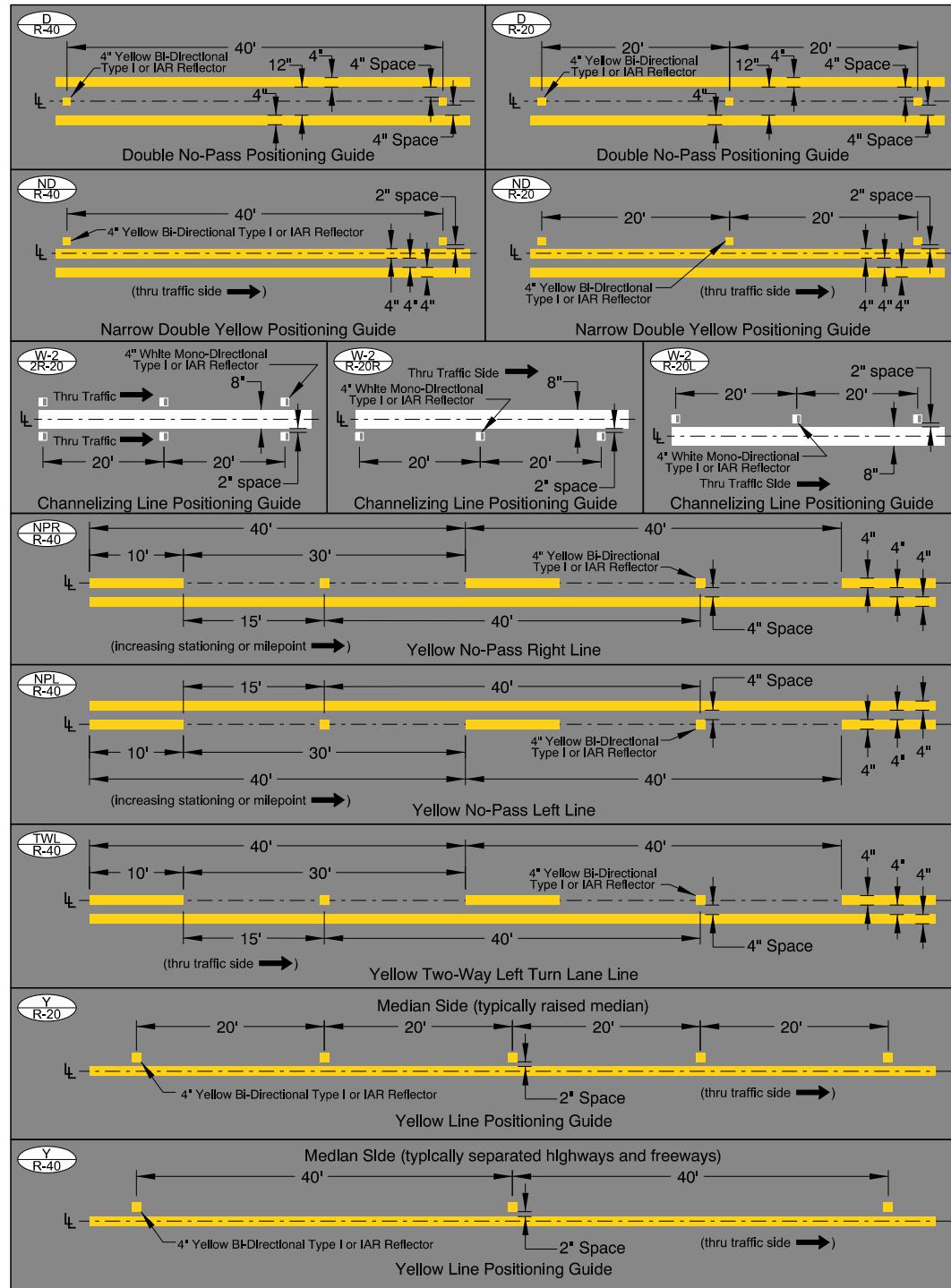
6 See the following for additional standards, guidance, and options not found in this manual:

7 • [MUTCD 11th Edition: 3B.15 Raised Pavement Markers as Vehicle Positioning Guide with](#)
8 [Other Longitudinal Markings](#)

9 **Design Parameters**

10 01 Raised pavement markers may be used as positioning guides with longitudinal line
11 markings as shown in Figure 132.

12 **Design Issues**


13 The groove for recessed RPMs tend to seasonally collect rain, snow, ice, or debris that obscures
14 part of the RPM (1). Wind created by moving traffic tends to clean out part of these grooves.
15 Side-street approaches to intersections might not have enough moving traffic to generate
16 sufficient wind to clean recessed RPM grooves (e.g.: left or right turn lane positioning guides),
17 especially if the side street is stop controlled.

RPMs Used for Positioning Guides

Section 132

18 Figures & Tables

19 Figure 132: Longitudinal Line RPM Positioning Guide Details

20

21 Support

22 RPMs used as positioning guides convey information about where lines are located but not
23 necessarily information about passing or lane-use restrictions (2). For example, supplementation
24 of a double yellow no-passing line uses pairs of RPMs placed immediately outside the painted
25 lines instead of a single RPM placed between the painted lines, communicating that there are
26 two solid lines (this is commonly seen in California). A single RPM is used as positioning guide
27 for all center line patterns, communicating where the center line is but not the pattern.

28 Positioning guide layouts are primarily based on guidance in the MUTCD (2) and the ITE
29 Traffic Control Devices Handbook (3) (referenced by the MUTCD for RPM spacing). Double
30 lines have two standard spacings – 40 feet (corresponding to a standard broken line cycle) and
31 20 feet (corresponding to half a standard broken line cycle). The ITE Traffic Control Devices
32 Handbook recommends 20-foot spacing for solid lines on horizontal curves to provide
33 enhanced delineation in high driver workload areas and to minimize loss of delineation because
34 of generally higher rates of damage and loss at horizontal curves.

35 Cross References

36 Colors	Section 110
37 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
38 Raised Pavement Markers	Section 130
39 RPMs Used for Supplementation	Section 131
40 Typical Layouts for RPMs	Section 133

41 Key References

- 42 1. Bahar, G., C. Mollett, B. Persaud, C. Lyon, A. Smiley, T. Smahel, and H. McGee. NCHRP Report 518: Safety
43 Evaluation of Permanent Raised Pavement Markers. Transportation Research Board, Washington, D.C., ISBN 0-
44 309-08790-2, 2004. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_518.pdf.
- 45 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
46 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 47 3. Institute of Transportation Engineers. *Traffic Control Devices Handbook*. Institute of Transportation Engineers,
48 Washington, D.C., 2001.

1 Typical Layouts for RPMs

Section 133

2 Introduction

3 RPM layouts in this section are typical for the features shown.

4 Relevant MUTCD Sections

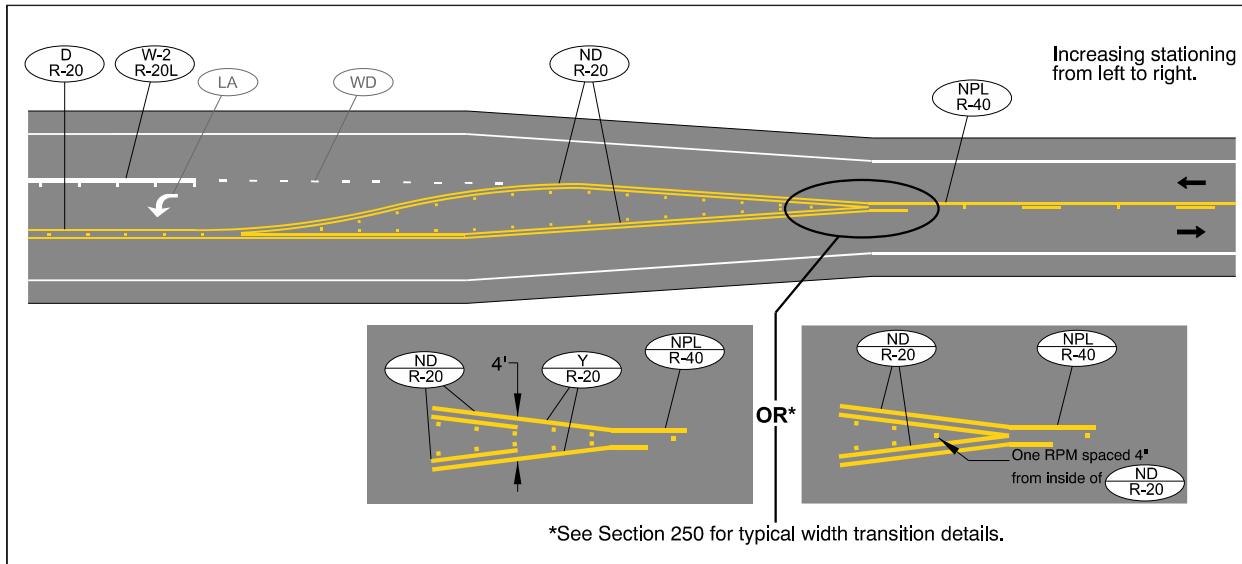
5 See the following for additional standards, guidance, and options not found in this manual:

- 6 • MUTCD 11th Edition: 3B.14 through 3B.16

7 Design Parameters

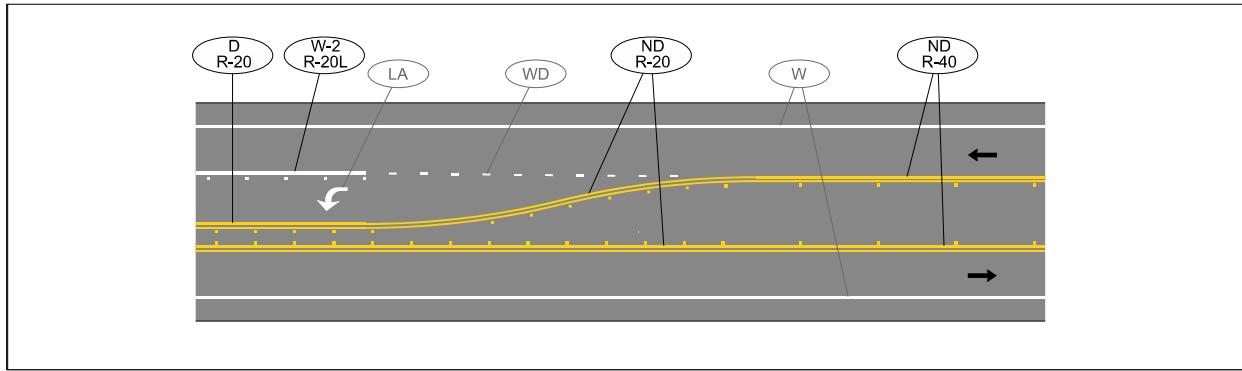
8 01 *Where raised pavement markers are used at:*

- 9 • *Left turn lanes, they should be installed according to Figure 133-A and 133-B.*
- 10 • *Island noses, they should be installed according to Figure 133-C.*
- 11 • *Tapered freeway exit ramps, they should be installed according to Figure 133-D.*
- 12 • *Single lane drop freeway exit ramps, they should be installed according to Figure 133-E.*
- 13 • *Two-lane freeway exit with single lane drop, they should be installed according to Figure 133-F.*
- 14 • *Multi-lane freeway exit with two or more dropped lanes, they should be installed according to Figure 133-G.*


16 02 RPM spacing shown in Figures 133-A, 133-B, and 133-C may be shortened by half, based on
17 engineering judgement. RPM supplementation may be used for white longitudinal lines
18 where RPMs are shown as positioning guides for white longitudinal lines in Figures 133-A
19 and 133-B.

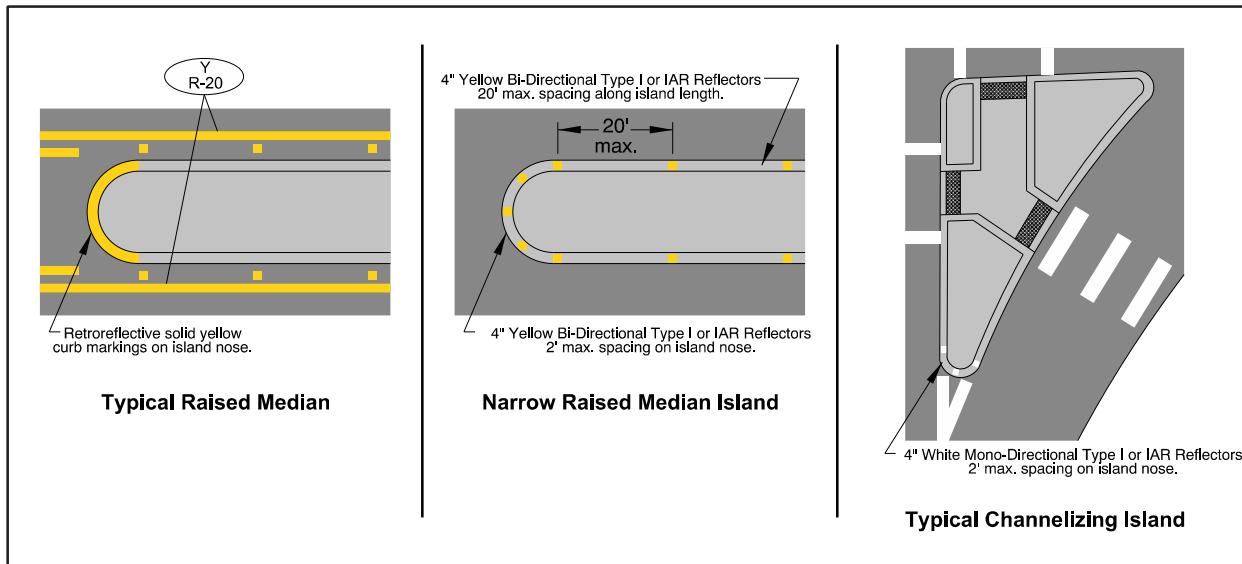
Typical Layouts for RPMs

Section 133

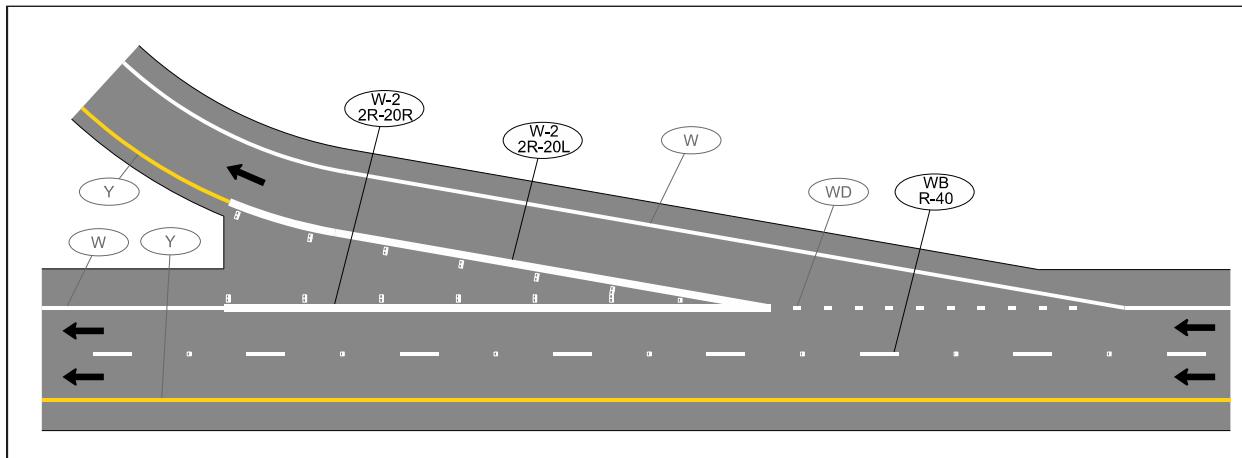

20 Figures & Tables

21 Figure 133-A: Typical Narrow Median Left Turn Lane Layout with RPMs

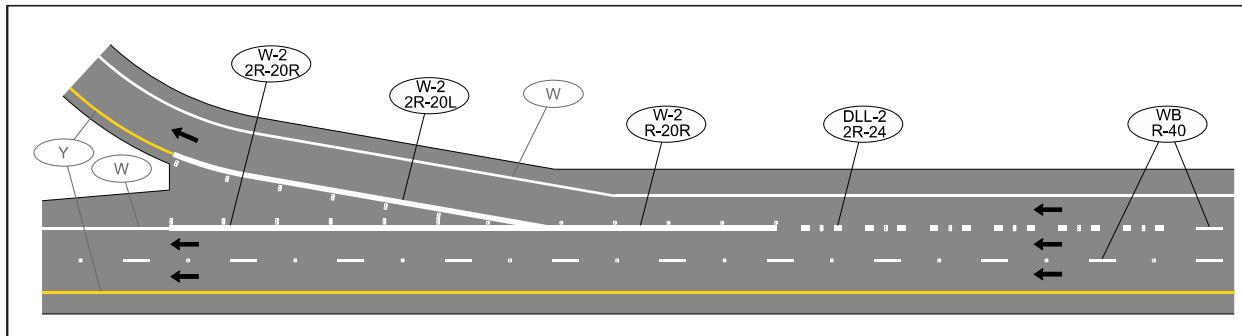
22


23 Figure 133-B: Typical Wide Median Left Turn Lane Layout with RPMs

24

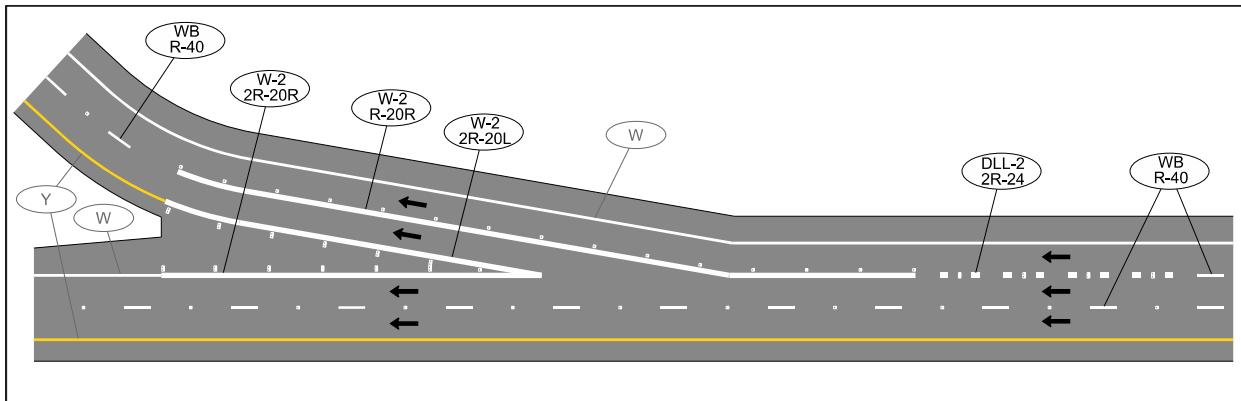

Typical Layouts for RPMs**Section 133**

25 Figure 133-C: Typical RPM Layout at Raised Medians and Channelizing Islands

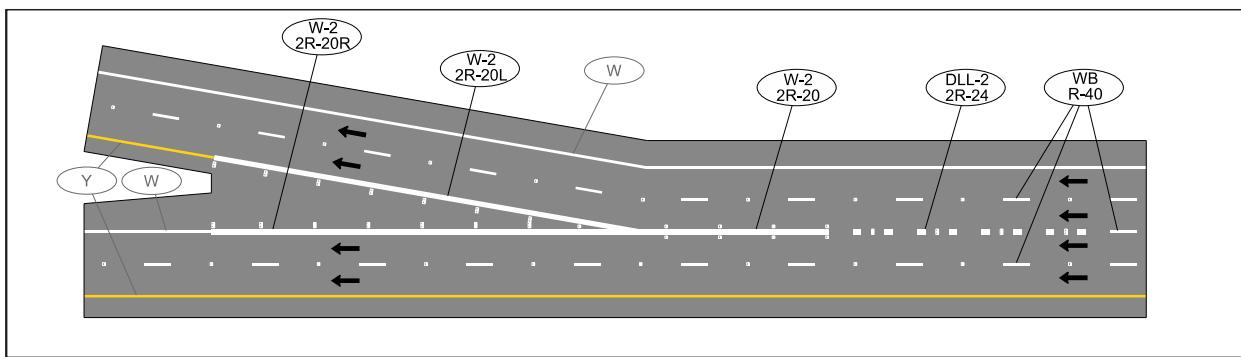

26

27 Figure 133-D: Typical Freeway Exit Ramp RPM Layout (Tapered Deceleration Lane)

28


29 Figure 133-E: Typical Freeway Exit Ramp RPM Layout (Single Lane Drop)

30


Typical Layouts for RPMs**Section 133**

31 Figure 133-F: Typical Freeway Exit Ramp RPM Layout (Two-Lane Exit with Single Lane Drop)

32

33 Figure 133-G: Typical Freeway Exit Ramp RPM Layout (Multi-Lane Exit with Two or More Dropped Lanes)

35

Support

37 The layouts shown in Figures 133-A through 133-G are based on standard supplementation and
 38 positioning guide layouts for individual line types (see Sections 131 and 132), past layouts in
 39 Oregon, and engineering judgement.

40 The channelizing lines in the freeway gore areas use RPM supplementation instead of
 41 positioning guide because of the greater emphasis needed at these high speed diverges,
 42 especially at dropped exit lanes.

43 At dropped exit lanes, RPMs are positioned on the exiting lane side of the wide white
 44 channelizing line before the painted gore point. This is consistent with how RPMs are used as
 45 positioning guides for turn lanes on non-freeways. At multi-lane exits with two or more
 46 dropped lanes, RPMs are positioned on both sides of the wide white channeling line prior to the
 47 painted gore because these splits are often located at major interstate-interstate interchanges
 48 with relatively balanced volumes. This is a standard layout for solid lines at these types of exits
 49 in other states such as California (1), and Arizona (2).

50 Cross References

51	Raised Pavement Markers	Section 130
52	RPMs Used for Supplementation.....	Section 131
53	RPMs Used for Positioning Guides.....	Section 132
54	Center Lines	Section 210
55	Lane Lines	Section 220
56	Non-Traversable Medians & Channelizing Islands	Section 281
57	Channelized Right-Turn Lanes	Section 321
58	Interchange Ramps: Exit & Entrance Ramps	Section 360

59 Key References

- 60 1. California Department of Transportation. *California Manual on Uniform Traffic Control Devices*. California
61 Department of Transportation, Sacramento, California, 2014. <http://www.dot.ca.gov/hq/traffops/engineering/>
62 *mutcd/ca_mutcd2014.htm*.
- 63 2. Arizona Department of Transportation. *ADOT Traffic Engineering Policies, Guidelines, and Procedures*. Arizona
64 Department of Transportation, 2000. <http://www.azdot.gov/business/engineering-and-construction/traffic/>
65 *policies-guidelines-and-procedures-(pgp)*.

1 Tubular Markers & Lane Separators Section

2 140

3 Introduction

4 Surface mounted tubular markers, also known as flexposts or plastic wands, are vertical
5 channelizing devices attached to the roadway surface, median islands, channelizing islands, or
6 lane separators. They are used to delineate travel lanes, discourage turns and lane changes, or
7 warn of vertical obstructions in the road (like a raised island). Lane separators are another
8 channelizing device that may be used along a center line to preclude turns or along lane lines to
9 preclude lane changing, as determined by engineering judgement.

10 Relevant MUTCD Sections

11 See the following for additional standards, guidance, and options not found in this manual:

- 12 • [MUTCD 11th Edition: Chapter 3I. Channelizing Devices Used for Emphasis of Pavement](#)
13 [Marking Patterns](#)
- 14 • [MUTCD 11th Edition: 6K.01, 6K.04, and 6K.11](#)

15 Design Parameters

16 01 Surface mounted tubular markers may be used for general traffic control purposes, such as
17 adding emphasis to channelizing lines or islands. Surface mounted tubular markers may also
18 be used along a center line to preclude turns or along lane lines to preclude lane changing, as
19 determined by engineering judgement.

20 02 **If used, surface mounted tubular markers and lane separators shall be the same color as**
21 **the pavement marking that they supplement, or for which they are substituted,**

22 03 **Surface mounted tubular markers shall not be less than 28 inches high and 3 inches wide**
23 **facing road users.**

24 04 Surface mounted tubular markers may be a minimum of 18 inches high, when used for
25 pedestrian detection and to discourage travel across marked area for ADA purposes.

26 05 *When surface mounted tubular markers are used to enhance a buffer space between a general travel*
27 *lane and a bicycle lane, the surface mounted tubular markers should be 28 inches high.*

28 06 **If used, surface mounted tubular markers shall have two flexible retroreflective bands at**
29 **least three inches wide placed according to Figure 140-A. The color of the retroreflective**
30 **band shall match the color of the surface mounted tubular marker.**

31 07 *Except as provided in paragraphs 08 and 09, surface mounted tubular markers should be spaced*
32 *according to engineering judgement.*

33 08 *When surface mounted tubular markers are used to:*

Tubular Markers & Lane Separators**Section 140**

34 • *Supplement or substitute for channelizing lines, a spacing no greater than 20 feet should be*
35 *used.*

36 • *Preclude turns, a spacing no greater than 10 feet should be used.*

37 • *Enhance a buffer space between a general travel lane and a bicycle lane, a spacing no greater*
38 *than 20 feet should be used.*

39 09 When surface mounted tubular markers are used along a non-traversable median or raised
40 channelizing island, a spacing of no greater than 80 feet may be used, based on engineering
41 judgement.

42 10 Surface mounted tubular markers may be placed on the top of approach ends to non-
43 traversable medians and channelizing islands according to Figure 140-B and 140-C.

44 11 *Surface mounted tubular markers should be kept clean and bright to maximize target value.*

45 12 **Lane separators shall consist of a longitudinal base component with a maximum height of**
46 **4 inches and a maximum width of 12 inches. The longitudinal base shall have sloping**
47 **sides in order to facilitate crossover by emergency vehicles. One or more types of**
48 **channelizing devices, such as tubular markers, vertical panels, or a Narrow Two-Way**
49 **Traffic (W6-4) sign mounted on flexible supports, shall be affixed to the longitudinal**
50 **base.**

51 13 *A lane separator should be stabilized by affixing it to the pavement with bolts suitable to its design,*
52 *except at bridge decks and other locations determined by engineering judgment where the lane*
53 *separator may be affixed by another manor suitable to its design.*

54 14 **At pedestrian crossing locations, lane separators shall have an opening or be shortened to**
55 **provide a pathway that is at least 60 inches wide for crossing pedestrians**

56 15 *Lane separators should be continuous except for where engineering judgement determines a*
57 *need for a break.*

58 **Required Approvals**

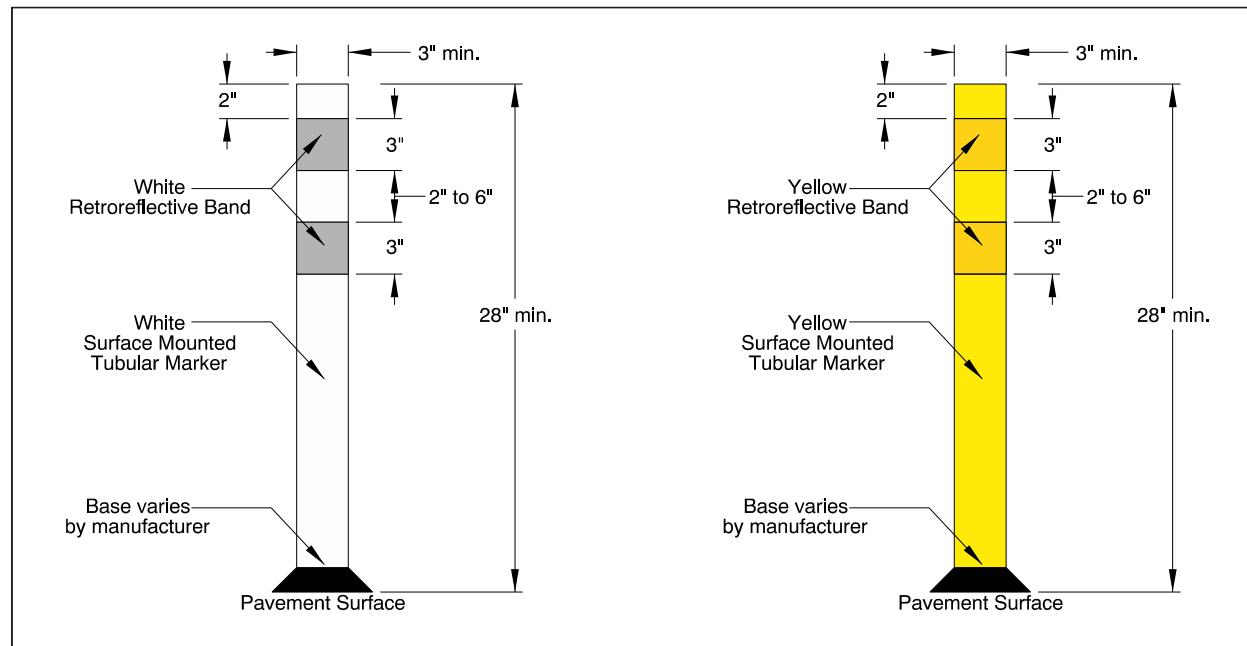
59 An engineering study and senior ADA standards engineer approval is required for use of
60 tubular markers for pedestrian guidance.

61 Send request to the senior ADA standards engineer and cc the state traffic investigations
62 engineer. The request will come from the region roadway manager. Concurrence from
63 the district maintenance manager is recommended.

64 On form 734-5175 the region roadway manager signature will replace the region traffic
65 engineer signature line.

66 An engineering study and region traffic engineer approval is required for use of lane separators.

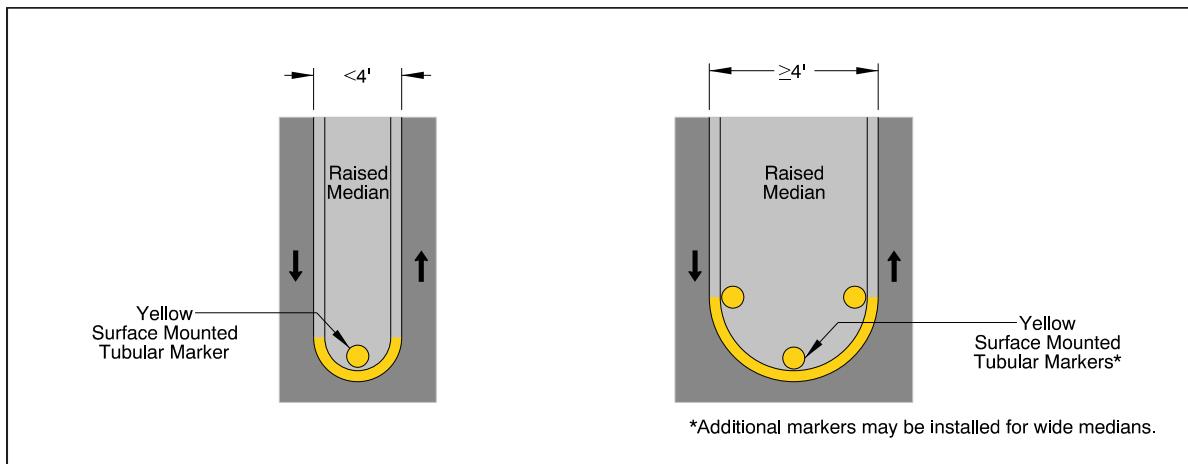
67 Design Issues

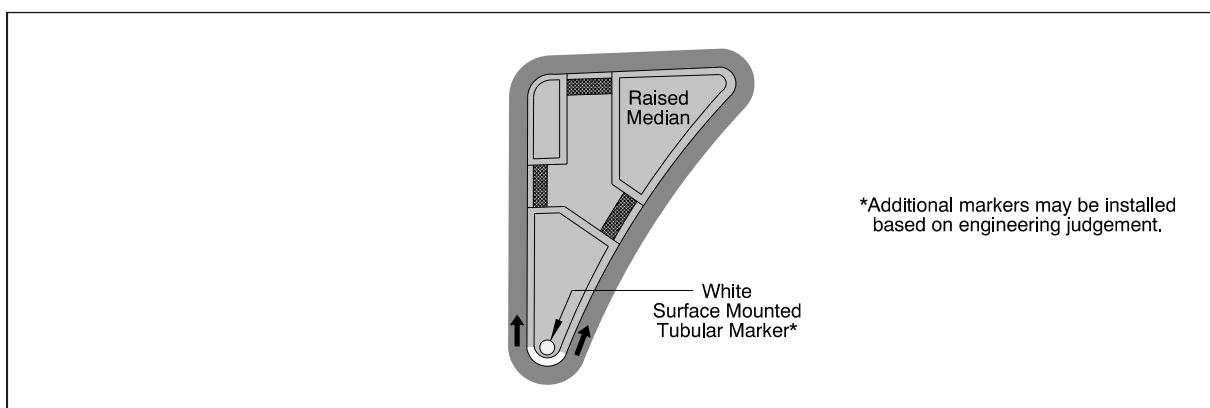

68 All permanent surface mounted tubular markers on ODOT's Qualified Products List are
69 capable of being bolted and epoxied to the pavement. Some products rely on the tubular marker
70 material itself to return to a vertical position after being hit; others are designed with internal
71 mechanical systems (like a spring) to return to vertical. Some markers have bases that make
72 removal and replacement relatively easy; others might require the entire base be removed
73 before replacement.

74 High-impact areas like the leading edge of a run of tubular markers might need more durable
75 markers to minimize lifecycle costs and maintenance crew exposure to traffic. Depending on
76 how often they are hit by motor vehicle traffic, surface mounted tubular markers might need to
77 be replaced frequently to maintain the device's color, retroreflectivity, and respectability. Some
78 areas might also require periodic removal and replacement of the marker, such as for sweeping
79 or plowing operations.

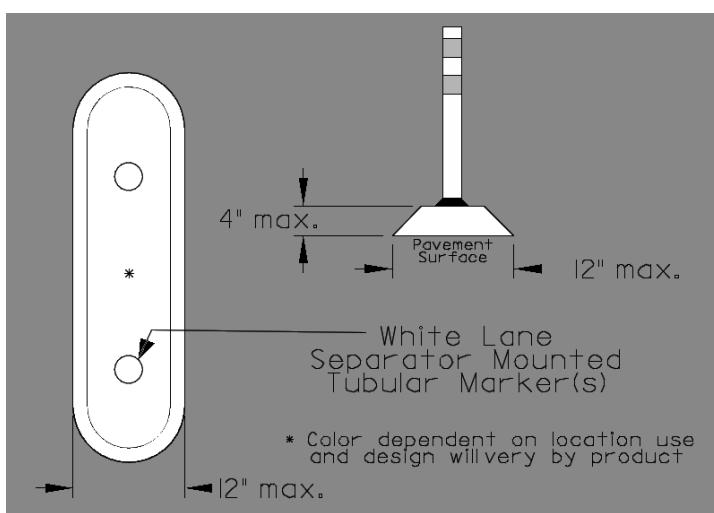
80 Contact the region pavement marking manager for maintenance's preferences in each location.

81 Figures & Tables


82 Figure 140-A: Typical Surface Mounted Tubular Marker Types


83

Tubular Markers & Lane Separators**Section 140**


84 Figure 140-B: Typical Tubular Marker Placement at Raised Median Island

86 Figure 140-C: Typical Tubular Marker Placement at Channelizing Island Nose

88 Figure 140-D: Typical Lane Separator Design

90 Support

91 Except for spacing guidance, the design parameters for surface mounted tubular markers come
92 from the 11th Edition of the MUTCD (1). The minimum height of 28 inches is an MUTCD
93 minimum height for tubular markers used at night. The 28 inch recommended height for
94 tubular markers used in bicycle lane buffers is intended to reduce conflicts with handlebars,
95 which are 36-44 inches above the road surface for a typical adult bicycle (2).

96 The MUTCD does not give guidance for spacing of permanent surface mounted tubular
97 markers. The spacing recommendations in the design parameters are based on MUTCD spacing
98 for temporary traffic control, spacing of raised pavement markers, past practice, and
99 engineering judgement. Maximum spacing for bicycle lane buffers is based on
100 recommendations in FHWA's Separated Bike Lane Planning and Design Guide (3).

101 Surface mounted tubular markers can be used to supplement, but not a replacement for,
102 markings or raised pavement marker treatments at median and channelizing island noses
103 according to the MUTCD. Compared to painted curb and raised pavement markers, tubular
104 markers have good target value and place retroreflective material more in-line with drivers'
105 view. However, surface mounted tubular markers are more prone to damage and removal that
106 could leave the nose unmarked.

107 Using surface mounted tubular markers has become an option as a detectable warning device
108 for people with limited or no vision. Some intersections with geometric constraints can benefit
109 from having a surface mounted tubular marker installed to help guide people with limited or
110 no vision. The lower height is allowed in this circumstance, because drivers do not need to be
111 able to see it. Having it a lower height also draws less attention to the device and blocks less
112 view of pedestrians on the sidewalk. The tubular marker reduces property damage to errant
113 vehicles in comparison to a solid concrete bollard or other fixed objects in the clear zone.

114 Cross References

115 Colors	Section 110
116 Traversable Medians	Section 260
117 Non-Traversable Medians & Channelizing Islands	Section 281
118 Channelized Right-Turn Lanes	Section 321
119 Bicycle Lane Buffers	Section 412
120 Slow Moving Vehicle Turnouts	Section 660

121 Key References

- 122 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
123 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 124 2. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
125 4th ed. Washington, D.C., 2012.

Tubular Markers & Lane Separators**Section 140**

126 3. Federal Highway Administration. *Separated Bike Lane Planning and Design Guide*. U.S. Department of
127 Transportation, Washington, D.C., 2015. https://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/separated_bikelane_pdg/separatedbikelane_pdg.pdf.

128

1 **Delineators**

Section 145

2 **Introduction**

3 Delineators are retroreflective devices mounted on or near the roadway surface in a series to
4 indicate the alignment of the roadway, especially at night or in adverse weather. They are
5 guidance devices that may be used on long continuous sections of highway or through short
6 stretches where there are changes in horizontal alignment.

7 **Design Parameters**

8 See Chapter 3G. Delineators in the Manual on Uniform Traffic Control Devices (1) for
9 standards, guidance and options on delineator use.

10 **Key References**

- 11 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
12 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 13

1 Other Channelizing Devices

Section 146

2 Introduction

3 Channelizing devices (see Chapter 6K of the 11th Edition of the MUTCD) such as cones, tubular
4 markers, vertical panels, lane separators, drums, and barricades may be used for general traffic
5 control purposes such as adding emphasis to reversible lane delineation, channelizing lines,
6 islands, pedestrian facilities, or bicycle facilities. Channelizing devices may also be used along a
7 center line to preclude turns or along lane lines to preclude lane changing, as determined by
8 engineering judgment. This section covers all channelizing devices not already covered in a
9 separate section.

10 Longitudinal Channelizing Devices

11 Longitudinal channelizing devices are lightweight, deformable devices that are highly
12 visible, have good target value, and can be connected together. They can be a cost-effective
13 treatment that provide continuous visual guidance of the roadway alignment or roadside
14 barrier adjacent to the roadway.

15 Relevant MUTCD Sections

16 See the following for additional standards, guidance, and options not found in this manual:

- 17 • [MUTCD 11th Edition: Chapter 3I. Channelizing Devices Used for Emphasis of Pavement](#)
18 [Marking Patterns](#)
- 19 • [MUTCD 11th Edition: Chapter 6K TTC Zone Channelizing Devices](#)

20 Design Parameters

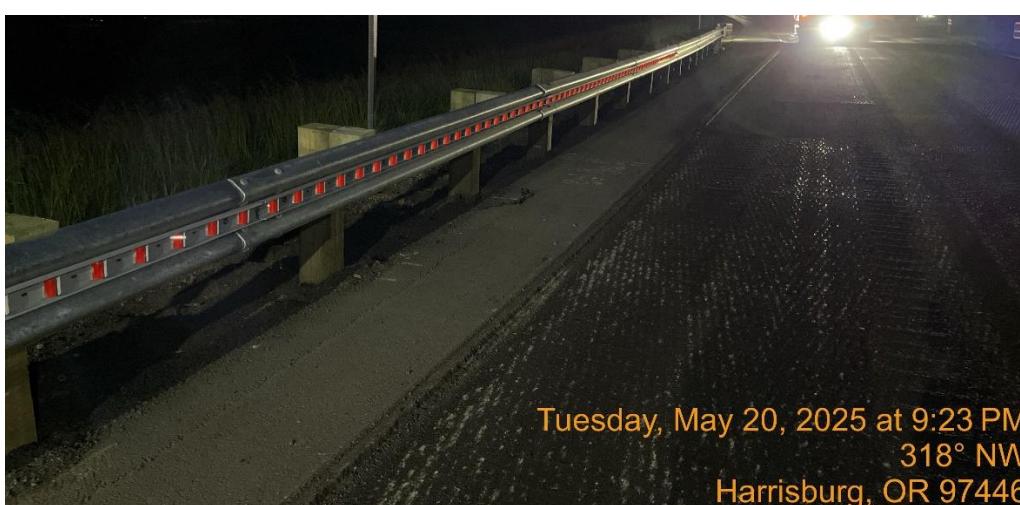
- 21 01 Except for color, the design of channelizing devices, including, but not limited to,
22 retroreflectivity, minimum dimensions, and mounting height, shall comply with the
23 provisions of Chapter 6K of the 11th Edition of the MUTCD.
- 24 02 The color of channelizing devices used outside of temporary traffic control zones shall be
25 the same color as the pavement marking that they supplement, or for which they are
26 substituted, in accordance with parameter 01.
- 27 03 Channelizing devices other than those described in Chapter K of the 11th Edition of the
28 MUTCD may be used in special situations based on an engineering study.
- 29 04 Other channelizing devices should comply with the general size, color, stripe pattern,
30 retroreflection, and placement characteristics established for the devices described in this
31 manual and in Chapter 6K of the 11th edition of the MUTCD.

32 Required Approvals

33 Region Traffic Engineer approval and an engineering study is required for devices not
34 described in this manual or in Chapter 6k of the 11th Edition of the MUTCD (1)

35 Region Traffic Engineer Approval in consultation with the District Maintenance Office is
36 required for the use of longitudinal channelizing devices.

37 Figures & Tables


38 Figure 146-A: Example Longitudinal Channelizing Device on Guardrail, Google maps image

39
40 Figure 146-B: Example Longitudinal Channelizing Device on concrete barrier, Google maps image
41

42
43 Figure 146-C: Example Longitudinal Channelizing Device for Wrong Way Driving

45 **Support**

46 There are a variety of channelizing devices that ODOT has not commonly used in a permanent
47 setting and others that are becoming more common. This Section of the manual will continue to
48 grow as needed. Please reach out to the Traffic Engineering unit if you have any questions
49 about any channelizing devices and potential applications.

50 Longitudinal channelizing devices are a way to add more visibility to the face of roadside
51 barriers such as guardrails and concrete medians. These devices can help supplement other
52 devices such as signs and pavement markings, especially during nighttime, foggy, and/or rainy
53 conditions. In past projects ODOT has used or considered longitudinal channelizing devices on:

- 54 • highway with curvature that did not warrant curve warning signage, but still
55 had roadway departure crashes,
- 56 • highway barrier to supplement wrong way driving signage,
- 57 • areas that are heavily wooded or shaded and get a high amount of wet weather
58 or fog that may make pavement marking harder to see,
- 59 • areas where there is no edge line present or not maintained.

60 These are some examples of potentially appropriate applications to consider longitudinal
61 channelizing devices, but they are not limited to these scenarios.

62 **Cross References**

63 Colors Section 110

64 **Key References**

- 65 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
66 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

67

1 Stop Bars

Section 150

2 Introduction

3 A stop bar (also known as a stop line) is a solid white pavement marking bar extending across
4 approach lanes to indicate the point where a stop is intended or required to be made. To avoid
5 confusion with longitudinal lines, transverse lines are referred to as bars in this Manual.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: 3B.19 Stop and Yield Lines
- 9 • Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines.

10 Design Parameters

11 01 A stop bar shall consist of a solid white line extending across approach lanes to indicate
12 the point at which a stop is intended or required to be made (Figure 150-A).

13 02 A stop bar shall be used to indicate the point behind which vehicles are required to stop
14 in compliance with a traffic control signal, unless the near-side bar of a marked crosswalk
15 is used to indicate this point instead. The stop bar shall be placed at least 40 feet in
16 advance of overhead signal indication(s).

17 03 Stop bars may be placed closer than 40 feet in advance of overhead signal indications at rail
18 grade crossings according to Section 510.

19 04 *Stop bars should be used to indicate the point behind which vehicles are required to stop:*

- 20 • *In compliance with a "STOP" (R1-1) sign or "Stop Here for Pedestrians" (R1-5b or R1-5c)
21 sign, unless the near-side bar of a marked crosswalk is used to indicate this point instead.*
- 22 • *In advance of marked crosswalks, except at approaches and departures from roundabouts, with
23 uncontrolled, multi-lane approaches (e.g. a thru lane and a dedicated turn lane or two thru
24 lanes, this does not include TWLTL's or turn lanes that do not cross the marked crosswalk)
25 (Figure 150-D).*
- 26 • *In advance of staggered continental-type marked crosswalks at signalized intersections.*

27 05 **If used, stop bars shall extend across the traveled way of vehicles to be stopped.**

28 06 *If used, stop bars should be placed:*

- 29 • *As near as possible to the traveled way of the intersected roadway, but should not be closer than
30 4 feet nor farther than 30 feet from the nearest edge of the intersecting traveled way or nearest
31 crosswalk bar. In sections with sidewalk, the stop bar should be placed 2 to 3 feet back from the
32 throat of the ADA ramp (see Figure 150-B).*

Stop Bars**Section 150**

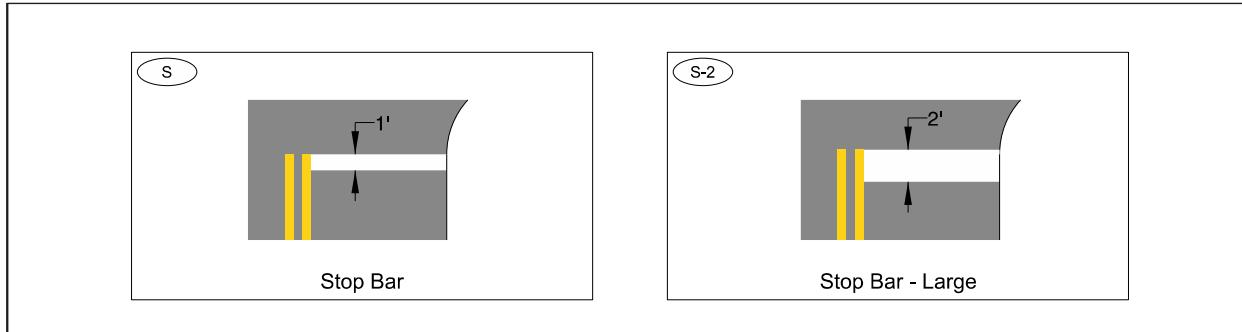
33 • 20 to 50 feet (typically 30 feet) from the nearside edge of marked crosswalks across uncontrolled
34 multi-lane approaches. A wide stop bar (S-2) should be used at these locations. A stop bar may
35 be omitted where the marked crosswalk is on the far side of the intersection and the stop bar
36 would be placed more than 50 feet from the crosswalk to avoid putting the stop bar in the
37 intersection (Figure 150-D).
38 • So vehicles at the stop bar will not be in the design vehicle's left turning path.
39 • Perpendicular to the path of approaching vehicles.

40 07 If used, stop bars may be staggered longitudinally on a lane-by-lane basis (Figure 150-C) in
41 order to improve the driver's view of pedestrians, to provide better sight distance for turning
42 vehicles, to accommodate a bicycle box (Section 414), and to increase the turning radius for
43 left-turning vehicles.

44 08 If stop bars are staggered longitudinally on an approach, a maximum of two separate stop bar
45 locations per approach and a maximum offset distance of 20 feet should be used.

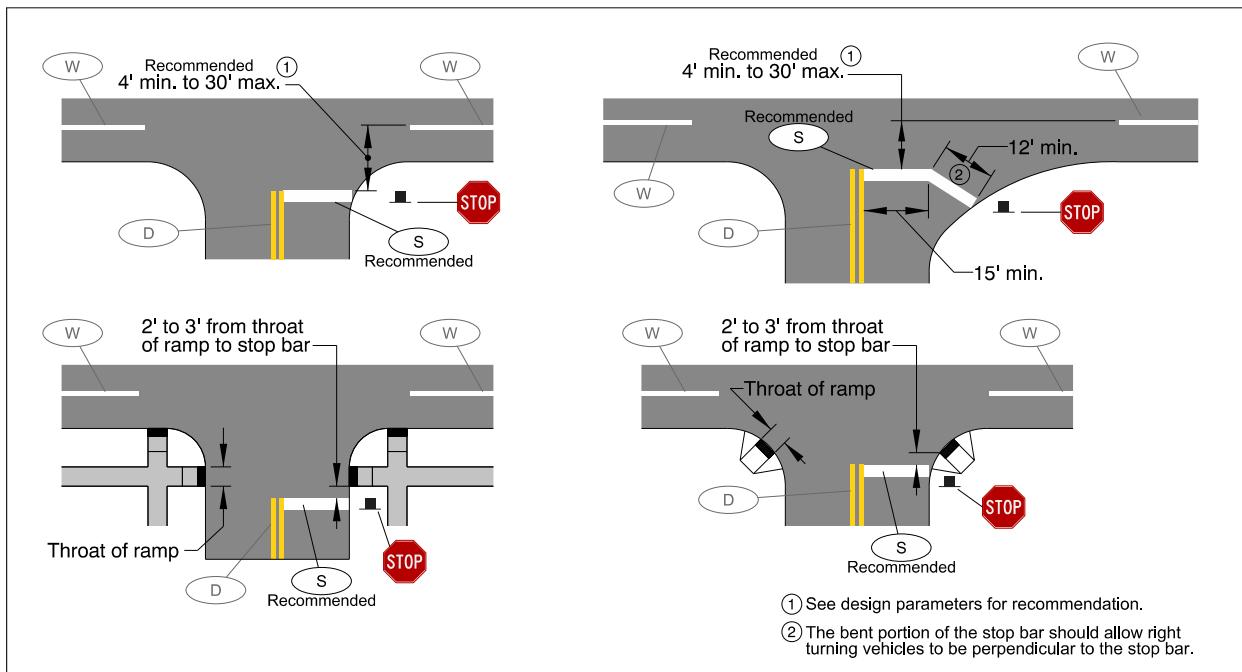
46 09 If stop bars are used in advance of a crosswalk that crosses an uncontrolled multi-lane approach,
47 parking should be prohibited in the area between the yield or stop line and the crosswalk

Required Approvals


49 An engineering study and region traffic engineer approval is required for use of advance stop
50 bars where it is desirable to provide a separate point for vehicles to stop (e.g.: to improve sight
51 distance or to allow adequate turning radii), except in advance of a crosswalk across an
52 uncontrolled multi-lane approach.

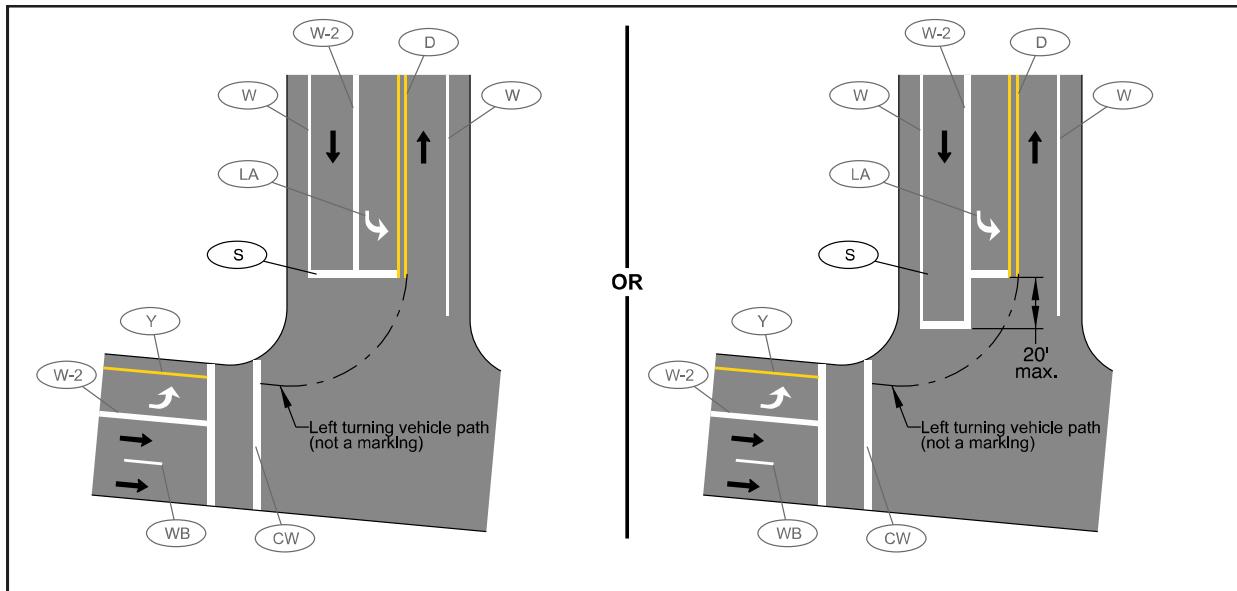
Design Issues

54 At signalized intersections, placement of signal detection is based on distance from the stop bar
55 and partially based on signal head height – if road users stop too close to a signal head it could
56 be obscured (1). See the Oregon Supplement to the MUTCD Section 3B and MUTCD 11th Edition
57 (2) Figure 4D-3 for additional design parameters.


Stop Bars**Section 150****Figures & Tables**

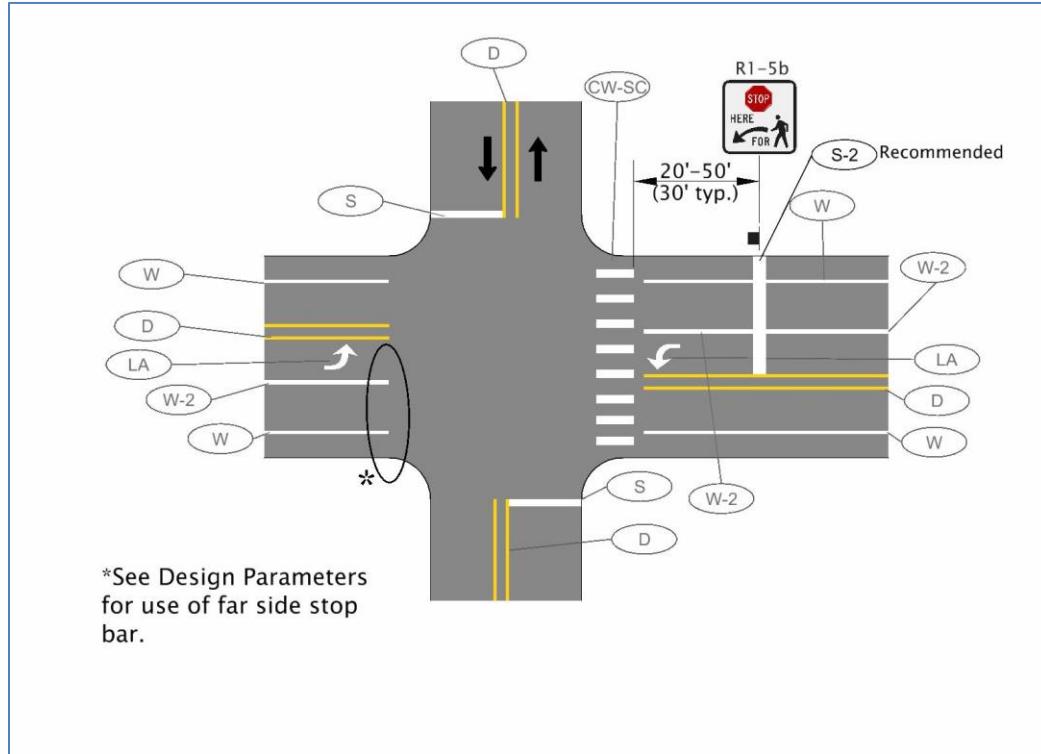
59 Figure 150-A: Stop Bar Types

60


61 Figure 150-B: Typical Stop Bar Layouts

62

Stop Bars**Section 150**


63 Figure 150-C: Typical Stop Bar Layout for Multiple Lanes

64

65 Figure 150-D: Typical Stop Bar Layout for Multi-Lane Approach to Uncontrolled Marked Crosswalk

66

67

68 Support

69 Stop bars are a fundamental transverse pavement marking that help road users know where
70 they need to stop in response to another traffic control device (signal, stop sign, crosswalk,
71 ramp meter, etc.) and improves the safety, operations, and efficiency of an intersection.

72 Standard widths of 12 inches for a standard stop bar and 24 inches for a wide stop bar come
73 from 11th Edition of the MUTCD (2) Section 3B.19.

74 The MUTCD uses the term “stop line” while ODOT’s standard convention is the term “stop
75 bar.” This terminology is used at ODOT to avoid confusion between longitudinal and
76 transverse markings during design and construction since longitudinal lines are paid on the
77 length basis and transverse bars are paid on the area basis.

78 If an approach to a signal or stop sign is marked with standard transverse crosswalk bars, the
79 nearside bar of the crosswalk functions as a stop bar. This practice is not common in other states
80 (3). The minimum MUTCD width of a marked crosswalk is 6 feet with an advance stop bar 4
81 feet from the nearside crosswalk bar. Because Oregon’s standard crosswalk width is already 10
82 feet, the nearside crosswalk bar adequately performs the same function as the stop line with
83 minimal practical vehicular encroachment into the crosswalk and without being confusing to
84 the road user. This also reduces installation and maintenance costs associated with transverse
85 crosswalk bars.

86 No more than two stop bars offset up to one passenger vehicle length (20 feet) are
87 recommended in the design parameters to avoid confusion and increase compliance at the stop
88 bars. Past installations of stop bars offset more than one vehicle length resulted in poor stopping
89 compliance at the stop bar, which can affect signal detection and potentially affect left turning
90 paths of large vehicles.

91 A wide stop bar (S-2) increases the detection distance of the stop bar (see Section 125) and is
92 typically used on high speed approaches and approaches where extra emphasis is needed, like
93 rail grade crossings and mid-block crosswalks.

94 Special consideration is needed at advance stop bars for a far-side multi-lane, uncontrolled
95 approach to a marked crosswalk at an intersection (i.e.: not signal- or stop-controlled). If the
96 purpose of the stop bar is not obvious that it is for the crosswalk and it is placed too far in
97 advance of the crosswalk (generally farther than 50 feet), drivers might ignore the stop bar or
98 think their approach to the intersection is stop controlled (4). Drivers are also not allowed to
99 stop within an intersection per ORS 811.550. See the Marked Crosswalk Section 430 for more
100 information on advance stop bars at marked crosswalks.

101 See the Ramp Meter Section 620 for more information on stop bars at ramp meters.

102 Cross References

103 Colors Section 110

Stop Bars**Section 150**

104	Transverse Markings.....	Section 125
105	Interchange Ramps: Ramp Terminals	Section 361
106	Intersection Bicycle Box	Section 414
107	Marked Crosswalks	Section 430
108	Railroad Crossing Markings	Section 510
109	Ramp Meters.....	Section 620

110 Key References

- 111 1. Oregon Department of Transportation. *Traffic Signal Design Manual*, 2016 ed. Oregon Department of
112 Transportation, Salem, OR, 2016. <http://www.oregon.gov/ODOT/Engineering/Pages/Signal-Design-Manual.aspx>.
- 113 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
114 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 115 3. Friedman, B. E. NCHRP Synthesis 356: Pavement Markings - Design and Typical Layout Details. Washington,
116 D.C., ISBN 0-309-09763-0, 2006. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_356.pdf.
- 117 4. Zegeer, C. V., C. Seiderman, P. Lagerwey, M. Cynecki, M. Ronkin, and R. Schneider. Pedestrian Facilities Users
118 Guide - Providing Safety and Mobility. Highway Safety Research Center, University of North Carolina, Chapel
119 Hill, NC, FHWA-RD-01-102, 2002. <https://www.fhwa.dot.gov/publications/research/safety/01102/01102.pdf>.

1 Yield Lines

Section 151

2 Introduction

3 A yield line is a row of white triangles pointing toward approaching vehicles extending across
4 approach lanes to indicate the point at which the yield is intended or required to be made.

5 Relevant MUTCD Sections

6 See the following sections for standards, guidance, and options not found in this manual:

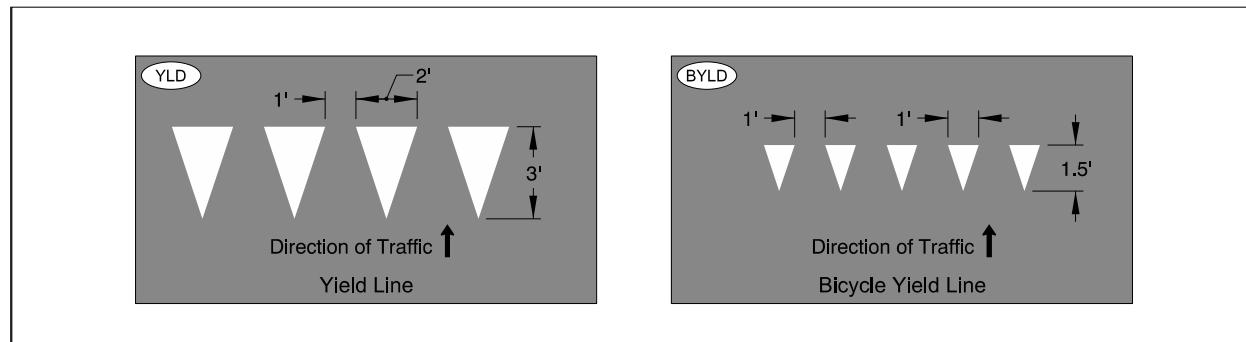
- 7 • [MUTCD 11th Editions: 3B.19 Stop and Yield Lines](#)
- 8 • [Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines.](#)

9 Design Parameters

10 01 If used, a yield line pavement marking shall not be installed without a Yield (R1-2) sign or
11 some other traffic control device that requires vehicles to yield.

12 02 A yield line shall consist of a row of solid white isosceles triangles pointing toward
13 approaching vehicles extending across approach lanes to indicate the point at which the
14 yield is intended or required to be made (Figure 151).

15 03 Yield lines shall not be used in advance of a marked crosswalk.


16 04 If a yield line is used at channelized-right turn lane with a marked crosswalk, the yield line should be
17 placed beyond the marked crosswalk.

18 Design Issues

19 Yield lines point in the direction of approaching traffic.

20 Figures & Tables

21 Figure 151: Yield Line Types

23 **Support**

24 Similar to stop lines, yield lines help reinforce where road users need to yield. Yield lines first
25 appeared in the 2000 edition of the MUTCD. The 11th Edition MUTCD (1) gives a range for the
26 size of triangles used in the yield line, with a minimum base of 12 inches and maximum base of
27 24 inches, and a height of 1.5 times the base. Initially, the large triangles were only used in rural
28 or high speed areas and the smaller triangles were used in lower-speed urban areas. However,
29 based on field observations and region feedback, the smaller triangles were too small when
30 viewed from the motorists' perspective. Reportedly, the triangle shape looked more like a blob
31 or odd-shaped dot. The large triangles were then set as the standard for motor vehicle yield
32 lines. The smaller triangles are better suited and have had good success for yield lines across
33 bicycle paths and bicycle lanes.

34 Yield lines are not used in advance of crosswalks because Oregon law (ORS 811.028) requires
35 that drivers stop for pedestrians crossing a roadway within a marked or unmarked crosswalk.

36 **Cross References**

37 Colors	Section 110
38 Channelized Right-Turn Lanes	Section 321
39 Roundabouts	Section 350
40 Shared-Use Path Markings	Section 440

41 **Key References**

42 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
43 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 Lane Use Arrows

Section 160

2 Introduction

3 Lane use arrows are used to indicate mandatory or permissible movements in certain lanes and
4 in two-way left turn lanes.

5 Relevant MUTCD Sections

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • [MUTCD 11th Editions: 3B.20 Word, Symbol, and Arrow Pavement Markings – General](#)
- 8 • [MUTCD 11th Editions: 3B.23 Lane-Use Arrows](#)
- 9 • [MUTCD 11th Editions: 3D.06 Arrow Pavement Markings for Roundabouts](#)

10 Design Parameters

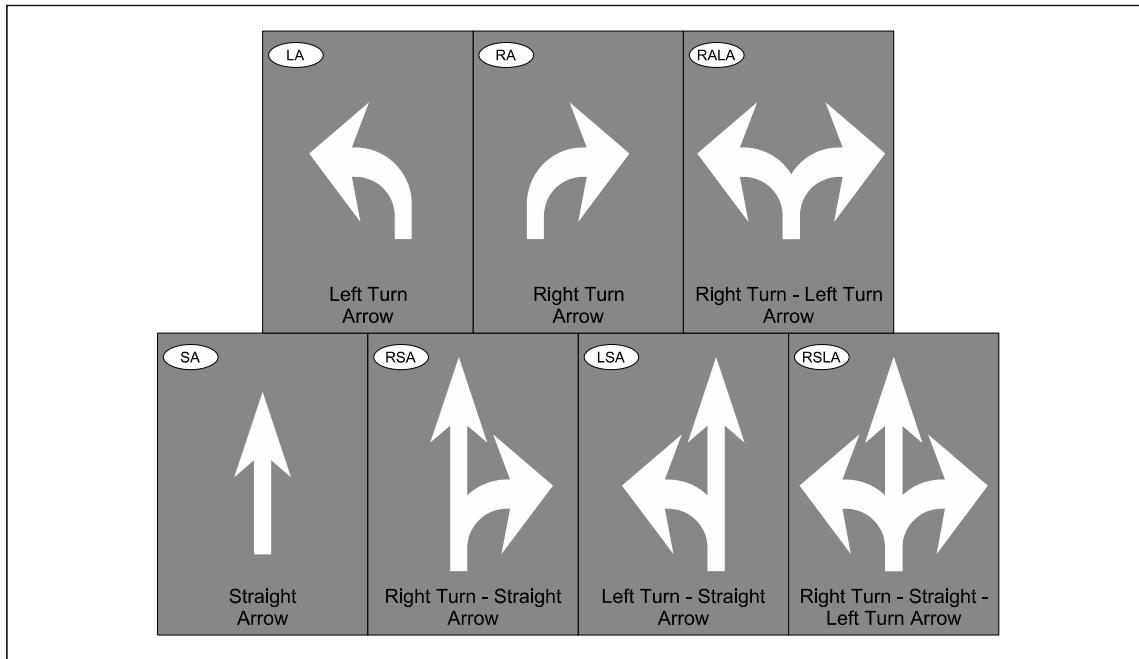
11 01 All lane use arrows shall be white in color and in conformance with the design details in
12 the Pavement Markings chapter of FHWA's "Standard Highway Signs and Markings"
13 book, 2004 Edition.

14 02 Lane use arrows should be used in lanes designated for the exclusive use of a turning movement. Lane
15 use arrows should also be used in lanes from which movements are allowed that are contrary to the
16 normal rules of the road, or that have unexpected or non-standard lane use.

17 03 Where an alley entrance intersects with a turn lane for a downstream intersection, lane use arrows
18 should be placed beyond the alley entrance toward the intersection.

19 04 At intersection approaches with an advance stop bar or advance yield line, lane use arrows
20 shall not be positioned downstream from the advance stop bar or advance yield line.

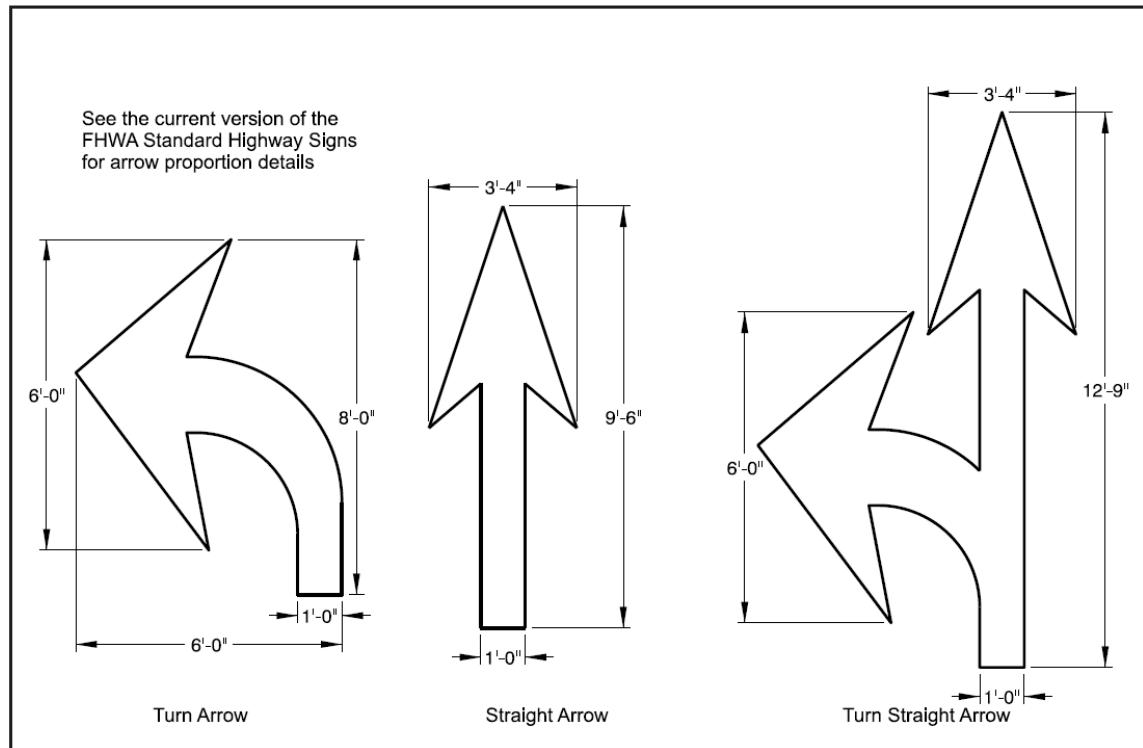
21 05 Where the wide white line (W-2) separating a turn lane from adjacent lane(s) is less than 40
22 feet, the second (downstream) arrow may be omitted.


23 Design Issues

24 Use elongated lane use arrows (Figures 160-C and 160-D) for ODOT projects unless otherwise
25 directed by the region traffic engineer. If used, fish-hook style arrows are used on approaches to
26 roundabouts (Figures 160-E and 160-F; see Section 350).

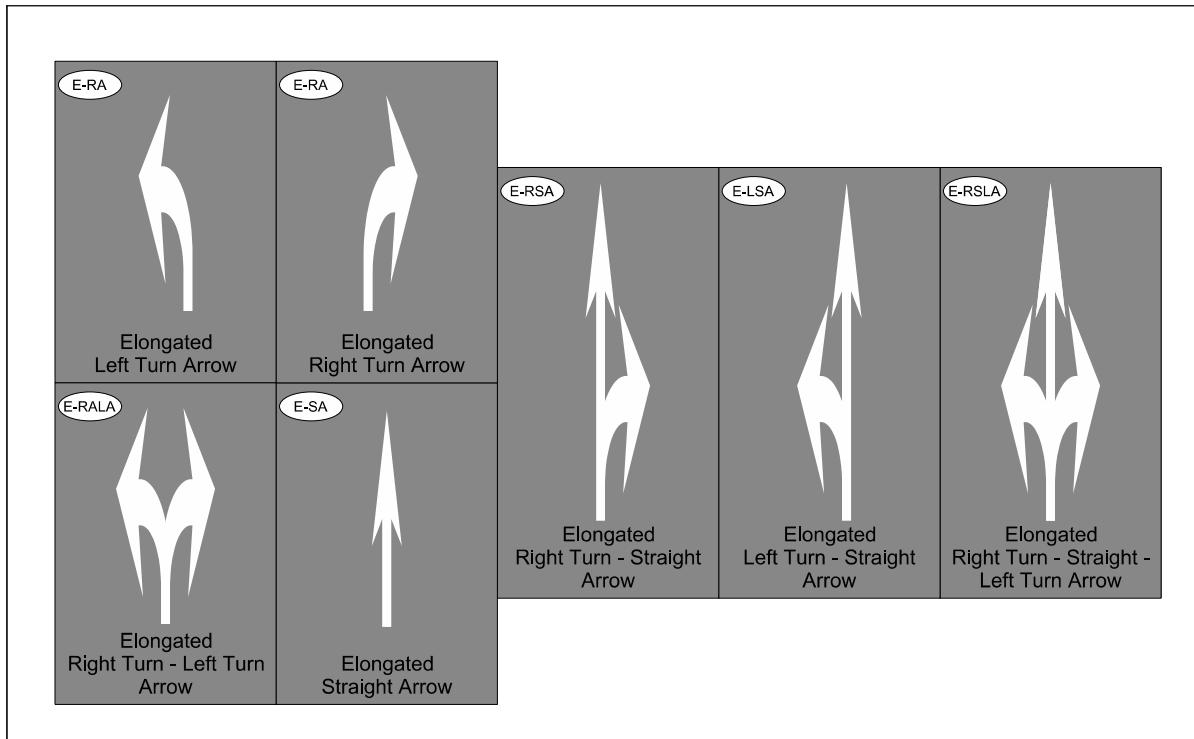
27 Lane use arrows are required in some cases. See the turn lane (Sections 310-330), ramp terminal
28 (Section 361), and Roundabout (Section 350) sections for more information.

29 Figures & Tables

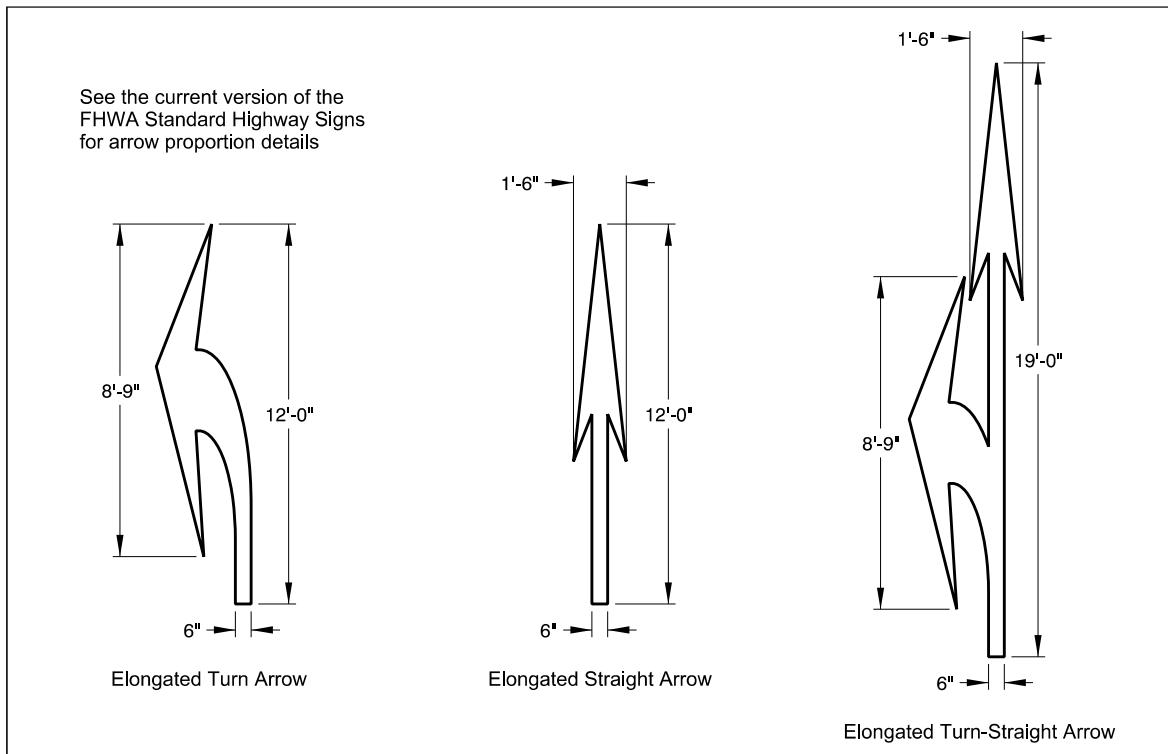

30 Figure 160-A: Arrow Types

31

Lane Use Arrows**Section 160**

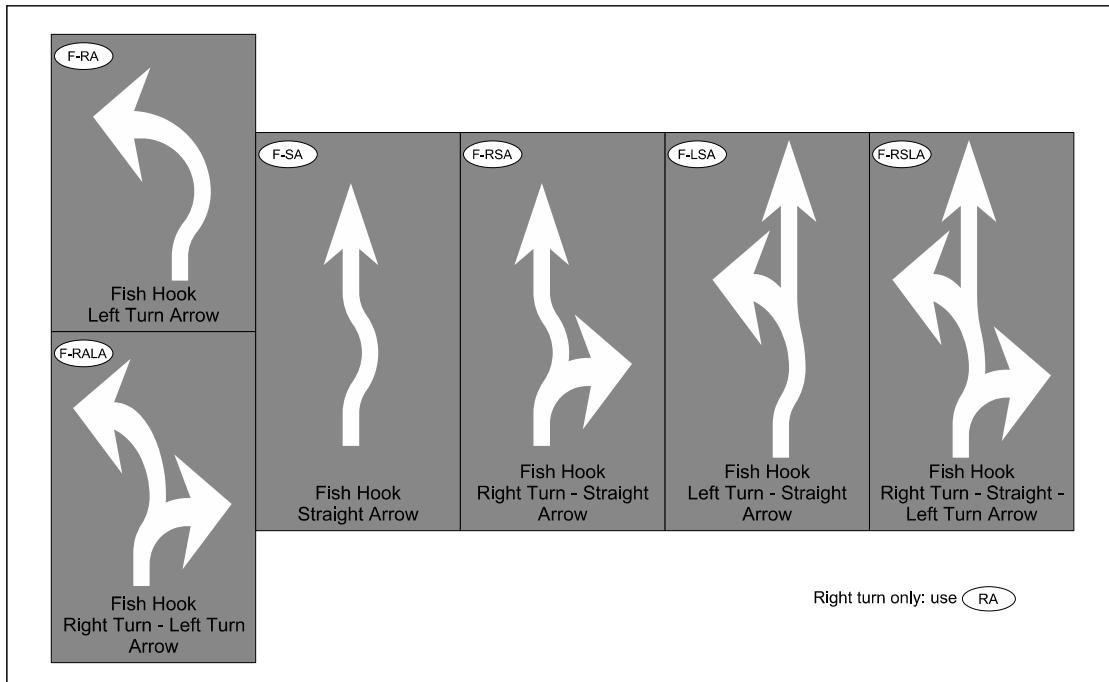

32 Figure 160-B: Arrow Dimensions

33

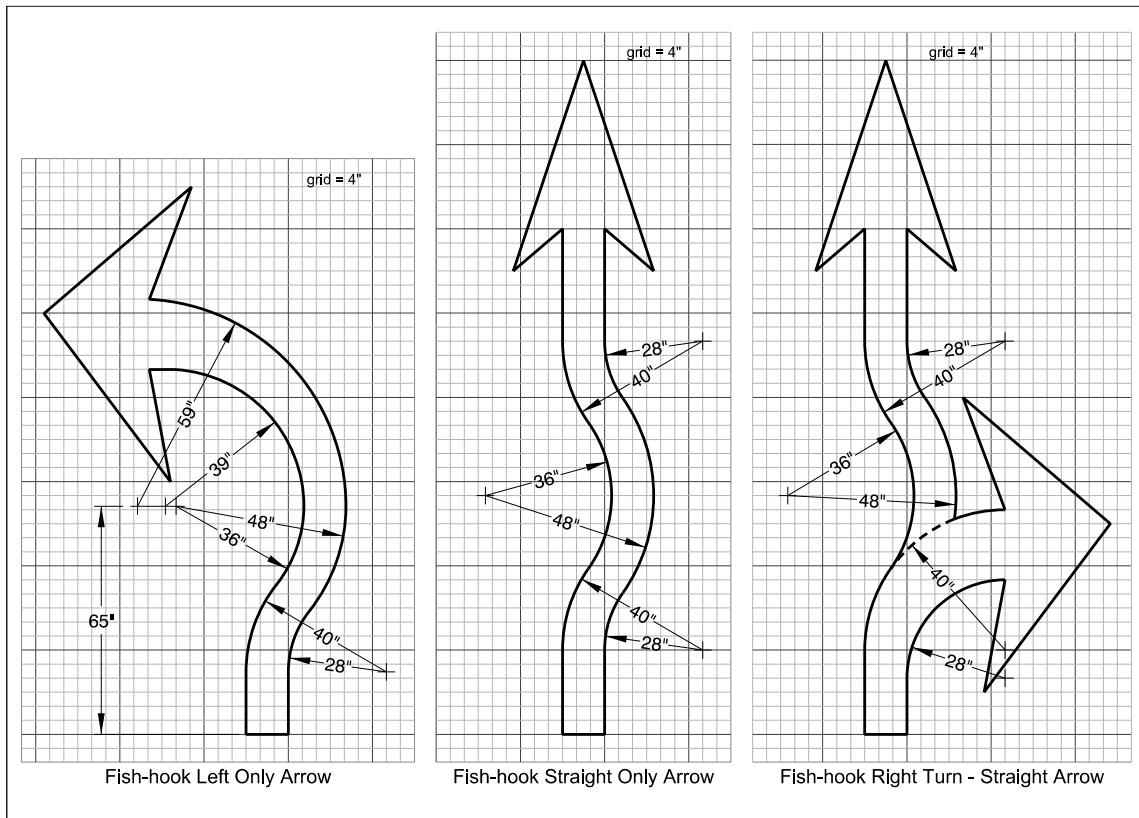

Lane Use Arrows**Section 160**

34 Figure 160-C: Elongated Arrow Types

35

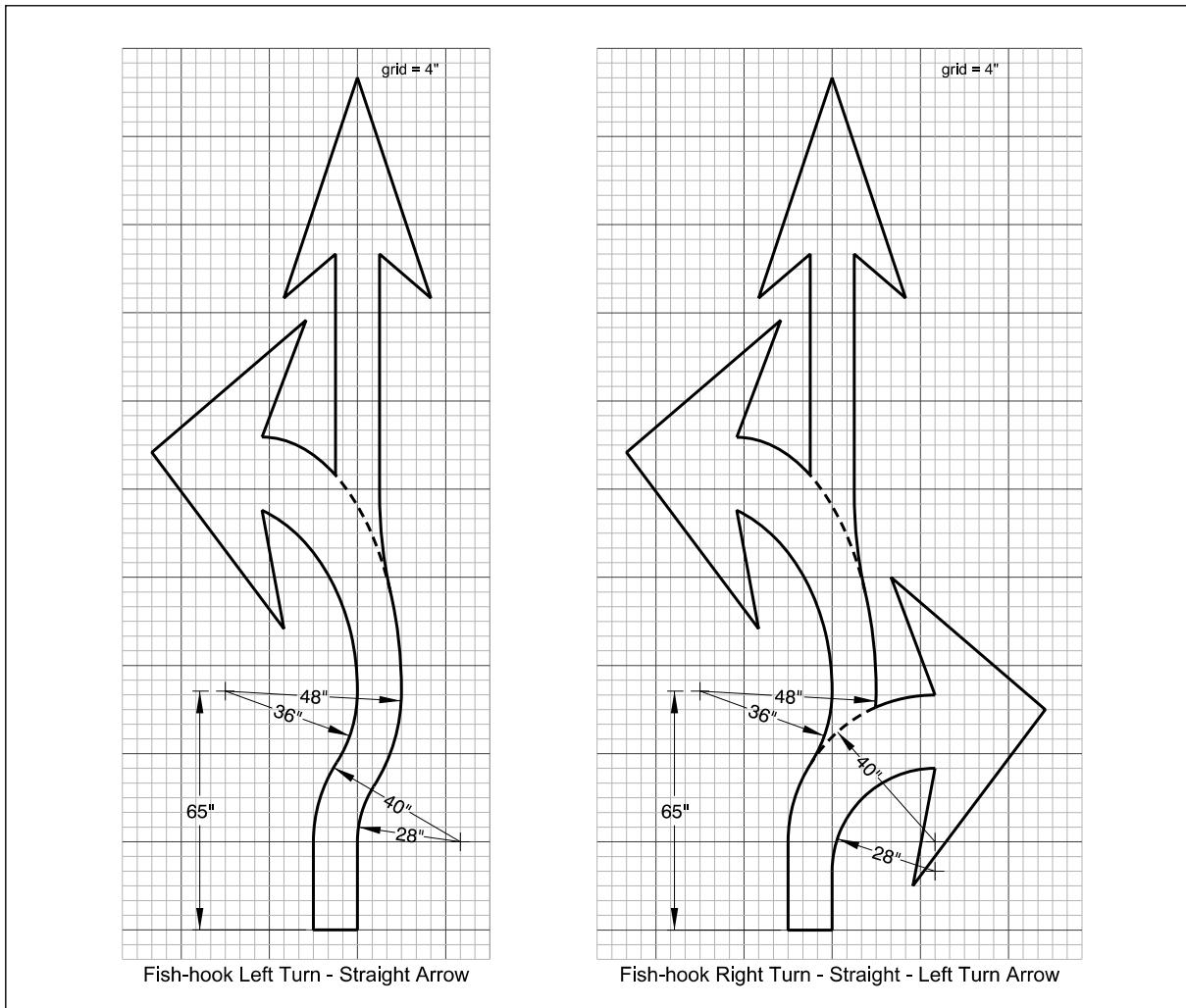

36 Figure 160-D: Elongated Arrow Dimensions

37


Lane Use Arrows**Section 160**

38 Figure 160-E: Fish-hook Arrow Types

39


40 Figure 160-F: Fish-hook Arrow Dimension (1 of 2)

41

Lane Use Arrows**Section 160**

42 Figure 160-G: Fish-hook Arrow Dimensions (2 of 2)

43

Support

45 Lane use arrow shapes and dimensions derive from FHWA's Standard Highway Signs and
46 Markings (SHS) publication (1).

47 Fish-hook style lane use arrows are allowed in the 11th Edition MUTCD (2), but are not available
48 in the current SHS publication. Fish-hook style shapes and dimensions are based on arrows in
49 the latest draft update of the SHS provided to ODOT upon request from FHWA in October
50 2016. At that time FHWA did not have a timeline for a SHS update. The fish-hook style arrows
51 provided in this section are a stop-gap for ODOT facilities until they are included in the SHS.

52 Pavement marking arrows provide a shorter legible viewing distance than lane use arrows on
53 signs because of the more severe viewing angle to the pavement (3). This is one reason multiple
54 arrows are used at turn lanes, or if just one arrow is used, it is used at the beginning of the turn

Lane Use Arrows**Section 160**

55 lane. More information on the benefits and limitations of transverse markings are available in
56 Section 125.

57 Where alley entrances intersect with a turn lane meant for a downstream intersection, placing
58 the lane use arrow beyond the alley entrance avoids road user confusion about the function of
59 the turn lane.

60 ODOT region striping crews have seen a benefit of using the elongated arrow option. With
61 these arrows being narrower when placed they are typically in-between the wheel path and do
62 not wear down as soon. With less wear elongated arrows can keep their presence in lane better
63 as well as save on maintenance costs.

Cross References

65 Colors	Section 110
66 Left Turn Lanes	Section 310
67 Added Right Turn Lanes	Section 320
68 Channelized Right-Turn Lanes	Section 321
69 Dropped Lanes and Auxiliary Lanes on Conventional Roads	Section 330
70 Roundabouts	Section 350
71 Interchange Ramps: Ramp Terminals	Section 361

Key References

- 73 1. Federal Highway Administration. *Standard Highway Signs*, 2004 ed. Federal Highway Administration,
74 Washington, D.C., 2004.
- 75 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
76 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 77 3. Zwahlen, H. T., T. Schnell, and S. Miescher. Recognition Distances of Different Pavement Arrow Designs During
78 Daytime and Nighttime. *Transportation Research Record: Journal of the Transportation Research Board of the National
79 Academies*, Vol. 1692, 1999, pp. 119-128. <http://trrjournalonline.trb.org/doi/pdf/10.3141/1692-13>. DOI:
80 <http://dx.doi.org/10.3141/1692-13>

1 Center Lines

Section 210

2 Introduction

3 A center line separates traffic traveling in opposite directions. It does not need to be at the
4 geometric center of the pavement.

5 Relevant MUTCD Sections

6 See the following for additional standards, guidance, and options not found in this manual:

- 7 • [MUTCD 11th Edition: 3B.01 Yellow Center Line Pavement Markings](#)
- 8 • [MUTCD 11th Edition: 3B.02 Warrants for Yellow Center Lines](#)
- 9 • [MUTCD 11th Edition: 3B.11 Application of Pavement Markings through Intersections or](#)
10 [Interchanges](#)

11 Design Parameters

12 01 Center line markings on two-lane, two-way roadways shall be one of the following:

- 13 • Two-direction passing zone markings consisting of a normal width broken yellow
14 line (YB) where crossing the center line markings for passing with care is permitted
15 for traffic traveling in either direction.
- 16 • One-direction no-passing zone markings consisting of a double yellow line, one of
17 which is a normal width broken yellow line and the other is a normal width solid
18 yellow line (NPR or NPL), where crossing the center line markings for passing with
19 care is permitted for the traffic traveling adjacent to the broken line, but is
20 prohibited for traffic traveling adjacent to the solid line.
- 21 • Two-direction no-passing zone markings consisting of two normal width solid
22 yellow lines (D or ND) where crossing the center line markings for passing is
23 prohibited for traffic traveling in either direction.

24 02 Center line markings on undivided two-way roadways with four or more lanes for
25 moving motor vehicle traffic shall be the two-direction no-passing zone markings
26 consisting of a solid double yellow line (D or ND).

27 03 Center line markings on undivided 3-lane, 2-way roadways shall be one- or two-direction
28 no-passing zone markings according to Sections 211 and 240.

29 04 Center line markings shall be placed on:

- 30 • All paved undivided two-way roadways with a traveled way of 18 feet or more in
31 width and an average daily traffic (ADT) of 3,000 vehicles per day or greater.
- 32 • All paved undivided two-way roadways with three or more lanes for moving motor
33 vehicle traffic.

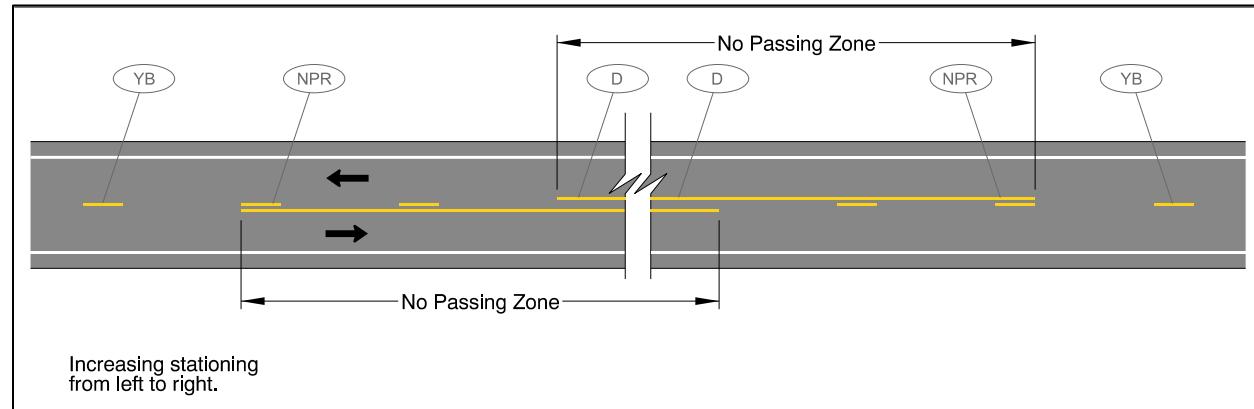
Center Lines

Section 210

34 05 Center lines should be provided on other paved traveled ways where an engineering study indicates a
35 need (e.g.: route continuity at intersecting routes, etc.).

36 06 Center lines may be provided on other paved two-way traveled ways that are 16 feet or
37 greater in width.

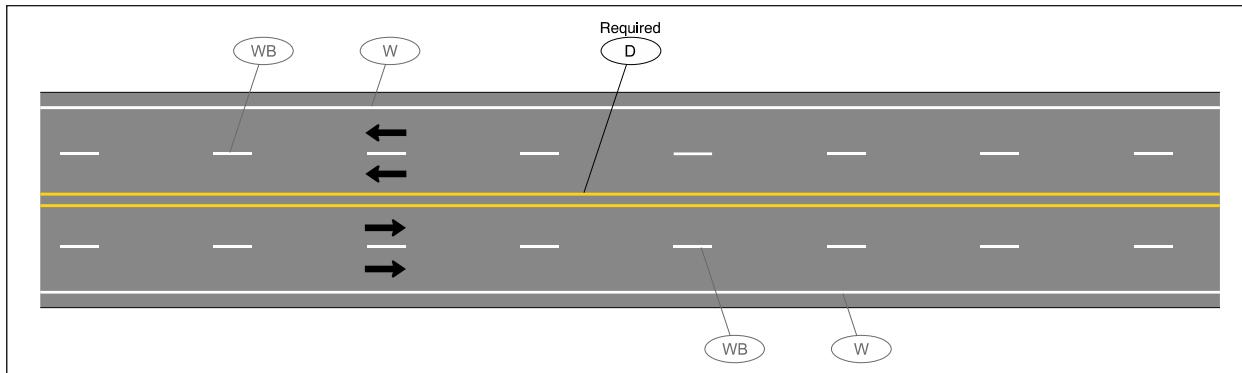
38 07 When used, center line markings shall not continue across intersections and major
39 driveways, including private driveways with substantial approach volumes (Figure 210-
40 C).


41 08 When used, center line markings should continue across minor driveways (public or private) and
42 alleys (Figure 210-C).

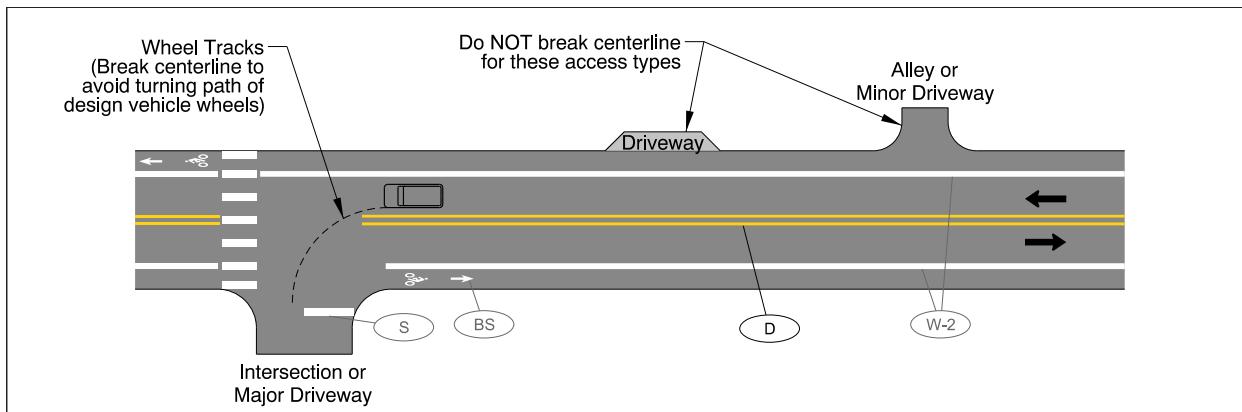
Design Issues

44 Equipment for installation and maintenance are important considerations on very narrow
45 roadways and next to non-traversable medians. Check with the striping maintenance manager
46 to make sure he or she has the right equipment for these areas. Yellow lines are typically offset
47 approximately 12 inches when next to non-traversable medians.

Figures & Tables


49 Figure 210-A: Typical 2-Lane, 2-Way Center Line Markings with No-Passing Zones

50


Center Lines**Section 210**

51 Figure 210-B: Typical 4-Lane, 2-Way Center Line Markings

52

53 Figure 210-C: Typical Centerline Striping at Intersections, Driveways, and Alleys

54

Support

55 A center line provides fundamental, continuous information to road users about the roadway path. It also communicates passing allowances, directionality of traffic, and is a proven tool to reduce crashes (2). Center line treatments generally cause road users to shift their lateral position away from the center line (3).

56 A marked centerline, particularly no-passing zone centerlines, can affect how drivers overtake a bicyclist on rural roadways (4). In some locations with very low motor vehicle volumes and significant use by people walking and biking, such as at narrow bridges, omitting the centerline or operating the location as one-way for motor vehicles might be one strategy to meet local needs.

57 Breaking longitudinal striping at major access points (such as intersections and major driveways) is an important visual and wayfinding cue for motorists. This helps them identify where an access point is located, especially in inclement weather. Center line breaks are not applied to minor access points like driveways (public or private) and alleys because too many center line breaks would make the treatment less effective at major access points and making

Center Lines**Section 210**

70 the center line less effective overall. The breaking of the line is typically based on turning wheel
71 paths (Figure 210-C). At uncontrolled intersection approaches there is no requirement to break
72 the line in advance of unmarked crosswalks.

73 Some access points are easy to define and mark accordingly (e.g. signalized intersections and
74 major route intersections); some are not. Consider the following when determining whether or
75 not to break longitudinal lines for access points that are less easily defined.

76 Intersection Indicators:

- 77 • The area of a roadway created when two or more public ways join together at any angle.
78 The junction of an alley or driveway with a public way is not considered an intersection
79 (see MUTCD Section 1A.13 and ORS 801.320).
- 80 • Curb returns and/or significant radii.
- 81 • A street name sign on the intersecting roadway or the intersecting roadway is identified
82 on a city/county map. The intersecting roadway could be gravel.
- 83 • A stop sign on the intersecting roadway.
- 84 • Turn lanes on the major roadway at the intersecting roadway.

85 Major Driveway Indicators (public or private):

- 86 • Curb returns and/or significant radii (not a dustpan design or curb cut).
- 87 • A stop sign at the driveway.
- 88 • Multiple approach lanes on the driveway.
- 89 • Turn lanes present on the major roadway at the driveway.
- 90 • Substantial volumes entering and leaving the driveway.

91 Minor driveway or alley indicators:

- 92 • Dustpan design, curb cut, or small radii.
- 93 • Narrow width of intersecting roadway.
- 94 • Minor volumes entering and leaving driveway (e.g.: single home or small business).

95 **Cross References**

96 Colors	Section 110
97 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
98 Raised Pavement Markers	Section 130
99 RPMs Used for Supplementation	Section 131
100 RPMs Used for Positioning Guides	Section 132
101 Typical Layouts for RPMs	Section 133
102 No-Passing Zone Markings	Section 211
103 Lane Reduction Transitions	Section 250
104 Lane Addition Transition & No-Passing Zones in 3-Lane Sections	Section 251
105 Traversable Medians	Section 260
106 Two-Way Left Turn Lanes	Section 261
107 Approach to a Fixed Obstruction	Section 280
108 Non-Traversable Medians & Channelizing Islands	Section 281

Center Lines**Section 210**

109	Left Turn Lanes	Section 310
110	Line Extensions Through Intersections	Section 340
111	Roundabouts	Section 350
112	Interchange Ramps: Exit & Entrance Ramps	Section 360
113	Interchange Ramps: Ramp Terminals	Section 361
114	Bicycle Lanes	Section 410
115	Marked Crosswalks	Section 430
116	Shared-Use Path Markings	Section 440
117	Railroad Crossing Markings	Section 510

118 Key References

- 119 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 120 2. Carlson, P. J., E. S. Park, and C. K. Anderson. Benefits of Pavement Markings: A Renewed Perspective Based on Recent and Ongoing Research. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2107, 2009, pp. 59-68. <http://trrjournalonline.trb.org/doi/pdf/10.3141/2107-06>. DOI: 10.3141/2107-06
- 121 3. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.
- 122 4. Chapman, J., and D. Noyce. Observations of Driver Behavior During Overtaking of Bicycles on Rural Roads. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2321, 2012, pp. 38-45. <http://trrjournalonline.trb.org/doi/abs/10.3141/2321-06>. DOI: 10.3141/2321-06

1 No-Passing Zone Markings

Section 211

2 Introduction

3 No-passing zone markings legally establish the limits where vehicles are prohibited from
4 crossing the centerline, except to turn left onto or from an intersection, alley, private roadway,
5 or driveway.

6 Relevant MUTCD Sections

7 See the following for additional standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: 3B.03 No-Passing Zone Pavement Markings

9 Design Parameters

10 01 On roadways with centerline markings, no-passing zone markings shall be used at:

- 11 • Undivided highways of 4 or more lanes. A two-direction no-passing centerline (D or
12 ND) is required in these locations.
- 13 • Vertical curves, horizontal curves, and elsewhere on 2- and 3-lane highways where
14 passing sight distance is less than the minimum shown in Table 211-1.
- 15 • Lane reduction transitions (Section 250).
- 16 • Lane addition transitions and the 2-lane direction of undivided 3-lane highways
17 (Section 251).
- 18 • Approaches to a “STOP” sign, signal indications, marked crosswalks, and school
19 zones (see Table 211-2).
- 20 • Approaches to obstructions that must be passed on the right (Sections 280 and 281).
- 21 • Approaches to highway-rail grade crossings (Section 510).
- 22 • Approaches to a traversable median (Section 260), non-traversable median (Section
23 281), or left turn lane (Section 310) where traffic is required to keep to the right (see
24 Table 211-2).

25 02 Approaches to non-signalized intersections without a median or left turn lane may be
26 marked with no-passing zone markings beginning a minimum distance shown in Table
27 211-2 from the intersection.

28 03 Where no-passing zone markings are established:

- 29 • *They should be 500 feet or longer. Where necessary, the no-passing zone marking should be
30 extended at the beginning of the no-passing zone to obtain this minimum.*

No-Passing Zone Markings

Section 211

31 • The distance between successive no-passing zones for one direction of travel should not be less
32 than 800 feet. If the distance is less than 800 feet, no-passing zone markings should connect the
33 successive no-passing zones.

34 04 Where no-passing zones are established on horizontal or vertical curves, no-passing
35 markings shall begin and continue as long as passing sight distance is less than the
36 minimum shown in Table 211-1.

37 05 Passing sight distance on horizontal curves shall be determined using one of the
38 following methods:

39 • Standard Method – Passing sight distance is the distance measured along the centerline between two points 3.5 feet above the pavement on a line tangent to the edge of pavement (Figure 211-A).

40 • Alternative Method – Passing sight distance is the distance measured along the centerline between two points 3.5 feet above the pavement on a line tangent to an obstruction that cuts off the view on the inside of the curve (Figure 211-B).

45 06 Use of the alternative method should be based on engineering judgement.

46 07 Passing sight distance on a vertical curve shall be the distance at which an object 3.5 feet
47 above the pavement surface can be seen from a point 3.5 feet above the pavement surface
48 (Fig. 211-C).

Required Approvals

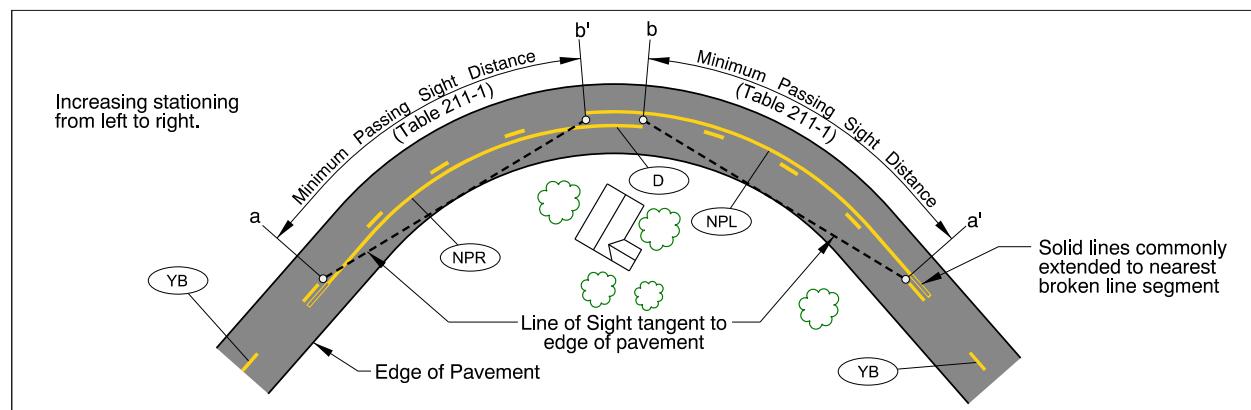
50 An engineering study and region traffic engineer approval is required for no-passing zone
51 markings for any locations not listed in the design parameters of this section.

Design Issues

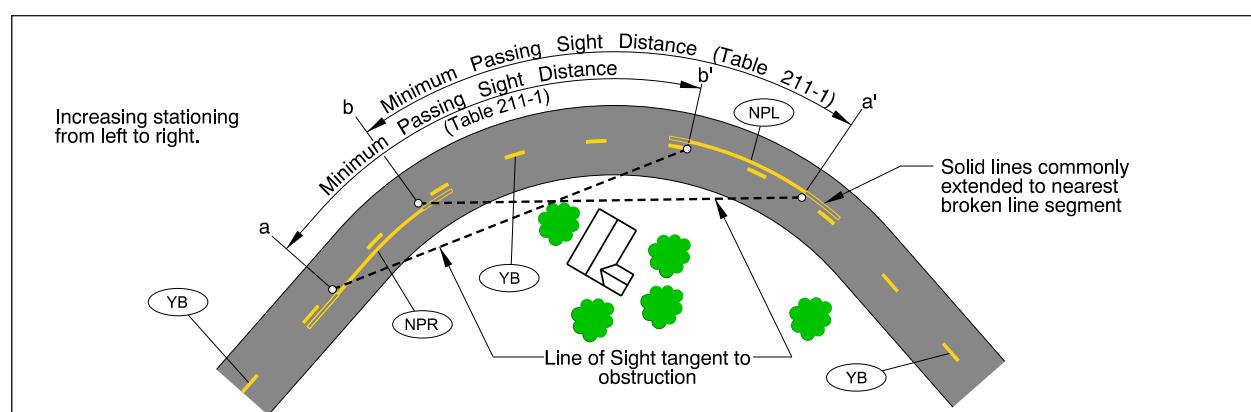
53 Based on the geometry of a crest vertical curve, no-passing zones may or may not overlap at the
54 crest of the curve. Additional design parameters are available in 2009 MUTCD (1) Section 3B.02.

Figures & Tables

56 Table 211-1: Minimum Required Passing Sight Distances

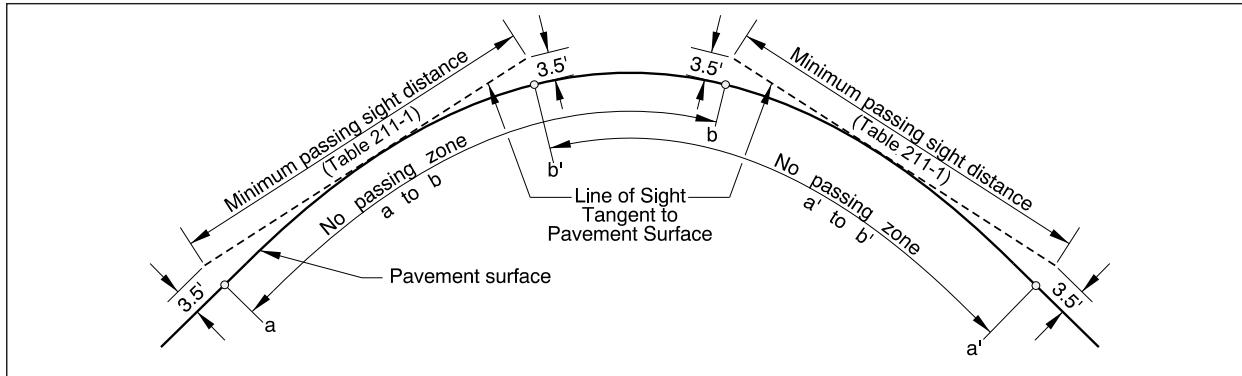

Posted or 85 th Percentile Speed (mph)	20	25	30	35	40	45	50	55	60	65	70	75
Minimum Passing Sight Distance (ft)	400	450	500	550	600	700	800	900	1000	1100	1200	1300

No-Passing Zone Markings**Section 211**


57 Table 211-2: Min. Recommended No-Passing Zone Length for Approaches to Locations Where
 58 Traffic Must Keep Right

Posted or 85 th Percentile Speed (mph)	20	25	30	35	40	45	50	55	60	65	70	75
Minimum Passing Sight Distance (ft)	500	500	500	550	600	700	800	900	1000	1100	1200	1300

59 Figure 211-A: Standard Method: Minimum Passing Sight Distance for Horizontal Curves (Based
 60 on Edge of Pavement)


61 62 Figure 211-B: Alternative Method: Passing Sight Distance for Horizontal Curves (Based on
 63 Obstruction)

64

No-Passing Zone Markings**Section 211**

65 Figure 211-C: Passing Sight Distance for Vertical Curves

66

Support

68 The safety of passing operations ultimately depends on the judgement of drivers in response to
 69 the view of the roadway ahead provided by passing sight distance and the no-passing zone
 70 markings (2).

71 Frequent passing opportunities are important to operational efficiencies of rural two-lane
 72 roadways. Passing on rural two-lane roadways is also one of the most complex maneuvers
 73 drivers make. The passing driver ultimately determines if he or she can safely complete a
 74 passing maneuver (2).

75 Actual driver behavior during passing maneuvers varies widely. There have been several
 76 different models developed to try and explain the passing process, each with their own
 77 assumptions and parameters to cover a high percentage of driver behavior. The models that
 78 most closely represent the needs of passing drivers and recommend passing sight distances
 79 very close to MUTCD minimums, developed by Glennon (3) and Hassan et al. (4), recognize
 80 that passing drivers will abort a pass up to a critical position beyond which he or she is
 81 committed to completing the passing maneuver. Field data show this occurs when the two
 82 vehicles are approximately abreast – after approximately 40 percent of the total left-lane
 83 distance has been traveled by the passing vehicle. No-passing zones established with MUTCD
 84 methods are generally consistent with field observations of passing maneuvers and have a good
 85 safety record (2).

86 Short passing zones (400 feet to 800 feet long) contribute very little to the operational efficiency
 87 of two-lane roadways. Field studies show less than 2% of drivers with headways <3 seconds
 88 take advantage of short zones and the vast majority of passing maneuvers in short passing
 89 zones (92%) end beyond the start of the solid line (2). In NCHRP Report 605, 800 feet was a
 90 proposed minimum length for high-speed roads. In very constrained corridors, shorter passing
 91 zones (as short as 400') can still be used per MUTCD.

92 The minimum length of no-passing zone (500 feet) ensures no-passing zones are long enough to
 93 be respected by road users. This value appears to be a legacy minimum from past editions of

No-Passing Zone Markings

Section 211

94 the MUTCD; this minimum has generally been proven as good practice over decades of use by
95 ODOT.

96 Locations where traffic needs to keep to the right (such as left turn lanes) are transition areas
97 where passing would not allow for safe operations. Extending a no-passing zone upstream
98 provides a buffer for passing maneuvers to complete before reaching the transition area. See the
99 ODOT Traffic Manual (5) for information on marking no-passing zones at unchannelized
100 intersections.

101 The horizontal curve alternative method allows for more passing opportunities than the
102 standard method. However, the original line of sight using the alternative method could be
103 compromised over time or at certain times. Field conditions (such as growing vegetation, future
104 buildings, railroads parallel to the highway, etc.) need to be monitored on a regular basis to
105 ensure no-passing zones are still appropriate. The standard method accounts for changing field
106 conditions by being more conservative; this results in longer and more frequent no-passing
107 zones.

108 To evaluate passing sight distance, the eye height of the driver and object height of opposing
109 vehicle are set at 3.50 feet above the pavement surface, shown in Figure 211-C. This object
110 height assumes a vehicle height of 4.35 feet (the 15th percentile of vehicle heights in the current
111 passenger car fleet) minus an allowance of 0.85 feet. The allowance represents a near-maximum
112 amount of the vehicle height that needs to be visible for another driver to recognize the object as
113 an approaching vehicle. These design values are adequate for night conditions because the
114 headlight beams of an opposing vehicle can generally be seen a greater distance than the vehicle
115 can be recognized during the day (6).

116 The beginning of a no-passing zone (in Figure 211-C, point "a" for the left-to-right direction and
117 point a' for the right-to-left direction) is the point where passing sight distance first becomes
118 less than the minimum specified in Table 211-1. The end of the no-passing zone (in Figure 211-
119 C, point "b" for the left-to-right direction and point b' for the right-to-left direction) is the point
120 where passing sight distance becomes greater than the minimum specified in Table 211-1.

121 Cross References

122 Colors	Section 110
123 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
124 Center Lines	Section 210
125 Lane Reduction Transitions	Section 250
126 Traversable Medians	Section 260
127 Approach to a Fixed Obstruction	Section 280
128 Non-Traversable Medians & Channelizing Islands	Section 281
129 Left Turn Lanes	Section 310
130 Interchange Ramps: Ramp Terminals	Section 361
131 Marked Crosswalks	Section 430
132 Railroad Crossing Markings	Section 510

133 Key References

- 134 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
135 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 136 2. Harwood, D. W., D. K. Gilmore, K. R. Richard, J. M. Dunn, and C. Sun. NCHRP Report 605: Passing Sight
137 Distance Criteria. Transportation Research Board of the National Academies, Washington, D.C., ISBN: 978-0-309-
138 09927-1, 2008. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_605.pdf.
- 139 3. Glennon, J. C. New and Improved Model of Passing Sight Distance on Two-Lane Highways. *Transportation*
140 *Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1195, 1998, pp. 132-137.
141 <http://trid.trb.org/view.aspx?id=302154>.
- 142 4. Hassan, Y., S. M. Easa, and A. O. Abd El Halim. Passing Sight Distance on Two-Lane Highways: Review and
143 Revision. *Transportation Research Part A*, Vol. 30, no. 6, November 1996, pp. 453-467. <http://www.sciencedirect.com/science/article/pii/0965856495000321>. DOI: 10.1016/0965-8564(95)00032-1
- 145 5. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.
- 147 6. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
148 *Streets*, 6th ed. Washington, D.C., 2011.

1 Lane Lines

Section 220

2 Introduction

3 Lane lines separate lanes of traffic traveling in the same direction.

4 Relevant MUTCD Sections

5 See the following for additional standards, guidance, and options not found in this manual:

- 6 • MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings

7 Design Parameters

8 01 Lane lines shall be used on all roadways that are intended to operate with two or more
9 adjacent lanes traveling in the same direction.

10 02 When used, lane lines shall:

- 11 • Be white.

12 • Not continue across intersections and major driveways, including private drive
13 approaches with substantial approach volumes (Figure 220-A), except as provided in
14 Section 340.

15 03 When used, lane lines should continue across minor driveways (public or private), and alleys (Figure
16 220-A).

17 04 A normal width white broken line (WB) shall be used where crossing the lane line
18 markings with care is permitted, except locations where a dotted lane line (DLL or DLL-2)
19 is specified in this manual.

20 05 Where crossing the lane line markings is discouraged, the lane line markings shall consist
21 of a wide solid white line (W-2) (Figure 220-B).

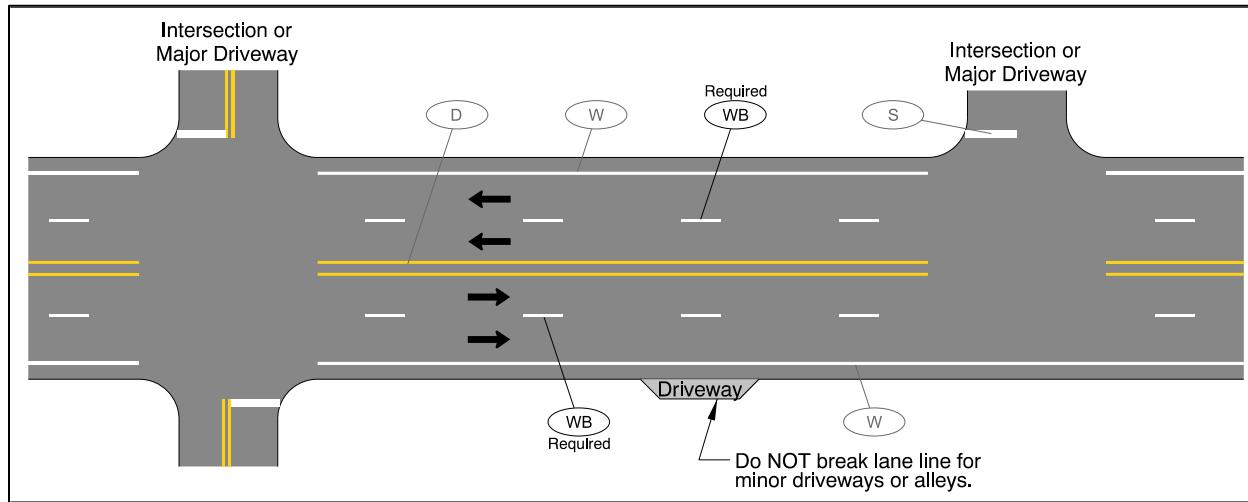
22 06 Where crossing the lane line markings is prohibited, the lane line markings shall consist
23 of a solid double white line (NDW) (Figure 220-C).

24 07 A wide dotted lane line (DLL-2) shall be used at dropped lanes according to Sections 330
25 and 360.

26 08 A dotted lane line (DLL) shall be used at parallel acceleration lanes according to Sections
27 322 and 360.

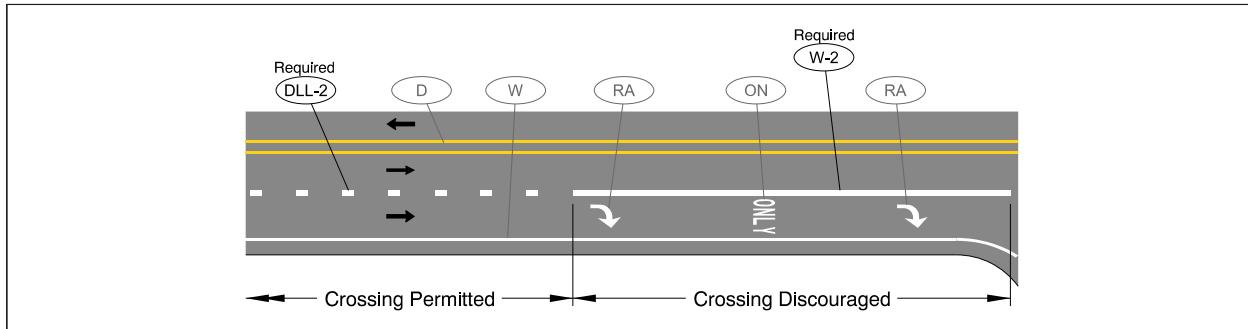
28 Design Issues

29 Lane widths can directly affect safety and operations of a roadway; needed width depends on
30 the need of the lane and roadway segment. See the ODOT Highway Design Manual (1) for
31 design parameters, considerations, and exceptions related to lane widths.


Lane Lines

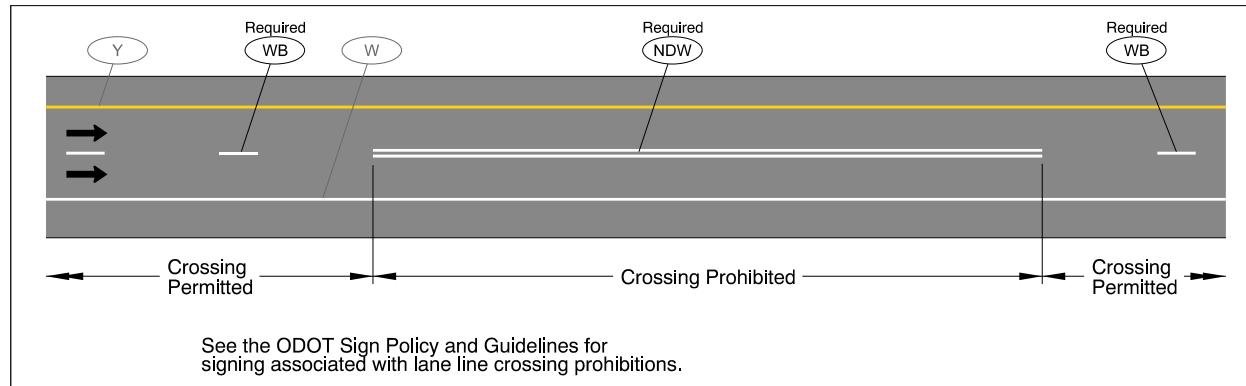
Section 220

32 Solid double white lines are not defined in statute as prohibiting lane changes; these restrictions
33 are communicated through signing. Signing associated with lane line crossing prohibitions,
34 such as "NO LANE CHANGES NEXT XXXX FT" (OR22-16) and/or "NO LANE CHANGES
35 NEXT ½ MILE" (OR22-17), can be found in the Sign Policy and Guidelines.


Figures & Tables

36 Figure 220-A: Typical Lane Line Striping at Unsignalized Intersections

38


39 Figure 220-B: Typical Lane Line Striping where Crossing is Discouraged

40

Lane Lines**Section 220**

41 Figure 220-C: Typical Lane Line where Crossing is Prohibited

42

Support

44 Design parameters related to lane lines come from Section 3B.06 of the 11th Edition MUTCD (2).

45 Typical locations where crossing a lane line is discouraged include:

46 • Separating thru lanes from left and right turn lanes.

47 • Bike lane lines.

48 • In tunnels or on bridges with narrow lane widths.

49 • Interchange areas, where lane changing can disrupt safe operations.

50 Locations where crossing is prohibited need to be selected carefully. Often, discouraging lane changes with a single wide white line is sufficient to minimize lane changes without introducing a legal requirement to not cross the line. Locations where crossing is prohibited are often safety related. Sufficient signing is often needed to reinforce the crossing prohibition and make sure road users know which lane they need to be in prior to the crossing prohibition (e.g.: advance guide signing before an interchange or intersection).

56 Breaking longitudinal striping at major access points (such as intersections and major driveways) is an important visual and wayfinding cue for motorists. This helps them identify where an access point is located, especially in inclement weather. Lane line breaks are not applied to minor access points like driveways (public or private) and alleys because too many lane line breaks would make the treatment less effective at major access points and making the lane lines less effective overall. Characteristics of locations where lane lines are broken are available in the Center Lines Section 210.

Cross References

64 Colors	Section 110
65 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
66 Raised Pavement Markers	Section 130
67 RPMs Used for Supplementation	Section 131

Lane Lines**Section 220**

68	RPMs Used for Positioning Guides.....	Section 132
69	Lane Reduction Transitions	Section 250
70	Approach to a Fixed Obstruction.....	Section 280
71	Left Turn Lanes	Section 310
72	Added Right Turn Lanes	Section 320
73	Channelized Right-Turn Lanes	Section 321
74	Dropped Lanes and Auxiliary Lanes on Conventional Roads.....	Section 330
75	Line Extensions Through Intersections.....	Section 340
76	Roundabouts	Section 350
77	Interchange Ramps: Exit & Entrance Ramps	Section 360
78	Interchange Ramps: Ramp Terminals	Section 361
79	Bicycle Lanes.....	Section 410
80	Bicycle Lane End Transitions	Section 411
81	Bicycle Lane Buffers	Section 412
82	Marked Crosswalks	Section 430
83	Railroad Crossing Markings	Section 510
84	Bus Pullouts	Section 520
85	Preferential Lane Markings.....	Section 530

Key References

86	1. Oregon Department of Transportation. <i>Highway Design Manual</i> . Oregon Department of Transportation, Salem, Oregon, 2012.
87	2. Federal Highway Administration. <i>Manual on Uniform Traffic Control Devices for Streets and Highways</i> , 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm .

1 Edge Lines

Section 230

2 Introduction

3 Edge lines delineate the right or left edge of a roadway.

4 Relevant MUTCD Sections

5 See the following for additional standards, guidance, and options not found in this manual:

- 6 • [MUTCD 11th Edition: 3B.09 Edge Line Pavement Markings](#)
- 7 • [MUTCD 11th Edition: 3B.10 Warrants for Use of Edge Lines](#)
- 8 • [MUTCD 11th Edition: 3B.11 Application of Pavement Markings through Intersections or](#)
- 9 [Interchanges](#)

10 Design Parameters

11 01 Edge lines shall be provided on interstates, freeways, expressways, rural multi-lane
12 divided roadways, and rural roadways with a traveled way of 20 feet or more in width and
13 an ADT of 3,000 vehicles per day or greater.

14 02 Edge lines should be provided:

- 15 • Where engineering judgment determines a need.
- 16 • Where lateral positioning of vehicles may be difficult without an edge line as guidance (e.g.: lane
17 reduction transitions from beginning of the advance warning sign to beyond the beginning of the
18 narrower roadway).
- 19 • On rural roadways with an ADT of 3,000 vehicles per day or greater.
- 20 • On roadways with shoulders that have lesser structural pavement strength than the traveled
21 way (to minimize unnecessary driving on shoulders or refuge areas).
- 22 • Any new paved 2-lane, 2-way roadways having a width of 24 feet or more, with adequate
23 surfaced shoulder.

24 03 The edge lines of two-way undivided roadways and right edge line of divided roadways
25 shall be a normal width white solid line. The left edge line of divided highways and one-
26 way roadways, including ramps, shall be a normal width yellow solid line (See Figure
27 230-A).

28 04 Wide solid edge line markings may be used for greater emphasis.

29 05 When used, edge lines shall not continue across intersections, except as provided in
30 Paragraph 06.

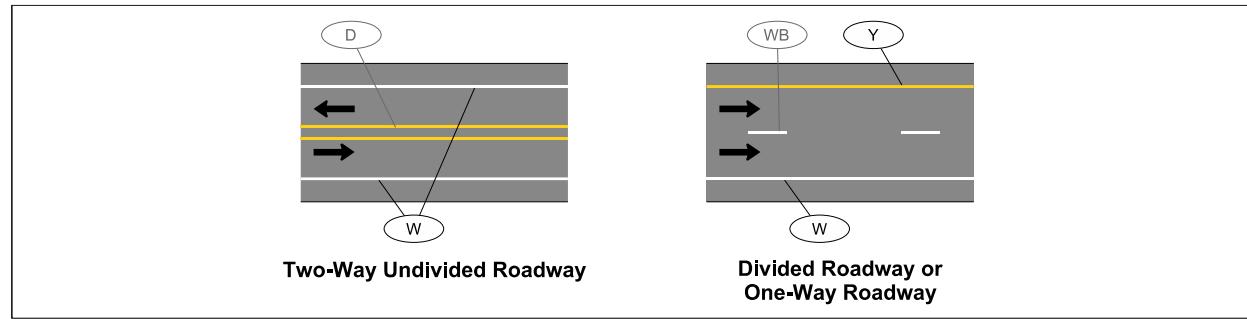
31 06 When used, the edge line on the far side of a T-intersection shall not be broken (Figure
32 230-B).

33 07 When edge lines are used, driveways that do not meet the definition of an intersection (see Section
34 1C.02) should have edge line markings maintained across the intersecting approach of the driveway
35 (Figure 230-B).

36 08 Edge lines may be:

Edge Lines

Section 230


- Provided on roadways with a nominal paved width of 20 feet (two 10 foot lanes) if sufficient existing shoulder width allows for operation of striping installation and maintenance equipment.
- Omitted where the traveled way is delineated by curbs, parking, bicycle lane, or other markings.
- Omitted at narrow bridges if additional delineation measures are used along the narrow bridge based on engineering judgement (e.g.: barrier mounted delineators, curb mounted RPMs, etc.) (Figure 230-C).
- Placed on roadways with or without centerline markings.
- Extended using a dotted line across wide, complex intersections or intersections located on a horizontal curve (see Section 340).

Design Issues

Installation and maintenance are important considerations on very narrow roadways and next to vertical roadside obstacles (guardrail, barrier, etc.). Check with the striping maintenance manager to make sure he or she has the right equipment for these areas. See Sections 3B.06-3B.08 in the MUTCD (1).

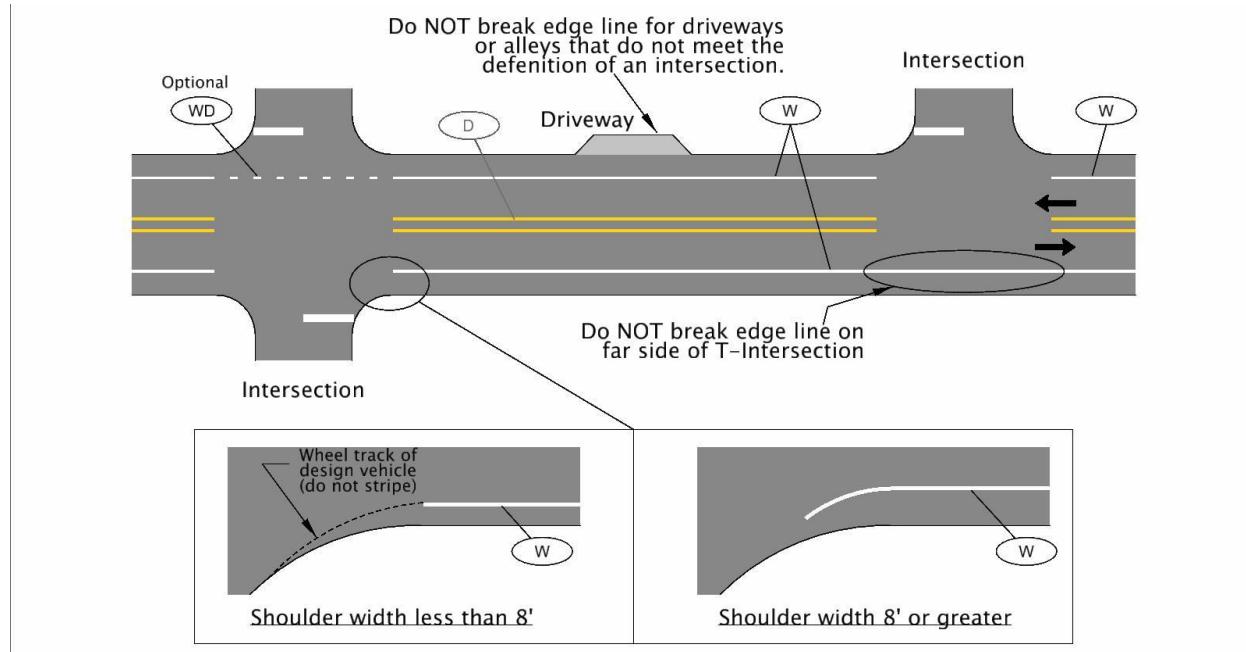
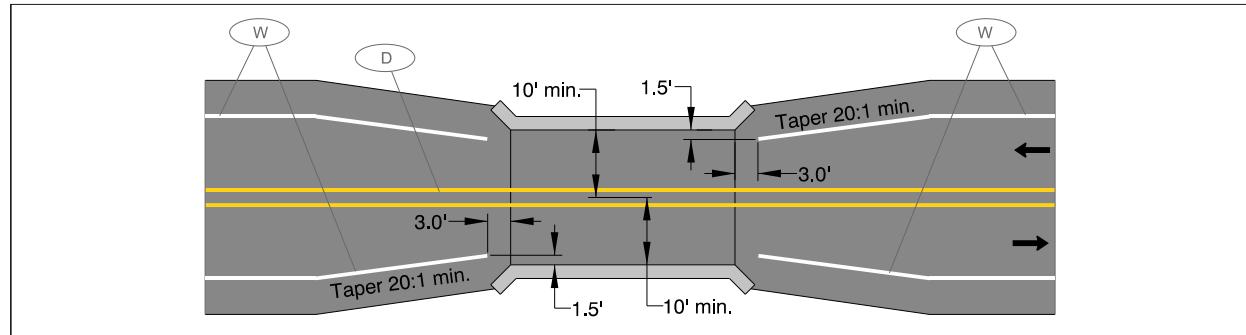

Figures & Tables

Figure 230-A: Edge Line Striping on Different Facility Types


Edge Lines**Section 230**

56 Figure 230-B: Typical Edge Line Striping at Intersections

57

58 Figure 230-C: Typical Pavement Edge Line Striping at Narrow Bridge

59

Support

61 Edge lines provide fundamental, continuous information to road users about the roadway path and their lane-position stability. In general, edge lines give road users the greatest benefit in areas with sharp or frequent curves, on narrow roadways, and in the vicinity of crossing roadways or major driveways (2). Edge lines significantly improve safety in rural and urban settings, in all terrain types, for various lane widths, and in various visibility conditions.

62 Adding edge lines have little to no impacts on vehicle speed and lateral position. Edge lines could also decrease driver workload at night on narrow two-lane roadways (3).

63 Recent research (4) (5) is beginning to show wider edge lines (>4" wide) reduce all crash types on rural two-lane roadways with narrow shoulders, such as where installing shoulder rumble strips is not practical. Of those crash types affected, run-off-the-road crashes are affected the

Edge Lines**Section 230**

71 most. It is not clear why wider edge lines reduce crashes. Findings on vehicle speed and lateral
72 lane position in the presence of wider edge lines are inconsistent and inconclusive; detection
73 distances are not significantly different either. Because drivers are more reliant on peripheral
74 vision than foveal vision for short range driving tasks like lane positioning, one theory is that a
75 stronger signal to the driver's peripheral vision, such as wide lines, could improve driver
76 comfort and short-range driving performance (2). Still, other devices and strategies like rumble
77 strips can require less maintenance and, in the case of rumble strips, have been proven as a run-
78 off-the-road countermeasure.

79 Breaking longitudinal striping at major access points (such as intersections and major
80 driveways) is an important visual and wayfinding cue for motorists. This helps them identify
81 where an access point or intersection is located, especially in inclement weather. Edge line
82 breaks are not applied to minor access points like driveways (public or private) and alleys
83 because too many lane line breaks would make the treatment less effective at major access
84 points and making the edge lines less effective overall. The breaking of the line is typically
85 based on turning wheel paths (Figure 230-B). At uncontrolled intersection approaches there is
86 no requirement to break the line in advance of unmarked crosswalks. Characteristics of
87 locations where edge lines are broken are available in the Centerlines section (Section 210).

88 Edge lines are not broken on the far side of T-intersections to give an important visual cue that
89 the intersection does not have a receiving leg on that side, especially at night and during
90 inclement weather.

Cross References

92 Colors	Section 110
93 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
94 Longitudinal Rumble Strips: General	Section 240
95 Lane Reduction Transitions	Section 250
96 Added Right Turn Lanes	Section 320
97 Channelized Right-Turn Lanes	Section 321
98 Line Extensions Through Intersections	Section 340
99 Roundabouts	Section 350
100 Interchange Ramps: Exit & Entrance Ramps	Section 360
101 Interchange Ramps: Ramp Terminals	Section 361
102 Bicycle Lanes	Section 410
103 Bicycle Lane End Transitions	Section 411
104 Shared-Use Path Markings	Section 440
105 Cattle Guard Markings	Section 650
106 Slow Moving Vehicle Turnouts	Section 660

Key References

- 108 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
109 Washington, D.C., 2023.

Edge Lines**Section 230**

110 2. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and
111 D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.

113 3. Carlson, P. J., E. S. Park, and C. K. Anderson. Benefits of Pavement Markings: A Renewed Perspective Based on
114 Recent and Ongoing Research. *Transportation Research Record: Journal of the Transportation Research Board of the*
115 *National Academies*, Vol. 2107, 2009, pp. 59-68. <http://trrjournonline.trb.org/doi/pdf/10.3141/2107-06>. DOI:
116 10.3141/2107-06

117 4. Park, E. S., P. J. Carlson, R. J. Porter, and C. K. Anderson. Safety Effects of Wider Edge Lines on Rural, Two-Lane
118 Highways. *Accident Analysis and Prevention*, Vol. 48, September 2012, pp. 317-325. <http://dx.doi.org/10.1016/j.aap.2012.01.028>.

120 5. Carlson, P., E.-S. Park, A. Pike, R.J. Porter, J. Miles, B. Boulanger, O. Smadi, N. Hawkins, S. Chalmers, F.
121 Darmiento, A. Burde, B. Kuhn, and W. Ealding. Pavement Marking Demonstration Projects: State of Alaska and
122 State of Tennessee. Texas Transportation Institute, The Texas A&M University, McLean, VA, FHWA-HRT-12-048,
123 2013. <http://www.fhwa.dot.gov/publications/research/infrastructure/pavements/12048/12048.pdf>.

1 Longitudinal Rumble Strips: 2 General Section 240

3 Introduction

4 Longitudinal rumble strips are grooved patterns in the pavement that make a rumbling sound
5 and physical vibration that immediately warns inattentive drivers that they are leaving their
6 driving lane.

7 Sections 240, 241, 242, and 243 apply to installation of longitudinal rumble strips on state
8 highways by State Transportation Improvement Program (STIP) projects.

9 A centerline rumble strip is a milled rumble strip placed under the centerline markings or
10 within a median, either along the edge or inside the median.

11 A shoulder rumble strip is a milled rumble strip placed in the shoulder offset from the outside
12 of the left or right edge line.

13 An edge line rumble strip is a milled rumble strip placed under the edge line marking.

14 Clear shoulder width is the shoulder width that is rideable on a bicycle from the shoulder side
15 of the rumble strip to the edge of pavement, or face of guardrail, concrete barrier, or other
16 obstacle if present, as shown in Figures 240-B and 240-C.

17 The division between “urban” and “rural” is undefined in Sections 240, 241, 242, and 243 and
18 should be gauged by the nature of the roadside environment. Heavily developed sections of
19 rural highway are looked at from an urban perspective and relatively undeveloped sections of
20 urban highway are looked at from a rural perspective.

21 A bicycle/bike gap pattern is a gap in the edge line or shoulder rumble strip that lets people on
22 bikes cross the rumble strip (see Sections 241 and 242).

23 A rectangular rumble strip is a rectangular groove that is ground into the pavement in regular
24 intervals.

25 A sinusoidal rumble strip is like rectangular rumble strips, but the sinusoidal rumble strips is
26 ground into a wave pattern. The wave pattern is meant to reduce the external noise caused by
27 the rumble strips.

28 Relevant MUTCD Sections

29 See the following sections for standards, guidance, and options not found in this manual:

- 30 • MUTCD 11th Edition: Chapter 3K Rumble Strip Markings

31 Design Parameters

32 01 *When installing new or modifying existing rumble strips, public outreach should be completed
33 explaining the purpose of the rumble strip installation.*

Longitudinal Rumble Strips: General

Section 240

34 02 Construction Section's Pavement Services Unit shall be contacted early in the project
35 planning process for all rumble strip installations to evaluate impacts to pavements.
36 Construction Section's Pavement Services Unit will develop pavement-related
37 recommendations on the installation of rumble strips in collaboration with the district
38 manager and the region traffic engineer.

39 03 Pavement-related recommendations should consider road user safety as the top priority. Additional
40 considerations include: pavement condition, potential impacts on pavement condition and/or increased
41 risk of pavement failure by installing rumble strips.

42 04 A bicycle gap pattern shall be used for all right edge line and right shoulder rumble
43 strips.

44 05 A bicycle gap pattern should consist of a 48-foot long rumble strip and a 12-foot gap for a 60-foot cycle
45 length.

46 06 Right edge line and right shoulder rumble strips shall not be installed where the clear
47 shoulder width would be less than the minimums in Figure 240-A.

48 07 If longitudinal rumble strips are removed, they shall be replaced according to Sections
49 240, 241, 242, and 243 of this manual if:

- 50 • The removal results in a gap in rumble strip of 0.50 miles or more, and
- 51 • The total amount of rumble strips that would be installed is 0.50 miles or more.

52 08 If longitudinal rumble strips are removed, they may be replaced according to Sections 240,
53 241, 242, and 243 of this manual if the removal results in a gap in rumble strips less than 0.50
54 miles.

55 Required Approvals

56 Region traffic engineer approval is required for certain exceptions in Figure 240-A. State traffic
57 engineer approval is required for exceptions not listed in Figure 240-A. Requests must be
58 submitted by the region traffic engineer.

59 See Sections 241, 242, and 243 for other approvals related to longitudinal rumble strips.

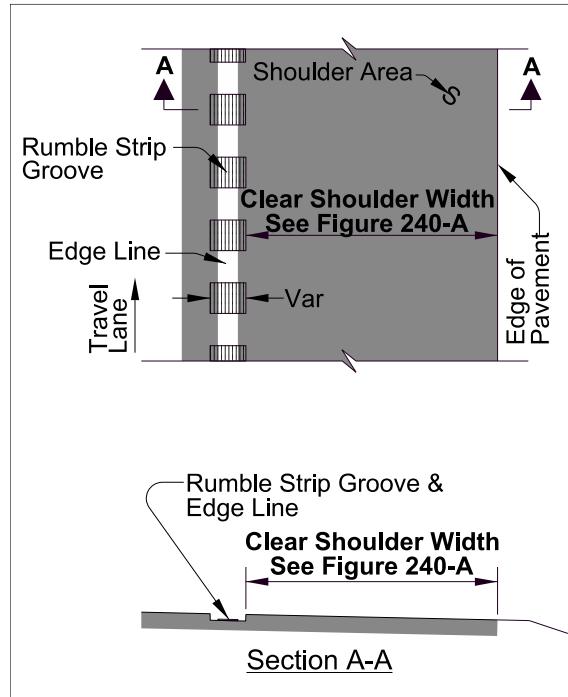
Longitudinal Rumble Strips:

General

Section 240

60 Figures & Tables

61 Figure 240-A: Minimum Clear Shoulder Widths after Installation

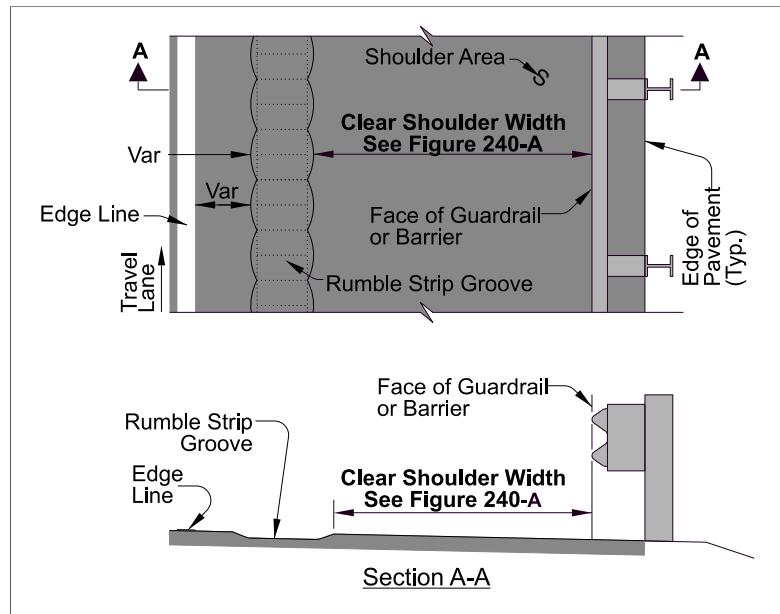

Rumble Strip Type and Location	Adjacent to Guardrail or Concrete Barrier?	Minimum Clear Shoulder Width After Installation
All right shoulder and edge line rumble strips	Yes	5 feet-0 inches ^①
	No	4 feet-0 inches ^①
Left shoulder rumble strips on rural freeways and divided highways	Yes	3 feet-0 inches ^②
	No	1 foot-0 inches

① May be reduced to 1 foot-0 inches if approved by the Region Traffic Engineer where
 1. AADT is 1500 vehicles per day or less, and
 2. where passing sight distance is greater than the minimum in Section 211.

② May be reduced to 1 foot-0 inches if approved by the Region Traffic Engineer.
 Installation and maintenance of rumble strips is difficult in restricted width areas.

62

63 Figure 240-B: Clear Shoulder Width Example Right Shoulder Rectangular Rumble Strip No
 64 Guardrail or Concrete Barrier Present


65

Longitudinal Rumble Strips:

General

Section 240

66 Figure 240-C: Clear Shoulder Width Example Right Shoulder Sinusoidal Rumble Strip Guardrail
 67 or Concrete Barrier Present

68

Support

70 A roadway departure crash occurs after a vehicle crosses an edge line or a center line or
 71 otherwise leaves the traveled way.

72 Roadway departure crashes are the most common type of fatal and serious injury crash on
 73 Oregon's rural highways. Between 2009 and 2013 approximately 53 percent of all fatal and
 74 serious injury crashes in Oregon included a roadway departure, contributing to 1,188 fatalities
 75 and 3,745 serious injuries. About 73 percent of these crashes were in a rural environment (1).

76 Rumble strips are a highly effective and cost efficient method of reducing roadway departure
 77 crashes. NCHRP Report 641 (2) reports the following estimates of safety effectiveness for
 78 rumble strips based on roadway functional classification:

79 Table 240-1: Estimated Safety Effectiveness of Rectangular Rumble Strips

Facility Type	Rumble Strip Location	Estimated Crash Reduction: All Roadway Departure	Estimated Crash Reduction: Fatal & Injury Roadway Departure
Rural Freeway	Shoulder	11% (SE=6)	16% (SE=8)
Rural Multi-Lane Divided Highway	Shoulder	22% (SE not reported)	51% (SE not reported)

Longitudinal Rumble Strips:

General

Section 240

Facility Type	Rumble Strip Location	Estimated Crash Reduction: All Roadway Departure	Estimated Crash Reduction: Fatal & Injury Roadway Departure
Rural 2-Lane Highway	Shoulder	15% (SE=7)	29 (SE=9)
Rural 2-Lane Highway	Centerline	30% (SE=5)	44% (SE=6)
Urban 2-Lane Highway	Centerline	40% (SE=17)	64% (SE=27)

80 Edge line and shoulder rumble strips can be difficult for people on bicycles to traverse, and a
 81 clear, rideable shoulder next to rumble strips is needed for safe and predictable shoulder riding.
 82 The AASHTO Guide for the Development of Bicycle Facilities (3) does not recommend rumble
 83 strips on shoulders used by people on bikes unless there is a minimum clear path of 4 feet from
 84 the rumble strip to the edge of pavement, or 5 feet to an adjacent guardrail or other obstacle.
 85 The AASHTO Guide (3) also recommends gaps in the rumble strip pattern of at least 12 feet
 86 every 40 to 60 feet to allow people on bicycles to move across the rumble strip to avoid debris
 87 and other obstacles in the shoulder, pass other cyclists, make left turns, etc. Longer gaps might
 88 be needed on steep downgrades because of higher bicycle speeds.

89 To maximize the locations where shoulder and edge line rumble strips can be used, this policy
 90 allows right shoulder and edge line rumble strips where clear shoulder widths are less than the
 91 minimums in Figure 240-A on low volume highways (AADT is 1500 vehicles per day or less)
 92 where there is passing sight distance available. This volume is the upper threshold
 93 recommended in the ODOT Bicycle and Pedestrian Design Guide (4) where a shared lane
 94 condition is tolerable. Omitting shoulder or edge line rumble strips in areas with limited
 95 passing sight distance allows cyclists to stay as far to the right as possible in areas where
 96 approaching drivers have limited sight distance and allows for simplified installation as these
 97 areas already need to have no-passing zone markings.

98 There are added safety benefits where rumble strips are installed next to guardrail or concrete
 99 barrier. These include reduced damage to vehicles and less frequent maintenance or
 100 replacement of guardrail or barrier because rumble strips reduce the frequency and severity of
 101 crashes.

102 Rumble strips are a systemic treatment that work best when applied on a corridor-basis. When
 103 a project needs to remove a short section of rumble strips, the safety benefits of reinstalling
 104 rumble strips may not outweigh the cost to do so. The cost-per-mile to install rumble strips
 105 increases exponentially as quantity decreases, especially for quantities less than 0.5 miles.
 106 Consider the following when replacing rumble strips gap that is less than 0.5 miles long:

107

- Total gap in rumble strip
- Roadway departure crash history

Longitudinal Rumble Strips: General

Section 240

109 • AADT
110 • 85th percentile speed

111 A rumble strip only works to alert an errant driver if the rumble strip is present. As the number
112 of drivers increases (AADT), so does the potential for an errant driver, and higher vehicle speed
113 means less time for a driver to react if they leave the road.

114 Cross References

115 Longitudinal Rumble Strips: Rural Freeways and Divided Highways Section 241
116 Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways Section 242
117 Longitudinal Rumble Strips: Urban Highways Section 243

118 Key References

- 119 1. Oregon Department of Transportation. *2016 Oregon Transportation Safety Action Plan*. Oregon Department of
120 Transportation, Salem, Oregon, 2016. http://www.oregon.gov/ODOT/Safety/Documents/TSAP_2016.pdf.
- 121 2. Torbic, D. J., J. M. Hutton, C. D. Bokenkroger, K. M. Bauer, D. W. Harwood, D. K. Gilmore, J. M. Dunn, J.
122 Ronchetto, E. T. Donnell, H. J. Sommer III, P. M. Garvey, B. Persaud, and C. Lyon. NCHRP Report 641: Guidance
123 for the Design and Application of Shoulder and Centerline Rumble Strips. Transportation Research Board of the
124 National Academies, Washington, D.C., ISSN 0077-5614, 2009. <http://www.trb.org/Publications/Blurbs/162610.aspx>.
- 126 3. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
127 5th ed. Washington, D.C., 2024.
- 128 4. Oregon Department of Transportation. *Bicycle and Pedestrian Design Guide*, 3rd ed. Oregon Department of
129 Transportation, Salem, Oregon, 2011. http://www.oregon.gov/ODOT/Engineering/Documents_RoadwayEng/HDM_L-Bike-Ped-Guide.pdf.

1 **Longitudinal Rumble Strips:** 2 **Rural Freeways and Divided** 3 **Highways**

Section 241

4 **Introduction**

5 Rural freeways and divided highways are typically highways with two lanes in each direction
6 and a median width of 4 feet or more constructed in a way to preclude its use by moving
7 vehicles. There might be use of these non-traversable medians for emergencies or for authorized
8 emergency or maintenance U-turns. Examples are rural freeways with full access control or
9 divided sections of multilane rural highways with partial access control, such as expressways or
10 parkways sharing many of the functional characteristics of rural freeways. See Section 240 for
11 more rumble strip definitions.

12 **Relevant MUTCD Sections**

13 See the following sections for standards, guidance, and options not found in this manual:

- 14 • [MUTCD 11th Edition: Chapter 3K Rumble Strip Markings](#)

15 **Design Parameters**

- 16 01 Right shoulder rectangular rumble strips shall be installed where the clear shoulder width
17 is greater than or equal to the minimums in Figure 240-A.
- 18 02 Rumble strips on right shoulders shall be installed in a bike gap pattern.
- 19 03 Left shoulder rectangular rumble strips shall be installed where the clear shoulder width
20 is greater than or equal to the minimums in Figure 240-A.
- 21 04 Rumble strips on left shoulders shall be installed in a continuous pattern.
- 22 05 *Shoulder rumble strips should be placed according to Figures 241-A through 241-L.*
- 23 06 Rumble strips shall not extend across crosswalks, marked or unmarked, including the far
24 side of a T-intersection.

25 **Exceptions**

- 26 07 Exceptions approved under this section shall be documented in a design narrative or
27 similar format and filed with the region traffic office.
- 28 08 *In locations where rumble strips are being evaluated for omission, consideration should be given to
29 installing rumble strips if the location has a history of roadway departure crashes.*

**Longitudinal Rumble Strips:
Rural Freeways and Divided
Highways****Section 241**

30 09 Right shoulder rumble strips may be offset up to 4 feet from the outside edge of the right
31 edge line where clear shoulder widths are greater than or equal to the minimums in Figure
32 240-A and any one of the following locations:

33 • Where maintenance work zones could be adversely affected by driver behavior during
34 lane shifts onto the shoulder.

35 • Uphill sections where trucks or oversize loads use the shoulder to allow truck drivers to
36 position their left wheels fully out of the lane without running on the rumble strip.

37 • Sections where the rumble strip must be offset due to a longitudinal pavement joint
38 (such as PCC lanes and HMAC shoulders) or locations adjacent to these sections to
39 maintain consistent application of rumble strips through a corridor.

40 • Where the region traffic engineer, in collaboration with the district manager and
41 pavement services engineer, determine pavement condition and risk of pavement
42 failure require offsetting the rumble strip.

43 • Where sections have an approved bus shoulder lane for the right shoulder of the
44 roadway.

45 10 Shoulder rumble strips may be omitted where the region traffic engineer, in collaboration
46 with the district manager and pavement services engineer, determine pavement condition
47 and risk of pavement failure outweigh the safety benefit of rumble strips.

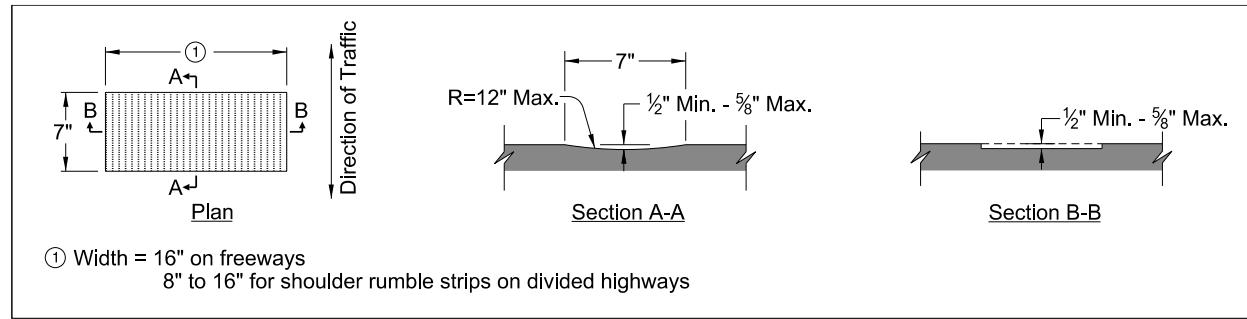
48 11 Right shoulder rumble strips may be omitted on uphill sections where trucks or oversize
49 loads drive on the shoulder.

50 12 Right shoulder rumble strips may be omitted next to guardrail or concrete barrier where the
51 clear shoulder width is greater than the minimums shown in Figure 240-A. The benefits of
52 rumble strips should be considered in these locations.

53 13 Right shoulder rumble strips may be omitted where the right shoulder of the roadway is a
54 bus shoulder lane.

55 14 Rumble strips may be omitted where rumble strips were not previously installed and the
56 total amount of rumble strips that would be installed is 0.5 miles or less.

57 15 Sinusoidal rumble strips may be used instead of rectangular rumble strips based on an
58 engineering study (see Section 242 for sinusoidal rumble strip pattern details and supporting
59 information).

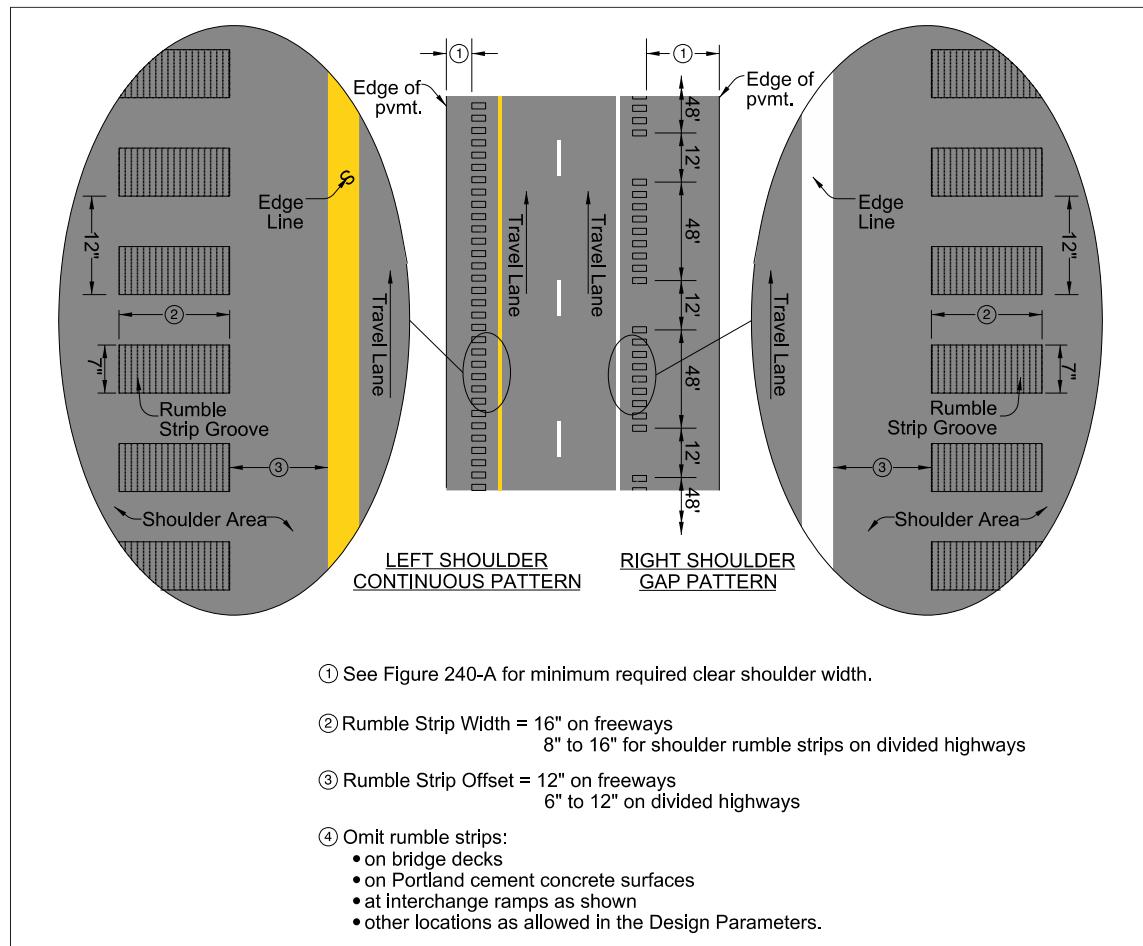

60 16 Right shoulder and edge line rumble strips may be omitted within T-intersections.

**Longitudinal Rumble Strips:
Rural Freeways and Divided
Highways****Section 241****Required Approvals**

Region traffic engineer approval is required for exceptions in this section. Exceptions not in this section require state traffic engineer approval. Requests must be submitted by the region traffic engineer.

Figures & Tables

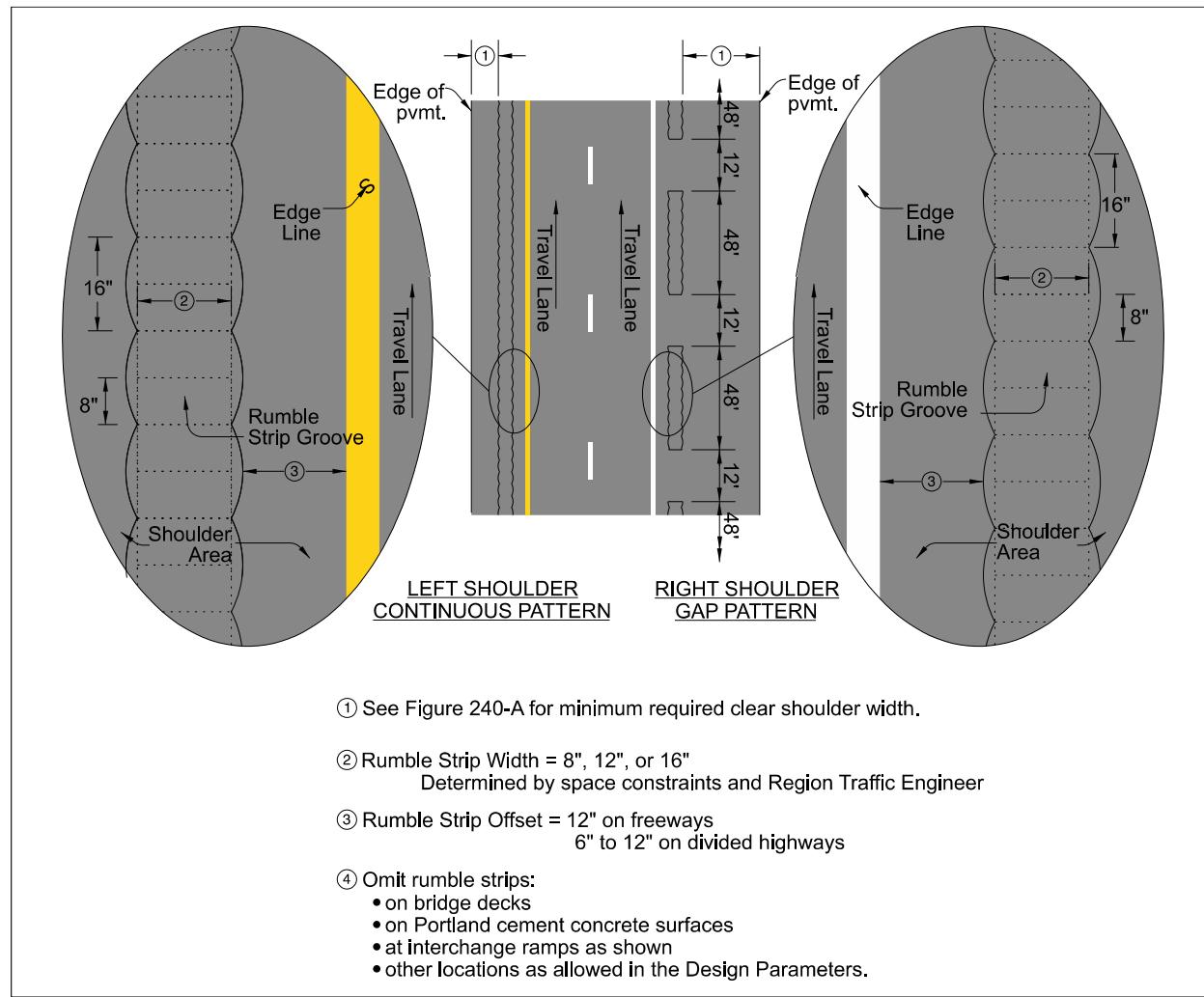
Figure 241-A: Shoulder Rectangular Rumble Strip Details for Rural Freeway or Divided Highway



67

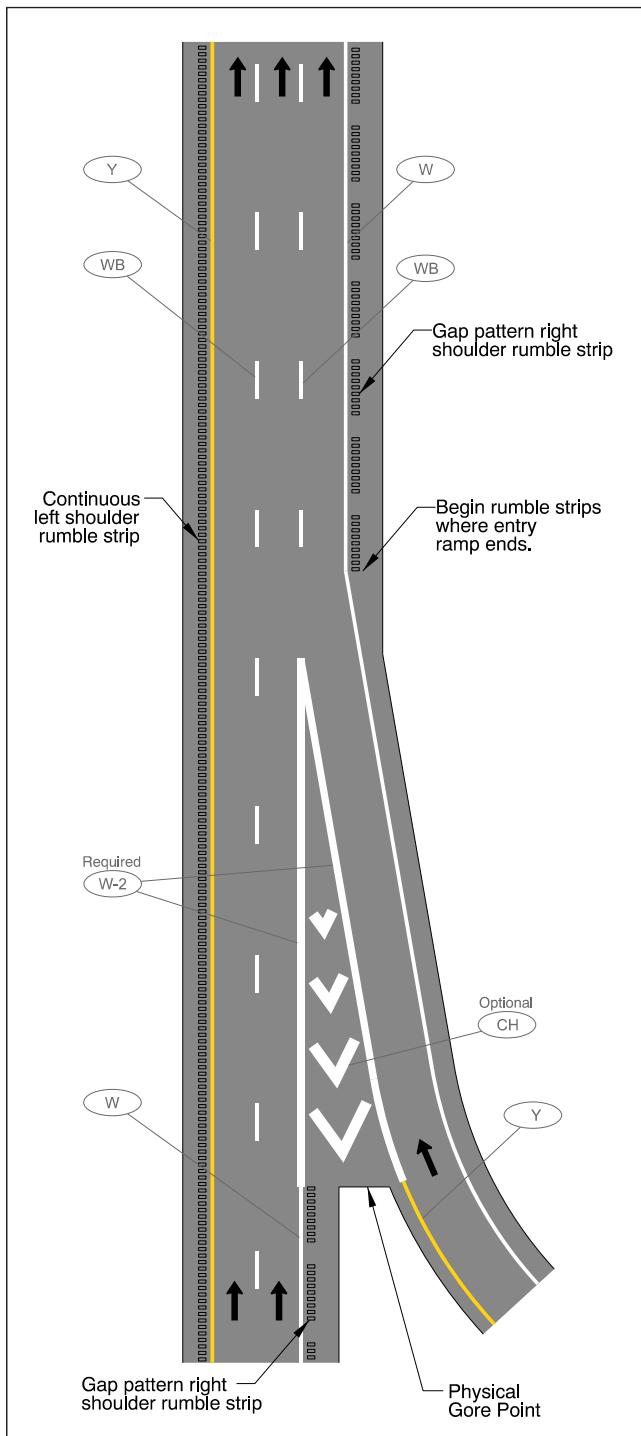
Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241


68 Figure 241-B: Typical Shoulder Rectangular Rumble Strip Placement on Rural Freeway or Divided
69 Highway

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

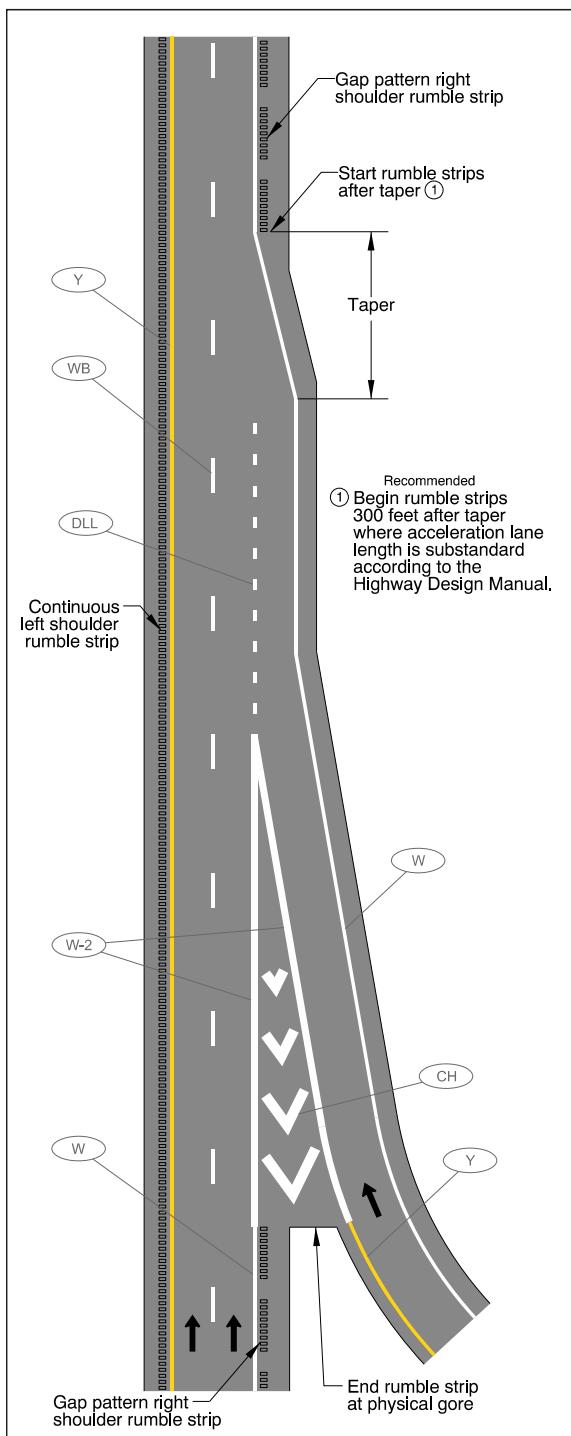
Section 241


71 Figure 241-C: Typical Shoulder Sinusoidal Rumble Strip Placement on Rural Freeway or Divided
72 Highway

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

74 Figure 241-D: Typical Shoulder Rectangular Rumble Strip Placement at Entrance Ramp with
75 Added Lane

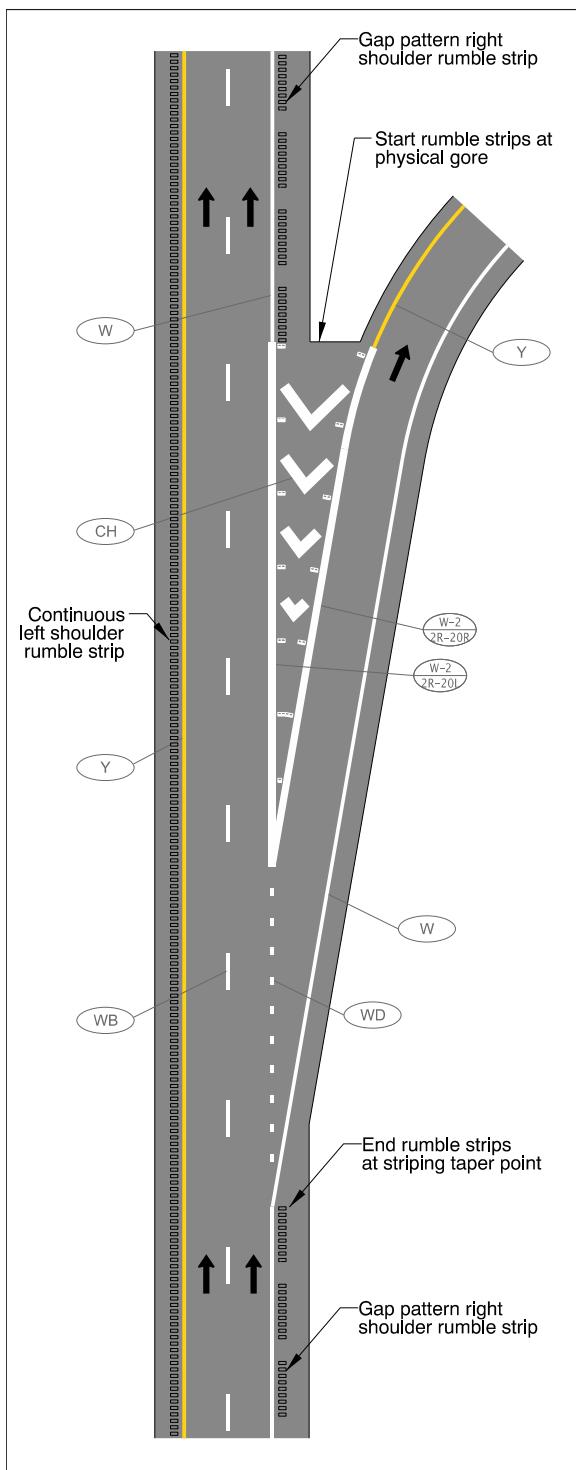


76

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

77 Figure 241-E: Typical Shoulder Rectangular Rumble Strip Placement at Entrance Ramp with
78 Parallel Acceleration Lane

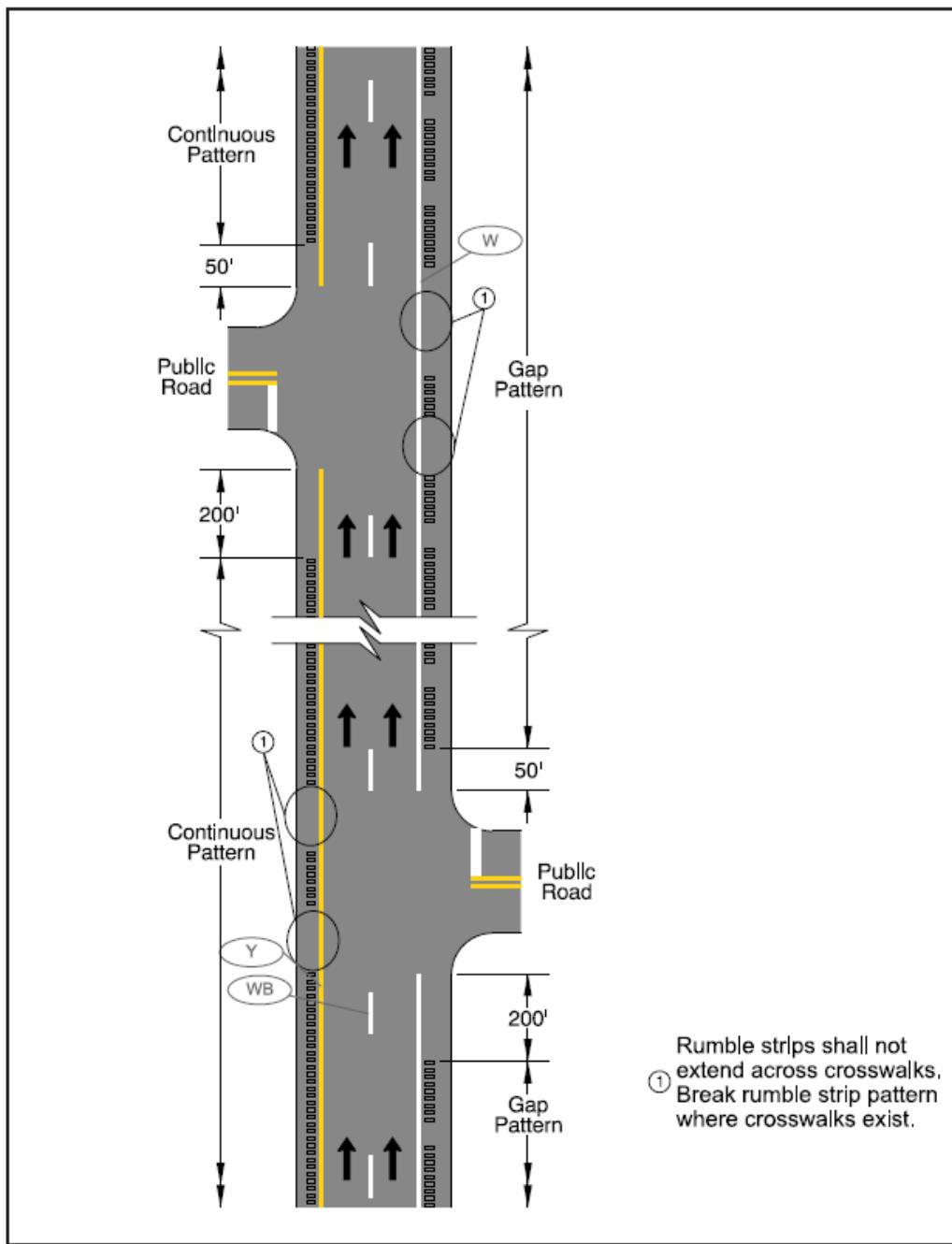


79

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

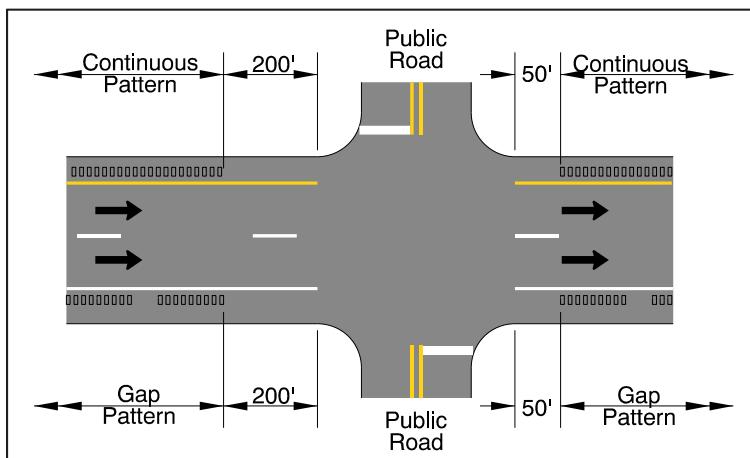
80 Figure 241-F: Typical Shoulder Rectangular Rumble Strip Placement at Tapered Deceleration
81 Lane

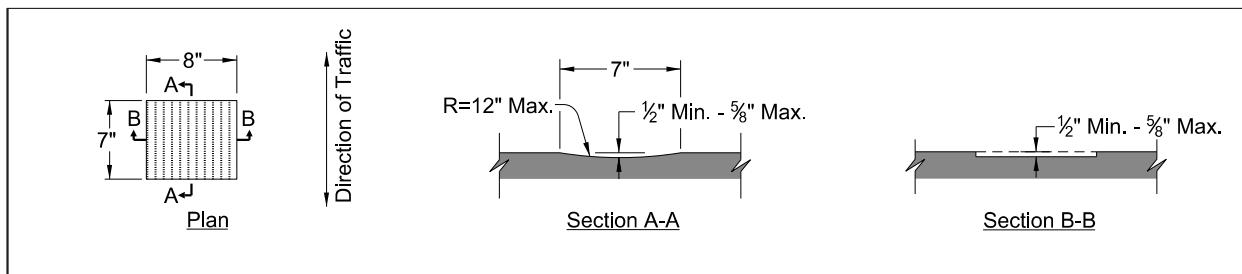


82

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

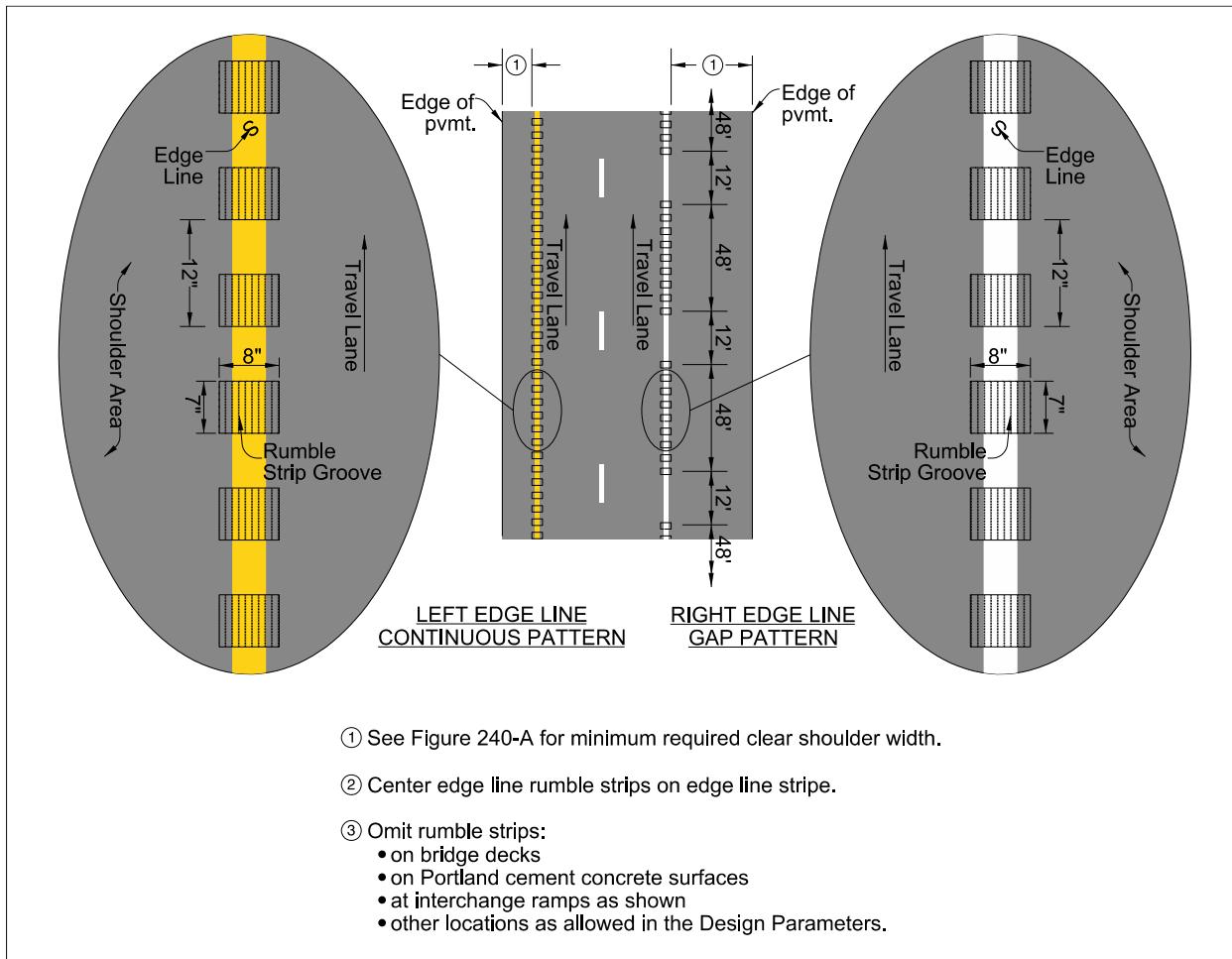

83 Figure 241-G: Typical Shoulder Rectangular Rumble Strip Placement at Rural Divided Highway T-
84 Intersections


Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

86 Figure 241-H: Typical Shoulder Rectangular Rumble Strip Placement at Rural Divided Highway
87 Intersection

88
89 Figure 241-I: Edge Line Rectangular Rumble Strip Details for Rural Divided Highway

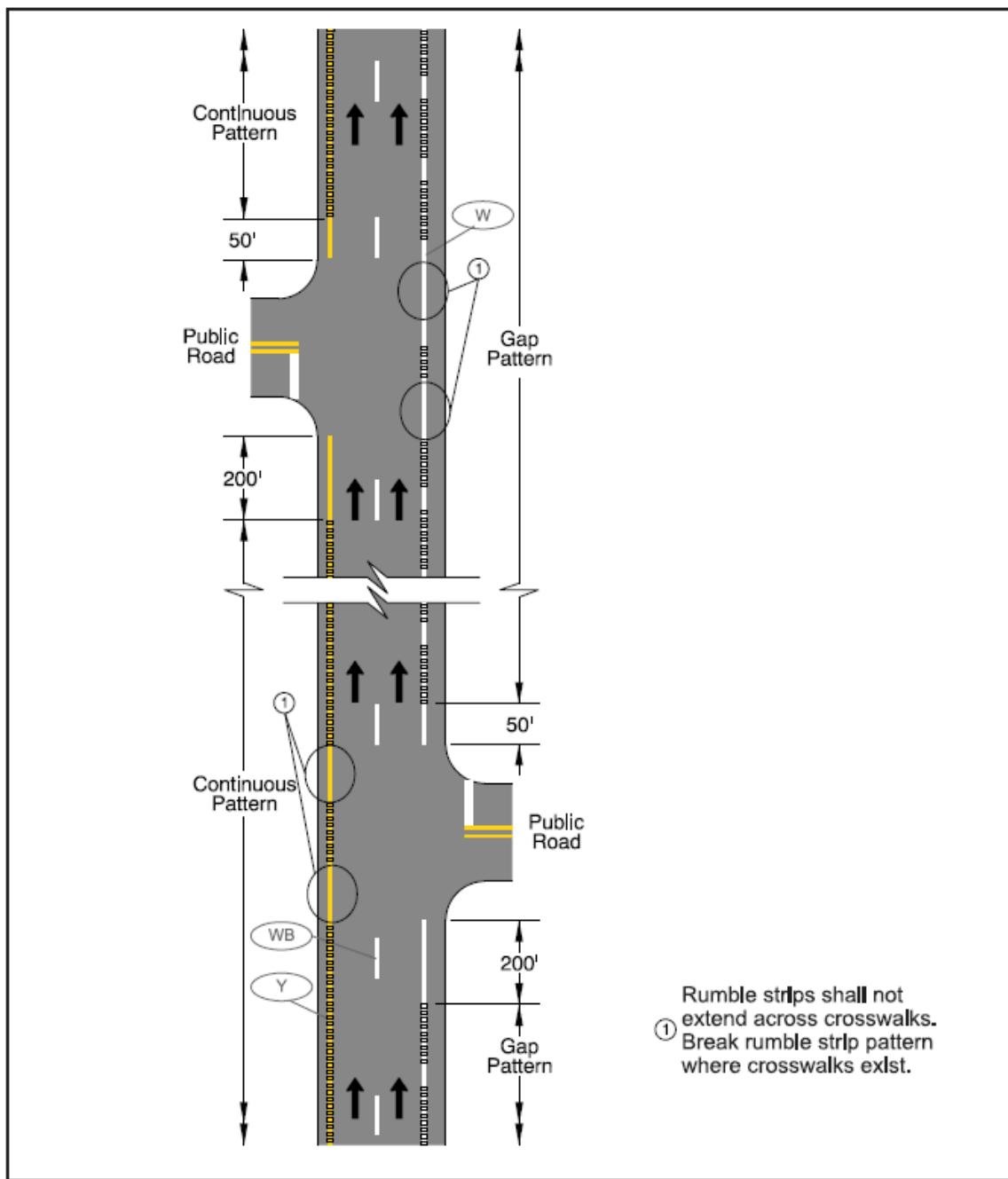


90

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

91 Figure 241-J: Typical Edge Line Rectangular Rumble Strip Placement on Rural Divided Highway

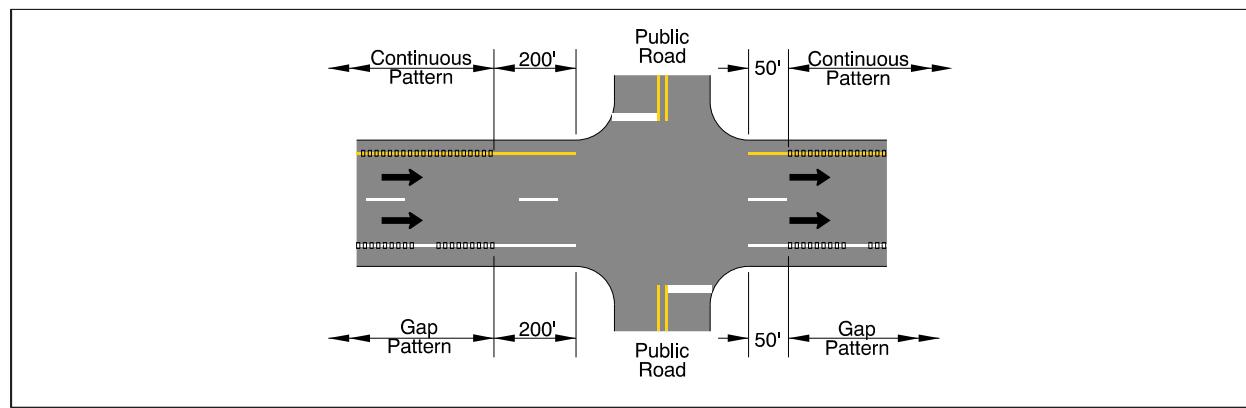


92

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

93 Figure 241-K: Typical Edge Line Rectangular Rumble Strip Placement at Rural Divided Highway
94 T-Intersections



95

Longitudinal Rumble Strips: Rural Freeways and Divided Highways

Section 241

96 Figure 241-L: Typical Edge Line Rectangular Rumble Strip Placement at Rural Divided Highway
97

98

Support

100 A roadway departure crash occurs after a vehicle crosses an edge line or a center line or
101 otherwise leaves the traveled way.

102 Roadway departure crashes are the most common type of fatal and serious injury crash on
103 Oregon's rural highways. Between 2014 and 2018 approximately 41% of all fatal and serious
104 injury crashes in Oregon included a roadway departure, contributing to 1,330 fatalities and
105 3,336 serious injuries. About 68% of these crashes were in a rural environment (1).

106 Rumble strips are a highly effective and cost efficient method of reducing roadway departure
107 crashes. NCHRP Report 641 (2) reports shoulder rumble strips on rural freeways can be
108 expected to reduce fatal and injury roadway departure crashes by 16% (SE=8); shoulder rumble
109 strips on rural multilane divided highways can be expected to reduce fatal and injury roadway
110 departure crashes by 51% (SE not reported).

111 Short duration temporary traffic control measures on rural freeways and divided highways that
112 shift road users onto the shoulder can experience poor driver compliance if rumble strips are
113 present. Drivers tend to straddle rumble strips if there is not enough clear driving space on one
114 side of the rumble strip. This can create unsafe conditions for workers and road users if this
115 positions vehicles too close to the work area. In these cases, the option to offset rumble strips up
116 to 4-foot on rural freeways and divided highways can address some maintenance concerns
117 while still providing a safety benefit from the rumble strips. These areas need to be chosen
118 carefully; there is conclusive evidence that rural freeway rumble strips placed closer to the edge
119 line are more effective at reducing fatal and injury roadway departure crashes compared to
120 rumble strips placed farther from the edge line (2).

121 Bicyclists can legally ride on interstate freeway shoulders, except for specific areas in the
122 Portland area and Medford, according to OAR 734-020-0045. Edge line and shoulder rumble

**Longitudinal Rumble Strips:
Rural Freeways and Divided
Highways****Section 241**

123 strips can be difficult for people on bicycles to traverse, and a clear, rideable shoulder next to
124 rumble strips is needed for safe and predictable shoulder riding. The AASHTO Guide for the
125 Development of Bicycle Facilities (3) does not recommend rumble strips on shoulders used by
126 people on bikes unless there is a minimum clear path of 4 feet from the rumble strip to the edge
127 of pavement, or 5 feet to an adjacent guardrail or other obstacle. The AASHTO Guide (3) also
128 recommends gaps in the rumble strip pattern of at least 12 feet every 40 to 60 feet to allow
129 people on bicycles to move across the rumble strip to avoid debris and other obstacles in the
130 shoulder, pass other cyclists, make left turns, etc. Longer gaps might be needed on steep
131 downgrades because of higher bicycle speeds.

132 There are added safety benefits where rumble strips are installed next to guardrail or concrete
133 barrier. These include reduced damage to vehicles and less frequent maintenance or
134 replacement of guardrail or barrier because rumble strips reduce the frequency and severity of
135 crashes.

136 The rumble strip design dimensions shown in Figure 241-A and Figure 241-B are the most
137 common dimensions of milled shoulder rumble strips in the United States. These generate
138 sufficient noise in the upper range of recommended noise design thresholds to alert inattentive,
139 distracted, drowsy, or fatigued drivers, including drivers of heavy vehicles (2).

140 Longitudinal rumble strips are a systemic safety countermeasure that provides the most benefit
141 when applied to long sections of highway. The per-mile cost to install rumble strips increases
142 as total quantity decreases, largely due to costs for contractors to mobilize equipment and
143 workers. Because of this, there is an exception for very small quantities where rumble strips
144 were not previously installed.

145 When breaking rumble strip patterns for crosswalks at T-intersections, it may be easier to break
146 the rumble strip pattern for the entirety of the intersection. Doing so may help avoid confusion
147 in the rumble strip pattern, as well as make constructing the rumble strip pattern easier by
148 limiting stopping and restarting of the equipment through the intersection.

149 **Cross References**

150 Longitudinal Rumble Strips: General	Section 240
151 Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways.....	Section 242
152 Longitudinal Rumble Strips: Urban Highways.....	Section 243

153 **Key References**

- 154 1. Oregon Department of Transportation. *2021 Oregon Transportation Safety Action Plan*. Oregon Department of
155 Transportation, Salem, Oregon, 2021. https://www.oregon.gov/odot/Safety/Documents/2021_Oregon_TSAP.pdf.

**Longitudinal Rumble Strips:
Rural Freeways and Divided
Highways****Section 241**

156 2. Torbic, D. J., J. M. Hutton, C. D. Bokenkroger, K. M. Bauer, D. W. Harwood, D. K. Gilmore, J. M. Dunn, J.
157 Ronchetto, E. T. Donnell, H. J. Sommer III, P. M. Garvey, B. Persaud, and C. Lyon. NCHRP Report 641: Guidance
158 for the Design and Application of Shoulder and Centerline Rumble Strips. Transportation Research Board of the
159 National Academies, Washington, D.C., ISSN 0077-5614, 2009. <http://www.trb.org/Publications/Blurbs/162610.aspx>.
160

161 3. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
162 5th ed. Washington, D.C., 2024.
163

1 **Longitudinal Rumble Strips:** 2 **Rural Non-Freeways and** 3 **Undivided Highways**

Section 242

4 **Introduction**

5 Rural non-freeways and undivided highways are typically rural two-lane, two-way highways
6 and sections of rural multilane highways without a median barrier or unpaved median to
7 separate opposing directions of traffic. There might be a two-way left turn lane separating
8 directions of traffic. See Section 240 for more rumble strip definitions.

9 **Relevant MUTCD Sections**

10 See the following sections for standards, guidance, and options not found in this manual:

- 11 • [MUTCD 11th Edition: Chapter 3K Rumble Strip Markings](#)

12 **Design Parameters**

13 01 Centerline rectangular rumble strips shall be installed wherever:

- 14 • Adjacent lanes are 12 feet wide or wider (measured from lane line to lane line; see
15 Section 120); or
- 16 • There is 26 feet or more of roadway width from edge of pavement to edge of
17 pavement.

18 02 Centerline rectangular rumble strips shall be installed in a continuous pattern.

19 03 Edge line or shoulder rectangular rumble strips shall be installed where the clear shoulder
20 width is greater than or equal to the minimums in Figure 240-A for at least ½ mile,
21 treating breaks for driveways or approaches as continuous shoulder.

22 04 Edge line and shoulder rectangular rumble strips shall be installed in a bike gap pattern.

23 05 Centerline, edge line, and shoulder rectangular rumble strips shall not continue across
24 intersections and major driveways where centerline and edge line pavement markings are
25 not continued across intersections and major driveways (see Sections 210 and 230).

26 06 *Shoulder rectangular rumble strips should be placed according to Figures 242-A, -C, -D, -G, and -H.*
27 *Edge line rumble strips should be placed according to Figures 242-E, -F, -I, and -J. Centerline rumble*
28 *strips should be placed according to Figures 242-K, -L, -M, -N, -O, -P, -Q, -R, -S, -T, , -U, -W, and -*
29 *W. Centerline rumble strips with recessed RPMs should be placed according to Figure 242-X.*
30 *Sinusoidal rumble strips should be placed following the same figures, but use the details of Figure 242-*
31 *B to replace the rectangular rumble strips with sinusoidal rumble strips (for example see Figure 242-*
32 *D).*

**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**

33 07 Rumble strips shall not extend across crosswalks, marked or unmarked, including the far
34 side of a T-intersection.

35 **Exceptions**

36 08 Exceptions approved under this section shall be documented in a design narrative or
37 similar format and filed with the region traffic office.

38 09 *In locations where rumble strips are being evaluated for omission, consideration should be given to
39 installing rumble strips if the location has a history of roadway departure crashes.*

40 10 Centerline, edge line, and shoulder rumble strips may be omitted within 600 feet of a
41 residence or campground (distance to residence, not driveway) due to roadside noise. For
42 shoulder rumble strips, this distance may be reduced to 200 feet if public outreach is
43 completed explaining why rumble strips are proposed to within 200 feet.

44 11 Where existing shoulder rumble strips have been in place with no history of noise
45 complaints and provide clear shoulder widths greater than or equal to the minimums in
46 Figure 240-A, bike gap shoulder rumble strips may be re-installed in the existing location.

47 12 Centerline rumble strips may be omitted due to roadside noise where frequent passing
48 occurs, particularly after a long section with few practical passing opportunities.

49 13 Centerline, edge line, and shoulder rumble strips may be omitted at horizontal curves with
50 frequent vehicle off-tracking (e.g.: because of a small curve radius) and at approaches to
51 intersecting roads and driveways with vehicles frequently turning off the highway.

52 14 Centerline rumble strips may be omitted from sections of a two-way left turn lane (TWLTL).

53 15 Centerline, shoulder, and edge line rumble strips may be omitted in locations with a history
54 of frequent maintenance issues, such as sunken grades requiring regular overlays.

55 16 Centerline, shoulder, and edge line rumble strips may be omitted where the region traffic
56 engineer, in collaboration with the district manager and pavement services engineer,
57 determine pavement condition and risk of pavement failure outweigh the safety benefit of
58 rumble strips.

59 17 Centerline rumble strips may be installed where adjacent lanes are less than 12 feet wide or
60 where there is less than 26 feet of roadway width from edge of pavement to edge of
61 pavement.

62 18 Rumble strips may be omitted where rumble strips were not previously installed and the
63 total amount of rumble strips that would be installed is 0.5 miles or less.

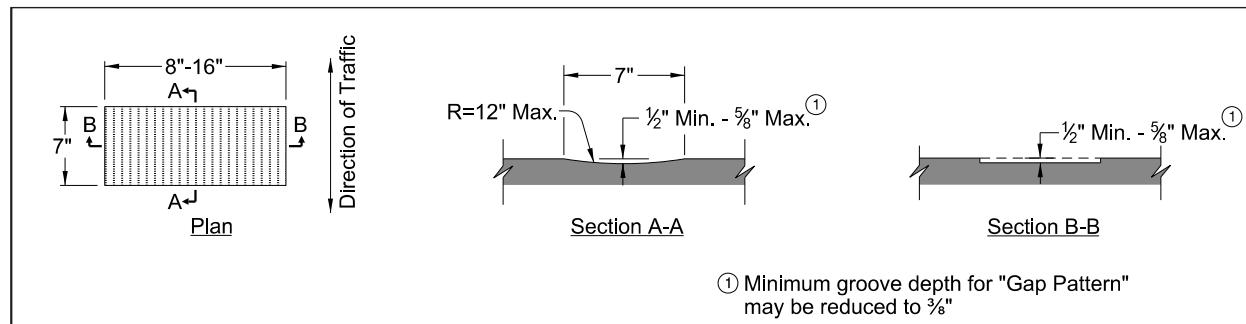
64 19 Right shoulder rumble strips may be omitted or offset up to 4 feet from the outside edge of
65 the edge line where the right shoulder of the roadway is a bus shoulder lane.

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

66 20 Sinusoidal rumble strips may be used instead of rectangular rumble strips based on an
67 engineering study.

68 21 Right shoulder and edge line rumble strips may be omitted within T-intersections.


69 22

Required Approvals

71 Region traffic engineer approval is required for exceptions in this section. Exceptions not in this
72 section require state traffic engineer approval. Requests must be submitted by the region traffic
73 engineer.

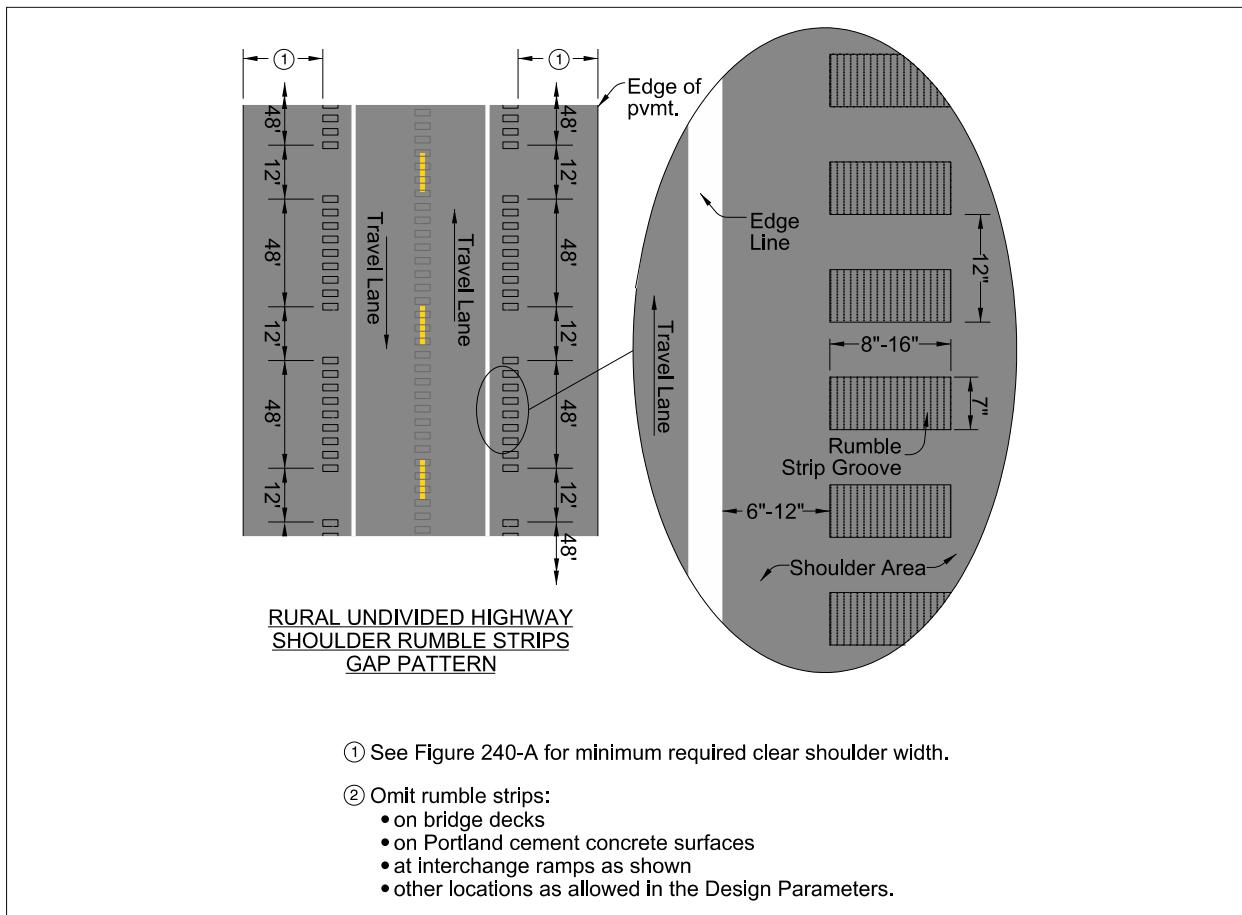
Figures & Tables


75 Figure 242-A: Shoulder Rectangular Rumble Strip Details for Rural Non-Freeway & Undivided
76 Highway

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

78 Figure 242-B: Sinusoidal Rumble Strip Details for Rural Non-Freeway & Undivided Highway

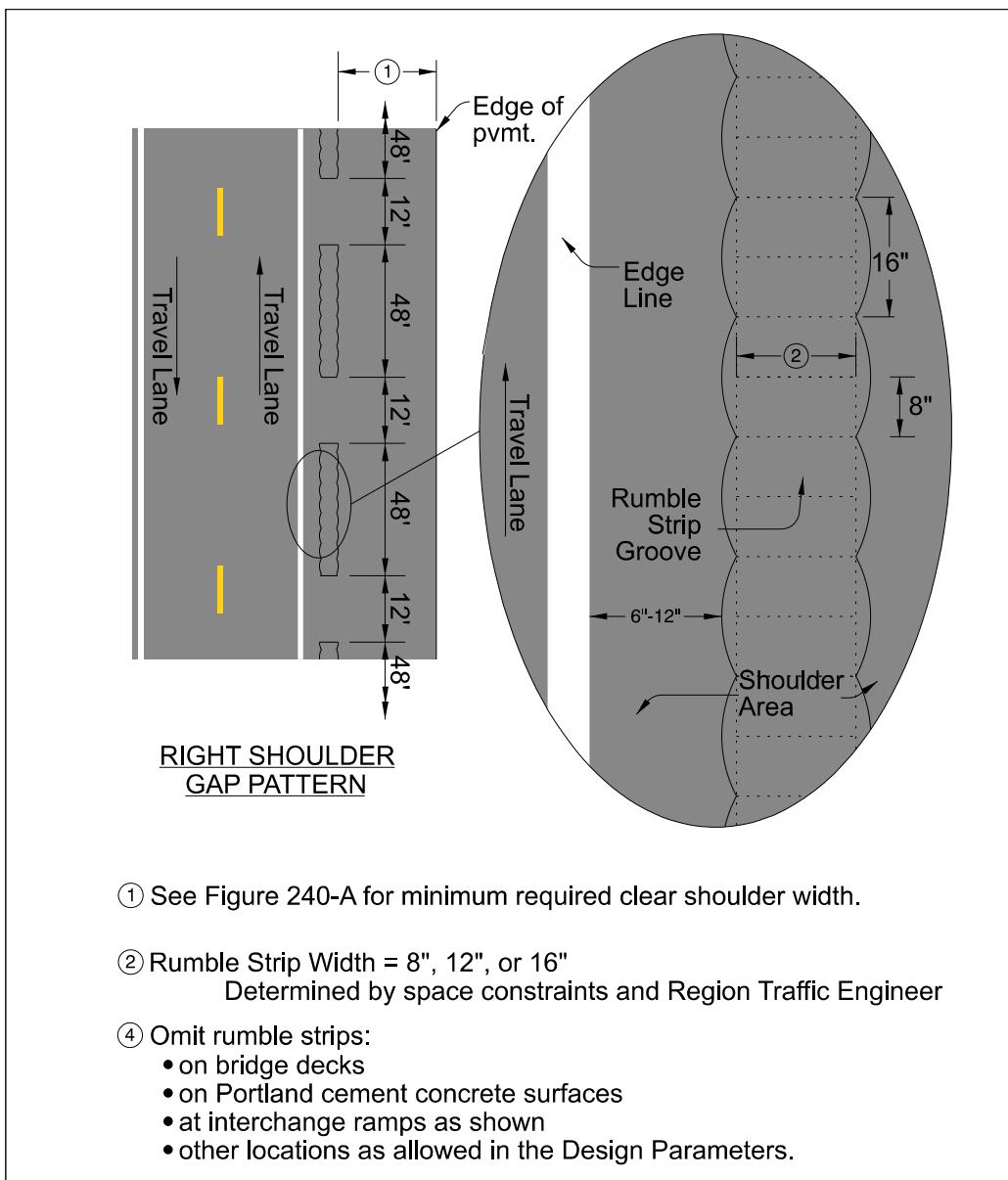

79

80

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

81 Figure 242-C: Typical Shoulder Rectangular Rumble Strip Placement on Rural Non-Freeway &
82 Undivided Highways

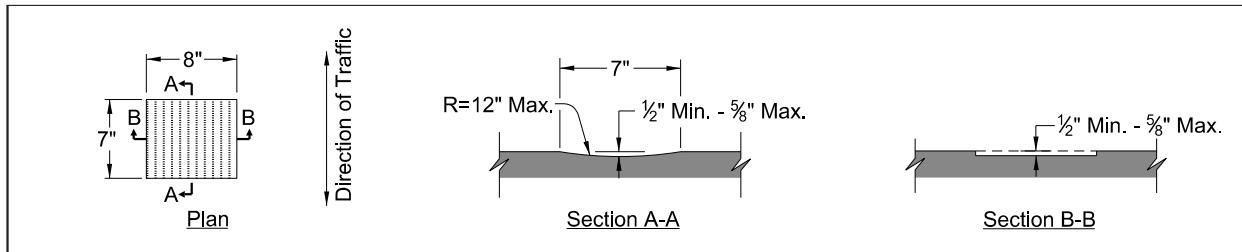

83

84

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

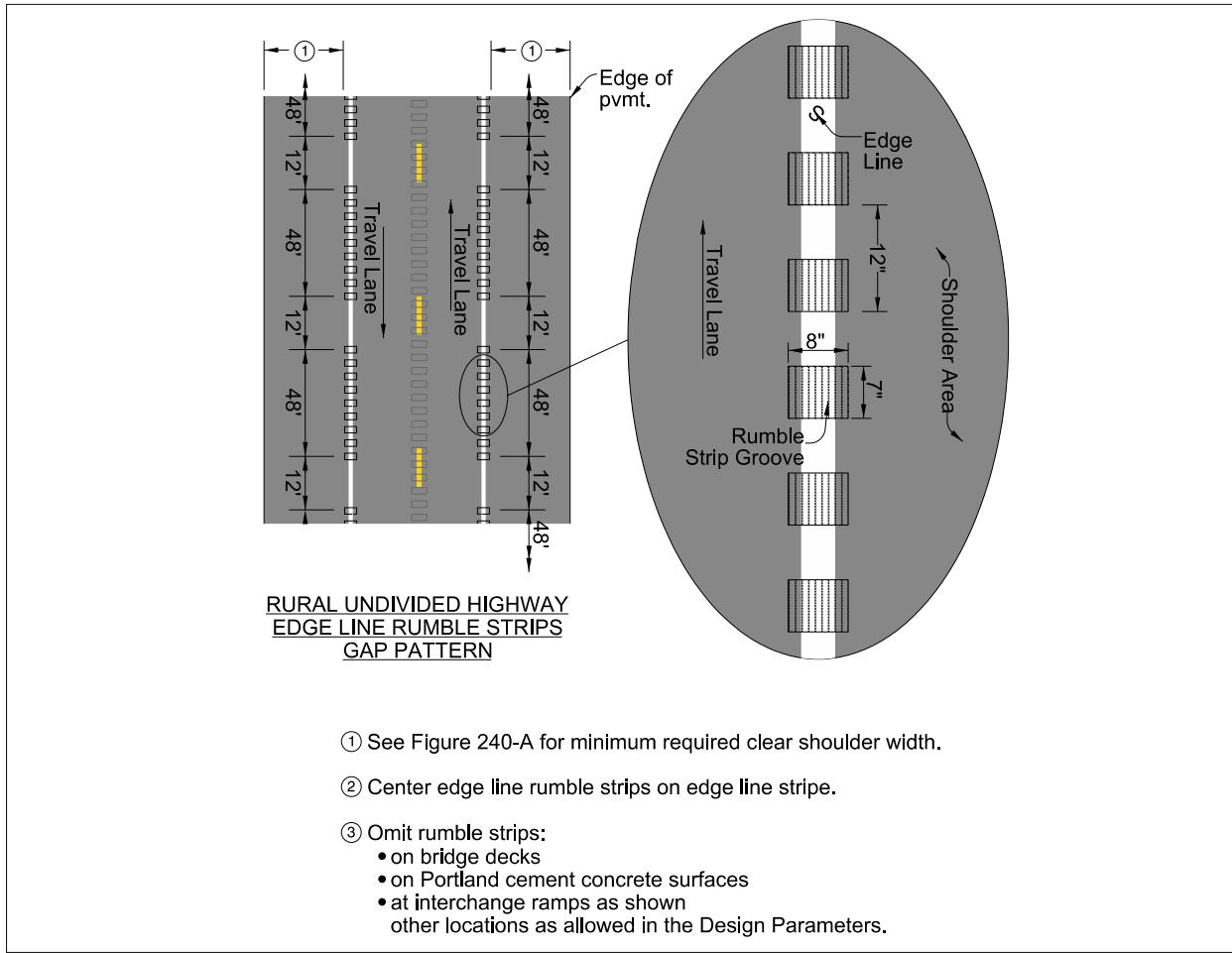
Section 242

85 Figure 242-D: Typical Shoulder Sinusoidal Rumble Strip Placement on Rural Non-Freeway &
86 Undivided Highways



87

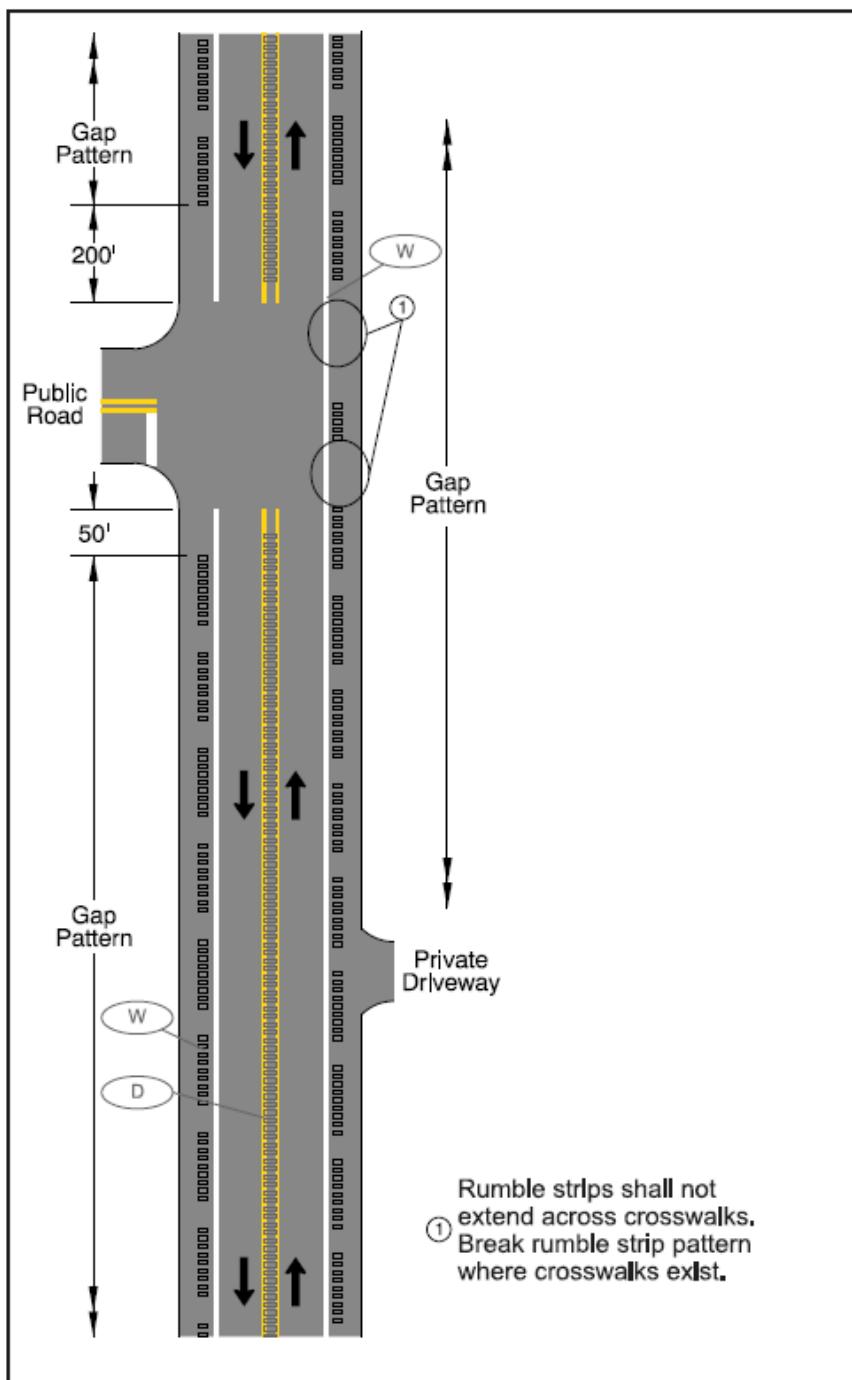
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways


Section 242

88 Figure 242-E: Edge Line Rectangular Rumble Strip Details for Rural Non-Freeway & Undivided
89 Highway

90

91 Figure 242-F: Typical Edge Line Rectangular Rumble Strip Placement on Rural Non-Freeway &
92 Undivided Highways

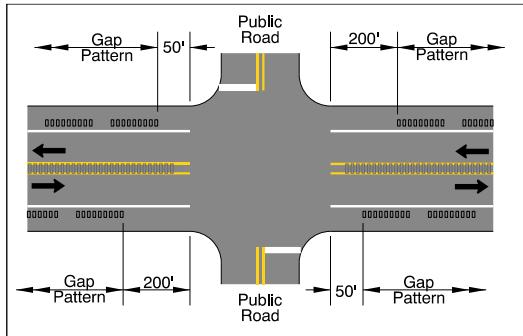


93

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

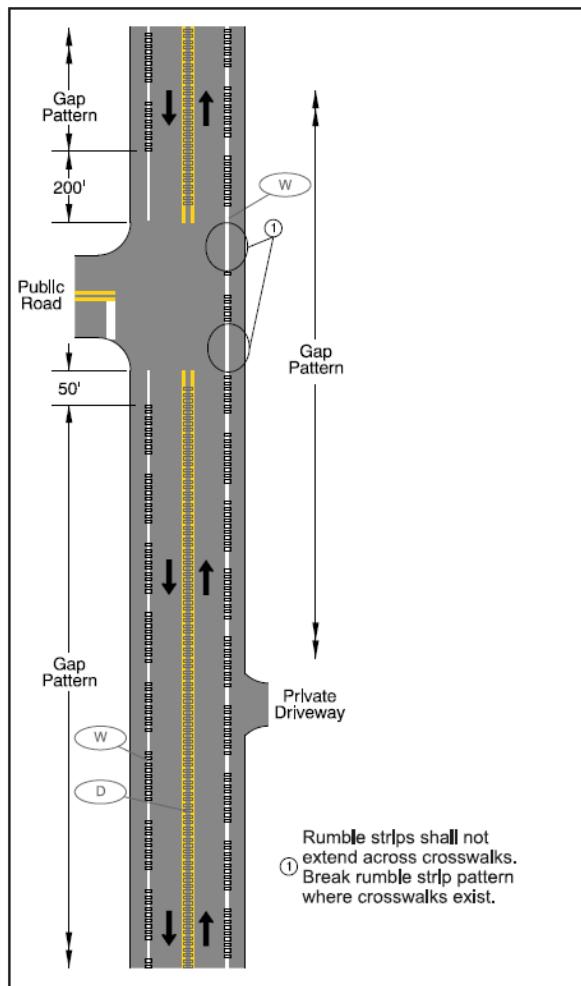
Section 242

94 Figure 242-G: Typical Shoulder Rectangular Rumble Strip Placement at Rural Undivided Highway
95 T-Intersections



96

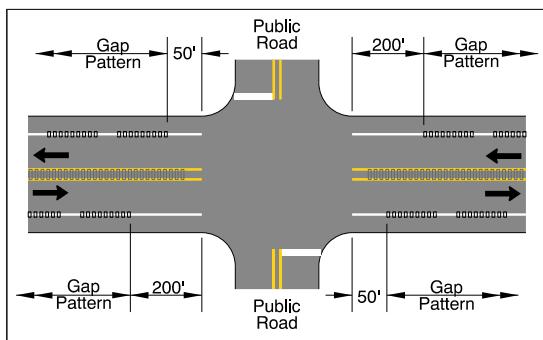
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways


Section 242

97 Figure 242-H: Typical Shoulder Rumble Strip Placement at Rural Undivided Highway Intersection

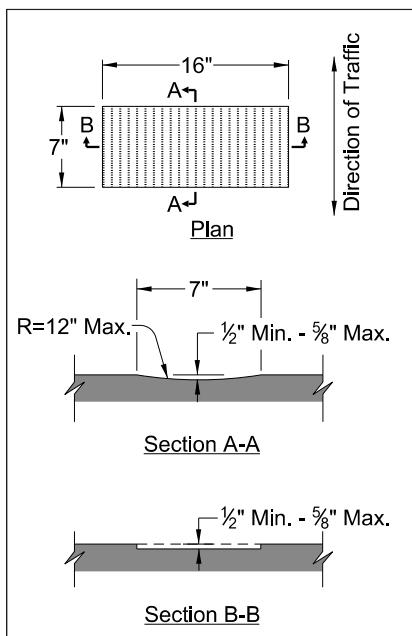
98

99 Figure 242-I: Typical Edge Line Rectangular Rumble Strip Placement at Rural Undivided Highway
100 T-Intersections



101

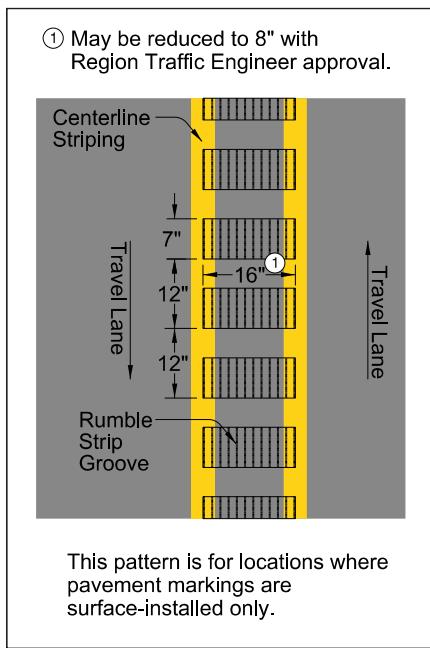
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways


Section 242

102 Figure 242-J: Typical Edge Line Rectangular Rumble Strip Placement at Rural Undivided Highway
103 Intersection

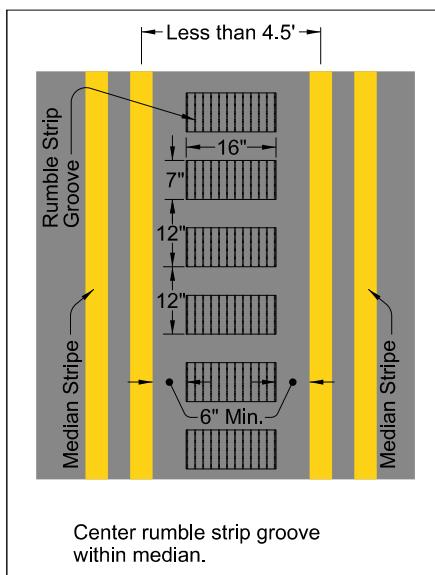
104

105 Figure 242-K: Centerline Rectangular Rumble Strip Details



106

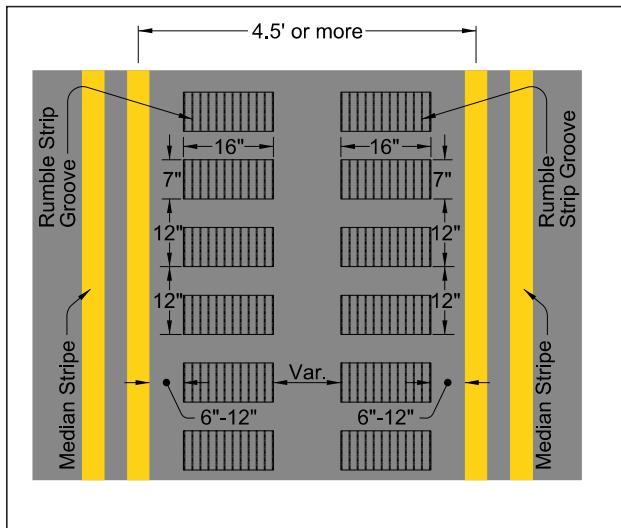
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways


Section 242

107 Figure 242-L: Continuous Pattern Rectangular Rumble Strip Centerline Installation

108

109 Figure 242-M: Continuous Pattern Rectangular Rumble Strip Narrow Median Installation

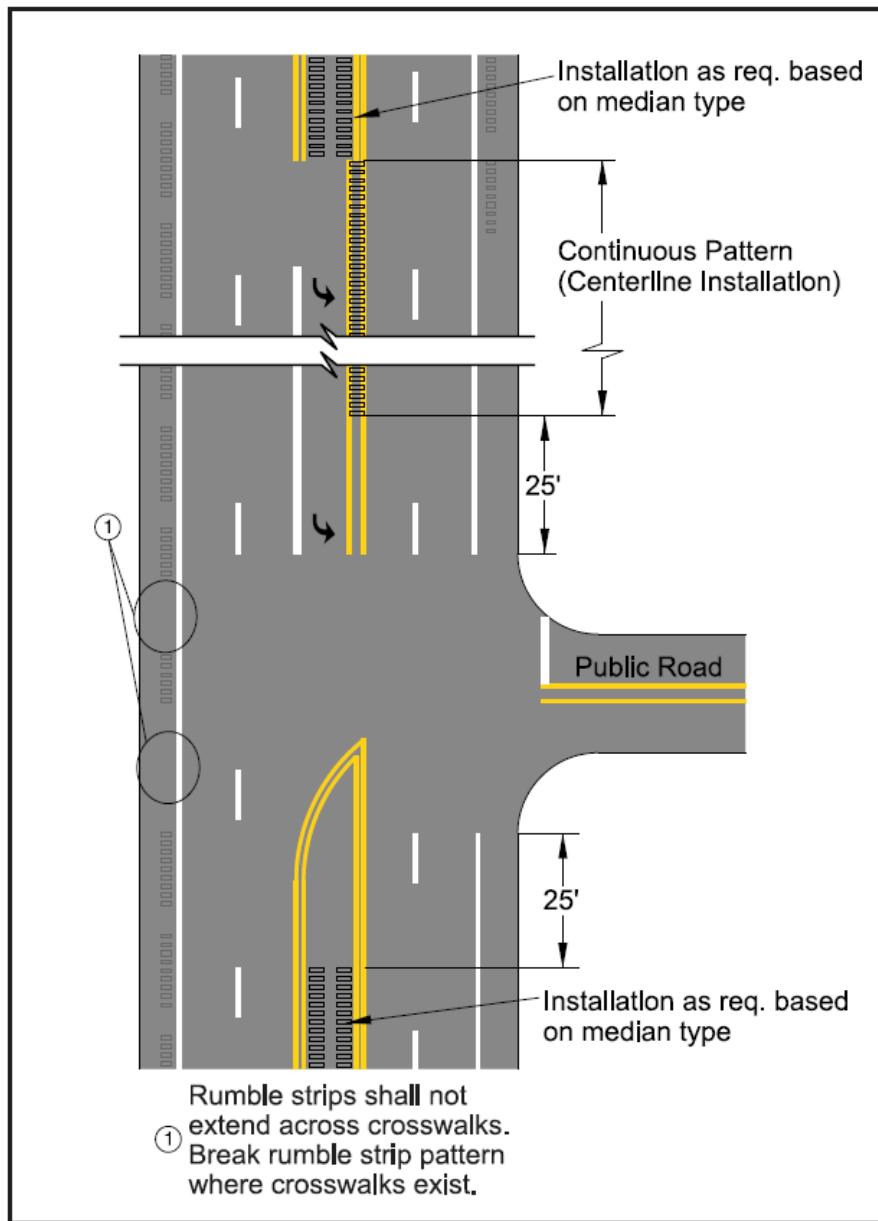


110

**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**

111

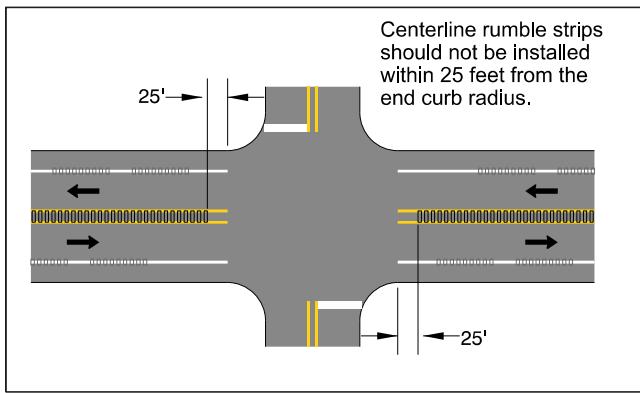
Figure 242-N: Continuous Pattern Rectangular Rumble Strip Wide Median Installation



112

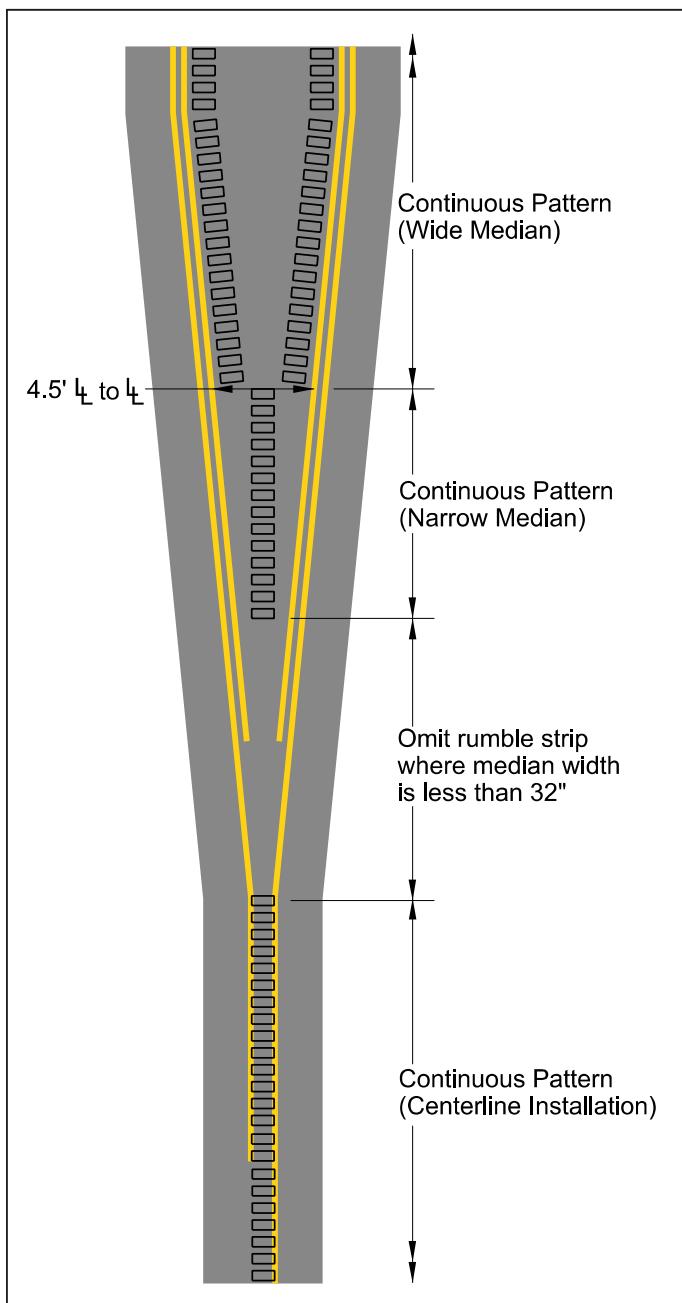
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242


113 Figure 242-O: Centerline Rectangular Rumble Strip Typical Intersection Installation on Multilane
114 Highway

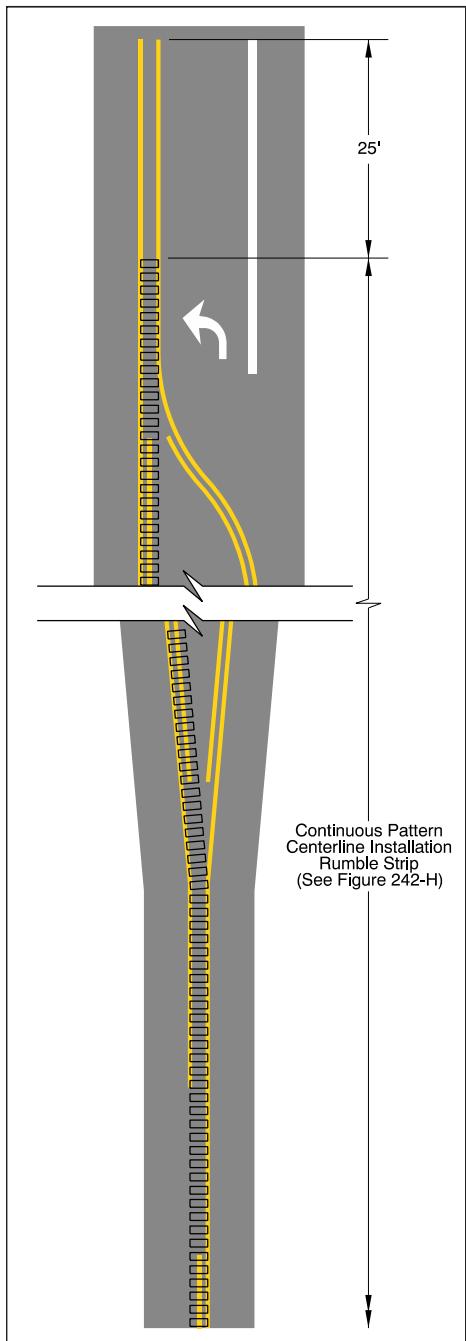
115

**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**


116 Figure 242-P: Centerline Rectangular Rumble Strip Typical Intersection Installation on 2-Lane
117 Highway

118

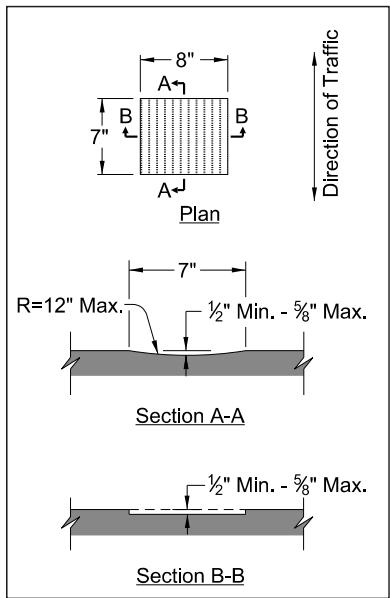
**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**


119 Figure 242-Q: Typical Centerline Rectangular Rumble Strip Transition No Median to Wide
120 Median

121

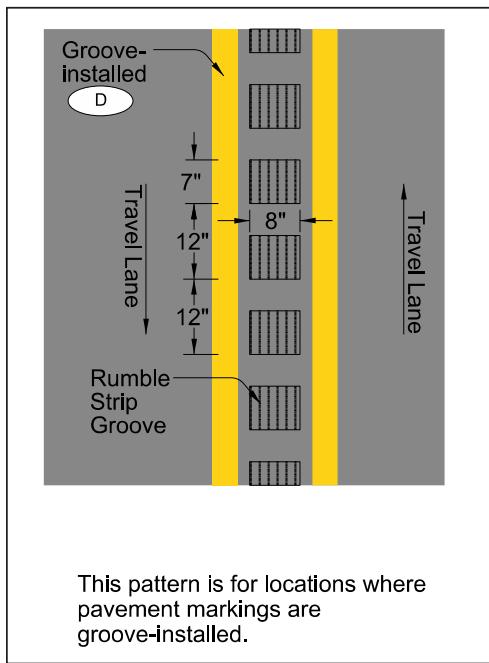
**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**

122 Figure 242-R: Typical Centerline Rectangular Rumble Strip Transition at Left Turn Lane



123

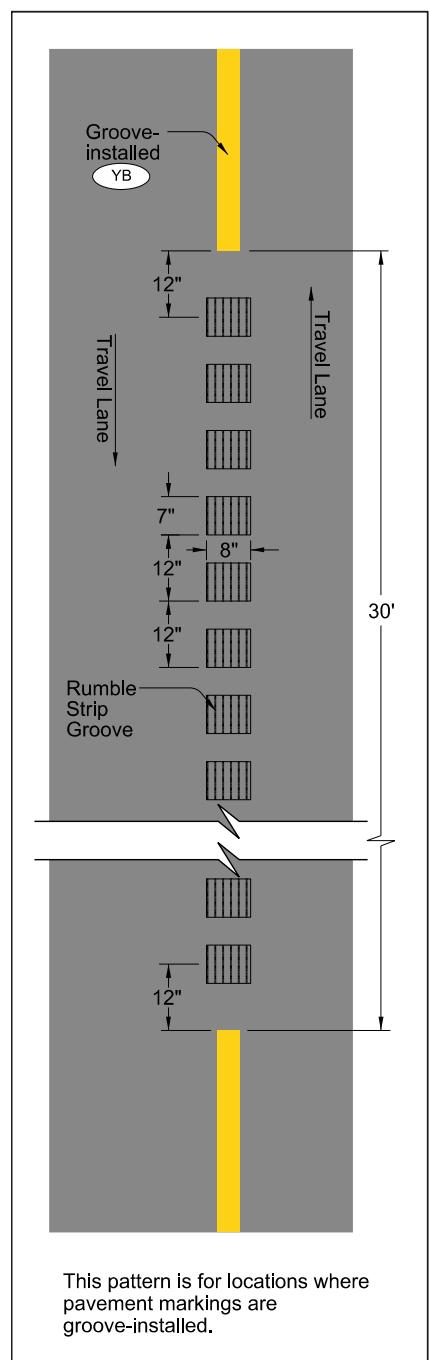
Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways


Section 242

124 Figure 242-S: Pattern "C" and "D" Centerline Rectangular Rumble Strip Details

125

126 Figure 242-T: Continuous Pattern "C" Rectangular Rumble Strip Centerline Installation Double No-Pass Lines

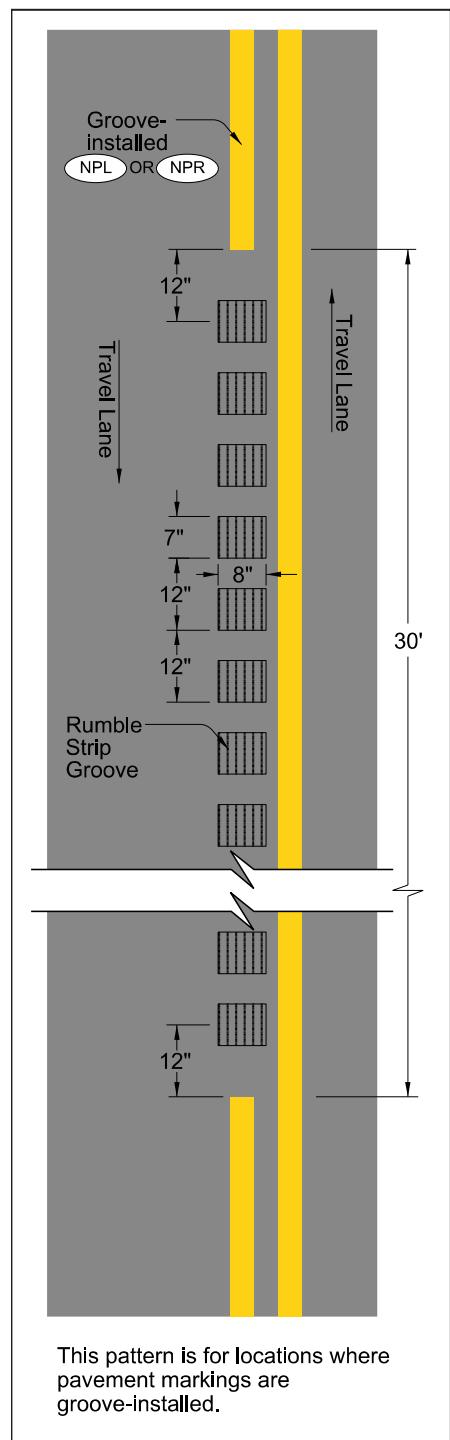

128

129

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

130 Figure 242-U: Continuous Pattern "D" Rectangular Rumble Strip Centerline Installation Yellow
131 Broken Lines

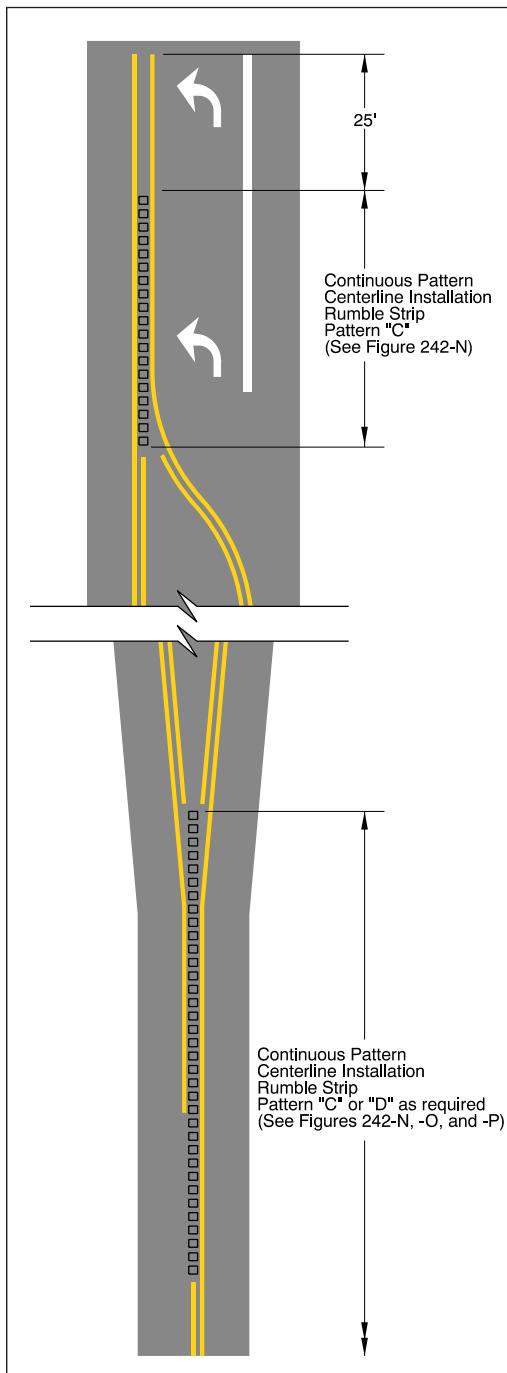


132

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

133 Figure 242-V: Continuous Pattern "D" Rectangular Rumble Strip Centerline Installation No-Pass
134 Left/Right Lines

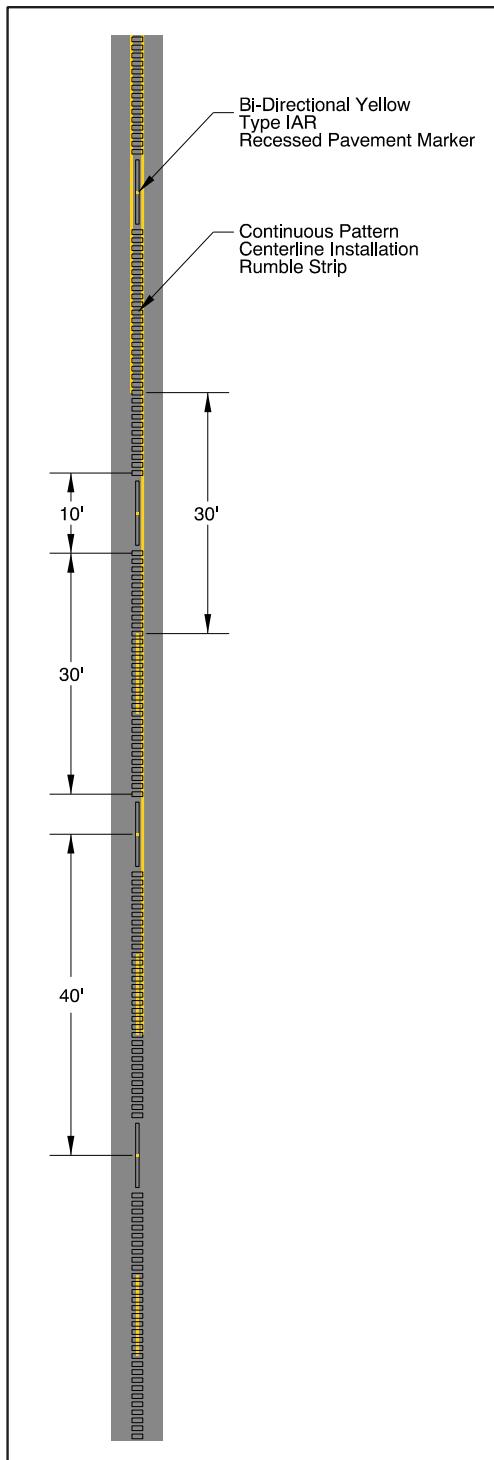


135

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

136 Figure 242-W: Typical Centerline Rectangular Rumble Strip Transition at Left Turn Lane with
137 Groove-Installed Markings



138

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

139 Figure 242-X: Typical Centerline Rectangular Rumble Strip with recessed RPMs

140

**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**

Support

141 Roadway departure crashes are the most common type of fatal and serious injury crash on
142 Oregon's rural highways. Between 2009 and 2013 approximately 53% of all fatal and serious
143 injury crashes in Oregon included a roadway departure, contributing to 1,188 fatalities and
144 3,745 serious injuries. About 73% of these crashes were in a rural environment (1).
145

146 Rumble strips are a highly effective and cost efficient method of reducing roadway departure
147 crashes. NCHRP Report 641 (2) reports shoulder rumble strips on rural two-lane roads can be
148 expected to reduce fatal and injury roadway departure crashes by 29% (SE=9); centerline rumble
149 strips on rural two-lane roads can be expected to reduce fatal and injury roadway departure
150 crashes by 44% (SE=6).
151

151 Noise generated by rumble strips affects people in nearby residences and camp grounds.
152 Distances used for noise exceptions considered several sources including NCHRP Report 641 (2)
153 and a recent Minnesota DOT rumble strip noise study (3). There have been several local and
154 national research projects that have examined ways to reduce noise impacts of rumble strips,
155 including modeling how sound travels and alternative patterns that reduce roadside noise
156 while maintaining sufficient internal noise and shaking to alert drivers. Multiple reports have
157 shown or predicted that a sinusoidal rumble strip pattern has a lower exterior noise than a
158 rectangular rumble strip pattern while still meeting the minimum levels from FHWA (4) for
159 interior noise. These reports include research by ODOT (5), Caltrans (6), and WashDOT (7). The
160 research done by ODOT (5) showed that sinusoidal rumble strips produce a 5.8 dBA for a
161 passenger car, a 4.6 dBA for a van, and a 6 dBA for heavy trucks over baseline conditions. For
162 the passenger car and van this value is roughly half of the dBA interior noise change from
163 rectangular rumble strips. The values for sinusoidal rumble strips exceed the 3 dBA change
164 minimum of FHWA (4) and is near the of the recommended level of a 6 dBA noise change. The
165 research done by ODOT (5) also compares the estimated distance of external noise between
166 rectangular rumble strips and sinusoidal rumble strips. The estimated distance for the sound of
167 the rumble strip strike to fall back down to the baseline level of the highway for passenger cars
168 is 69' for sinusoidal rumble strips and 170' for rectangular rumble strips. For vans the estimated
169 value is 39' for sinusoidal rumble strips and 120' for cans.
170

170 From the recent research on sinusoidal rumble strips, it is shown that sinusoidal rumble strips
171 provide an adequate noise to drivers driving the strike the rumble strips, while causing less
172 exterior noise. Sinusoidal rumble strips may be ideal for use where previous projects have
173 omitted rumble strips due to proximity of residences. Other locations region traffic may want to
174 utilize sinusoidal rumble strips are locations rumble strips are not required that have not been
175 considered before due to noise concerns. An engineering study is necessary to determine if
176 sinusoidal rumble strips are the correct choice for projects. The study may include and consider
177 the following, in addition to other elements:

**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**

178 • Average daily traffic.

179 • Roadway type.

180 • Ambient noise of the highway.

181 • Highway proximity to residences.

182 • Heavy truck traffic.

183 • Highway speed.

184 Edge line and shoulder rumble strips can be difficult for people on bicycles to traverse, and a clear, rideable shoulder next to rumble strips is needed for safe and predictable shoulder riding. The AASHTO Guide for the Development of Bicycle Facilities (8) does not recommend rumble strips on shoulders used by people on bikes unless there is a minimum clear path of 4 feet from the rumble strip to the edge of pavement, or 5 feet to an adjacent guardrail or other obstacle. The AASHTO Guide (8) also recommends gaps in the rumble strip pattern of at least 12 feet every 40 to 60 feet to allow people on bicycles to move across the rumble strip to avoid debris and other obstacles in the shoulder, pass other cyclists, make left turns, etc. Longer gaps might be needed on steep downgrades because of higher bicycle speeds.

193 To maximize the locations where shoulder and edge line rumble strips can be used, this policy allows shoulder and edge line rumble strips where clear shoulder widths are less than the minimums in Figure 240-A on low volume highways (AADT is 1500 vehicles per day or less), where there is passing sight distance available. This volume is the upper threshold recommended in the ODOT Bicycle and Pedestrian Design Guide (9) where a shared lane condition is tolerable. Omitting shoulder or edge line rumble strips in areas with limited passing sight distance allows cyclists to stay as far to the right as possible in areas where approaching drivers have limited sight distance and allows for simplified installation as these areas already need to have no-passing zone markings.

202 The presence of centerline rumble strips in a passing zone generally has little to no influence on passing behavior in the passing zone (2). This means in areas that are used frequently for passing maneuvers, it can be reasonable to assume there will be noise issues for nearby residents.

206 The rumble strip design dimensions shown in this section's figures are based on the most common dimensions of milled shoulder and centerline rumble strips in the United States. These generate sufficient noise in the upper range of recommended noise design thresholds to alert inattentive, distracted, drowsy, or fatigued drivers, including drivers of heavy vehicles. Wider rumble strips generate more noise than narrower rumble strips; however, for design flexibility, widths as narrow as 8 inches can still generate sufficient noise to stay within the 6-12 dBA recommended noise increase range (2).

Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways

Section 242

213 Centerline rumble strips are omitted in Figure 242-O where the median is less than 32 inches for
214 striping installation and maintenance. If rumble strips were in this section, the striping truck
215 wheels would be on the rumble strip as it transitions to/from the taper, causing issues with
216 installation/retrace and possible damage to the truck's sensitive equipment.

217 Longitudinal rumble strips are a systemic safety countermeasure that provides the most benefit
218 when applied to long sections of highway. The per-mile cost to install rumble strips increases
219 as total quantity decreases, largely due to costs for contractors to mobilize equipment and
220 workers. Because of this, there is an exception for very small quantities where rumble strips
221 were not previously installed.

222 When breaking rumble strip patterns for crosswalks at T-intersections, it may be easier to break
223 the rumble strip pattern for the entirety of the intersection. Doing so may help avoid confusion
224 in the rumble strip pattern, as well as make constructing the rumble strip pattern easier by
225 limiting stopping and restarting of the equipment through the intersection.

226 Cross References

227 Functions, Widths, and Patterns of Longitudinal Lines..... Section 120
228 Center Lines Section 210
229 Edge Lines..... Section 230
230 Longitudinal Rumble Strips: General Section 240
231 Longitudinal Rumble Strips: Rural Freeways and Divided Highways Section 241
232 Longitudinal Rumble Strips: Urban Highways Section 243

233 Key References

- 234 1. Oregon Department of Transportation. *2016 Oregon Transportation Safety Action Plan*. Oregon Department of
235 Transportation, Salem, Oregon, 2016. http://www.oregon.gov/ODOT/Safety/Documents/TSAP_2016.pdf.
- 236 2. Torbic, D. J., J. M. Hutton, C. D. Bokenkroger, K. M. Bauer, D. W. Harwood, D. K. Gilmore, J. M. Dunn, J.
237 Ronchetto, E. T. Donnell, H. J. Sommer III, P. M. Garvey, B. Persaud, and C. Lyon. NCHRP Report 641: Guidance
238 for the Design and Application of Shoulder and Centerline Rumble Strips. Transportation Research Board of the
239 National Academies, Washington, D.C., ISSN 0077-5614, 2009. <http://www.trb.org/Publications/Blurbs/162610.aspx>.
- 241 3. Terhaar, E., and D. Braslau. Rumble Strip Noise Evaluation. St. Paul, Minnesota, MN/RC 2015-07, 2015. <http://www.dot.state.mn.us/research/TS/2015/201507.pdf>.
- 243 4. Federal Highway Administration. Rumble Strip Implementation Guide: Addressing Noise Issues on Two-Lane
244 Roads. FHWA, Final Technical Report FHWA-SA-15-033, 2015.
- 245 5. Hurwitz, D., M. Christopher, D. Ross, S. Kothuri, and H. Jashami. Quantifying the Performance of Low-Noise
246 Rumble Strips. Oregon State University and Portland State University, Salem, Oregon, Final Technical Report
247 FHWA-OR-RD-19-06, 2019.
- 248 6. Donavan, P., and D. Buehler. Design and Acoustic Evaluation of Optimal Sinusoidal Mumble Strips versus
249 Conventional Ground-In Rumble Strips. California Department of Transportation, Sacramento, California, Final
250 Technical Report CTHWANP-RT-18-365.01.2, 2018.

**Longitudinal Rumble Strips:
Rural Non-Freeways and
Undivided Highways****Section 242**

251 7. Laughlin, J., and J. Donahue. Evaluation of New Rumble Strip Designs to Reduce Roadside Noise and Promote
252 Safety. Washington State Department of Transportation, Olympia, Washington, Final Technical Report WA-RD
253 881.1, 2018.

254 8. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
255 4th ed. Washington, D.C., 2012.

256 9. Oregon Department of Transportation. *Bicycle and Pedestrian Design Guide*, 3rd ed. Oregon Department of
257 Transportation, Salem, Oregon, 2011. http://www.oregon.gov/ODOT/Engineering/Documents_RoadwayEng/HDM_L-Bike-Ped-Guide.pdf.

1 Longitudinal Rumble Strips: 2 Urban Highways

Section 243

3 Introduction

4 Historically, rumble strips have not been used often on urban highways. However, there are
5 sections of urban highway that could benefit from the application of rumble strips.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: Chapter 3K Rumble Strip Markings

9 Design Parameters

10 01 Longitudinal rectangular rumble strips may be installed on urban highways according to
11 Sections 240, 241, and 242.

12 02 Sinusoidal rumble strips may be used instead of rectangular rumble strips based on an
13 engineering study (see Section 242 for sinusoidal rumble strip pattern details and supporting
14 information).

15 Required Approvals

16 Region traffic engineer approval is required for installation of rumble strips on urban highways.

17 Design Issues

18 Rumble strips are typically not installed on urban highways because of problems with noise.
19 Some urban areas that could benefit from rumble strips include:

- 20 • Shoulder rumble strips installed on urban sections of freeway; or
- 21 • Centerline rumble strips on higher speed roadways within city limits.

22 Typically, this would apply to highways experiencing lane departure crashes that would benefit
23 from rumble strips. Locations within urban areas isolated from close nearby residences are
24 more likely candidates due to noise concerns.

25 Support

26 Rumble strips are a highly effective and cost efficient method of reducing roadway departure
27 crashes. NCHRP Report 641 (1) reports centerline rumble strips on urban two-lane roads can be
28 expected to reduce total roadway departure crashes by 40% (SE=17); fatal and injury roadway
29 departure crashes by 64% (SE=27).

**Longitudinal Rumble Strips:
Urban Highways****Section 243**

30 Noise generated by rumble strips affects people in nearby residences. There are several local
31 and national research projects underway examining ways to reduce noise impacts of rumble
32 strips, including tools to model how sound travels in a given area next to the highway and
33 alternative patterns that reduce roadside noise while maintaining sufficient internal noise and
34 shaking to alert drivers.

35 Edge line and shoulder rumble strips can be difficult for people on bicycles to traverse, and a
36 clear, rideable shoulder next to rumble strips is needed for safe and predictable shoulder riding.
37 The AASHTO Guide for the Development of Bicycle Facilities (2) does not recommend rumble
38 strips on shoulders used by people on bikes unless there is a minimum clear path of 4 feet from
39 the rumble strip to the edge of pavement, or 5 feet to an adjacent guardrail or other obstacle.
40 The AASHTO Guide (2) also recommends gaps in the rumble strip pattern of at least 12 feet
41 every 40 to 60 feet to allow people on bicycles to move across the rumble strip to avoid debris
42 and other obstacles in the shoulder, pass other cyclists, make left turns, etc. Longer gaps might
43 be needed on steep downgrades because of higher bicycle speeds.

44 See Section 242 for supporting information on sinusoidal rumble strips.

45 Cross References

46 Longitudinal Rumble Strips: General Section 240
47 Longitudinal Rumble Strips: Rural Freeways and Divided Highways Section 241
48 Longitudinal Rumble Strips: Rural Non-Freeways and Undivided Highways Section 242

49 Key References

50 1. Torbic, D. J., J. M. Hutton, C. D. Bokenkroger, K. M. Bauer, D. W. Harwood, D. K. Gilmore, J. M. Dunn, J.
51 Ronchetto, E. T. Donnell, H. J. Sommer III, P. M. Garvey, B. Persaud, and C. Lyon. NCHRP Report 641: Guidance
52 for the Design and Application of Shoulder and Centerline Rumble Strips. Transportation Research Board of the
53 National Academies, Washington, D.C., ISSN 0077-5614, 2009. <http://www.trb.org/Publications/Blurbs/162610.aspx>.

55 2. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
56 4th ed. Washington, D.C., 2012.

1 Transverse Rumble Strips

Section 245

2 Introduction

3 Transverse rumble strips are placed perpendicular to the direction of travel to enhance other
4 traffic control devices and warn road users of an unusual situation. This section does not apply
5 to temporary transverse rumble strips used in work zones.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: Chapter 3K Rumble Strip Markings

9 Design Parameters

10 01 Permanent milled-in transverse rumble strips may be installed on an approach to a "STOP"
11 sign (R1-1) where crash history indicates a significant number of intersection crashes would
12 be treatable with transverse rumble strips and where more conventional treatments have
13 proved ineffective.

14 02 *If used, permanent milled-in transverse rumble strips should be installed on new or existing
15 bituminous pavement in sufficiently good condition.*

16 03 *If used on an approach to a "STOP" sign (R1-1), permanent milled-in transverse rumble strips should
17 be installed according to Figure 245. The three primary rumble strip sets shown in Figure 245 should
18 be used as a minimum where transverse rumble strips are installed.*

19 04 If used on an approach to a "STOP" sign (R1-1), the two secondary rumble strip sets shown
20 in Figure 245 may be used based on engineering judgement of local site conditions.

21 05 If used at a location with no edge line markings, the end point of the transverse rumble strips
22 should not be in the shoulder and should consider bicyclists and pedestrians.

23 Required Approvals

24 An engineering study and region traffic engineer approval is required for installation of
25 transverse rumble strips associated with "Stop Ahead" (W3-1) warning signs on state highways
26 or local public road approaches to a state highway.

27 An engineering study and state traffic engineer approval is required for all other installation of
28 transverse rumble strips on state highways.

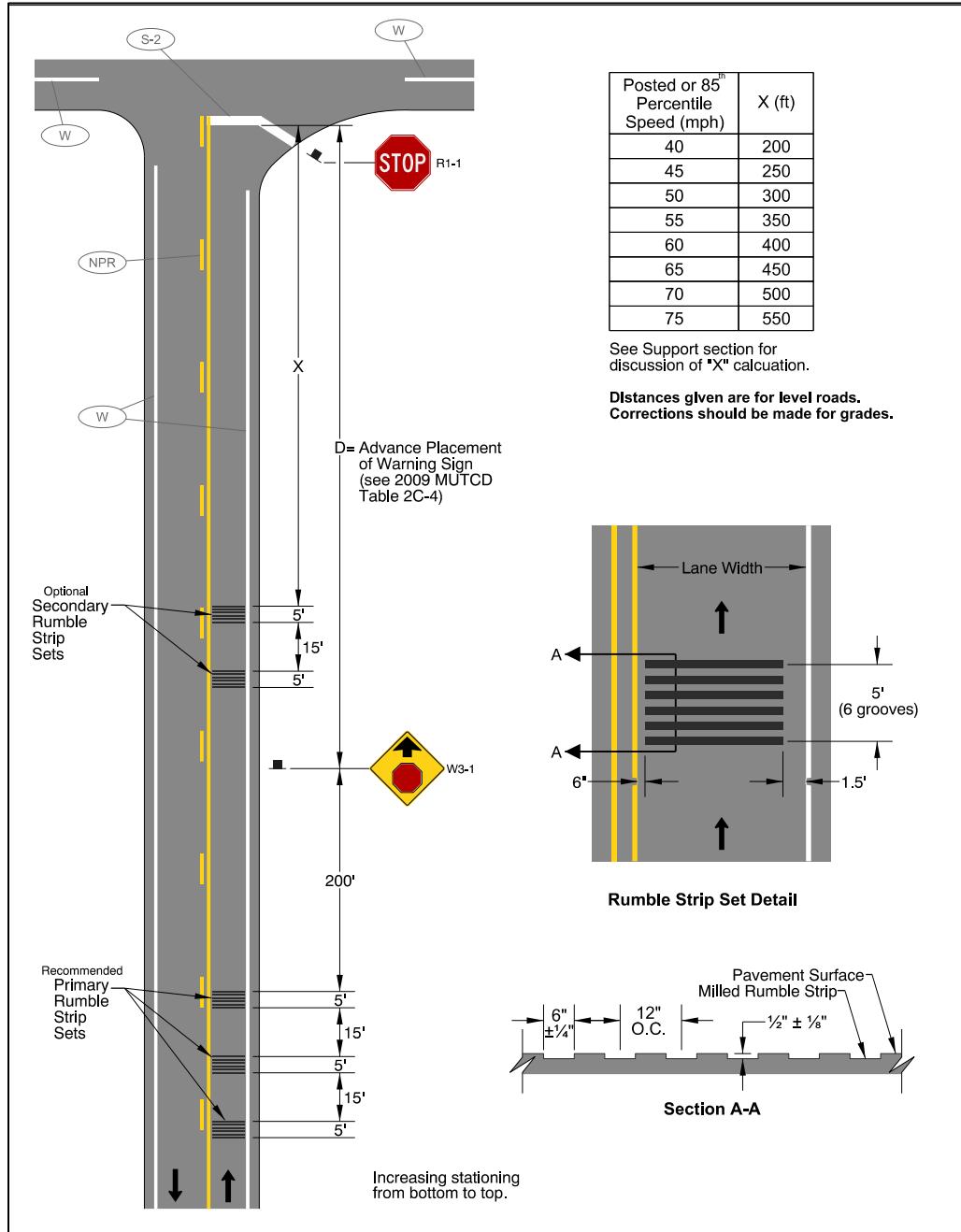
29 Engineering studies on transverse rumble strips must document a safety problem correctable
30 with the use of transverse rumble strips and consider noise impacts if located near residences or
31 campgrounds and consider impacts to bicyclists and pedestrians in locations with no edge line
32 marking.

33 **Design Issues**

34 Contact the Construction Section's Pavement Services Unit to determine if the pavement surface
35 is in sufficiently good condition to install transverse rumble strips.

36 Other conventional treatments typically include oversize signs, signs on both sides of the
37 roadway, higher intensity sign sheeting, STOP AHEAD pavement markings (see Section 125),
38 and increasing the stop bar width (see Section 150).

39 Transverse rumble strips installed on local public road approaches to state highways typically
40 need an intergovernmental agreement (IGA) between ODOT and the local road authority
41 detailing who will pay for installation and maintenance of traffic control devices approaching
42 the state highway, including the transverse rumble strips.


43 Potential adverse effects of transverse rumble strips include noise generated by vehicles
44 continuously traversing them, effects on plowing operations, maintenance concerns with
45 durability, and concerns by motorcyclists and bicyclists. There is a possibility that drivers might
46 go around them by driving in the opposing lane, though there is some evidence this is not
47 common for short rumble strip sets (1).

Transverse Rumble Strips

Section 245

48 Figures & Tables

49 Figure 245: Typical Transverse Rumble Strip Installation on an Approach to a STOP Sign

50

51 Support

52 Transverse rumble strips provide a warning to drivers of an approaching condition, but the
53 rumble strips themselves do not communicate what action needs to be taken in response to that
54 condition (2).

55 Many different configurations of transverse rumble strips have been tested across a variety of
56 studies, including milled-in and preformed thermoplastics of various widths, thickness/depth,
57 and patterns. The design shown in Figure 245 is based on a design used by Minnesota DOT.
58 This design was one of two contributing designs studied for development of crash modification
59 factors by Srinivasan, Baek, and Council (3). Srinivasan, Baek, and Council found the milled-in
60 transverse rumble strips they studied can be effective at reducing fatal and serious injury
61 crashes at minor road stop-controlled intersections. They also found these rumble strips might
62 increase property-damage-only crashes, though the reason for this increase could not be
63 determined at the time. One theory from other sources (2) (4) is the rumble strips increase speed
64 variability which might increase rear-end crashes.

65 Transverse rumble strips generally do not have a practical effect on reducing vehicle speed at
66 approaches to stop-controlled intersections ($\leq 1-2$ mph) (2) (5) (6) and in speed transition zones
67 (7).

68 Transverse rumble strips need to be positioned to provide enough advance warning time for
69 drivers to respond and take an appropriate action (2). The design in Figure 245-A sets the
70 distance of the first grouping of rumble strip sets 200 feet in advance of the Stop Ahead sign
71 (W3-1). This alerts the driver before the sign legibility distance used by the 2009 MUTCD (8) for
72 this warning condition (180 feet). This also positions the rumble strip sets approximately at
73 stopping sight distance given in the AASHTO Green Book (9).

74 The last two rumble strip sets crossed by an approaching driver are positioned to give a final
75 warning with a sufficient distance to make a hard stop. This distance assumes the driver is alert
76 from the previous rumble strip sets and has a brake reaction time of 1.0 second. This also
77 assumes that if the driver hasn't started to decelerate at this point, he or she will decelerate
78 more aggressively than the deceleration rates used to calculate advance warning sign placement
79 and stopping sight distance (11.2 ft/s²). The discussion of braking distance in the AASHTO
80 Green Book says the literature shows most drivers decelerate at a rate greater than 14.8 ft/s²
81 when confronted with the need to stop for an unexpected object in the roadway. This was the
82 deceleration rate used to calculate braking distance in this case.

83 The design assumptions discussed above places these rumble strip sets in a location consistent
84 with Iowa DOT's design for a 50-55 mph approach speed. The groove depth, width, and
85 spacing matches Iowa DOT's design as well to create the same level of vibration and noise
86 associated with crash modification factors developed from the design (3).

Transverse Rumble Strips

Section 245

87 A 15-foot gap between rumble strip sets provides a minimal pause in the noise generated from
88 the rumble strips for passenger cars (85th percentile vehicle length in the U.S. fleet is about 17
89 feet (10)).

90 A 1.5-foot clear space between the rumble strip and the edge line shown in Figure 245 gives
91 people on bikes a minimal gap to avoid the transverse rumble strips to the right.

92 In 2021, IOWA DOT completed a synthesis of transverse rumble strips at rural stop-controlled
93 intersections (11). This synthesis is a good source of information on how other states use
94 transverse rumble strips.

Cross References

95 Transverse Markings..... Section 125
96 Stop Bars Section 150

Key References

- 99 1. Miles, J. D., M. P. Pratt, and P. J. Carlson. Evaluation of Erratic Maneuvers Associated with Installation of Rumble
100 Strips. *Transportation Research Record: Journal of the Transportation Research Board Online*, Vol. 1973, 2006, pp. 73-79.
101 <http://trrjournalonline.trb.org/doi/abs/10.3141/1973-11>. DOI: <https://doi.org/10.3141/1973-11>
- 102 2. Brian, R., W. Kittleson, J. Knudsen, B. Nevers, P. Ryus, K. Sylvester, I. Potts, D. Harwood, D. Gilmore, D. Torbic,
103 F. Hanscom, J. McGill, and D. Stewart. *NCHRP Report 613: Guidelines for Selection of Speed Reduction Treatments at*
104 *High-Speed Intersections*. Transportation Research Board of the National Academies, Washington, D.C., 2008. <http://www.trb.org/Publications/Blurbs/160046.aspx>.
- 106 3. Srinivasan, R., J. Baek, and F. Council. Safety Evaluation of Transverse Rumble Strips on Approaches to Stop-
107 Controlled Intersections in Rural Areas. in *2010 Annual Meeting of the Transportation Research Board*, Washington,
108 D.C., September 2010.
- 109 4. Isebrands, H., S. Hallmark, and N. Hawkins. Effects of Approach Speed at Rural High-Speed Intersections:
110 Roundabouts Versus Two-Way-Stop Control. *Transportation Research Record: Journal of the Transportation Research*
111 *Board Online*, Vol. 2402, 2014, pp. 67-77. <http://trrjournalonline.trb.org/doi/abs/10.3141/2402-08>. DOI:
112 <https://doi.org/10.3141/2402-08>
- 113 5. Thompson, T. D., M. W. Burris, and P. J. Carlson. Speed Changes Due to Transverse Rumble Strips on
114 Approaches to High-Speed Stop-Controlled Intersections. *Transportation Research Record: Journal of the*
115 *Transportation Research Board Online*, Vol. 1973, 2006, pp. 1-9. <http://trrjournalonline.trb.org/doi/abs/10.3141/1973-03>. DOI: 10.3141/1973-03
- 117 6. Yang, L., H. Zhou, L. Zhu, and H. Qu. Operation Effects of Transverse Rumble Strips on Approaches to High-
118 Speed Intersections. *Transportation Research Record: Journal of the Transportation Research Record Online*, Vol. 2602,
119 2016, pp. 78-87. <http://trrjournalonline.trb.org/doi/abs/10.3141/2602-10>. DOI: 10.3141/2602-10
- 120 7. Torbic, D. J., D. K. Gilmore, K. M. Bauer, C. D. Bokenkroger, D. W. Harwood, L. M. Lucas, R. J. Frazier, C. S.
121 Kinzel, D. L. Petree, and M. D. Forsberg. *NCHRP Report 737: Design Guidance for High-Speed to Low-Speed Transition*
122 *Zones for Rural Highways*. Transportation Research Board of the National Academies, Washington, D.C., 2012.
123 <http://www.trb.org/Publications/Blurbs/168309.aspx>.
- 124 8. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
125 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 126 9. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
127 *Streets*, 6th ed. Washington, D.C., 2011.

Transverse Rumble Strips**Section 245**

128 10. Institute of Transportation Engineers. *Traffic Engineering Handbook*, 6th ed. Institute of Transportation Engineers,
129 Washington, D.C., 2010.

130 11. Oneyear, N., S. Hallmark, and H. Naraghi. *Iowa State University Institute for Transportation*, December 2021. https://intrans.iastate.edu/app/uploads/2022/01/transverse_rumble_strips_at_rural_stop_controlled_intersections_synthesis_w_cvr.pdf. Accessed October 2022.

131

132

1 Lane-Reduction Transitions

Section 250

2 Introduction

3 Lane-reduction transitions are used where the number of through lanes is reduced at a location
4 that is not at an interchange or intersection because the roadway narrows or because of a section
5 of on-street parking in what would otherwise be a through lane.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: 3B.12 Lane-Reduction Transitions

9 Design Parameters

10 01 Where pavement markings are used, lane-reduction transition markings shall be used
11 according to this section to guide traffic through transition areas where the number of
12 through lanes is reduced.

13 02 Lane-reduction transitions shall include an edge line in the direction of the lane-reduction
14 transition. On 2-way roadways, lane-reduction transitions shall include:

- 15 • No-passing zone markings in the direction of the lane-reduction to the end of the
16 taper.
- 17 • No-passing zone markings for opposing traffic from the "Lane Ends" sign (W4-2) to a
18 minimum length "A" following the taper (Figure 250).

19 03 On low-speed urban roadways where curbs clearly define the roadway edge in the lane-
20 reduction transition, or where a through lane becomes a parking lane, the edge line required
21 in paragraph 02 may be omitted as determined by engineering judgement.

22 04 Except as provided in paragraph 03, the edge line markings required in paragraph 02 should be
23 installed from the location of the "Lane Ends" warning sign (W4-2) to beyond the beginning of the
24 narrower roadway.

25 05 For roadways having a posted or statutory speed limit of 45 mph or greater, the transition taper length
26 for a lane-reduction transition should be computed by the formula $L=WS$. For roadways where the
27 posted or statutory speed limit is less than 45 mph, the formula $L=WS^2/60$ should be used to compute
28 the taper length (see Figure 250). Where observed speeds exceed posted or statutory speed limits,
29 longer tapers should be used.

30 06 For roadways having a posted or statutory speed limit of 45 mph or greater, two lane-reduction arrows
31 should be used in the lane-reduction area according to Figure 250.

32 07 An additional lane-reduction arrow may be used between the two recommended lane-
33 reduction arrows based on engineering judgement.

Lane-Reduction Transitions**Section 250**

34 08 *Lane line markings (WB) should be discontinued at lane-reduction transitions $\frac{1}{4}$ of the distance*
35 *between the Lane Ends sign (W4-2) and the point where the transition taper begins (Figure 250).*

36 09 A different “d” distance may be used based on an engineering study if the “d” distance in
37 Figure 250 is not practical.

38 10 *The minimum lane-reduction transition taper length should be 100 feet in urban areas and 200 feet in*
39 *rural areas.*

40 11 Where a lane-reduction transition occurs on a roadway with a speed limit of less than 45
41 mph, lane-reduction arrow markings may be used.

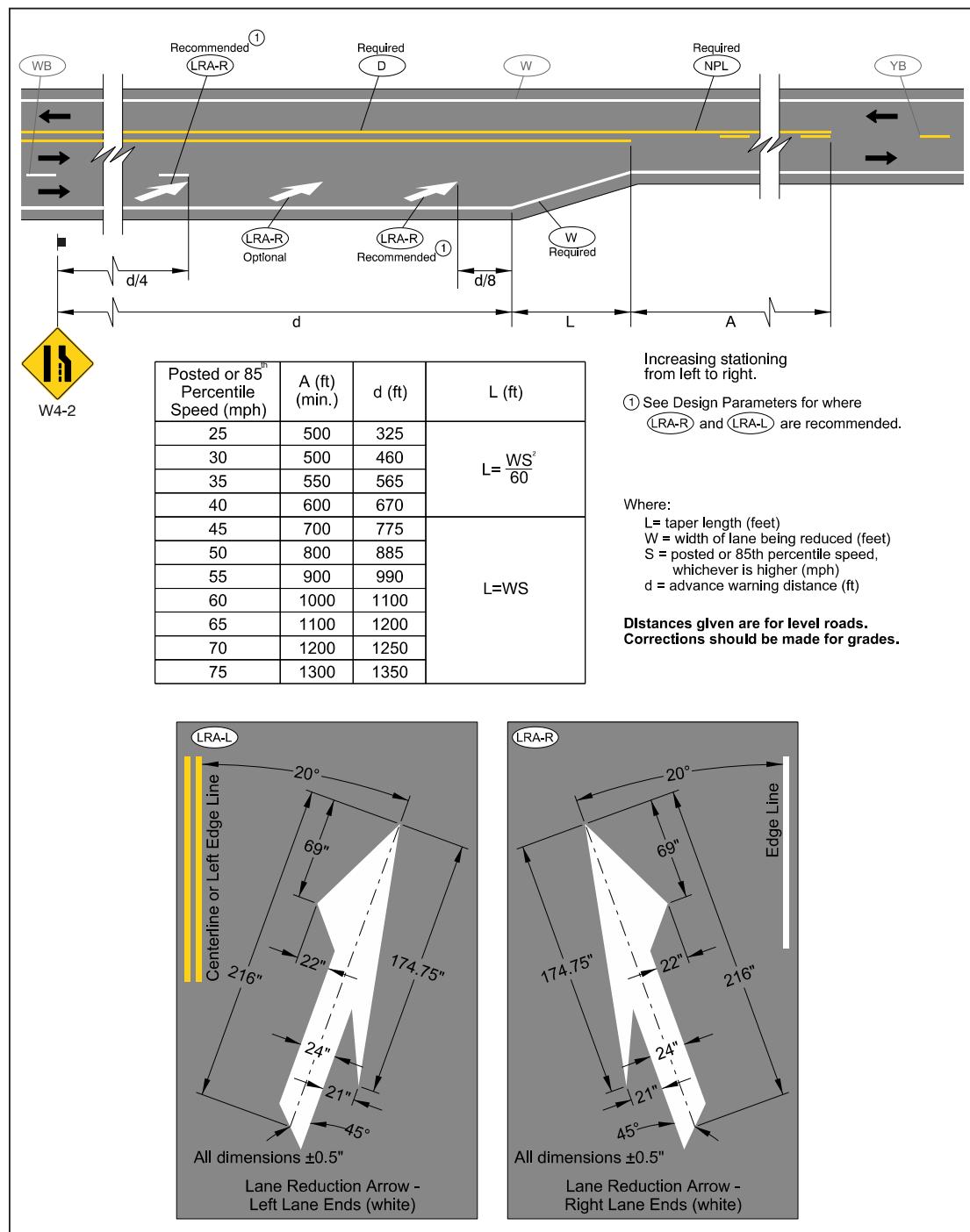
42 12 Lane-reduction transitions should include delineators installed adjacent to the lane or lanes
43 reduced for the full length of the transition and should be so placed and spaced to show the
44 reduction.

45 Design Issues

46 Many lane-reduction transitions for climbing lanes occur near the crest of vertical curves.
47 Depending on roadway geometry and where the lane-reduction taper begins, sight distance to
48 the lane-reduction arrows and, more importantly, lane reduction taper can be reduced in these
49 cases. Adding the middle arrow can add more guidance and emphasis that the lane is ending
50 before drivers reach the lane-reduction taper.

51 The “d” distance shown in Figure 250 might not be available at all lane-reduction transitions;
52 “d” is typically set based on where the lane-reduction sign (W4-2) can be placed in these cases.
53 See the support section for more discussion. For on-ramps with ramp meters, see Section 620.

Lane-Reduction Transitions


Section 250

54

Figures & Tables

55

Figure 250: Typical Lane-Reduction Transition

56

57 Support

58 Lane-reduction layouts are required to match the layout shown in Figure 3B-14 of the 2009
59 MUTCD by a standard statement in Section 3B.09. ODOT has added some guidance where the
60 MUTCD is silent on placement of the last arrow and allowance to add a middle lane-reduction
61 arrow; however, the overall layout is set by the MUTCD with very little flexibility. There have
62 been recent efforts examining changes to the layout (1), but more study will be needed before
63 significant changes are proposed.

64 A lane-reduction transition is a complex driving situation, especially in heavy traffic (2). Beyond
65 the signing and lane-reduction arrows, a major visual cue for navigating lane-reduction
66 transitions is the taper. If the full 2-lane pavement width continues beyond the lane-reduction
67 transition, shoulder bars or other visual cues are ways to show that the lane does not continue
68 beyond the end of the taper (2). There is also evidence that drivers judge where a lane change
69 needs to occur based on where the lane line ends (i.e.: ending the lane line further upstream
70 gives more time to perceive a need to merge) (1).

71 The "L" formulas come from MUTCD Section 3B.09. L=WS first appeared in the 1971 MUTCD.
72 L=(WS₂)/60 first appeared in the 1978 MUTCD, based on Graham and Sharp's 1977 report (3) on
73 shorter taper lengths at lower speeds in four long-term construction zones. At the time, there
74 was a desire to examine shorter taper lengths at lower speeds to accommodate site constraints
75 typically associated with lower speeds (driveway/intersection density, more traffic control
76 devices, etc.). At the speeds studied (15 to 45 mph), the shorter taper length did not produce
77 more erratic maneuvers, slow-moving vehicle conflicts, or encroachments on the adjacent lane
78 than the standard L=WS taper, so the sections for permanent and temporary lane-reduction
79 tapers were updated in the MUTCD (4).

80 The "d" distance given in Figure 250 is the advance placement of a warning sign for a speed
81 reduction and lane change in heavy traffic according to MUTCD Table 2C-4. This distance
82 provides drivers with a perception-reaction time of 14.0 to 14.5 seconds for the maneuver,
83 minus a legibility distance of 180 feet for the warning sign (4). This length of perception-reaction
84 time is the decision sight distance from the AASHTO Green Book (5) for Avoidance Maneuver
85 E: speed/path/direction change on urban road. Perception-reaction times for other avoidance
86 maneuvers are 10.2 to 11.2 seconds for speed/path/direction changes on rural roads, and 12.1 to
87 12.9 seconds for speed/path/direction changes on suburban roads.

88 Before the 2011 Traffic Line Manual, ODOT used an alternate lane-reduction transition layout
89 based on a 1988 Transportation Research Record paper by Harwood, Hoben, and Warren (6). At
90 the time, the MUTCD "d" distance was significantly shorter than today's "d" distance.
91 Harwood, Hoben, and Warren argued that drivers needed more advance warning for a lane-
92 reduction than the MUTCD "d" distance and that the first lane-reduction sign needed to be
93 placed at 1000 feet from the beginning of the taper.

Lane-Reduction Transitions**Section 250**

94 The MUTCD "d" distance was lengthened in the 2003 Edition and again in the 2009 Edition.
95 ODOT switched to the lane-reduction transition layout in the 2009 MUTCD when it adopted the
96 2009 MUTCD to 1) better meet driver expectations by being more uniform with nationwide
97 layouts, 2) because the 2009 "d" distance was more in-line with Harwood, Hoben, and Warren's
98 recommendations (2), and 3) because the MUTCD layout shown in Figure 3B-14 is required
99 under Section 3B.09.

100 **Cross References**

101 Colors	Section 110
102 Center Lines	Section 210
103 No-Passing Zone Markings.....	Section 211
104 Lane Lines	Section 220
105 Edge Lines.....	Section 230
106 Ramp Meters	Section 620

107 **Key References**

- 108 1. Balk, S. A., and S. Jackson. Lane Line Markings in Advance of Lane-Reduction Transitions. *Traffic Control Devices Pooled Fund Study*, Washington, D.C., 2016. <http://pooledfund.org/Document/Download/6265>.
- 109 2. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and D. Harwood. *NCHRP Report 600: Human Factors Guidelines for Road Systems*. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.
- 110 3. Graham, J. L., and M. C. Sharp. Effects of Taper Length on Traffic Operations in Construction Zones. *Midwest Research Institute*, Washington, D.C., FHWA-RD-77-162, 1977.
- 111 4. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 112 5. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and Streets*, 6th ed. Washington, D.C., 2011.
- 113 6. Harwood, D. W., C. J. Hoban, and D. L. Warren. Effective Use of Passing Lanes on Two-Lane Highways. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, no. 1195, 1988, pp. 79-91. <http://trid.trb.org/view.aspx?id=302149>.
- 114 7. Graham, J. L., D. W. Harwood, and M. C. Sharp. Effects of Taper Length on Traffic Operations in Construction Zones. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, no. 703, 1979, pp. 19-24. <https://trid.trb.org/View/145597>.

1 **Lane Addition Transition & No-Passing**

2 **Zones in 3-Lane Sections** **Section 251**

3 **Introduction**

4 Lane additions are transitions where a motor vehicle lane is added to a segment of roadway.

5 **Relevant MUTCD Sections**

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • MUTCD 11th Edition: 3B.01 Yellow Center Line Pavement Markings
- 8 • MUTCD 11th Edition: 3B.03 No-Passing Zone Pavement Markings

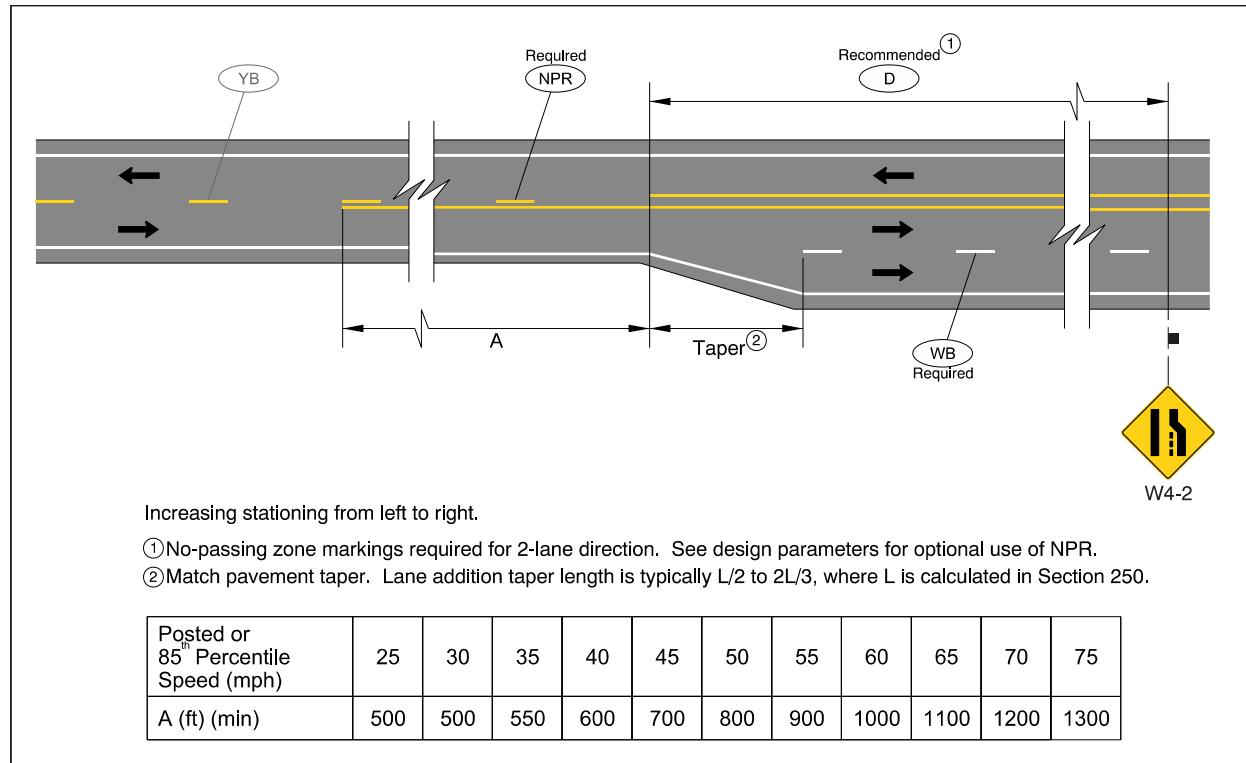
9 **Design Parameters**

10 01 Lane addition transitions shall include a white broken line (WB) as soon as full lane width is developed. On 2-way roadways, no-passing zone markings shall precede the start of the lane addition taper a minimum length "A" shown in 251 and through the lane addition taper.

14 02 No-passing zone markings shall be used in the 2-lane direction of a 3-lane, 2-way roadway.

16 03 No-passing zone markings should be used in the single-lane direction of a 3-lane, 2-way roadway.

18 04 Passing may be allowed in the single-lane direction if:


- 19 • There is sufficient passing sight distance available according to Section 211,
- 20 • The ADT of the highway segment is less than 3000 vehicles per day,
- 21 • The passing permitted section would be longer than 800 feet, and
- 22 • A passing lane is not provided in the single lane direction within 2 miles of both ends of the passing permitted section.

Lane Addition Transition & No-Passing Zones in 3-Lane Sections

Section 251

24 Figures & Tables

25 Figure 251: Typical Lane Addition Transition & 3-Lane 2-Way Passing Allowances

26

27 Support

28 Lane Addition Transitions

29 The typical taper length of $L/2$ to $2L/3$ comes from the recommended lane addition taper length in the ODOT Highway Design Manual (1).

31 No-Passing Zones in 3-Lane Sections

32 Passing on rural two-lane roadways is one of the most complex maneuvers drivers make (2).
 33 There are several differences in the passing environment of a 3-lane section compared to a 2-lane section. A driver traveling in the single-lane direction desiring to pass does not just need to determine if there is oncoming traffic like he or she would normally do for a 2-lane section; he or she also needs to determine if there is oncoming traffic that could use the center lane. That oncoming traffic could be hidden behind the lead vehicle in the queue (commonly large heavy vehicles). Average speeds in passing lanes are generally greater than the surrounding 2-lane segments (3) and drivers have difficulty judging the speed of oncoming vehicles (4), so

Lane Addition Transition & No-Passing Zones in 3-Lane Sections

Section 251

40 determining whether an acceptable gap exists to pass is made even more difficult. There also
41 could be better passing opportunities nearby, like a passing lane, allowing for safer and more
42 comfortable passing.

43 The effect of a passing lane section on operations extends for some distance downstream,
44 reducing the need to allow passing immediately after a lane reduction in the downhill direction
45 of a climbing lane section. One study (5) estimated this halo distance could be as long as 1.5
46 miles and another (6) up to several miles, depending on volumes and length of passing lane
47 section.

48 As traffic volume increases, passing opportunities become more infrequent and passing
49 demand increases as larger platoons form (2) (5) (6) and drivers generally become more willing
50 to accept smaller gaps in opposing traffic to pass (7). At a certain volume threshold, passing
51 opportunities become impractical unless a passing lane is added.

52 In some cases a 3-lane section could be the best opportunity to pass in the single-lane direction
53 if passing is restricted too much in the surrounding corridor. There is a limit to how long
54 drivers are willing to follow a slow-moving vehicle before attempting to make a passing
55 maneuver (legal or not) (4) (5) (6). As distance from a passing lane increases, platooning and
56 passing demand increases (5). Drivers become less patient as following distance increases and
57 speed decreases, tempting drivers to pass in a no-passing zone (4) (8) (9). Passing permitted in
58 the single-lane direction of a 3-lane section with sufficient passing sight distance can give
59 drivers a safer location to pass than picking a spot in a no-passing zone that does not have
60 sufficient passing sight distance.

61 Cross References

62 Colors Section 110
63 Center Lines Section 210
64 No-Passing Zone Markings Section 211
65 Lane Lines Section 220
66 Edge Lines Section 230
67 Lane Reduction Transitions Section 250

68 Key References

69 1. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
70 Oregon, 2012.

71 2. Polus, A., M. Livneh, and B. Frischer. Evaluation of the Passing Process on Two-Lane Rural Highways.
72 *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1701, 2000,
73 pp. 53-60. <http://trrjournalonline.trb.org/doi/abs/10.3141/1701-07>. DOI: 10.3141/1701-07

74 3. Engerg, A., and M. Pursula. Traffic Flow Characteristics on a Three-Lane Rural Highway in Finland: Results from
75 Empirical Studies and Simulations. *Transportation Research Record: Journal of the Transportation Research Board of the*
76 *National Academies*, Vol. 1572, 1997, pp. 33-42. <http://trrjournalonline.trb.org/doi/abs/10.3141/1572-05>. DOI:
77 10.3141/1572-05

Lane Addition Transition & No-Passing Zones in 3-Lane Sections

Section 251

78 4. Harwood, D. W., D. K. Gilmore, K. R. Richard, J. M. Dunn, and C. Sun. NCHRP Report 605: Passing Sight
79 Distance Criteria. Transportation Research Board of the National Academies, Washington, D.C., ISBN: 978-0-309-
80 09927-1, 2008. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_605.pdf.

81 5. Al-Kaisy, A., and Z. Freedman. Empirical Examination of Passing Lane Operational Benefits on Rural Two-Lane
82 Highways. *Procedia - Social and Behavioral Sciences*, Vol. 16, 2011, pp. 340-351. <http://www.sciencedirect.com/>
83 science/article/pii/S1877042811010019. DOI: 10.1016/j.sbspro.2011.04.455

84 6. Harwood, D. W., C. J. Hoban, and D. L. Warren. Effective Use of Passing Lanes on Two-Lane Highways.
85 *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, no. 1195, 1988,
86 pp. 79-91. <http://trid.trb.org/view.aspx?id=302149>.

87 7. Farah, H., and T. Toledo. Passing Behavior on Two-Lane Highways. *Transportation Research Part F: Traffic
88 Psychology and Behaviour*, Vol. 13, no. 6, November 2010, pp. 355-364. [http://trjournalonline.trb.org/doi/abs/10.3141/2248-04](http://www.sciencedirect.com/science/
89 article/pii/S1369847810000653. DOI: 10.1016/j.ctr.2010.07.003</p><p>90 8. Pollatschek, M. A., and A. Polus. Modeling Impatience of Drivers in Passing Maneuvers. in <i>Transportation and
91 Traffic Theory: Flow, Dynamics and Human Interaction: Proceedings of the 16th International Symposium on
92 Transportation and Traffic Theory</i>, College Park, Maryland, 2005, pp. 267-279.</p><p>93 9. Farah, H. Age and Gender Differences in Overtaking Maneuvers on Two-Lane Rural Highways. <i>Transportation
94 Research Record: Journal of the Transportation Research Board</i>, Vol. 2248, 2011, pp. 30-36. <a href=). DOI: <http://dx.doi.org/10.3141/2248-04>

1 **Traversable Medians**

Section 260

2 **Introduction**

3 Traversable medians separate opposing flows of traffic. Traversable medians are delineated
4 only by pavement markings and do not physically prevent vehicles from crossing or entering
5 the median.

6 **Relevant MUTCD Sections**

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3B.01 Yellow Center Line Pavement Markings](#)
- 9 • [MUTCD 11th Edition: 3B.25 Chevron and Diagonal Markings](#)
- 10 • [MUTCD 11th Edition: 3H.04 Yellow-Colored Pavement](#)
- 11 • [MUTCD 11th Edition: 3J.03 Islands Designated by Pavement Markings](#)

12 **Design Parameters**

13 01 A traversable median separating travel in opposite directions shall consist of solid double
14 yellow lines as shown in Figure 260-A. Other markings in the median shall also be yellow,
15 except crosswalk markings which shall be white.

16 02 *Traversable medians should consist of:*

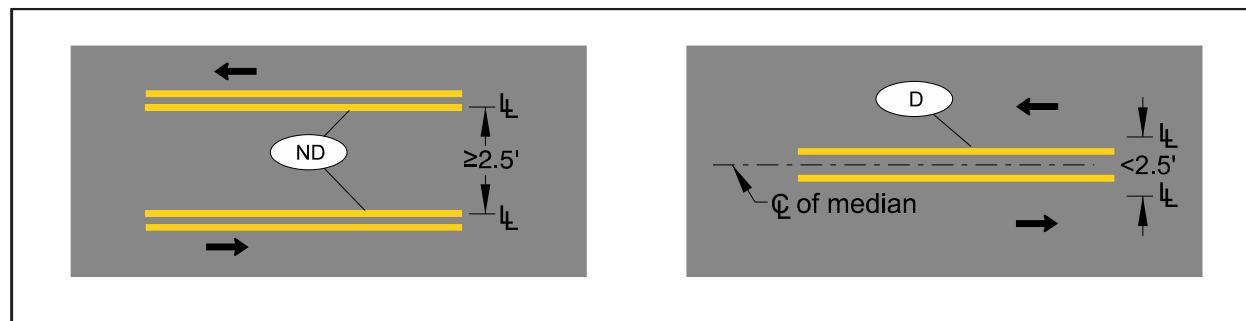
- 17 • *Two narrow double yellow lines (ND) where the median width is 2.5 feet or greater (Figure 260-
18 A).*
- 19 • *A wide double yellow line (D) where the median width is less than 2.5 feet (Figure 260-A).*

20 03 **Where a traversable median is 6 feet wide or wider at an intersection, the yellow
21 traversable median lines shall be joined using a curve (Figure 260-D) (this is commonly
22 referred to as a “bull nose”).**

23 04 **A minimum length of no-passing zone markings “A” shall precede the start of the taper of
24 a wide traversable median (Figure 260-C).**

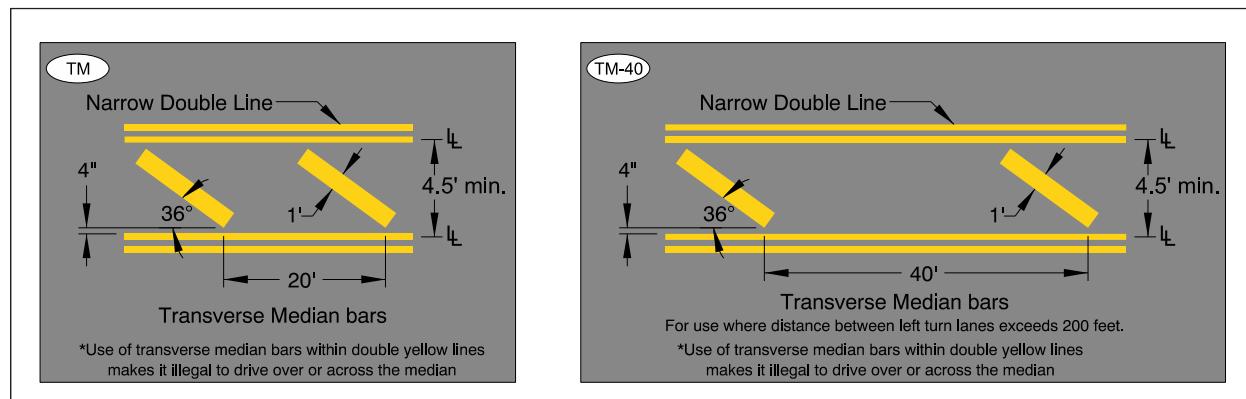
25 05 A traversable median may be supplemented with yellow transverse median bars based on
26 engineering judgement placed at 20-foot intervals if the median width is 4.5 feet or greater
27 (see Figure 260-B). Where the distance between accesses exceeds 200 feet, the spacing may be
28 increased to 40 feet.

29 **Design Issues**


30 A bull nose is typically 100 feet long. This length is enough to provide an aesthetically pleasing
31 curve that misses the wheel path of vehicles turning left from the side street and can be installed
32 and maintained with most striping equipment.

Traversable Medians**Section 260**

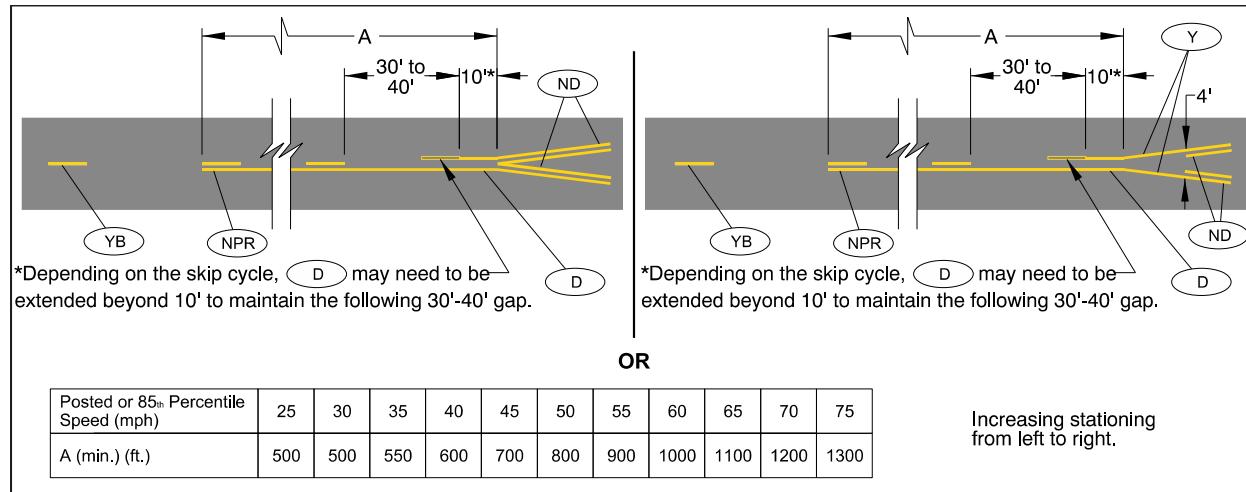
33 Under access management laws in Oregon, it is illegal to cross a traversable median with yellow transverse median bars (referred in statute as “crosshatching”) according to ORS 811.430.
 34 Contact the region access management engineer when considering transverse median bars in
 35 the vicinity of accesses.
 36


Figures & Tables

37 Figure 260-A: Traversable Median Markings- Turning Movements Across Allowed

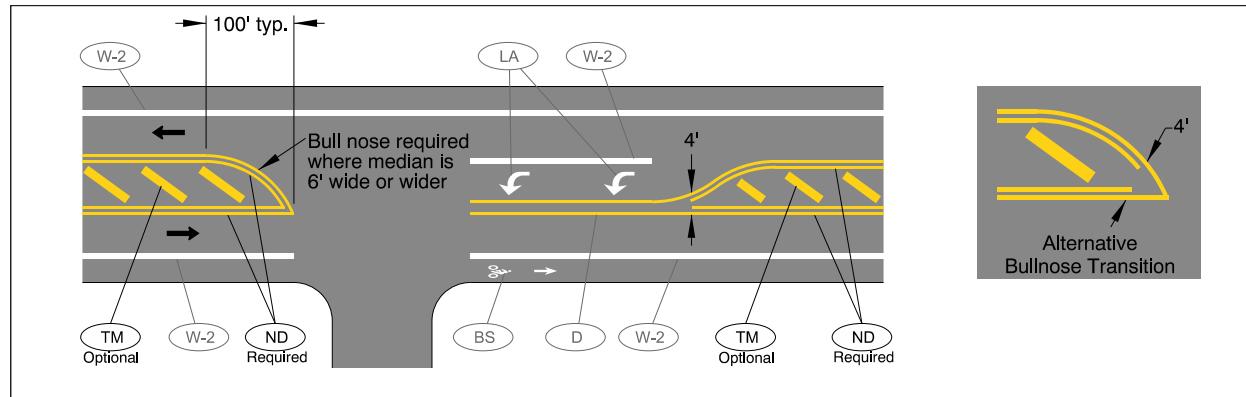
39

40 Figure 260-B: Supplemental Transverse Median Bars – Turning Movements Across Prohibited



41

Traversable Medians


Section 260

42 Figure 260-C: Typical Traversable Median Width Transitions

43

44 Figure 260-D: Typical Traversable Median Layout

45

46 Support

47 There is a practical limit to how narrow a traversable median can be before the two sets of
 48 double yellow lines no longer look like two distinct lines. Similarly, there is a practical limit to
 49 the size of the space in a double yellow line before it begins to look like two distinct single
 50 yellow lines. There is no guidance in the MUTCD (1) or in human factors studies on these
 51 thresholds. Based on past experience in Oregon, a space between two sets of narrow double
 52 yellow lines that is approximately double the out-to-out width of a narrow double yellow line
 53 provides sufficient separation for the lines to appear as two distinct lines. To avoid the
 54 appearance of using two distinct single lines to mark the traversable median, and for
 55 consistency with maintenance equipment, traversable medians narrower than this threshold use
 56 a single standard double yellow line.

57 A bull nose treatment (typically 100 feet long) is required for wide (6 feet or more) traversable
 58 medians at intersections to guide turning traffic into the appropriate travel lane. A traversable

Traversable Medians**Section 260**

59 median is not meant for use by vehicles; this discourages the traversable median's use as a two-
60 way left turn lane. Traversable medians less than 6 feet wide are too narrow for use as a refuge,
61 so a bull nose treatment for narrow traversable medians is not required.

62 Traversable medians create space between opposing directions of travel often for roadway
63 elements such as left turn lanes or in advance of a raised curb. Completing a passing maneuver
64 within or to the left of a traversable median has clear safety consequences. The required no-
65 passing zone in advance of the traversable median taper allows passing maneuvers started in
66 the passing-permitted section to complete prior to reaching the taper.

67 The transverse median bar layout in Figure 260-B has been used since the 1976 edition of the
68 Traffic Line Manual with good success. The 20-foot standard spacing is half a standard broken
69 line cycle length and provides excellent visibility of the restricted nature of the median. The 36
70 degree angle has been used since the 1966 edition of the Traffic Line Manual. There is no
71 documentation from that time why 36 degrees was originally chosen; the fact that a 3-4-5
72 triangle makes this angle might be a reason it was chosen so field layout and verification could
73 be simplified. This angle has since become the standard for all other angled transverse markings
74 used by ODOT.

75 The median width transition layouts in Figure 260-C have been used since the 1990 edition of
76 the Traffic Line Manual. The left detail in Figure 260-C joins the two inner lines of the
77 traversable median to "finish" the median; this layout visually complies with MUTCD Figures
78 3B-2 and 3B-4. However, installing and re-tracing the inner lines so they are physically joined at
79 the end of the taper can be difficult in the field. The right detail in Figure 260-C was first
80 introduced in the 1996 edition of the Traffic Line Manual as an option for an acceptable
81 tolerance for where the inner lines could end prior to the end of the taper. Both options have
82 been used successfully in the field.

83 The 10-foot length of wide double yellow line just before the taper begins and ends has been
84 used since the 1976 edition of the Traffic Line Manual. The 10-foot length provides a uniform
85 and aesthetically pleasing way to transition from the taper to the one-direction no-pass line that
86 typically follows the end of the taper.

87 The 30- to 40-foot gap between the wide double yellow line and the next broken line segment
88 allows the striping operator to start or end the one-direction no-pass line at the taper point
89 regardless of the direction the striping truck is traveling (to keep broken line cycles consistent).
90 This also gives the striping operator time to switch guns and allows a clean transition that
91 allows the road user to clearly see the start of the one-direction no-pass pattern.

92 See the ODOT Highway Design Manual (2) and ODOT Traffic Manual (3) for more information
93 on traversable medians.

Cross References

95 Colors Section 110
96 Functions, Widths, and Patterns of Longitudinal Lines Section 120

Traversable Medians**Section 260**

97	Transverse Markings.....	Section 125
98	Raised Pavement Markers	Section 130
99	RPMs Used for Supplementation.....	Section 131
100	Typical Layouts for RPMs.....	Section 133
101	Center Lines	Section 210
102	No-Passing Zone Markings.....	Section 211
103	Two-Way Left Turn Lanes	Section 261
104	Approach to a Fixed Obstruction.....	Section 280
105	Non-Traversable Medians & Channelizing Islands	Section 281
106	Left Turn Lanes	Section 310
107	Bicycle Lane Buffers	Section 412

108 Key References

- 109 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
110 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 111 2. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
112 Oregon, 2012.
- 113 3. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.

1 Two-Way Left Turn Lanes

Section 261

2 Introduction

3 Two-way left turn lanes (also known as TWLTL, special turn lane, continuous two-way left turn
4 lane, CTWLTL) are used to provide left turn access to and from adjacent properties and
5 roadways, while minimizing impacts of left turning vehicles on through traffic.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3B.01 Yellow Center Line Pavement Markings](#)
- 9 • [MUTCD 11th Edition: 3B.05 Pavement Markings for Two-Way Left-Turn Lanes](#)

10 Design Parameters

11 01 The lane line pavement markings on each side of a two-way left turn lane shall consist of
12 a normal width broken yellow line and a normal width solid yellow line to delineate the
13 edges of a lane that can be used by traffic in either direction as part of a left-turn
14 maneuver. These markings shall be placed with the broken line toward the two-way left
15 turn lane and the solid line toward the adjacent traffic lane as shown in Figure 261-A.

16 02 A two-way left turn lane shall be followed by a single-direction left turn lane(s) or a
17 traversable median or non-traversable median on the approach to a signalized
18 intersection.

19 03 A two-way left turn lane may be transitioned into a single-direction left turn lane(s) or a
20 traversable median or non-traversable median on the approach to a an unsignalized
21 intersection.

22 04 *Two-way left-turn lane markings should not extend to intersections.*

23 05 Where the distance between intersections limits the ability to provide fully developed turn
24 lanes, a two-way left-turn lane may be provided based on engineering judgement (Figure
25 261-C).

26 06 **Two-way left turn lanes shall not continue across intersections.**

27 07 **A single-direction lane use arrow shall not be used in a two-way left turn lane.**

28 08 *Two-way left turn lanes should include opposing white two-way left turn lane-use arrows at or just
29 downstream from the beginning of a two-way left turn lane (Figure 261-B). Opposing left turn arrows
30 should be spaced 8 to 16 feet apart (Figure 261-A).*

31 09 Additional sets of opposing left turn arrows may be placed at even intervals within the two-
32 way left turn lane, proportioned within the block and spaced apart (in feet) approximately 10
33 times the posted speed in mph.

Two-Way Left Turn Lanes

Section 261

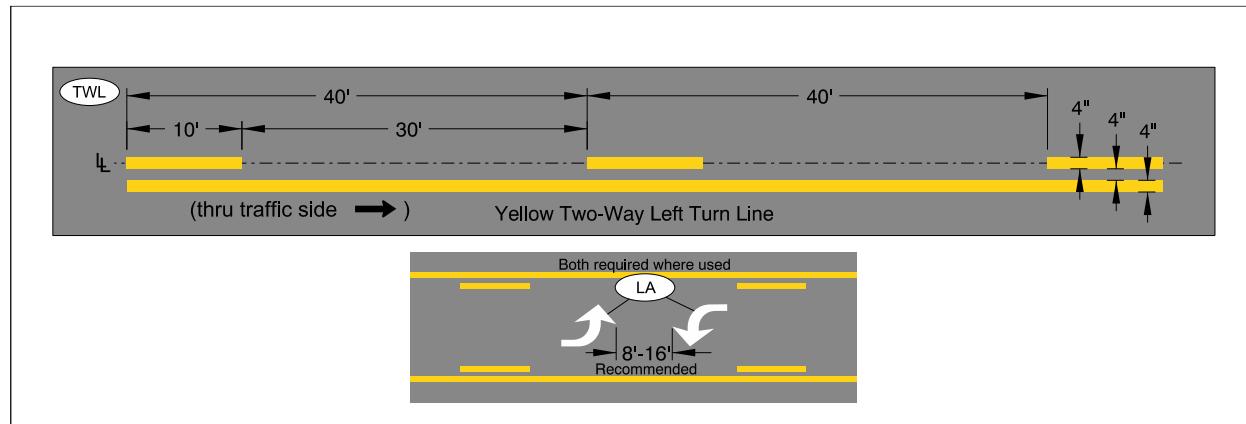
34 10 A striped bullnose may be used in a two-way left turn lane at a minor T-intersection (Figure
35 261-C).

Required Approvals

37 Region traffic engineer approval is required for use of a striped bull nose in a two-way left turn
38 lane at a minor T-intersection.

Design Issues

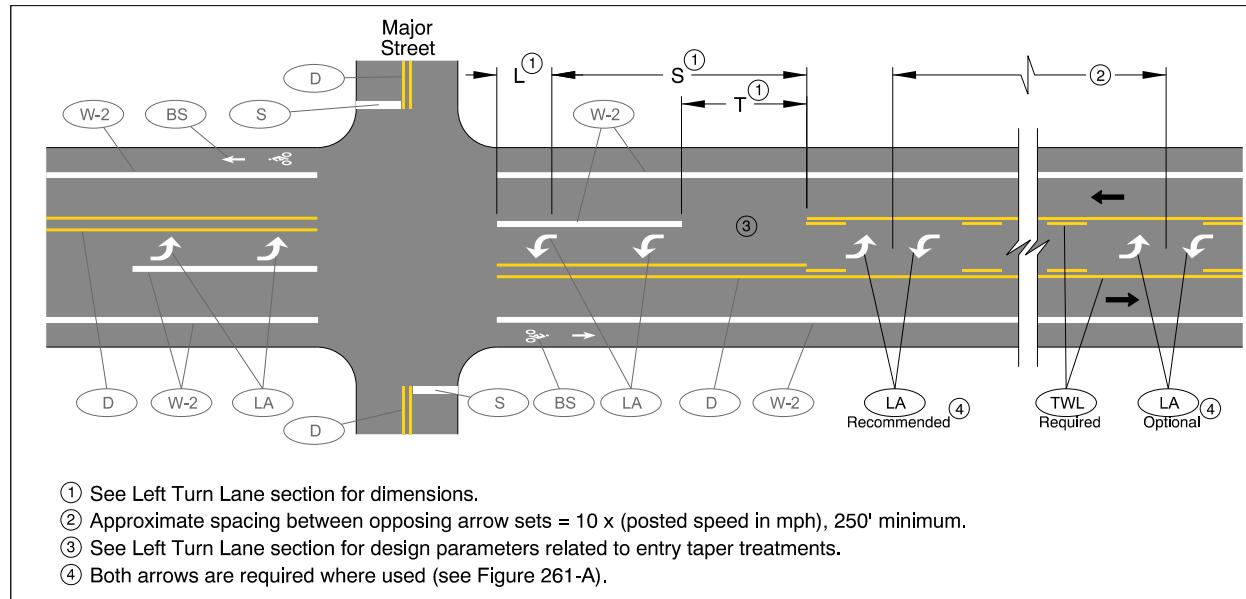
40 Past design practice allowed single left turn arrows in two-way left turn lanes at intersections.
41 This practice is no longer allowed by the MUTCD. Arrows in two-way left turn lanes need to
42 come in sets of two opposing left turn arrows.


43 A bull nose is typically 100 feet long. This length is enough to provide an aesthetically pleasing
44 curve that misses the wheel path of vehicles turning left from the side street and can be installed
45 and maintained with most striping equipment.

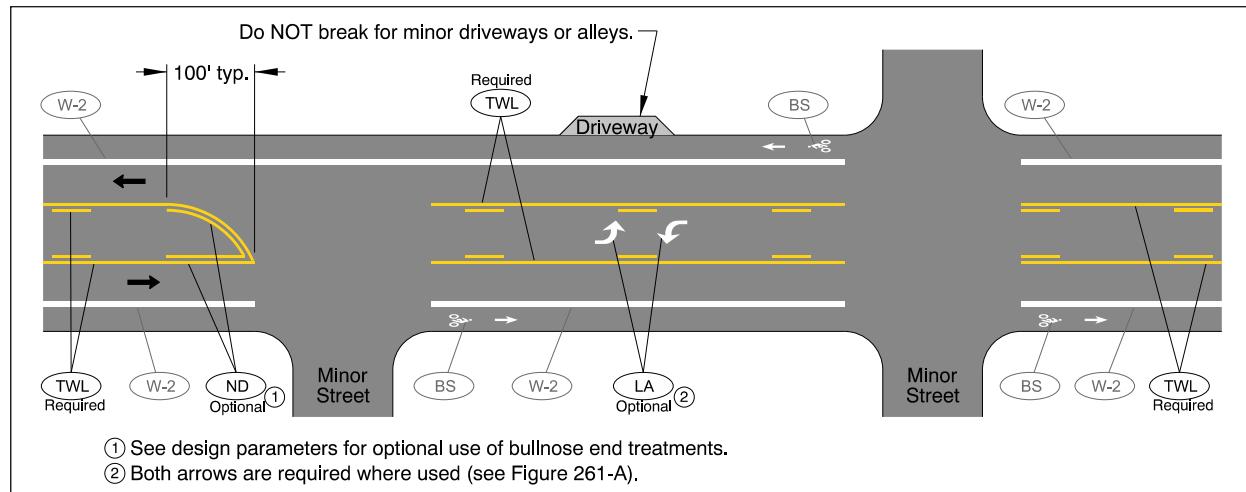
46 Consider conflicting movements, turning volumes, and location of accesses when determining
47 whether a left turn lane needs to be provided at a minor unsignalized intersection instead of a
48 two-way left turn lane.

49 Past ODOT and MUTCD guidance allowed two-way left turn-lanes to extend to intersections,
50 and it was common practice to do this. The current 11th edition of the MUTCD does not include
51 that option. The design parameters in this section show the 11th Edition MUTCD guidance as
52 well as the appropriate process to determine and document design decisions that vary from
53 guidance as outlined in the MUTCD.

Figures & Tables


55 Figure 261-A: Two-Way Left Turn Lane Details

56


Two-Way Left Turn Lanes**Section 261**

57 Figure 261-B: Typical Two-Way Left Turn Lane at an Unsignalized Intersection

58

59 Figure 261-C: Potential Option of Two-Way Left Turn Lane at Minor Intersection with Limited
 60 Distance Between Intersections

61

Support

63 Two opposing lane use arrows (instead of one) are needed in two-way left turn lanes because
 64 the set of two arrows communicates the two-direction function of the lane. A single arrow sends
 65 a conflicting message and has been prohibited by the MUTCD.

66 The distance between two sets of arrows (10 x posted speed) is based on past ODOT practice
 67 and is shared by at least two other states. The minimum of 250 feet shown in Figure 261-B is
 68 also based on past ODOT practice and is similar to marking practice in other states (1).

Two-Way Left Turn Lanes**Section 261**

69 Similar to centerlines and edge lines, two-way left turn lanes are broken at intersections to help
70 identify where an intersecting road is located. See the centerline section for indicators of
71 intersections and major driveways where two-way left turn lane striping needs to be broken.

72 Left turn lanes are provided at signalized intersections instead of two-way left turn lanes for
73 safe signal operations. During typical protected left turn signal operations, the left-turn phase
74 can start and/or end at different times than the adjacent through movements. This requires an
75 exclusive left-turn lane (2). Detection of left turning vehicles is also needed at signalized
76 intersections with protected left turn phasing. A left-turning vehicle traveling away from the
77 intersection could cause the signal to bring up an unnecessary left turn phase if the two-way left
78 turn lane is provided up to the intersection.

79 At uncontrolled intersections with a marked crosswalk a left turn lane instead of a TWLTL can
80 help with identifying advance stop bar locations for the crosswalk, as well as limiting the use of
81 the lane near the crosswalk to one direction.

82 At some T-intersections with access and safety concerns, a bull nose end treatment can help
83 guide left turning drivers from the side street into the travel lane (instead of into the two-way
84 left turn lane in a two-stage left maneuver).

85 While two-way left turn lanes are a tool to improve safety (3), there are limitations to their
86 capabilities. See the ODOT Traffic Manual (4) and ODOT Highway Design Manual (5) for more
87 information on two-way left turn lanes.

Cross References

88 Colors Section 110
89 Functions, Widths, and Patterns of Longitudinal Lines Section 120
90 Lane Use Arrows Section 160
91 Traversable Medians Section 260
92 Non-Traversable Medians & Channelizing Islands Section 281
93 Left Turn Lanes Section 310

Key References

94 1. Friedman, B. E. NCHRP Synthesis 356: Pavement Markings - Design and Typical Layout Details. Washington, D.C., ISBN 0-309-09763-0, 2006. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_356.pdf.

95 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

96 3. Lyon, C., B. Persaud, N. Lefler, D. Carter, and K. A. Eccles. Safety Evaluation of Installing Center Two-Way Left-Turn Lanes on Two-Lane Roads. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2075, December 2008, pp. 34-41. <http://trrjournalonline.trb.org/doi/pdf/10.3141/2075-05>. DOI: <http://dx.doi.org/10.3141/2075-05>

97 4. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.

98 5. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem, Oregon, 2012.

1 Channelizing Lines and Traversable 2 Channelizing Islands

Section 270

3 Introduction

4 Channelizing lines are used to discourage or prohibit sideway movements of traffic proceeding
5 in the same general direction. Traversable channelizing islands are formed by channelizing lines
6 and help direct road users through an intersection, around obstructions, or laterally separate
7 same-direction traffic.

8 Relevant MUTCD Sections

9 See the following sections for standards, guidance, and options not found in this manual:

- 10 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 11 • [MUTCD 11th Edition: 3B.25 Chevron and Diagonal Markings](#)
- 12 • [MUTCD 11th Edition: 3H.05 White-Colored Pavement](#)
- 13 • [MUTCD 11th Edition: 3J.03 Islands Designated by Pavement Markings](#)

14 Design Parameters

15 01 A channelizing line shall be a wide (W-2) or double solid white line (NDW).

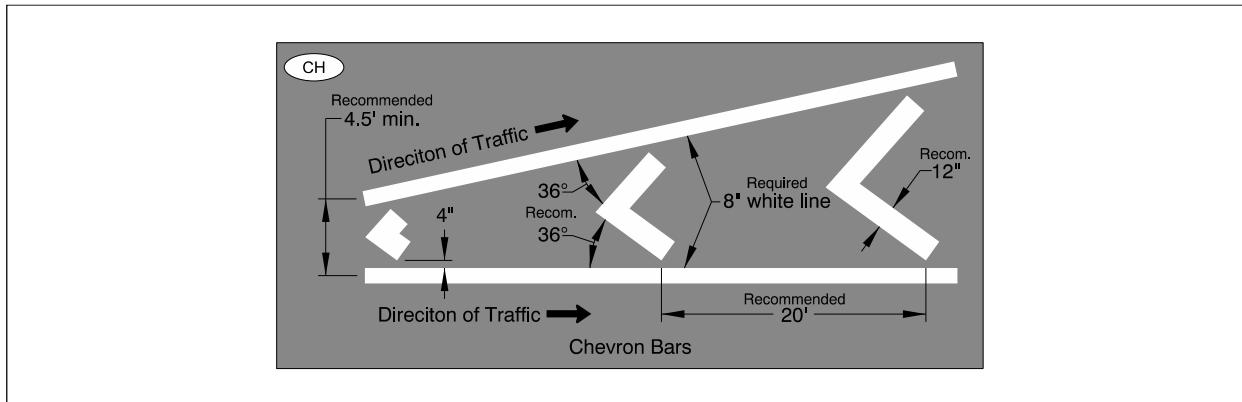
16 02 Traversable channelizing islands shall be formed by two channelizing lines. If used, other
17 pavement markings in the channelizing island area shall be white.

18 03 Where the traversable channelizing island is 4.5 feet wide or wider, white chevron bars (CH)
19 may be used within the neutral area to discourage travel in the neutral area.

20 04 Where crosshatch markings are used in paved areas that separate traffic flows in the same
21 general direction, they shall be white and they shall be shaped as chevron markings, with
22 the point of each chevron facing toward approaching traffic, as shown in Figure 270-A.

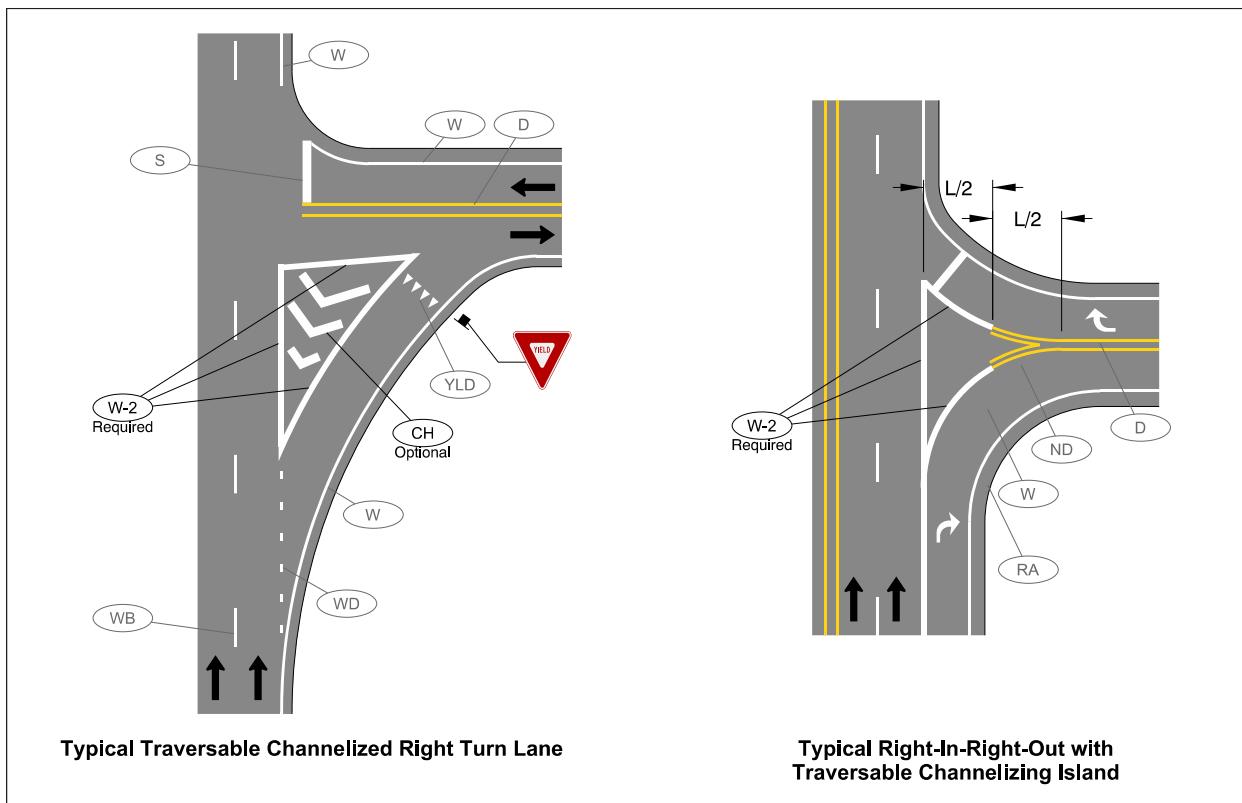
23 05 Chevrons bars (CH) should be at least 12 inches wide. The longitudinal spacing of the chevron bars
24 should be 20 feet. The chevrons should form an angle of 36 degrees with the longitudinal lines that
25 they intersect (see Figure 270-A).

26 Required Approvals


27 28 Some types of traversable channelizing islands require state traffic engineer approval (e.g.:
channelized right-turn lanes).

Channelizing Lines and Traversable Channelizing Islands

Section 270


29 Figures & Tables

30 Figure 270-A: Chevron Bar Details

31

32 Figure 270-B: Typical Traversable Channelizing Island Applications

33

34 Support

35 Traversable channelizing islands can be preferable to non-traversable islands where access
36 management is not needed, where approach speeds are relatively high, where there is little to
37 no pedestrian traffic, where illumination is not provided, or where significant snow removal is
38 needed (1).

39 Like bold typeface, wide lines communicate greater emphasis for channelizing. White lines and
40 chevrons are used to create and fill channelizing islands because channelizing islands separate
41 traffic traveling in the same general direction (2).

42 Marked crosswalks are typically not provided to or from traversable channelizing islands.
43 Markings alone do not provide the same pedestrian refuge or the same information for visually
44 impaired pedestrians about the direction of the crosswalk as a non-traversable island. They also
45 do not provide the same protection for elements like signs and signal hardware as a non-
46 traversable island.

47 Cross References

48 Colors	Section 110
49 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
50 Approach to a Fixed Obstruction	Section 280
51 Non-Traversable Medians & Channelizing Islands	Section 281
52 Channelized Right-Turn Lanes	Section 321
53 Interchange Ramps: Exit & Entrance Ramps	Section 360
54 Bicycle Lane Buffers	Section 412

55 Key References

- 56 1. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
57 *Streets*, 6th ed. Washington, D.C., 2011.
- 58 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
59 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 Approach to a Fixed Obstruction Section 280

2 Introduction

3 Fixed obstructions in the roadway can include bridge supports, sign supports, or raised
4 barriers. Markings for non-traversable medians and channelizing islands are discussed in
5 Section 281.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3B.01 Yellow Center Line Pavement Markings](#)
- 9 • [MUTCD 11th Edition: 3B.13 Approach Markings for Obstructions](#)
- 10 • [MUTCD 11th Edition: 3B.25 Chevron and Diagonal Markings](#)
- 11 • [MUTCD 11th Edition: 3H.04 Yellow-Colored Pavement](#)
- 12 • [MUTCD 11th Edition: 3J.03 Islands Designated by Pavement Markings](#)

13 Design Parameters

14 01 Pavement markings shall be used to guide traffic away from fixed obstructions within a
15 paved roadway. Approach markings for fixed obstructions in the roadway shall consist of
16 a tapered line or lines extending from the center line or the lane line to a point 1 to 2 feet
17 to the right-hand side, or to both sides, of the approach end of the obstruction (see Figure
18 280).

19 02 For roadways having a speed limit of 45 mph or greater, the taper length of the tapered line markings
20 should be computed by the formula $L=WS$; where L equals the taper length in feet, W equals the width
21 of the offset distance in feet, and S equals the 85th-percentile speed or the speed limit, whichever is
22 higher. For roadways where the speed limit is less than 45 mph, the formula $L = WS^2/60$ should be
23 used to compute the taper length.

24 03 The minimum taper length should be 100 feet in urban areas and 200 feet in rural areas.

25 04 If traffic is required to pass only to the right of the obstruction, the markings shall consist
26 of a two-direction no-passing marking (D or ND) at least twice the length "L" as
27 determined by the appropriate taper formula (see Figure 280 Detail A).

28 05 If traffic is required to pass only to the right of the obstruction, transverse median bars (TM)
29 may be placed in the flush median area between the narrow two-direction no-passing lines
30 (ND). Other markings, such as yellow delineators, yellow surface mounted tubular markers,
31 yellow raised pavement markers, and white crosswalk pavement markings, may also be
32 placed in the flush median area.

Approach to a Fixed Obstruction**Section 280**

33 06 If traffic can pass either to the right or left of the obstruction, the markings shall consist of
34 two wide white (W-2) channelizing lines diverging from the lane line, one to each side of
35 the obstruction. In advance of the point of divergence, a wide white (W-2) channelizing
36 line or narrow double white line (NDW) shall be extended in place of the broken lane line
37 for a distance equal to the length of the diverging lines (Figure 280 Detail C)

38 07 If traffic can pass either to the right or left of the obstruction, white chevrons bars (CH) may
39 be placed in the flush neutral area between the wide white lines. Other markings, such as
40 white delineators, white channelizing devices, white raised pavement markers, and white
41 crosswalk markings may also be placed in the flush neutral area.

42 08 Pavement markings used to delineate non-traversable medians and channelizing islands
43 may be installed according to Section 281.

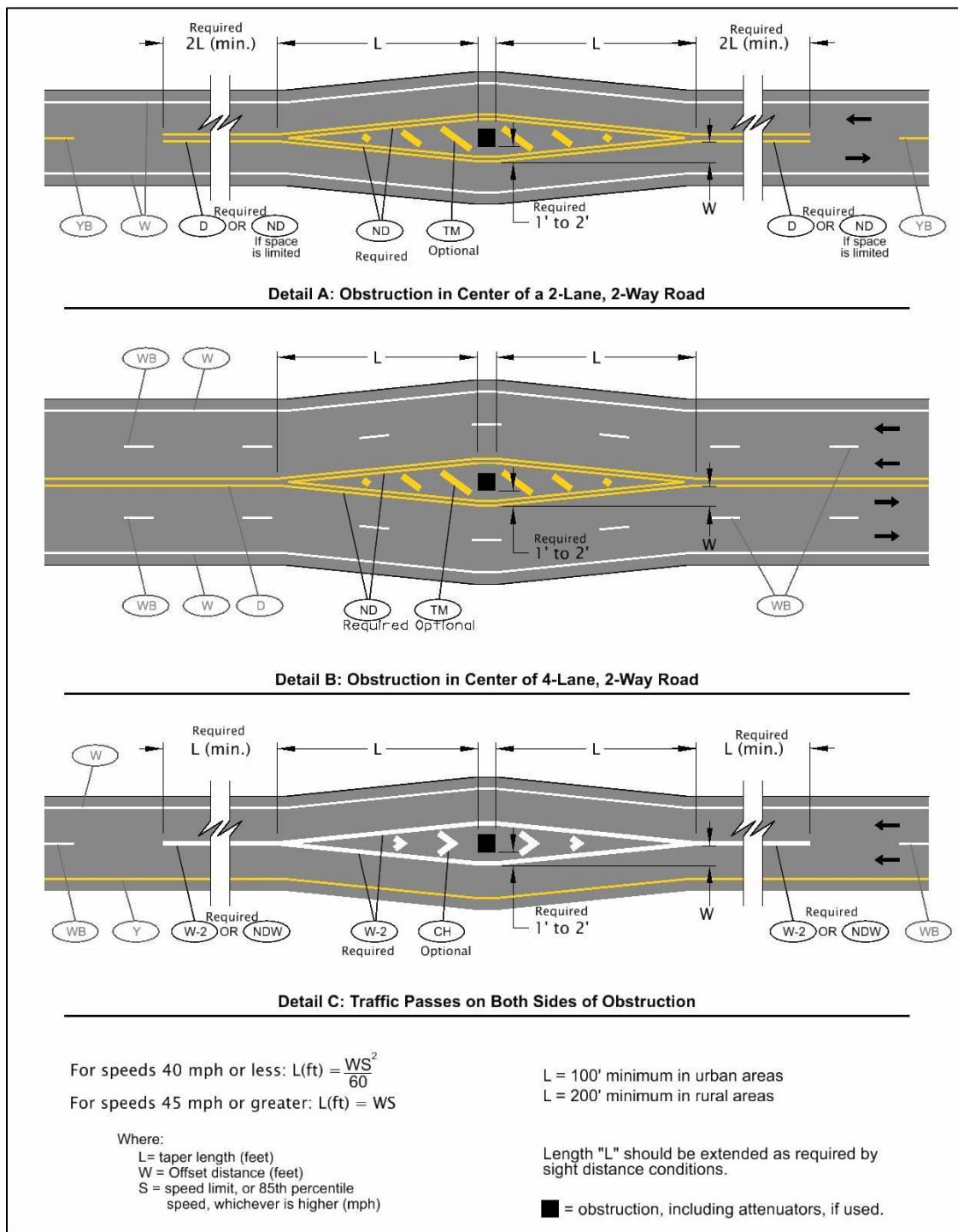
Required Approvals

45 Lane width reductions on the approach to a fixed obstruction require a roadway design
46 exception.

Design Issues

48 Due to striping equipment limitations, a line typically cannot be placed closer than 1.5 feet from
49 the face of a physical barrier. Some equipment might allow the line to be placed closer; some
50 might require farther placement. Check with the region striping manager to confirm equipment
51 limitations when designing a line within 3 feet of a physical barrier to ensure the line can be
52 maintained after installation.

Approach to a Fixed Obstruction


Section 280

53

Figures & Tables

54

Figure 280: Markings on Approaches to Fixed Obstructions

55

56 Support

57 Fixed obstructions within a roadway like bridge supports, sign supports, and raised barriers
58 present clear safety consequences. In some cases, like legacy bridge supports, the obstruction is
59 pre-existing and must be delineated to guide road users around the obstruction. The design
60 parameters, dimensions, and layout of markings on the approach to a fixed obstruction come
61 from Section 3B.13 in the 11th Edition of the MUTCD (1).

62 Under the taper length formula, L is the taper length in feet, W is the width of the offset
63 distance in feet, and S is the 85th percentile speed or the posted or statutory speed limit,
64 whichever is higher.

65 Where traffic can pass either to the right or left of the obstruction, a wide white line or narrow
66 double white line is required in the design parameters before and after the taper. This is usually
67 marked with a wide white line, but can be marked with a narrow double white line where
68 crossing the line needs to be prohibited. Section 120 gives more information on line types and
69 meanings.

70 Cross References

71 Colors	Section 110
72 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
73 Transverse Markings	Section 125
74 Center Lines	Section 210
75 No-Passing Zone Markings	Section 211
76 Lane Lines	Section 220
77 Non-Traversable Medians & Channelizing Islands	Section 281

78 Key References

79 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
80 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 Non-Traversable Medians & 2 Channelizing Islands

Section 281

3 Introduction

4 Non-traversable medians like raised medians and traffic separators separating traffic traveling
5 in opposite directions) and channelizing islands (separating traffic traveling in the same general
6 direction) physically prevent vehicles from crossing or entering the median or channelizing
7 island by means of a raised curb, pavement edge, or raised channelizing device. Both are
8 considered islands, which is a defined area between traffic lanes for control of vehicular
9 movements or for pedestrian refuge, including all end protection and approach treatments.

10 Relevant MUTCD Sections

11 See the following sections for standards, guidance, and options not found in this manual:

- 12 • [MUTCD 11th Edition: 3B.01 Yellow Center Line Pavement Markings](#)
- 13 • [MUTCD 11th Edition: 3B.01 White Lane Line Pavement Markings](#)
- 14 • [MUTCD 11th Edition: Chapter 3J. Marking and Delineation of Islands and Sidewalk
15 Extensions](#)

16 Design Parameters

17 01 **On roadways with centerline markings, non-traversable medians shall have no passing-
18 zone markings preceding the start of the non-traversable median according to Section 211.**

19 02 *The ends of non-traversable medians and channelizing islands first approached by traffic should be
20 preceded by diverging longitudinal pavement markings on the roadway surface to guide vehicles into
21 desired paths of travel along the median or island edge.*

22 03 *A normal solid line of the appropriate color should be installed adjacent to a non-traversable median or
23 channelizing island (Figure 281-A).*

24 04 A wide solid line of the appropriate color may be installed adjacent to a non-traversable
25 median or channelizing island for additional emphasis. Transverse median bars may be used
26 in the neutral area upstream from non-traversable medians according to Section 260.
27 Chevron bars may be used in the neutral area upstream from non-traversable channelizing
28 islands according to Section 270.

29 05 *Non-traversable medians should have retroreflective solid yellow markings placed on the ends of the
30 non-traversable median first approached by traffic (Figure 281-A, 281-B, and 281-C).*

31 06 *Channelizing islands should have retroreflective solid white markings placed on the ends of the
32 channelizing island first approached by traffic (Figure 281-A).*

**Non-Traversable Medians &
Channelizing Islands****Section 281**

33 07 Raised pavement markers of the appropriate color may be placed on the top of approach
34 ends and along the length of non-traversable medians and channelizing islands as a
35 supplement to or as a substitute for retroreflective curb markings (see Section 133).

36 08 Surface mounted tubular markers may be placed on the top of approach ends and along the
37 length of non-traversable medians and channelizing islands to add emphasis to
38 retroreflective curb markings and/or raised pavement markers (see Section 140).

39 09 *Surface mounted tubular markers should be placed on the top of approach ends of non-traversable
40 medians and channelizing islands where plowing occurs multiple times annually if the non-
41 traversable median or channelizing island is not marked with an object marker or similar warning
42 sign.*

43 10 *A two-way left turn lane should transition to a traversable median upstream from the beginning of a
44 non-traversable median a distance determined by engineering judgement (see Figure 281-C).*

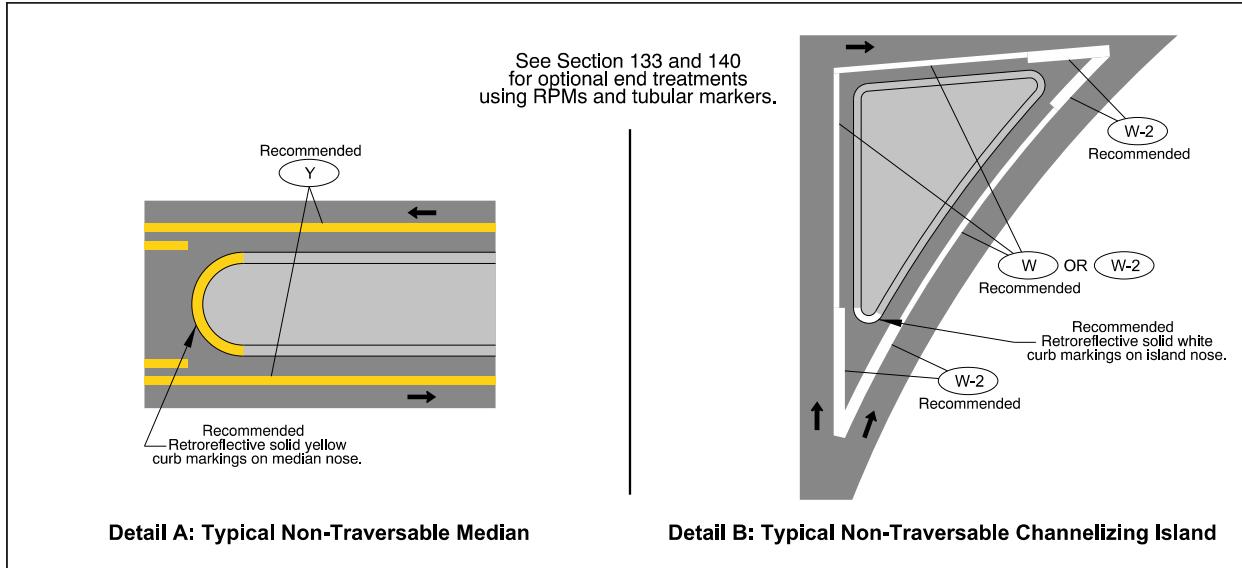
45 11 Non-traversable medians may be colored yellow. Channelizing islands may be colored
46 white.

47 12 Non-traversable medians and channelizing islands should not have curb markings within 2
48 feet of a detectable warning surface (DWS), except for the end first approached by traffic.

49 13 Non-traversable medians and channelizing islands should not have curb markings on the
50 flared side of curb ramps.

51 14

52 **Design Issues**

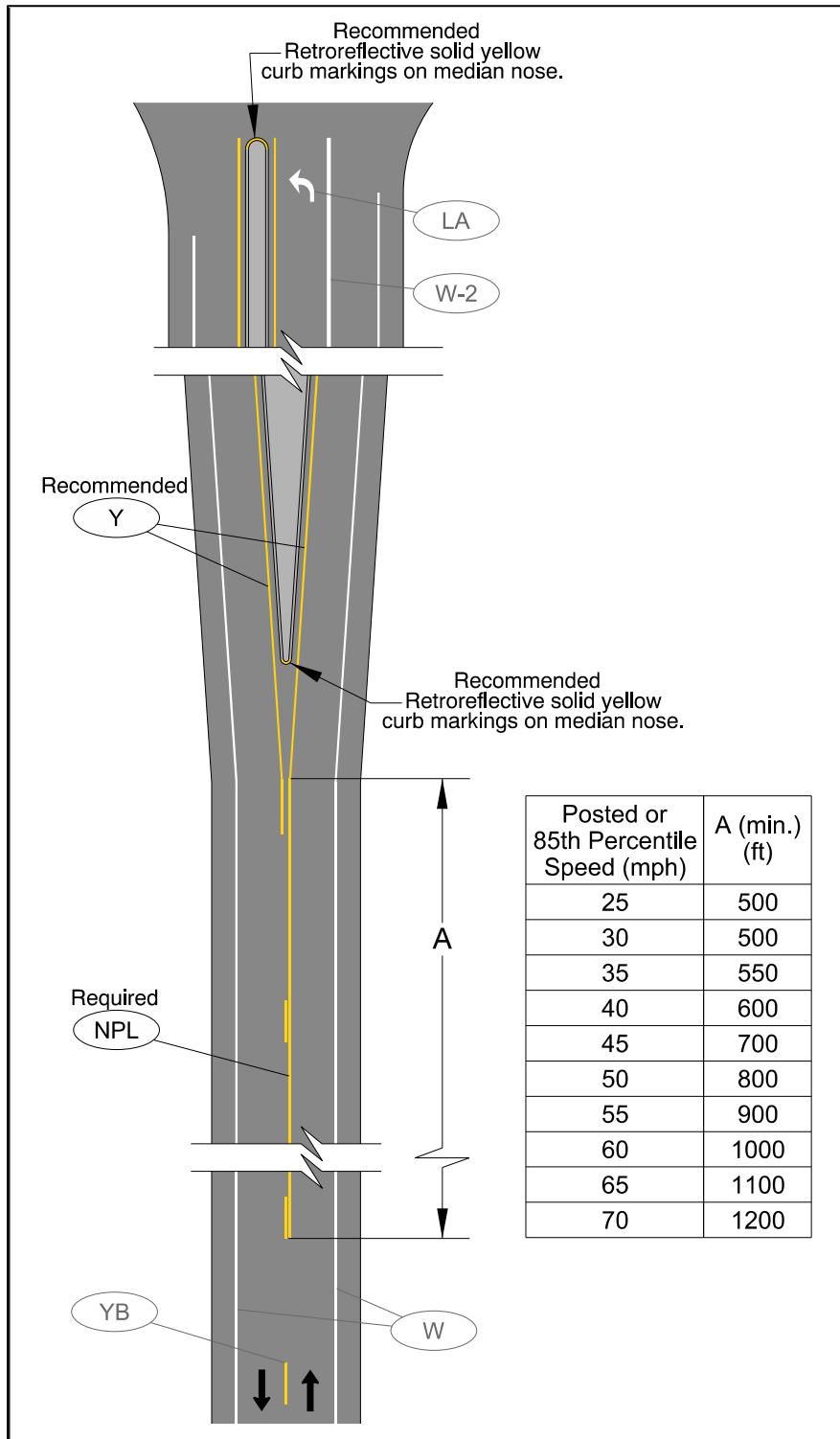

53 Due to striping equipment limitations, a line typically cannot be placed closer than 1.5 feet from
54 the face of a physical barrier. Some equipment might allow the line to be placed closer; some
55 might require farther placement. Check with the region striping manager to confirm equipment
56 limitations when designing a line within 3 feet of a physical barrier to ensure the line can be
57 maintained after installation.

58 Snow can obscure pavement and median markings. See Part 2 of the MUTCD for other signing
59 related to non-traversable medians and channelizing islands.

60 When designing a non-traversable median or channelizing island with a cut through for
61 pedestrians, consideration should be given to the conspicuity of any DWSs that are part of the
62 project. It is beneficial to have a distance between a yellow DWS and yellow curb markings.
63 The distance gives more contrast which helps pedestrians see where their path is.

Non-Traversable Medians & Channelizing Islands**Section 281****64 Figures & Tables**

65 Figure 281-A: Typical Non-Traversable Median and Non-Traversable Channelizing Island

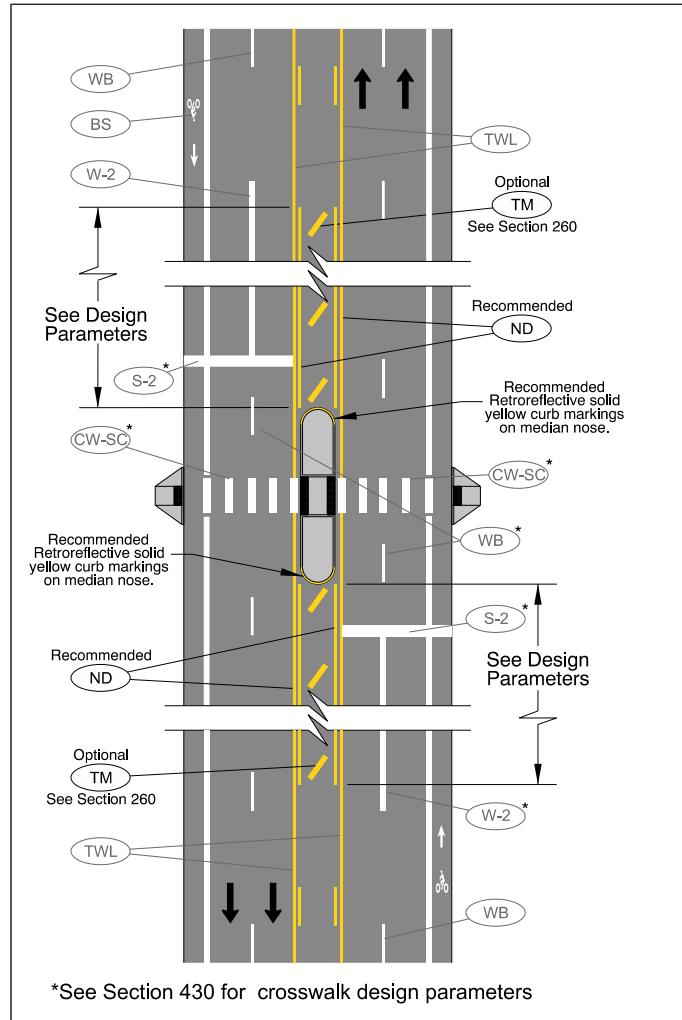


66

Non-Traversable Medians & Channelizing Islands

Section 281

67 Figure 281-B: Typical Non-Traversable Median Approach



68

Non-Traversable Medians & Channelizing Islands

Section 281

69 Figure 281-C: Typical Two-Way Left Turn Lane to Non-Traversable Median Transition

70

71 Support

72 Non-traversable medians and channelizing islands often consist of a raised curb and are
73 delineated as islands according to Chapter 3J and Section 3B.18 in the 11th Edition of the
74 MUTCD (1).

75 The leading edge or nose of unmarked raised curbs can be difficult to see, especially for older
76 road users. Clear delineation of these features is especially important at high-speed approaches
77 and medians used as pedestrian refuges (2).

78 Chapter 3I of the 11th Edition of the MUTCD allows the use of surface mounted tubular markers
79 for general traffic control purposes, like adding emphasis to raised medians or islands. Chapter

**Non-Traversable Medians &
Channelizing Islands****Section 281**

80 3I does not cover substituting surface mounted tubular markers for island end treatments, like a
81 painted nose or RPMs. Surface mounted tubular markers at the ends of islands provide good
82 guidance that there is an obstacle in the road. However, they might not show the size of the
83 island and can be frequently knocked off island ends, especially at intersections where large
84 vehicles turn left. A painted nose or RPMs can reliably provide delineation even after it is hit.

85 **Cross References**

86 Colors	Section 110
87 Functions, Widths, and Patterns of Longitudinal Lines.....	Section 120
88 Raised Pavement Markers	Section 130
89 Typical Layouts for RPMs.....	Section 133
90 Tubular Markers and Lane Separators.....	Section 140
91 Stop Bars	Section 150
92 Center Lines	Section 210
93 No-Passing Zone Markings.....	Section 211
94 Traversable Medians.....	Section 260
95 Two-Way Left Turn Lanes	Section 261
96 Approach to a Fixed Obstruction.....	Section 280
97 Left Turn Lanes	Section 310
98 Roundabouts.....	Section 350
99 Bicycle Lane Buffers	Section 412
100 Marked Crosswalks	Section 430

101 **Key References**

- 102 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
103 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 104 2. Brewer, M., D. Murillo, and A. Pate. Handbook for Designing Roadways for the Aging Population. Washington,
105 D.C., FHWA-SA-14-015, 2014. http://safety.fhwa.dot.gov/older_users/handbook/aging_driver_handbook_2014_final%20.pdf.

1 Left Turn Lanes

Section 310

2 Introduction

3 A left turn lane is a lane for the exclusive use of left turning vehicles that is formed on the
4 approach to the location where the turn is to be made. A through lane that becomes a turn lane
5 is considered a dropped lane rather than a turn lane.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings
- 9 • MUTCD 11th Edition: 3B.23 Lane-Use Arrows

10 Design Parameters

11 01 A left turn lane shall include:

- 12 • A wide white line (W-2) separating the left turn lane from adjacent travel lanes
13 traveling in the same general direction.
- 14 • A lane use arrow at the start of the wide white line (W-2).
- 15 • A reversing curve entry taper at the beginning of the left turn lane (Figure 310 Detail
16 A).

17 02 The storage length "L" shown in Figure 310 shall be determined by an engineering study
18 and shall not be less than 100 feet long.

19 03 On undivided two-lane, two-way roadways, a minimum length "A" of no-passing zone
20 markings (see Figure 310) shall precede the start of the median taper.

21 04 A lane use arrow should be used in a left turn lane at the intersection (see Figure 310).

22 05 The length of the wide white line (W-2) used to separate a left turn lane from an adjacent lane(s)
23 should be determined according to Figure 310.

24 06 Where the wide white line (W-2) separating the left turn lane from adjacent lanes is longer than 400
25 feet, an additional lane use arrow should be used at the mid-point of the left turn lane.

26 07 If the entry taper to the left turn lane is located on a horizontal curve or crest vertical curve, a dotted
27 line should extend across the entry taper ("T" in Figure 310).

28 08 If used, the dotted line across the entry taper of a left turn lane ("T" in Figure 310) shall be
29 a normal width white dotted line (WD).

30 09 The break entry taper (Figure 310 Detail B) may be used instead of a reversing curve entry
31 taper at a single-lane left turn lane when any or all of the following apply:

- 32 • Located on a horizontal tangent.

33 • Not within a crest vertical curve.

34 • The "X" distance shown in Figure 310 is 15 feet or less.

35 • Opposing-direction left turn traffic will not conflict with the operations of the left turn lane.

37 10 Transverse median bars (TM) may be used in the neutral area of a wide traversable median
38 according to Section 260.

39 **Required Approvals**

40 An engineering study and state traffic engineer approval is required for:

41 • Multiple left turn lanes.

42 • Left turn lanes at new signalized intersections.

43 Region traffic engineer/manager approval is required for use of the "break" layout (Figure 310
44 Detail B) instead of a reversing curve.

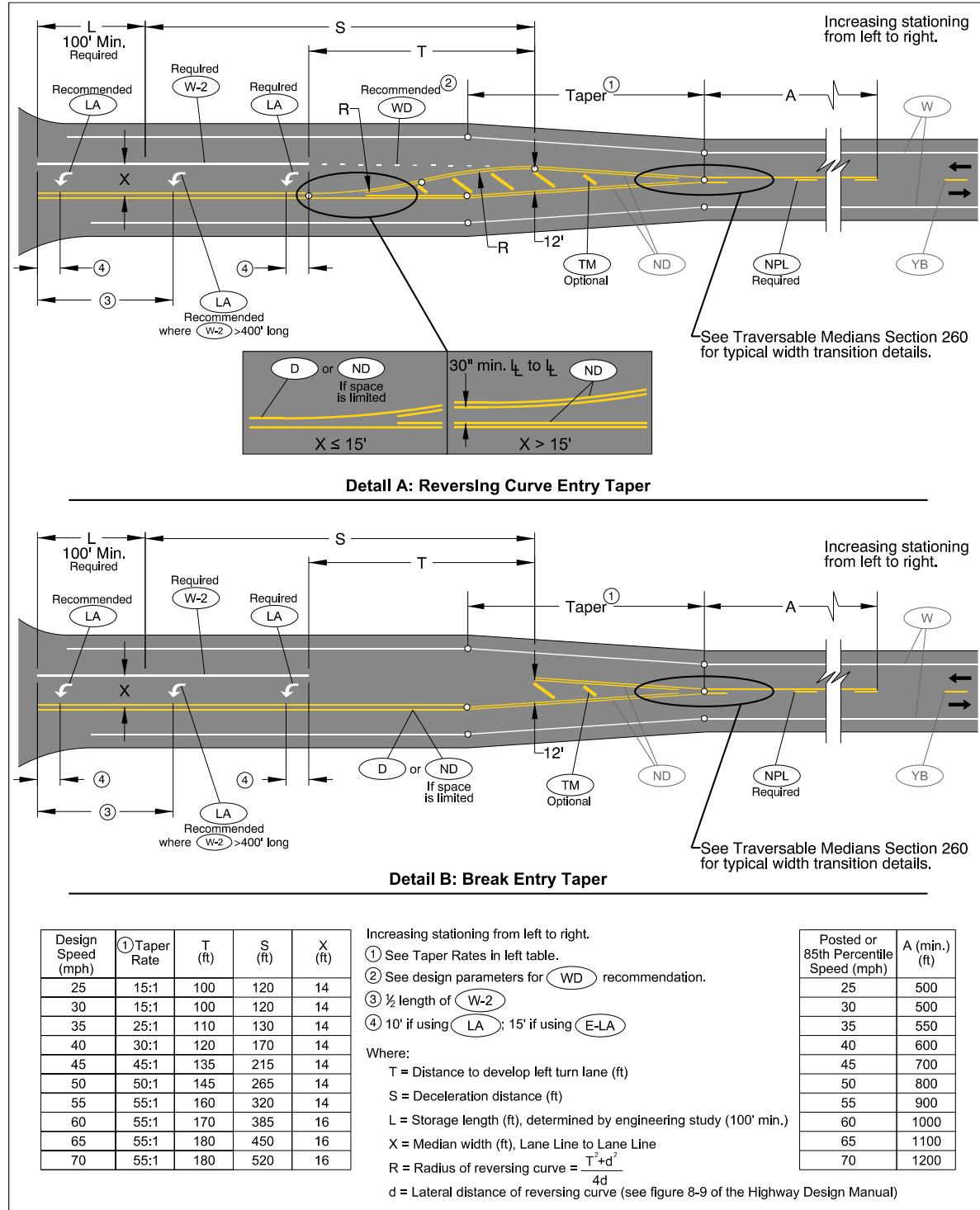
45 An engineering study and region traffic engineer/manager approval is required for:

46 • Left turn lanes at unsignalized intersections.

47 • Addition or removal of left turn lanes at existing signalized intersections.

48 A roadway design exception is required for a storage length less than 100'. State traffic roadway
49 engineer approval will not be required for this required design parameter because it will be
50 documented through the roadway design exception.

51 **Design Issues**


52 Depending on the configuration and location of an uncontrolled crosswalk a stop bar may be
53 recommended for use. See Section 150 and Section 430 when there is an uncontrolled marked
54 crosswalk near a dedicated left turn lane.

Left Turn Lanes

Section 310

55 Figures & Tables

56 Figure 310: Typical Left Turn Lane Layouts for Two-Lane Undivided Roadway

58 Support

59 Left turn lane layouts are taken from the ODOT Highway Design Manual (1). The layouts
60 shown in Figure 310 are typical when the median is widened on both sides of the roadway to
61 develop the left turn lane; there are similar but different methods available to develop the left
62 turn lane. See the Highway Design Manual for more information on siting, layout, and
63 dimensions used for left turn lanes. The ODOT Analysis Procedures Manual (APM) (2) contains
64 information on estimating the storage length "L" shown in Figure 310.

65 Using a white dotted (WD) line across the left turn lane development taper ("T" shown in
66 Figure 310) can help keep road users properly aligned in their travel lane if the opening for the
67 turn lane is at a horizontal curve or vertical crest curve. This can help reduce the likelihood of a
68 road user following the yellow traversable median line, drifting into the turn lane, and then
69 making a sudden correction to get back into the through lane.

70 The reversing curve entry taper helps guide road users into the left turn lane. This is important
71 at multiple left turn lanes (because of the very wide transition), where a horizontal curve affects
72 the entry path to the left turn lane, and where a crest vertical curve affects sight distance at the
73 left turn lane entry. The reversing curve entry taper also provides separation from other median
74 functions, such as an opposing-direction left turn lane (i.e.: "end-to-end left turn lanes").

75 While the reversing curve entry taper is beneficial for safe and efficient operations, it does
76 require extra out-of-direction maneuvering of striping equipment. The break entry taper layout
77 allows for easier re-tracing by letting the striping equipment stay aligned with the through lane.
78 Road users typically do not need a reversing curve entry taper into single-lane left turn lanes if
79 it is located on a horizontal tangent, not located within a crest vertical curve, and not "end-to-
80 end" with an opposing-direction left turn lane. In these cases, using the break entry taper can
81 help reduce maintenance needs and costs.

82 In long left turn lanes, an additional arrow at the mid-point of the wide solid white line (W-2)
83 provides confirmation to road users of the function of the lane. While there is no research
84 specifically investigating this practice, it is common in other states (3). In Oregon, 400 feet of
85 wide solid white line (W-2) has been the point at which an additional arrow is used. This value
86 was based on the length of wide solid white line (W-2) at a design speed of 60 mph (400 feet) at
87 the time the design parameter was developed. Since most left turn lanes are designed at or
88 below 60 mph design speed, and because two arrows provide adequate guidance to road users
89 in turn lanes 400 feet long or less (based on field observations), 400 feet and greater has been a
90 reasonable definition of a "long" left turn lane.

91

92 Cross References

93 Colors	Section 110
94 Functions, Widths, and Patterns of Longitudinal Lines.....	Section 120
95 Transverse Markings.....	Section 125
96 Raised Pavement Markers	Section 130
97 RPMs Used for Positioning Guides.....	Section 132
98 Typical Layouts for RPMs.....	Section 133
99 Stop Bars	Section 150
100 Lane Use Arrows	Section 160
101 Center Lines	Section 210
102 No-Passing Zone Markings.....	Section 211
103 Lane Lines	Section 220
104 Traversable Medians.....	Section 260
105 Two-Way Left Turn Lanes	Section 261
106 Non-Traversable Medians & Channelizing Islands	Section 281
107 Dropped Lanes and Auxiliary Lanes on Conventional Roads.....	Section 330
108 Line Extensions Through Intersections	Section 340
109 Marked Crosswalks	Section 430

110 Key References

- 111 1. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem, Oregon, 2012.
- 113 2. Oregon Department of Transportation. *Analysis Procedures Manual*, 2nd ed. Oregon Department of Transportation, Salem, Oregon, 2016. <http://www.oregon.gov/ODOT/Planning/Pages/APM.aspx>.
- 115 3. Friedman, B. E. NCHRP Synthesis 356: Pavement Markings - Design and Typical Layout Details. Washington, D.C., ISBN 0-309-09763-0, 2006. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_356.pdf.

1 Added Right Turn Lanes

Section 320

2 Introduction

3 An added right turn lane is a lane for the exclusive use of right turning vehicles that is formed
4 prior to the intersection typically by widening the roadway. This does not include a
5 channelizing island or separate right-turn roadway. See Section 321 for information on
6 channelized right turn lanes and Section 330 for information on dropped turn lanes (where a
7 through lane becomes a mandatory turn lane).

8 Relevant MUTCD Sections

9 See the following sections for standards, guidance, and options not found in this manual:

- 10 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 11 • [MUTCD 11th Edition: 3B.23 Lane-Use Arrows](#)

12 Design Parameters

13 01 An added right turn lane shall include:

- 14 • A wide white line (W-2) separating the right turn lane from adjacent lanes traveling
15 in the same general direction beginning where full lane width is developed prior to
16 the intersection (see Figure 320).
- 17 • A lane use arrow at the start of the right turn lane (Figure 320).

18 02 A through bicycle lane shall not be positioned to the right of a right turn lane unless
19 conflicting movements are controlled by a traffic control signal.

20 03 If motor vehicles cross a bicycle lane to enter the added right turn lane, wide white dotted
21 lines (WD-2) shall be used to mark the extension of the bicycle lane across the taper
22 section (see Figure 320).

23 04 A lane use arrow should be used in the right turn lane at the intersection (see Figure 320).

24 05 At signalized intersections, the storage length "L" shown in Figure 320 should be determined by an
25 engineering study.

26 06 At unsignalized intersections, the wide white line (W-2) used to separate the right turn lane from an
27 adjacent lane(s) should be at least 50 feet long.

28 07 Where the wide white line (W-2) separating the right turn lane from adjacent lane(s) is longer than
29 400 feet, an additional lane use arrow should be used at the mid-point of the right turn lane (see
30 Figure 320).

31 08 If an edge line is used upstream from the right turn lane taper and a curb is not present along the edge
32 of the roadway, an edge line should be used along the right turn lane taper and full-width right turn
33 lane.

Added Right Turn Lanes**Section 320**

34 09 If the entrance to the right turn lane is located on a horizontal curve or crest vertical curve where a
35 bicycle lane is not present, a white dotted line (WD) should be used across the taper section (see Figure
36 320).

37 10 A white dotted line (WD) may be used across the taper section (see Figure 320) if a bicycle
38 lane is not present.

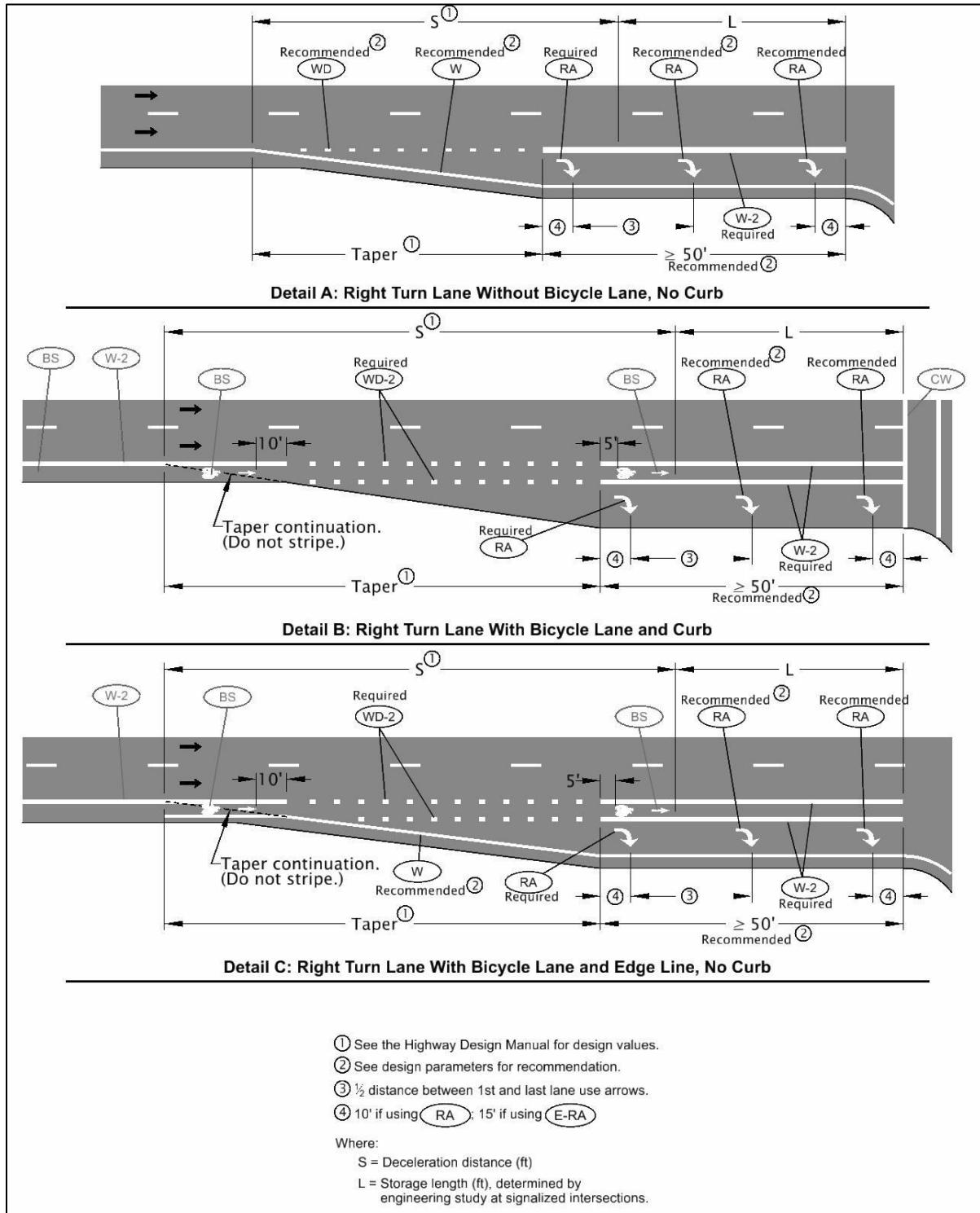
39 **Required Approvals**

40 See the Traffic Manual for approvals related to right turn lanes.

41 A roadway design exception is required for a storage length less than 50' at unsignalized
42 intersections. Region traffic engineer approval will not be required for this recommended
43 design parameter because it will be documented through the roadway design exception.

44 **Design Issues**

45 Depending on the configuration and location of an uncontrolled crosswalk a stop bar may be
46 recommended for use. See Section 150 and Section 430 when there is an uncontrolled marked
47 crosswalk near a dedicated right turn lane.


48

Added Right Turn Lanes

Section 320

49 Figures & Tables

50 Figure 320: Added Right Turn Lane Layouts

51

52 Support

53 Right turn lane layouts are taken from the ODOT Highway Design Manual (1). See the
54 Highway Design Manual for more information on siting, layout, and dimensions used for right
55 turn lanes. The ODOT Analysis Procedures Manual (APM) (2) contains information on
56 estimating the storage length "L" shown in Figure 320.

57 Using a white dotted (WD) line across the right turn lane development taper (Detail A in Figure
58 320) can help keep road users properly aligned in their travel lane if the opening for the turn
59 lane is at a horizontal curve or vertical crest curve. This can help reduce the likelihood of a road
60 user following the edge line, drifting into the turn lane, and then making a sudden correction to
61 get back into the through lane.

62 In long right turn lanes, an additional arrow at the mid-point of the wide solid white line (W-2)
63 provides confirmation to road users of the function of the lane. While there is no research
64 specifically investigating this practice, it is common in other states (3). In Oregon, 400 feet of
65 wide solid white line (W-2) has been the point at which an additional arrow is used. This
66 threshold was developed primarily for left turn lanes. For uniformity, this threshold is also
67 applied to right turn lanes. Based on field observations, 400 feet and greater has been a
68 reasonable definition of a "long" right turn lane.

69 Cross References

70 Colors	Section 110
71 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
72 Transverse Markings	Section 125
73 Raised Pavement Markers	Section 130
74 RPMs Used for Positioning Guides	Section 132
75 Stop Bars	Section 150
76 Lane Use Arrows	Section 160
77 Lane Lines	Section 220
78 Edge Lines	Section 230
79 Channelized Right-Turn Lanes	Section 321
80 Dropped Lanes and Auxiliary Lanes on Conventional Roads	Section 330
81 Line Extensions Through Intersections	Section 340
82 Interchange Ramps: Ramp Terminals	Section 361
83 Bicycle Lanes	Section 410
84 Marked Crosswalks	Section 430

85 Key References

- 86 1. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
87 Oregon, 2012.
- 88 2. Oregon Department of Transportation. *Analysis Procedures Manual*, 2nd ed. Oregon Department of
89 Transportation, Salem, Oregon, 2016. <http://www.oregon.gov/ODOT/Planning/Pages/APM.aspx>.

Added Right Turn Lanes**Section 320**

90 3. Friedman, B. E. NCHRP Synthesis 356: Pavement Markings - Design and Typical Layout Details. Washington,
91 D.C., ISBN 0-309-09763-0, 2006. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_356.pdf.

1 Channelized Right-Turn Lanes

Section 321

2 Introduction

3 A channelized right-turn lane is a lane for the exclusive use of right turning vehicles that uses a
4 channelizing island (see Section 270).

5 Relevant MUTCD Sections

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 8 • [MUTCD 11th Edition: 3B.19 Stop and Yield Lines](#)
- 9 • [MUTCD 11th Edition: 3B.23 Lane-Use Arrows](#)
- 10 • [MUTCD 11th Edition: Chapter 3C. Crosswalk Markings](#)

11 Design Parameters

12 01 At signal-controlled channelized right-turn lanes, a stop bar shall be used to indicate the
13 point behind which vehicles are required to stop according to Section 150.

14 02 At stop-controlled channelized right-turn lanes, a stop bar should be used to indicate the point behind
15 which vehicles are required to stop (see Section 150).

16 03 At yield-controlled channelized right-turn lanes, a yield line may be used to indicate the
17 point behind which vehicles are required to yield (see Section 151).

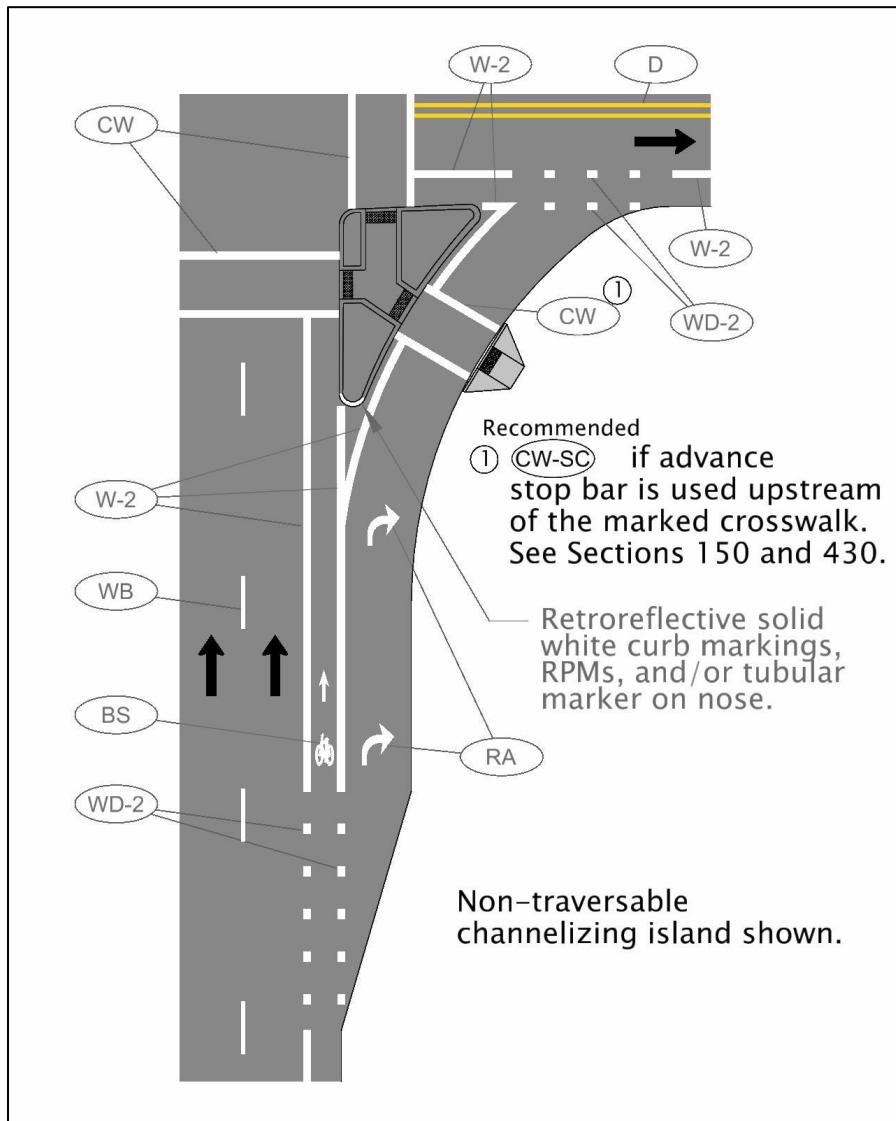
18 04 A traversable channelizing island used to form a channelized right-turn lane shall be
19 marked according to Section 260.

20 05 A non-traversable channelizing island used to form a channelized right-turn lane shall be
21 marked according to Section 281.

22 06 Except as provided in paragraph 07, if a crosswalk is marked across a channelized right-
23 turn lane, the crosswalk shall be marked according to Section 430.

24 07 Staggered continental crosswalk markings should be used for marked crosswalks across signal-
25 controlled channelized right turn lanes if an advance stop bar is used upstream of the marked
26 crosswalk.

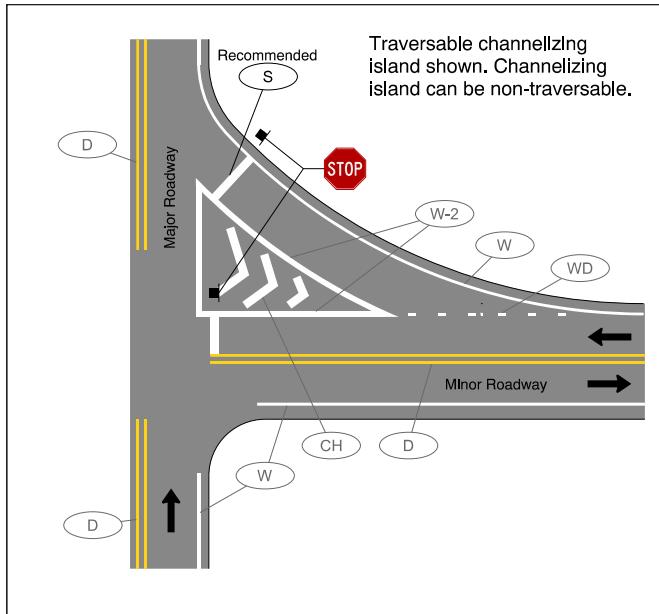
27 Required Approvals


28 See the ODOT Traffic Manual (1) for approval related to Channelized Right-Turn Lanes.

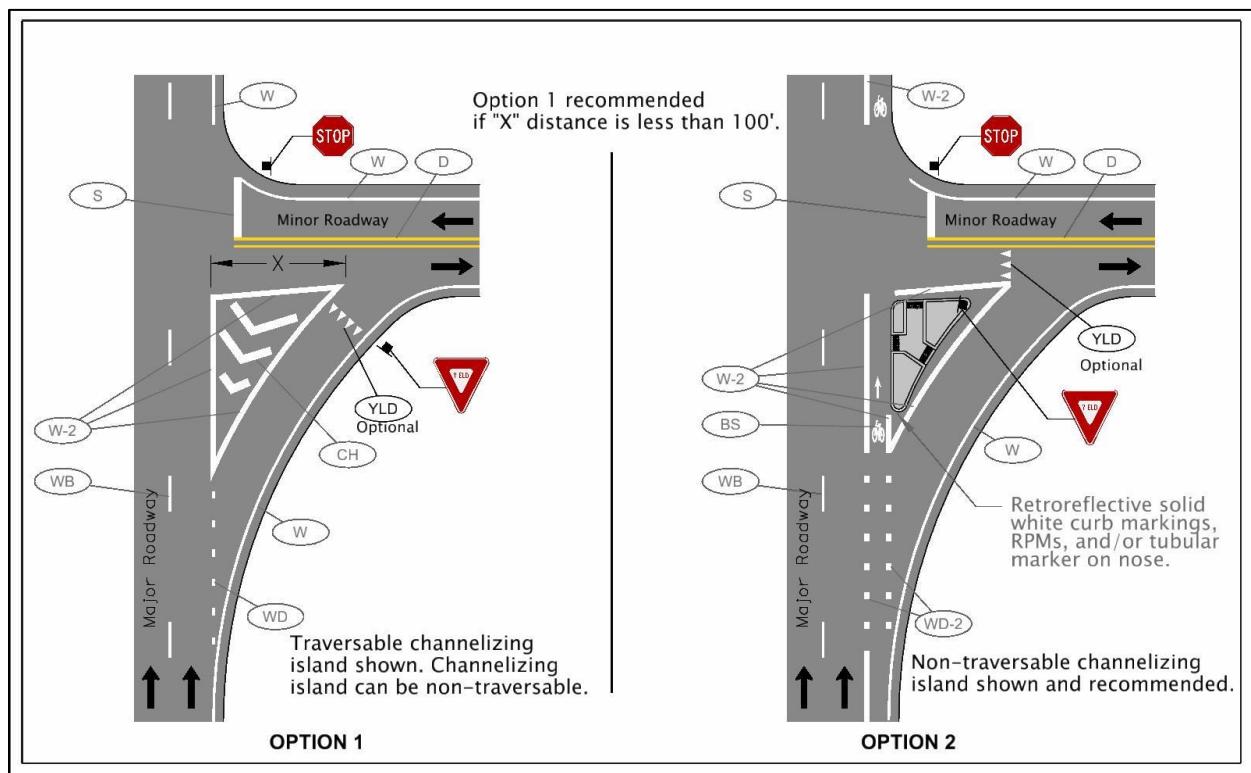
29 Design Issues

30 See the ODOT Traffic Manual (1) for design and control options for channelized right-turn lanes.
31

32 Figures & Tables


33 Figure 321-A: Signal-Controlled Channelized Right-Turn Lane

34


Channelized Right-Turn Lanes**Section 321**

35 Figure 321-B: Typical Stop-Controlled Channelized Right-Turn Lane from Minor Roadway (Stop
36 Controlled) to Major Roadway (Free-Flow)

37

38 Figure 321-C: Typical Yield-Controlled Channelized Right-Turn Lane from Major Roadway (Free-
39 Flow) to Minor Roadway (Stop Controlled)

40

41 Support

42 Channelized right-turn lanes are used in rural and urban contexts to improve operational
43 efficiencies of intersections (2).

44 However, channelized right-turn lanes can be very challenging to cross for blind pedestrians.
45 Inconsistent and high ambient noise levels from motor vehicles at the main intersection can
46 make it difficult for a blind pedestrian to discern vehicles in the channelized right-turn lane
47 from other traffic. Additionally, right-turning vehicle paths are curved, making it more difficult
48 to judge approach directions. Geometric designs and treatments used to reduce vehicle speeds
49 can help blind pedestrians make safe crossing judgments and reduce the severity of injury in
50 the event of a collision (3).

51 Consistency in crosswalk placement can help improve expectations of all road users, especially
52 visually impaired pedestrians. Crosswalks across unsignalized channelized right-turn lanes are
53 located in the turn lane 25 to 40 feet before the point where motorists stop or yield for the cross
54 road. This practice is relatively consistent across the country and offers some advantages to
55 motorists, pedestrians, and roadway designers: 1) this reduces crossing distance compared to
56 crosswalks parallel with the intersecting roadways; 2) this can enhance sight lines between
57 approaching motorists and pedestrians; 3) this enhances sight lines for turning motorists as they
58 wait for a gap in conflicting traffic; 4) this separates different driving tasks (looking for and
59 yielding to pedestrians, and looking for gaps in conflicting traffic) in space and time; 5) this
60 allows for storage of one vehicle downstream of the crosswalk; and 6) depending on turning
61 radii and design speed this is likely where turning speed is the slowest (2) (3).

62 Crosswalks across signalized channelized right-turn lanes are located at or beyond the stop bar
63 for consistency with other signalized approaches and to give pedestrians the safety benefits of a
64 signalized crossing. Continental-style crosswalks are recommended where the marked
65 crosswalk is beyond the stop bar to minimize confusion of where to stop for the signal (an
66 advance stop bar is usually done to keep the signal heads visible from the stop bar). Other stop-
67 controlled channelized right-turn lanes that intersect with the cross roadway at nearly a right-
68 angle could also benefit from the crosswalk being located at the stop bar for consistency with
69 other right-angle intersections (2).

70 Stop- or yield-controlled channelized right-turn lanes at signalized intersections are also a
71 significant obstacle for pedestrians. Motorist yielding behavior to pedestrians at these types of
72 channelized right-turn lanes can be very low (15-18 percent) and driver speeds can be higher
73 during signal phases where no conflicting traffic is expected in the receiving lane (s). These
74 crossings are also even more difficult for blind pedestrians to use sound to judge whether or not
75 it is safe to cross. Signalization of the channelized right-turn lane could be needed where high
76 traffic volumes and speeds result in risky and high-delay crossing environments (3).

77 At signalized intersections, raised islands at channelized right-turn lanes can also provide a
78 refuge for people on bicycles in a bicycle lane stopped at the signal. The island provides
79 physical separation from right-turning motorists and can be a foot rest while stopped.

Channelized Right-Turn Lanes**Section 321**

80 Traversable (painted) channelizing islands could be preferable to raised channelizing islands in
81 some circumstances, including: 1) intersections with high-speed approaches; 2) areas where
82 there is no pedestrian traffic; 3) areas where there is no illumination; 4) areas where supports for
83 signals, signs, or luminaires are not needed; and 5) areas requiring significant snow plowing.
84 The AASHTO Green Book provides additional information about the design of channelized
85 right-turn lanes and channelizing islands (4). Other information about channelization using
86 markings is available in Section 270.

Cross References

88 Colors	Section 110
89 Lane Lines	Section 220
90 Edge Lines.....	Section 230
91 Bicycle Lanes	Section 410

Key References

- 93 1. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.
- 94 2. Potts, I. B., D. W. Harwood, K. M. Bauer, D. K. Gilmore, J. M. Hutton, D. J. Torbic, J. F. Ringert, A. Daleiden, and J. M. Barlow. NCHRP Web-Only Document 208: Design Guidance for Channelized Right-Turn Lanes. Transportation Research Board of the National Academies, Washington, D.C., 2011. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w208.pdf.
- 95 3. Schroeder, B., R. Hughes, N. Roushail, C. Cunningham, K. Salamati, R. Long, D. Guth, R. W. Emerson, D. Kim, J. Barlow, B. L. Bentzen, L. Rodegerdts, and E. Myers. NCHRP Report 674: Crossing Solutions at Roundabouts and Channelized Turn Lanes for Pedestrians with Vision Disabilities. Transportation Research Board of the National Academies, Washington, D.C., ISBN 978-0-309-15530-4, 2011. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_674.pdf.
- 96 4. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and Streets*, 6th ed. Washington, D.C., 2011.

1 At-Grade Acceleration Lanes

Section 322

2 Introduction

3 An at-grade acceleration lane is an added lane for vehicles turning from a side street at an at-grade intersection that lets the turning vehicle accelerate from the turning speed to highway speed, typically on rural limited access highways.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 9 • [MUTCD 11th Edition: 3B.07 White Lane Line Markings for Non-Continuing Lanes](#)
- 10 • [MUTCD 11th Edition: 3B.12 Lane-Reduction Transitions](#)

11 Design Parameters

12 01 An at-grade acceleration lane shall include:

- 13 • A wide white solid line (W-2) separating the acceleration lane from adjacent travel lanes traveling in the same general direction. The wide white solid line shall start at the beginning of the acceleration lane and extend to one-quarter the distance to the end of the taper (see Figures 322-A and 322-B).
- 17 • A white dotted lane line (DLL) from the end of the wide white line (W-2) to a distance equal to one-half the distance between the beginning of the acceleration lane and the end of the taper (see Figures 322-A and 322-B).

20 02 If an at-grade right turn acceleration lane is on a two-lane undivided highway,

- 21 • One-direction no-passing zone markings shall be used in the direction of the acceleration lane prior to the intersection a minimum length "A" shown in Figure 322-B.
- 24 • Double no pass markings (D) shall be used from the intersection to the end of the taper (see Figure 322-B).
- 26 • One-direction no-passing markings shall be used starting at the end of the taper and continuing to a distance shown in Figure 322-B.

28 03 Two lane reduction arrows should be used in the acceleration lane (see Figure 322-A and 322-B).

29 04 An edge line should be used at an at-grade right turn acceleration lane from the beginning of the acceleration lane to beyond the end of the taper (see Figure 322-B).

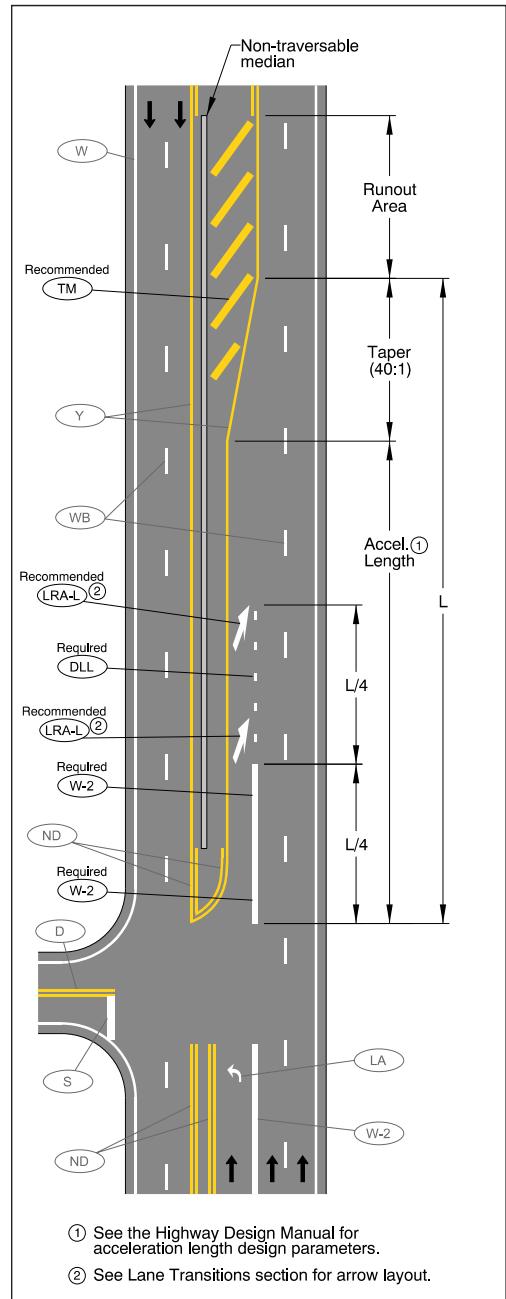
31 05 Transverse median bars should be used in the runout area of at-grade left turn acceleration lanes (see Figure 322-A).

At-Grade Acceleration Lanes**Section 322**

33 06 If the length of the white dotted lane line (DLL) is greater than 400 feet, an additional lane
34 reduction arrow may be used between the two recommended lane reduction arrows.

35 **Required Approvals**

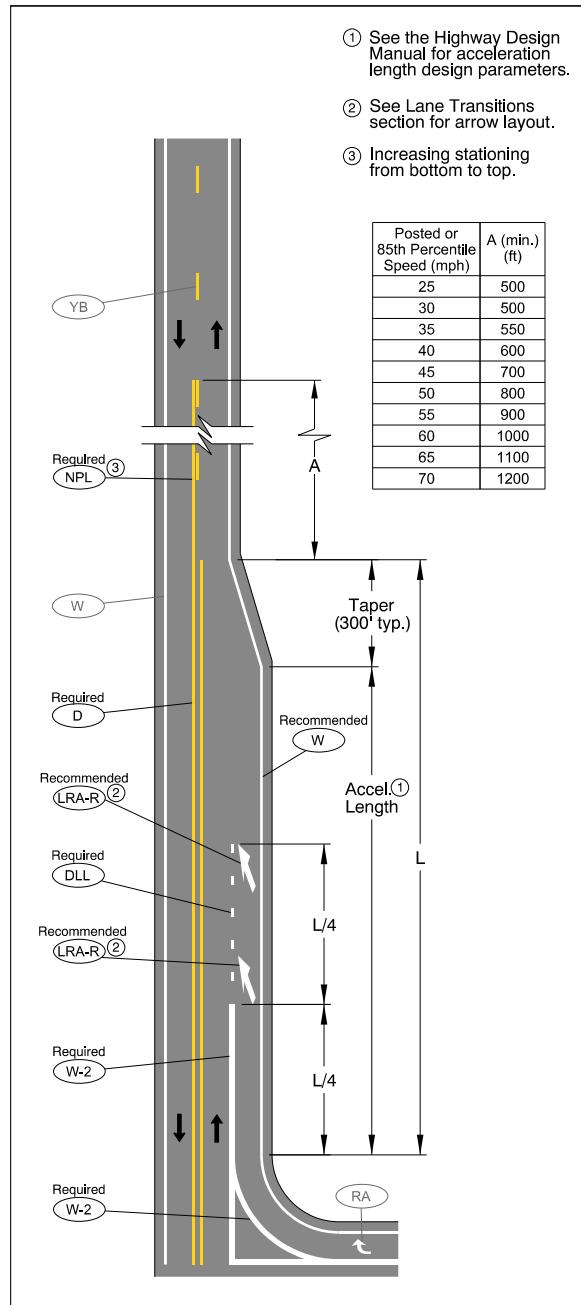
36 An engineering study, roadway design exception, and state traffic engineer approval is required
37 for acceleration lanes from at-grade intersections.


38 **Design Issues**

39 See the ODOT Highway Design Manual (1) and ODOT Traffic Manual (2) for design issues and
40 considerations related to at-grade acceleration lanes.

41

Figures & Tables


42 Figure 322-A: Typical Median Acceleration Lane

43

At-Grade Acceleration Lanes**Section 322**

44 Figure 322-B: Typical At-Grade Right Turn Acceleration Lane

45

Support

46 The pavement marking layout for an at-grade acceleration lane is consistent with Section 3B.06 and 3B.12 in the 11th Edition MUTCD (3).

47 As is used at a grade-separated parallel acceleration lane, a lane line separates the acceleration lane from through lanes for half the length of the acceleration lane (including the taper). A wide

At-Grade Acceleration Lanes

Section 322

51 solid line (W-2) is used at the beginning of the acceleration lane to encourage turning drivers to
52 accelerate before merging with through traffic, minimizing speed differential at the merge
53 point. A normal width dotted lane line (DLL) is used for the remainder of the lane line length to
54 communicate that the acceleration lane does not continue ahead, as is used at a grade-separated
55 parallel acceleration lane.

56 Lane reduction arrows are added to the acceleration lane to emphasize to turning drivers that
57 they must merge and that the acceleration lane is ending. Transverse median bars are used at
58 left turn at-grade acceleration lanes to further emphasize the acceleration lane ends. This is
59 particularly useful if a left turn lane or two-way left turn lane is located downstream from the
60 acceleration lane.

61 An edge line is used to show where the acceleration lane ends. This is consistent with how edge
62 lines are used at lane reduction transitions and grade-separated acceleration lanes.

63 Cross References

64 Functions, Widths, and Patterns of Longitudinal Lines.....	Section 120
65 Transverse Markings.....	Section 125
66 Lane Use Arrows	Section 160
67 Center Lines	Section 210
68 No-Passing Zone Markings.....	Section 211
69 Lane Lines	Section 220
70 Edge Lines.....	Section 230
71 Lane Reduction Transitions	Section 250
72 Traversable Medians.....	Section 260
73 Channelizing Lines and Traversable Channelizing Islands.....	Section 270
74 Non-Traversable Medians & Channelizing Islands	Section 281
75 Left Turn Lanes	Section 310
76 Added Right Turn Lanes	Section 320
77 Channelized Right-Turn Lanes	Section 321

78 Key References

- 79 1. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
80 Oregon, 2012.
- 81 2. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.
- 83 3. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
84 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 Dropped Lanes and Auxiliary Lanes on 2 Conventional Roads

Section 330

3 Introduction

4 A dropped lane is a through lane that becomes a mandatory turn lane on a conventional road.
5 Reductions in the number of thru lanes that do not involve a mandatory turn or exit are not
6 considered dropped lanes.

7 Relevant MUTCD Sections

8 See the following sections for standards, guidance, and options not found in this manual:

- 9 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 10 • [MUTCD 11th Edition: 3B.07 White Lane Line Markings for Non-Continuing Lanes](#)
- 11 • [MUTCD 11th Edition: 3B.12 Lane-Reduction Transitions](#)

12 Design Parameters

13 01 A wide dotted lane line (DLL-2) shall be used to separate a through lane that continues
14 beyond an intersection from an adjacent dropped lane or an auxiliary lane that is 1 mile or
15 less long.

16 02 *The wide dotted lane line (DLL-2) should begin a distance in advance of the intersection that is
17 determined by engineering judgement as suitable to enable drivers who do not desire to make the
18 mandatory turn to move out of the lane being dropped prior to reaching the queue of vehicles that are
19 waiting to make the turn. The wide dotted lane line (DLL-2) should begin no closer to the intersection
20 than the most upstream regulatory or warning sign associated with the lane drop.*

21 03 In locations where intersections are closely spaced, the wide dotted lane line (DLL-2) may
22 begin in advance of intersections where the dropped lane or auxiliary lane is not required to
23 turn.

24 04 A dropped turn lane shall include:

- 25 • A wide white line (W-2) separating the dropped turn lane from adjacent lanes
26 traveling in the same general direction, and
- 27 • A lane use arrow at the beginning of the dropped turn lane and one at the
28 intersection (Figure 330).

29 05 Where the wide white line (W-2) separating the dropped turn lane from adjacent travel
30 lane(s) is longer than 400 feet, an additional lane use arrow shall be used at the mid-point
31 of the dropped turn lane.

Dropped Lanes and Auxiliary Lanes on Conventional Roads**Section 330**

32 06 ONLY word markings should be used half-way between lane use arrows in the dropped turn lane
33 (Figure 330).

34 07 A through bicycle lane shall not be positioned to the right of a right turn lane or to the left
35 of a left turn lane unless conflicting movements are controlled by a traffic control signal.

36 08 If a through bicycle lane is adjacent to a dropped right turn lane, bicycle lane markings should stop at
37 least 100 feet before the beginning of the dropped right turn lane (Figure 330). A shared lane marking
38 and wide white dotted line extensions (WD-2) should be used in the transition area according to
39 Figure 330. Through bicycle lane markings should resume to the left of the dropped right turn lane.

40 09 If a bicycle lane is adjacent to a dropped right turn lane, a bicycle symbol may be used in the
41 bicycle lane before the bicycle lane ends according to Figure 330.

42 10 At signalized intersections, the storage length "L" shown in Figure 330 should be determined by an
43 engineering study.

44 11 At unsignalized intersections, the wide white line (W-2) used to separate the dropped turn lane from
45 an adjacent lane(s) should be at least 100 feet long.

46 **Required Approvals**

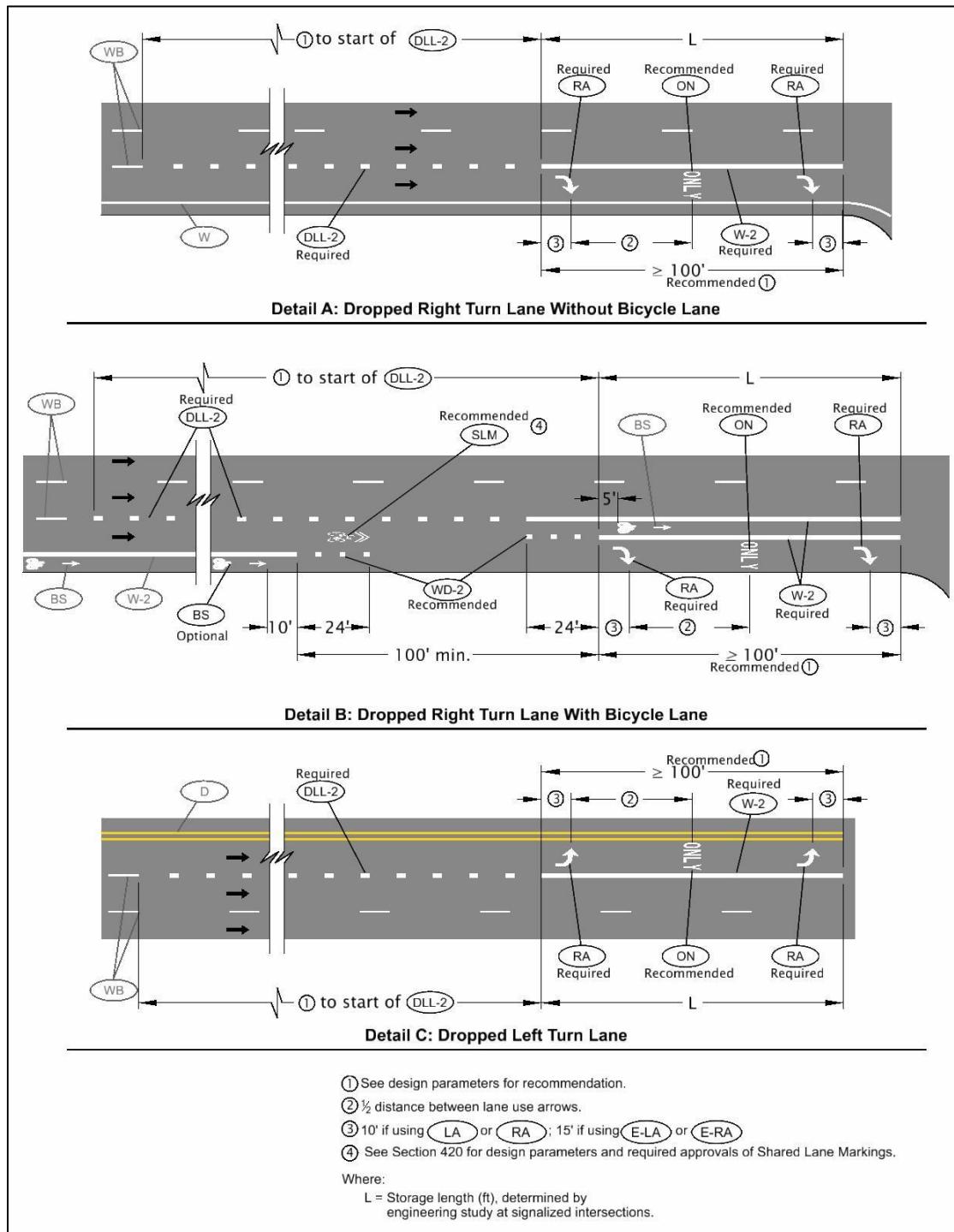
47 No approval is required to install the recommended shared lane marking shown in Figure 330
48 Detail B.

49 **Design Issues**

50 A bike lane is not striped diagonally across the weave area because this incorrectly suggests that
51 people on bicycles do not need to yield to motorists in the transition area (1), limits where
52 people on bicycles can choose a gap to move to the left, and can give the perception that the
53 dropped lane is ending in a taper.

54 The roadway that ends at a T-intersection is not typically considered to have dropped lanes on
55 its approach.

56 Depending on the configuration and location of an uncontrolled crosswalk a stop bar may be
57 recommended for use. See Section 150 and Section 430 when there is an uncontrolled marked
58 crosswalk near a dedicated turn lane.


59

Dropped Lanes and Auxiliary Lanes on Conventional Roads

Section 330

60 Figures & Tables

61 Figure 330: Typical Dropped Turn Lane Layouts

62

63 Support

64 Using a wide dotted lane line (DLL-2) in advance of a dropped lane improves driver
65 understanding that he or she must exit soon but still has time to change lanes. The studies
66 related to using a dotted lane line in advance of a dropped lane (2) (3) focused primarily on
67 freeway exit only lanes, but the principle applies to conventional roads too – a lane is going to
68 take the road user away from the current road. In freeway applications, researchers observed an
69 upstream shift in the location where drivers made lane changes in advance of the dropped
70 lanes, fewer drivers changing lanes near gore points, and fewer drivers making erratic
71 maneuvers at gore areas (3). These changes in lane line patterns, along with advance signing
72 and lane use arrows, helps communicate the upcoming change and needed actions.

73 In detail B of Figure 330, the short dotted line extensions through the bicycle transition area are
74 consistent with layouts recommended in the AASHTO Guide for the Development of Bicycle
75 Facilities (1) and the NACTO Urban Bikeway Design Guide (4). The shared lane marking at the
76 beginning of the transition area helps warn motorists that people on bicycles may be in their
77 lane as they weave to the left, and may encourage people on bicycles to move to the left to
78 better align themselves with the bicycle lane positioned to the left of the dropped right turn
79 lane.

80 This bicycle transition movement can be difficult and high stress, depending on traffic volumes,
81 speed, and heavy vehicle composition. People on bicycles must find a gap in the traffic stream
82 and merge left to enter the re-positioned bicycle lane. Depending on the demand for the bicycle
83 route, a lower stress alternative is to separate right turning motor vehicles and thru bicycles
84 with separate signal phasing. In this case the bicycle lane is kept to the right of the right turn
85 lane up to the signal.

86 The ODOT Analysis Procedures Manual (APM) (5) contains information on estimating the
87 storage length "L" shown in Figure 330.

88 In long right turn lanes, an additional arrow at the mid-point of the wide solid white line (W-2)
89 provides confirmation to road users of the function of the lane. While there is no research
90 specifically investigating this practice, it is common in other states (6). In Oregon, 400 feet of
91 wide solid white line (W-2) has been the point at which an additional arrow is used. This
92 threshold was developed primarily for left turn lanes. For uniformity, this threshold is also
93 applied to right turn lanes. Based on field observations, 400 feet and greater has been a
94 reasonable definition of a "long" right turn lane.

95 Cross References

96 Colors	Section 110
97 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
98 Transverse Markings	Section 125
99 Stop Bars	Section 150
100 Lane Use Arrows	Section 160

Dropped Lanes and Auxiliary Lanes on Conventional Roads**Section 330**

101	Lane Lines	Section 220
102	Edge Lines.....	Section 230
103	Left Turn Lanes	Section 310
104	Added Right Turn Lanes	Section 320
105	Channelized Right-Turn Lanes	Section 321
106	Roundabouts	Section 350
107	Bicycle Lanes	Section 410
108	Shared Lane Markings	Section 420
109	Marked Crosswalks	Section 430

110 Key References

- 111 1. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*, 4th ed. Washington, D.C., 2012.
- 113 2. Fitzpatrick, K., M. Ogden, and T. Lienau. Motorists' Comprehension of Exit Lane Drop Signs and Markings. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1464, 1994, pp. 51-59. <http://onlinepubs.trb.org/Onlinepubs/trr/1994/1464/1464-007.pdf>.
- 116 3. Fitzpatrick, K., M. Lance, and T. Lienau. Effects of Pavement Markings on Driver Behavior at Freeway Lane Drop Exits. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1495, 1995, pp. 17-27. <http://onlinepubs.trb.org/Onlinepubs/trr/1995/1495/1495-003.pdf>.
- 119 4. National Association of City Transportation Officials. *NACTO Urban Bikeway Design Guide*, 2nd ed. Island Press, New York, New York, 2014. <http://nacto.org/cities-for-cycling/design-guide/>.
- 121 5. Oregon Department of Transportation. *Analysis Procedures Manual*, 2nd ed. Oregon Department of Transportation, Salem, Oregon, 2016. <http://www.oregon.gov/ODOT/Planning/Pages/APM.aspx>.
- 123 6. Friedman, B. E. NCHRP Synthesis 356: Pavement Markings - Design and Typical Layout Details. Washington, D.C., ISBN 0-309-09763-0, 2006. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_356.pdf.

1 Line Extensions Through 2 Intersections

Section 340

3 Introduction

4 Dotted lines provide guidance through breaks and are normally used in situations where the
5 intended path may be unclear to road users, such as at skewed intersections and intersections
6 with multiple turn lanes.

7 Relevant MUTCD Sections

8 See the following sections for standards, guidance, and options not found in this manual:

- 9 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 10 • [MUTCD 11th Edition: 3B.11 Application of Pavement Markings through Intersections or](#)
11 [Interchanges](#)

12 Design Parameters

13 01 When used, dotted lines shall be at least the same width and color of the line being
14 extended.

15 02 Dotted line extensions should be used to extend longitudinal lines through an intersection:

- 16 • On a horizontal curve on the major roadway where the longitudinal line's gap length divided by
17 the curve radius is greater than 0.100 (see Figure 340-C).
- 18 • Where an offset or skew shifts a lane through the intersection at a taper rate or offset greater than
19 the values shown in Table 340-1 (see Figure 340-A). The line that would be crossed if the road
20 user continued straight should be extended.
- 21 • Where a vertical curve obscures longitudinal lines on the far side of the intersection.

22 03 Wide dotted lines (WD-2) shall be used as lane line extensions for multiple turn lanes at
23 an intersection (Figure 340-B). Where greater restriction is needed, a wide solid white line
24 (W-2) should be used.

25 04 A wide dotted line (WD-2) or a wide solid line (W-2) may extend a lane line to direct turning
26 traffic into a different receiving lane than the nearest receiving lane based on engineering
27 judgement (Figure 340-B).

28 05 A normal width white dotted line (WD) may be used to extend a wide solid white line (W-2)
29 through an intersection.

30 06 Where a double line is extended through an intersection, a single, normal width dotted
31 line shall be used (Figure 340-C).

32 07 Dotted lines may be used:

Line Extensions Through Intersections

Section 340

- 33 • As lane line extensions through an intersection based on engineering judgement.
- 34 • To extend edge lines at a wide, complex intersection or at an intersection on a
- 35 horizontal curve.

36 08 Solid lines shall not be used to extend edge lines into or through intersections, except as

37 provided in Section 230.

38 09 When a signalized intersection has a protected right turn movement with a permissive or

39 protected/permissive opposing left turn movement sharing the same departure direction,

40 except where raised channelization clearly indicates which departure lane to use, lane line

41 extensions shall be used to clearly indicate which departure lane to use (Figure 340-D).

42 10 A wide solid white line (W-2) separating parallel departure lanes may be used to further

43 define the proper departure lane to use (Figure 340-D).

Design Issues

44 The values in Table 340-1 are set to be more conservative than the maximum offsets allowed in

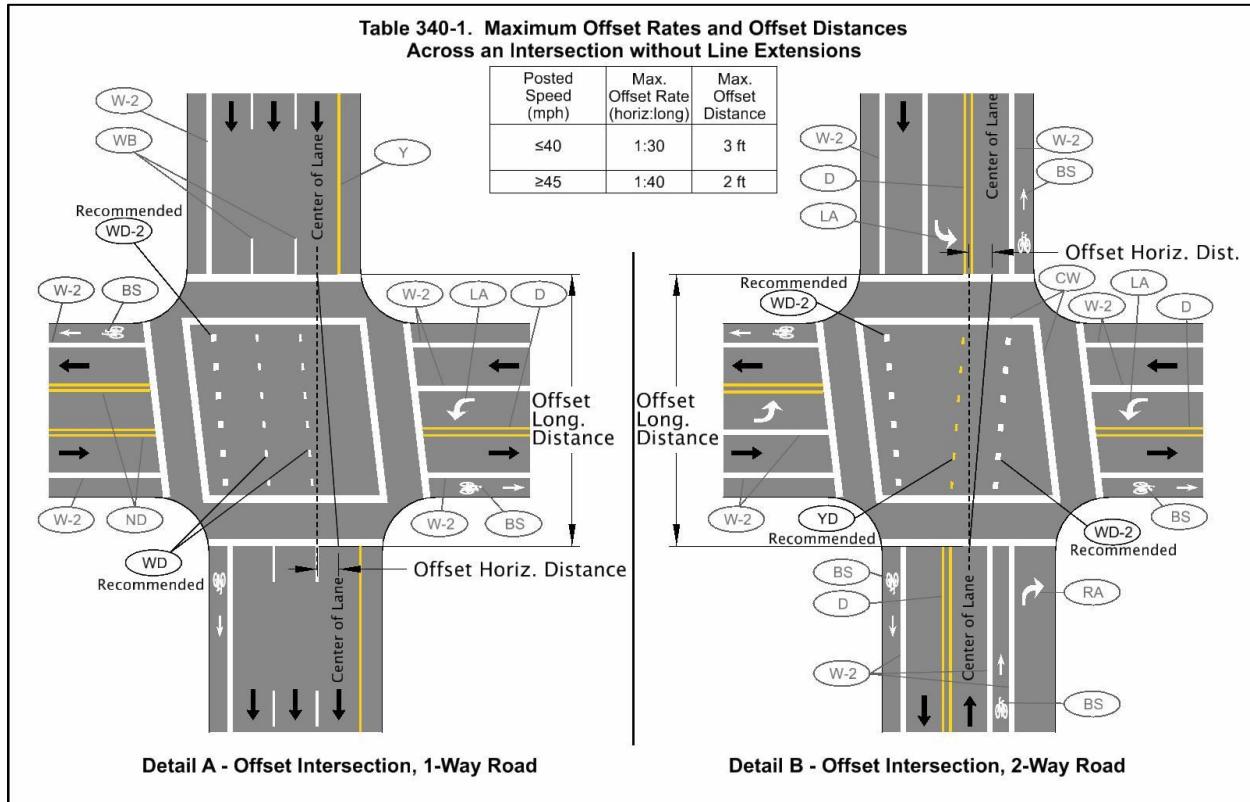
45 roadway design by the ODOT Highway Design Manual (1). The Highway Design Manual does

46 not allow lane offsets through intersections where the posted speed is over 45 mph. Table 340-1

47 includes guidance for these high speed intersections where the existing lane alignments are

48 offset and where it is not practical to correct the existing offset.

Line Extensions Through Intersections

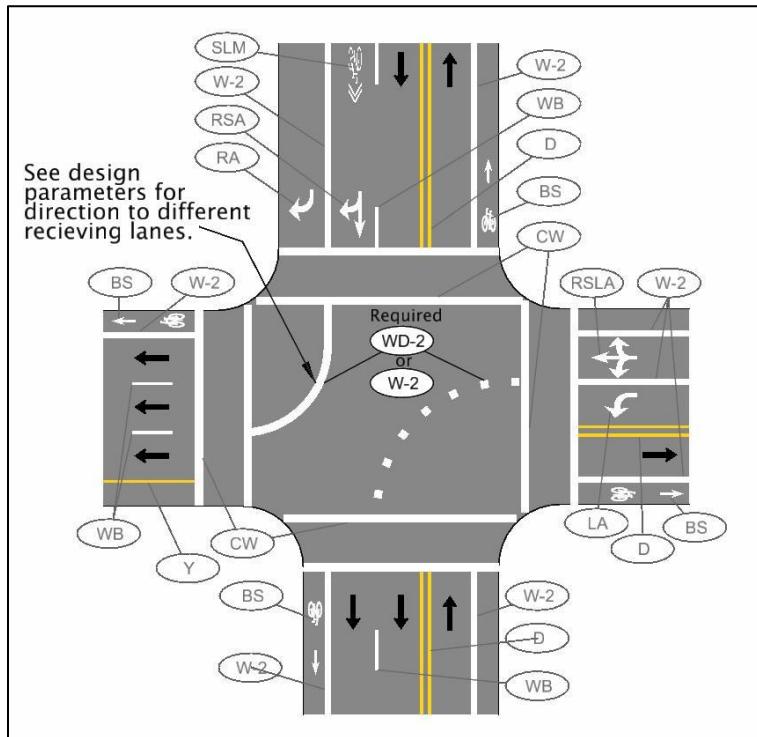

Section 340

50

Figures & Tables

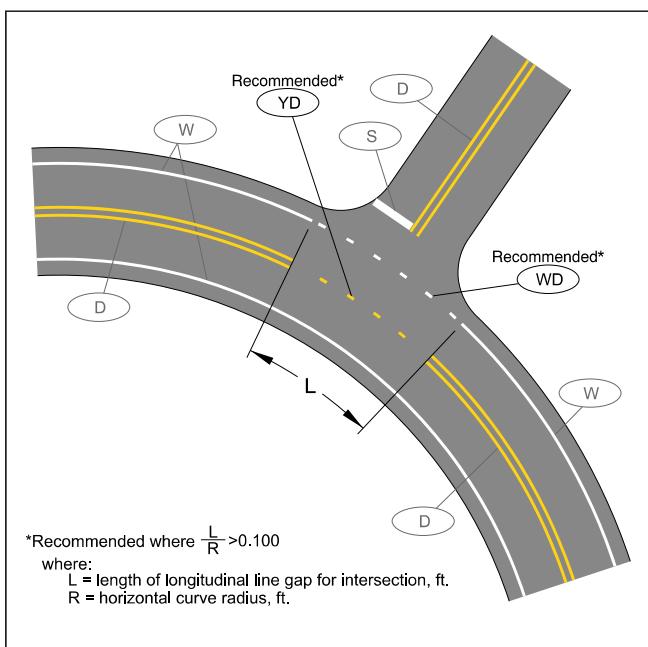
51

Figure 340-A: Typical Line Extensions through Offset Intersections



52

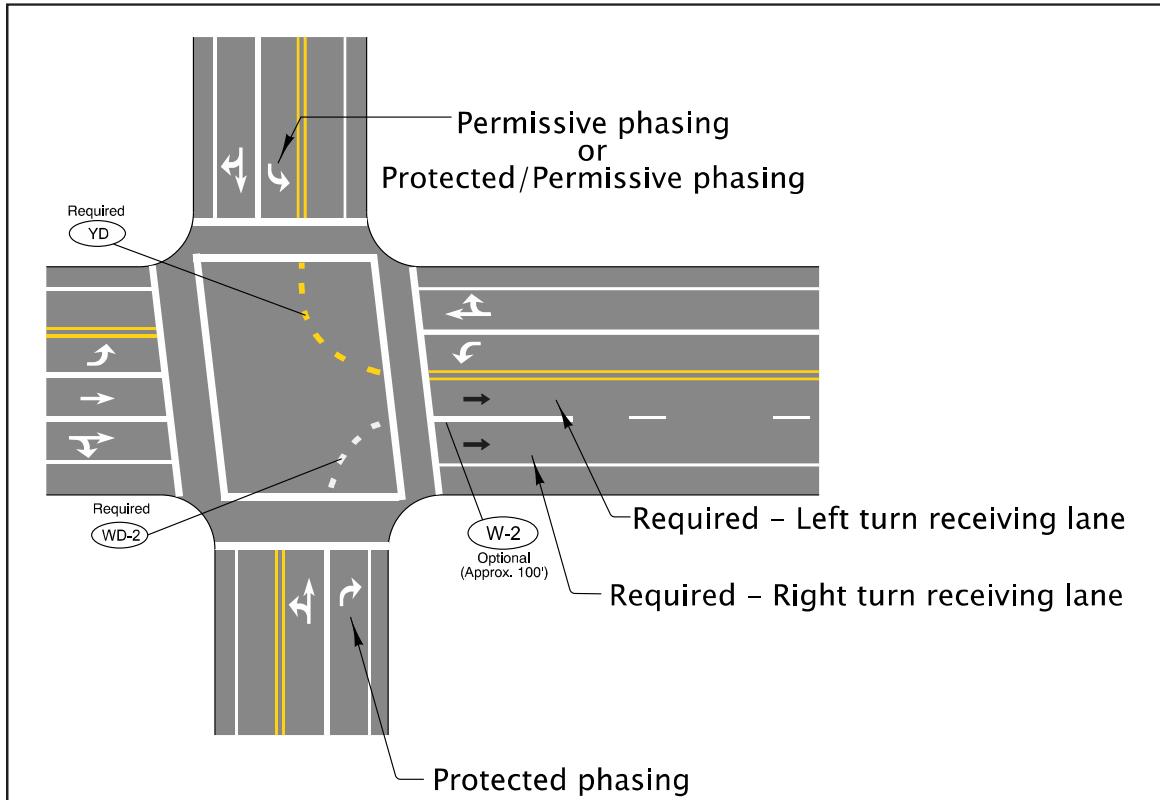
Line Extensions Through Intersections


Section 340

53 Figure 340-B: Typical Line Extensions for Multiple Turn Lanes

54

55 Figure 340-C: Typical Line Extensions for an Intersection on a Horizontal Curve



56

Line Extensions Through Intersections

Section 340

57 Figure 340-D: Typical Lane Line Extensions for Right Turn Overlap Phasing

Support

59 To the extent possible, lane alignments need to remain straight and constant through an
 60 intersection (1). In many cases, small changes in lane alignment upstream and downstream of
 61 the intersection can be achieved with longitudinal lines to keep lanes aligned through the
 62 intersection. This is especially important at signalized intersections; signal heads are typically
 63 centered over receiving lanes on the far side of the intersection (2).

64 However, when site constraints make it infeasible to keep lane alignments consistent (e.g.:
 65 downtown grid), lanes might need to be shifted through the intersection. In these locations,
 66 extending lane lines and/or the centerline through the intersection can help guide road users
 67 through the shift and into the appropriate receiving lane.

68 Lane lines and/or centerline extensions are not typically used through minor shifts, but there is
 69 a practical limit where providing an extension is recommended. There is little literature
 70 available on when a line needs to be extended for offset lanes; the values in Table 340-1 are set
 71 to be more conservative than the maximum offsets allowed in roadway design by the ODOT
 72 Highway Design Manual (1).

Line Extensions Through Intersections

Section 340

74 Similar extensions might be needed at intersections located within a horizontal curve. During
75 curve entry and negotiation, drivers spend most of their time looking at a tangent point ahead
76 on the inside of the curve (3); the center line or edge line is an important reference point for this
77 task. Long centerline and/or edge line breaks for an intersection, relative to the curve radius, can
78 momentarily remove this lane-positioning guidance.

79 There is little literature available on when a line needs to be extended for a horizontal curve.
80 Human factors studies estimate road users need to see the path ahead a minimum of 2 to 3
81 seconds to maintain lane position and 3 to 5 seconds to feel comfortable with upcoming changes
82 in the road path. Vehicle control demands also increase as curve radius decreases (3). To
83 maintain this minimum preview time and account for greater driving demands in tighter
84 curves, the design parameters recommend a line extension for intersections where the
85 longitudinal line gap length divided by the curve radius is greater than 0.100 (greater than
86 about 5.7° of curve arc). Without sufficient published research on this subject, this value is based
87 on past practice on state highways around the state and ensures sufficient preview time across a
88 wide range of curve radii.

89 Extensions through intersections located on crest vertical curves might be needed as well,
90 though this is not common. Road users need to be able to see longitudinal lines on the far side
91 of the intersection to maintain or adjust their path to be in line with their receiving lane. If the
92 crest vertical curve hides the far-side lines, an extension can provide continuous guidance to
93 road users through the intersection and into their receiving lane.

94 Turning vehicles are ordinarily required to turn into the nearest receiving lane at an intersection
95 (ORS 811.355 and ORS 811.340). At some intersections with multiple turn lanes it could be
96 beneficial to direct turning traffic into a receiving lane other than the nearest receiving lane. This
97 is typically based on origin-destination patterns, traffic volumes, and/or design vehicle turning
98 radii. For example, directing turning traffic into a far receiving lane could keep road users
99 aligned with a major destination route that will minimize the number of lane changes
100 downstream of the intersection. In this case, drivers are following the direction of a longitudinal
101 pavement marking, which is traffic control device (ORS 801.540 and ORS 811.265).

102 It is important to work with the signal designer to check if the phasing requires lane line
103 extensions. More information on signal phasing and requirements can be found in the Traffic
104 Signal Design Manual (2). The wide solid white line (W-2) used in figure 340-D is used when it
105 is desirable to discourage lane changing in the immediate vicinity of the intersection.

Cross References

107 Colors Section 110
108 Functions, Widths, and Patterns of Longitudinal Lines Section 120
109 Center Lines Section 210
110 Lane Lines Section 220
111 Edge Lines Section 230

**Line Extensions Through
Intersections****Section 340**

112	Left Turn Lanes	Section 310
113	Roundabouts	Section 350
114	Interchange Ramps: Ramp Terminals	Section 361
115	Bicycle Lanes	Section 410
116	Bicycle Lane Buffers	Section 412

117 Key References

- 118 1. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem, Oregon, 2012.
- 120 2. Oregon Department of Transportation. *Traffic Signal Design Manual*, 2016 ed. Oregon Department of Transportation, Salem, OR, 2016. <http://www.oregon.gov/ODOT/Engineering/Pages/Signal-Design-Manual.aspx>.
- 122 3. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.
- 125 4. Neuman, T. R., R. Pfefer, K. L. Slack, K. K. Hardy, D. W. Harwood, I. B. Potts, D. J. Torbic, and E. R.K. Rabbani. NCHRP Report 500 Volume 5: A Guide for Addressing Unsignalized Intersection Collisions. Transportation Research Board of the National Academies, Washington, D.C., ISBN 0-309-08760-0, 2003. http://onlinepubs.trb.org/Onlinepubs/nchrp/nchrp_rpt_500v5.pdf.

1 Roundabouts

Section 350

2 Introduction

3 A roundabout is a circular intersection with yield control at the entering lanes.

4 Relevant MUTCD Sections

5 See the following sections for standards, guidance, and options not found in this manual:

- 6 • MUTCD 11th Edition: Chapter 3D. Circular Intersection Markings

7 Design Parameters

8 01 Except as provided in this section, roundabout splitter islands shall be delineated
9 according to Section 281 (Non-Traversable Medians & Channelizing Islands).

10 02 Multi-lane approaches to roundabouts shall have lane lines. A through lane on a roadway
11 that becomes a dropped lane (mandatory turn lane) at a roundabout shall be marked
12 according to Section 330. An added left turn lane at a roundabout shall be marked
13 according to Section 310. An added right turn lane at a roundabout shall be marked
14 according to Section 320.

15 03 Lane lines on roundabout approaches and departures should be wide solid white lines (W-2). Except
16 for dropped lanes and added turn lanes, the wide solid white line (W-2) should begin a sufficient
17 distance to minimize lane changes on the roundabout approach according to engineering judgement.

18 04 Multi-lane roundabouts should have wide lane lines within the circulatory roadway to continuously
19 channelize traffic in the circulatory roadway and through the departure movement.

20 05 **Continuous concentric lane lines shall not be used within the circulatory roadway.**

21 06 A wide white edge line (W-2) should be used on the outer (right) edge of the circulatory roadway along
22 the splitter islands. The edge line should be extended across entering lanes with a wide white dotted
23 line (WD-2).

24 07 **Edge lines and edge line extensions shall not be placed across the exits from the**
25 **circulatory roadway.**

26 08 A yellow edge line (Y) may be used around the inner (left) edge of the circular roadway and
27 may be used to channelize traffic.

28 09 *Lane-use arrow pavement markings should not be used on single-lane approaches to circular
29 intersections.*

30 10 **Lane use arrows shall be used on multi-lane approaches to roundabouts at the beginning**
31 **of the wide solid white lane line (W-2) (see Figure 350-C).**

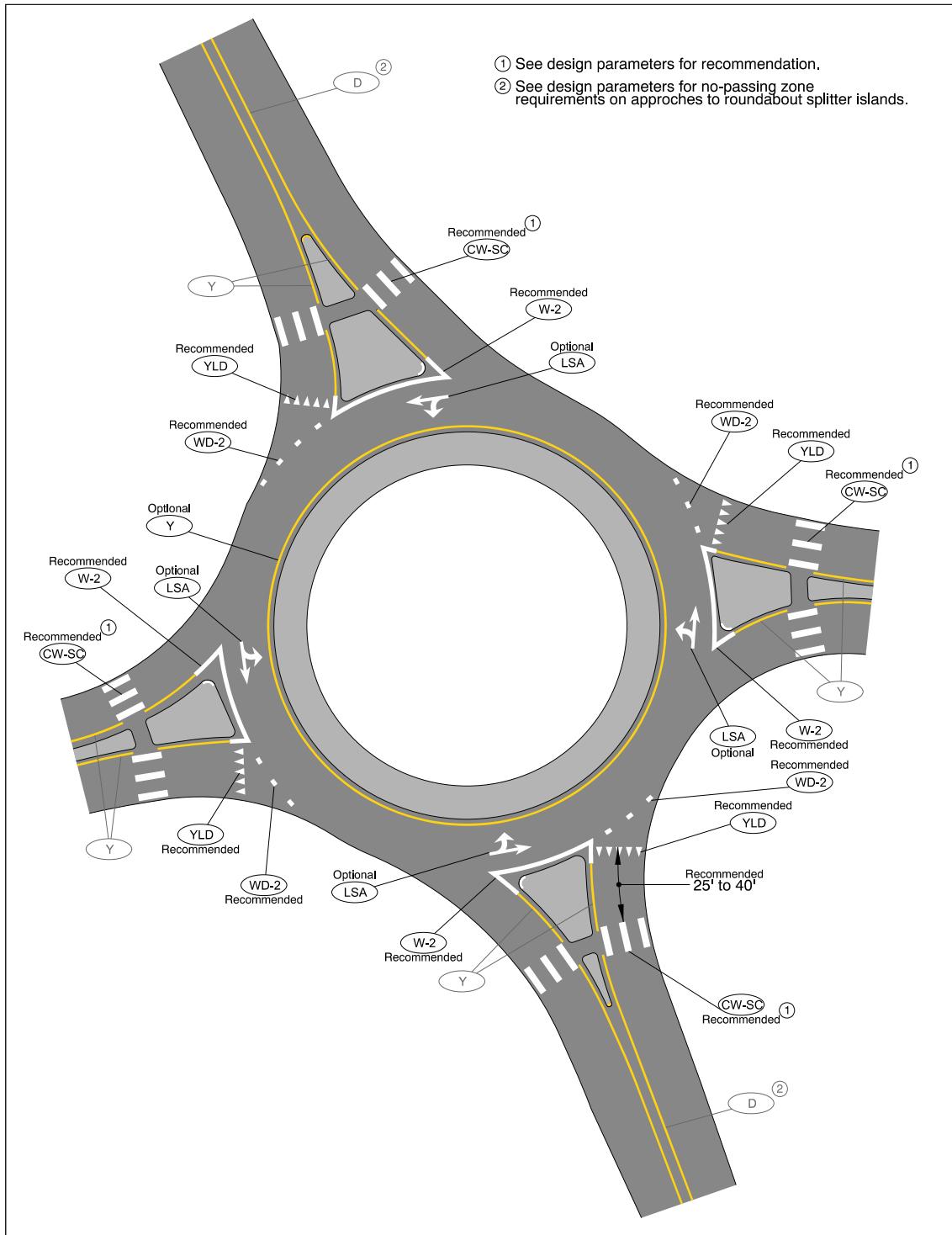
32 11 *Additional normal style lane use arrows should be used on multi-lane approaches to roundabouts in
33 advance of the marked crosswalk (or yield line if there is no marked crosswalk). Standard or elongated*

Roundabouts**Section 350**

34 *lane use arrows should be used within the circulatory roadway of multi-lane roundabouts (see Figure*
35 *350-C).*

36 12 *A white yield line (YLD) should be used to indicate the point behind which vehicles are required to*
37 *yield at the entrance to the roundabout.*

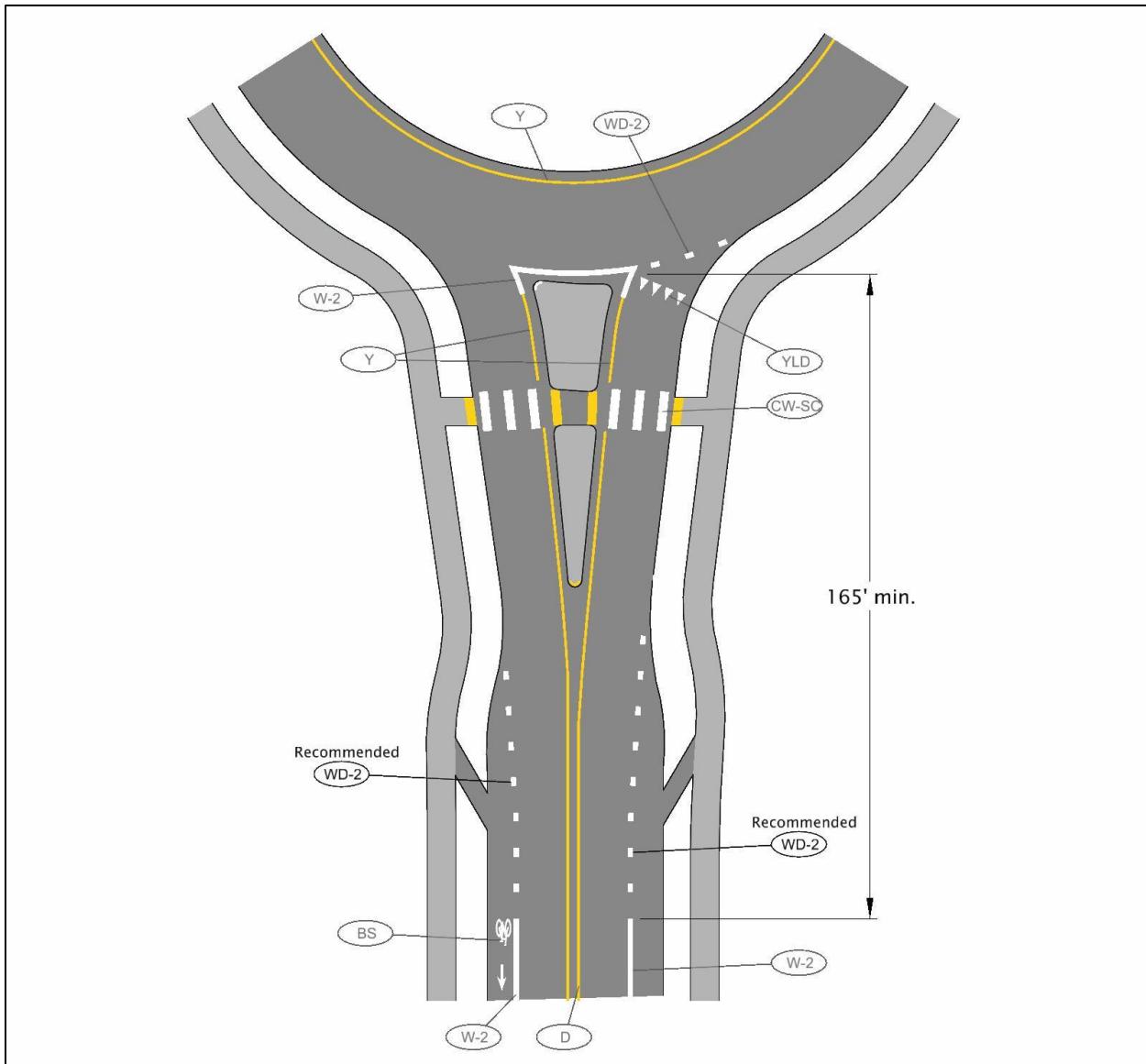
38 13 **Bicycle lanes shall not be provided on the circulatory roadway of a roundabout.**


39 14 *Bicycle lane markings should stop at least 165 feet before the yield line, or if no yield line is present, at*
40 *least 165 feet before the edge of the circulatory roadway. A wide white dotted line (WD-2) should be*
41 *used in the bicycle lane reduction area (see Figure 350-B).*

42 15 **Crosswalks shall not be marked to or from the central island of a roundabout.**

43 16 *If sidewalks or multi-use paths are provided at a roundabout, crosswalks should be marked across*
44 *roundabout entrances and exits with staggered continental-style crosswalk markings. Crosswalks*
45 *should be located 25 to 40 feet in advance of the yield line (or edge of the circulatory roadway if no*
46 *yield line is present). Stop bars should not be used in advance of crosswalks that cross an approach to*
47 *or departure from a roundabout.*

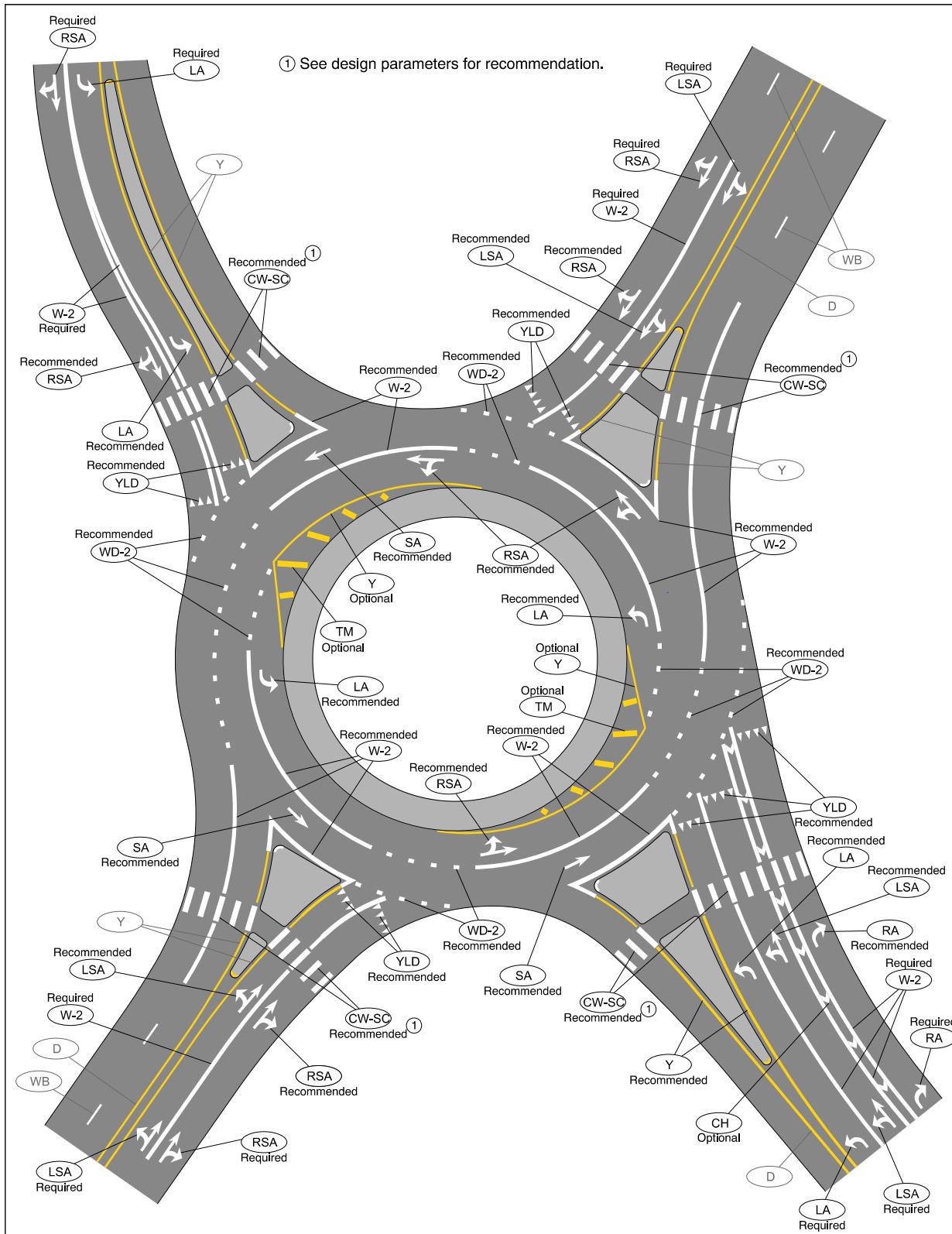
48 **Figures & Tables**


49 Figure 350-A: Typical Pavement Markings at a Single-Lane Roundabout

Roundabouts

Section 350

51 Figure 350-B: Typical Roundabout Approach with Bicycle Lane Curb Cut



52

Roundabouts

Section 350

53 Figure 350-C: Typical Pavement Markings at a Multi-Lane Roundabout

55 Support

56 Pavement markings are an important component of safe operations at roundabouts. Along with
57 geometric design and signing, pavement markings define lane use, yield points, exit points, and
58 crosswalks. With the importance of pavement markings in roundabouts extra consideration
59 should be given to the use of groove installed markings in locations where plowing is common,
60 which can extend the life of the marking. Another this to consider in roundabouts with light
61 colored pavements like new concrete, black borders around white and yellow markings can
62 increase contrast and improve marking visibility

63 At multi-lane roundabouts, lane lines provide important direction for road users. On the
64 approach to and in the roundabout, wide solid lane lines and dotted extensions help improve
65 safety by reducing the possibility of sideswipe crashes caused by last-minute lane changes,
66 discourages road users from cutting across lanes for a shorter path, and discourages lane
67 changes before crosswalks to reduce the possibility of multiple-threat pedestrian crashes (1).

68 Crosswalks are marked at roundabouts with pedestrian facilities to eliminate any legal
69 ambiguity on the location of the crosswalk (1). Current ORS language defining the location of
70 an unmarked crosswalk at an intersection does not readily translate to a roundabout, so the
71 crosswalk needs to be defined by marking it. Staggered continental-style markings are used at
72 the crosswalk because that style is less likely to be confused with the entrance line or yield line
73 of the roundabout (1) and because the approach to these crosswalks is uncontrolled and needs
74 to be more visible (2).

75 Bicycle lane markings stop at 165 feet from the circulatory roadway or yield line in order to give
76 people on bicycles enough time to find a gap to merge into the general travel lane or take the
77 ramp to the sidewalk. The ODOT Highway Design Manual (3) sets the standard distance for the
78 diagonal ramp to the sidewalk at 100 feet from the circulatory roadway or yield line, and the
79 end of the bicycle lane 65 feet upstream from this point to provide decision time. A wide dotted
80 line is extended in this bicycle transition area to give advance notice to road users that the
81 bicycle lane is ending (1).

82 At multi-lane roundabouts, lane use arrows define lane functions on the approach to and in the
83 roundabout. This helps road users choose a lane early and minimize last-minute lane changes
84 that can cause sideswipe crashes (1). Arrows closest to the roundabout are positioned before the
85 crosswalk to reinforce lane function before reaching the yield line (1). Circulatory roadway
86 arrows are typically located at the beginning of the solid lane lines to communicate lane
87 function as road users enter the lane.

88 Left turn lanes (either thru-left option or left turn only) at multi-lane roundabouts use left turn
89 arrows or left-thru arrows (instead of a single thru arrow) because this leads to better road user
90 comprehension of the lane function, and greater road user confidence that they picked the
91 correct lane. This reduces the likelihood of a sideswipe crash at the exit point (1) (5). Lane use
92 arrows on their own are not likely to reduce wrong-way entry to roundabouts; good geometric
93 design is the best deterrent to wrong-way movements at roundabouts (5).

Roundabouts**Section 350**

94 The edge line extensions across entry lanes define the yield point for entering vehicles and
95 guides road users on the circulatory roadway through the roundabout. The 11th Edition
96 MUTCD (6) specifies a wide dotted line for this extension. ODOT's standard cycle length for
97 dotted lines is 8 feet, which provides sufficient guidance for road users on the circulatory
98 roadway but may not provide enough line segments to clearly define the yield point for
99 entering vehicles. NCHRP 672 (1) recommends shortening the dotted line gap to 2 to 3 feet to
100 provide a more defined entry point (the lower limit allowed by the MUTCD for a dotted line
101 gap). Instead of using a different dotted line pattern than the standard (2' line segment with 6'
102 gap), a yield line is used in addition to the dotted line extension to clearly show where road
103 users need to yield.

104 See additional roundabout layouts in Chapter 3D of the 11th Edition MUTCD (6).

Cross References

106 Colors	Section 110
107 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
108 Transverse Markings	Section 125
109 Yield Lines	Section 151
110 Lane Use Arrows	Section 160
111 Center Lines	Section 210
112 No-Passing Zone Markings	Section 211
113 Lane Lines	Section 220
114 Edge Lines	Section 230
115 Traversable Medians	Section 260
116 Channelizing Lines and Traversable Channelizing Islands	Section 270
117 Non-Traversable Medians & Channelizing Islands	Section 281
118 Left Turn Lanes	Section 310
119 Added Right Turn Lanes	Section 320
120 Channelized Right-Turn Lanes	Section 321
121 Dropped Lanes and Auxiliary Lanes on Conventional Roads	Section 330
122 Line Extensions Through Intersections	Section 340
123 Bicycle Lanes	Section 410
124 Bicycle Lane End Transitions	Section 411
125 Marked Crosswalks	Section 430
126 Shared-Use Path Markings	Section 440

Key References

1. Rodegerdts, L., J. Bansen, C. Tiesler, J. Knudsen, E. Myers, M. Johnson, M. Moule, B. Persaud, C. Lyon, S. Hallmark, H. Isebrands, R. B. Crown, B. Guichet, and A. O'Brien. *NCHRP Report 672: Roundabouts: An Informational Guide*, 2nd ed. Transportation Research Board of the National Academies, Washington, D.C., 2010. <http://www.trb.org/Main/Blurbs/164470.aspx>.
2. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.

Roundabouts**Section 350**

135 3. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
136 Oregon, 2012.

137 4. Hanscom, F. R. Drivers' Understanding of Innovative Roundabout Traffic Control Devices. *ITE Journal*, Vol. 80,
138 no. 7, July 2010, pp. 40-44. <https://trid.trb.org/view.aspx?id=933416>.

139 5. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
140 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

141 6. Molino, J. A., V. W. Inman, B. J. Katz, and A. Emo. Lane Restriction Signing and Marking for Double-Lane
142 Roundabouts. Turner-Fairbank Highway Research Center, McLean, Virginia, 2007. www.pooledfund.org/
143 Document/Download/1226.

1 Interchange Ramps: 2 Exit & Entrance Ramps

Section 360

3 Introduction

4 Markings on exit and entrance ramps provide positive direction of traffic movements to and
5 from limited access roadways.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 9 • [MUTCD 11th Edition: 3B.07 White Lane Line Markings for Non-Continuing Lanes](#)
- 10 • [MUTCD 11th Edition: 3B.11 Application of Pavement Markings through Intersections or](#)
11 [Interchanges](#)

12 Design Parameters

13 01 Exit ramps shall include wide white lines (W-2) from the painted gore point to the
14 physical gore point (Figures 360-A, 360-B, and 360-C).

15 02 Exit ramps with dropped lane(s) shall include:

- 16 • A wide white line (W-2) starting 100 feet (minimum) to 300 feet (standard) prior to
17 the painted gore point (Figures 360-B and 360-C).
- 18 • A wide dotted lane lines (DLL-2) in advance of the wide white line (W-2) (Figures
19 360-A and 360-B).

20 03 *The wide white dotted lane line (DLL-2) used in advance of dropped lane(s) should start at least ½
21 mile in advance of the painted gore point and continue to the wide white line (W-2). Where this
22 distance is not available the wide white dotted lane line (DLL-2) should be extended as long as
23 possible.*

24 04 *Exit ramps with a tapered deceleration lane should include a dotted edge line extension from the
25 upstream end of the taper to the painted gore point (Figure 360-A).*

26 05 **If used, the dotted line across exit ramps, including left-hand exit ramps, shall be a white
27 dotted line. The width of the dotted line shall be at least the same as the width of the line
28 it extends.**

29 06 **Entrance ramps shall include:**

- 30 • Wide white channelizing lines (W-2) from the physical gore point to the painted gore
31 point.

Interchange Ramps: Exit & Entrance Ramps

Section 360

- A white dotted lane line (DLL) for a parallel acceleration lane from the painted gore point to a point at least one-half the distance from the painted gore point to the end of the taper (Figure 360-E).

- A white broken line (WB) from the painted gore point for an added lane (Figure 360-D). If the added lane is an auxiliary lane that is 2 miles or less in length, a wide white dotted lane line (DLL-2) shall be used instead.

07 For parallel acceleration lanes, a white dotted lane line (DLL) or white dotted line (WD) may be used from the downstream end of the white dotted lane line (DLL) to the end of the taper (Figure 360-E).

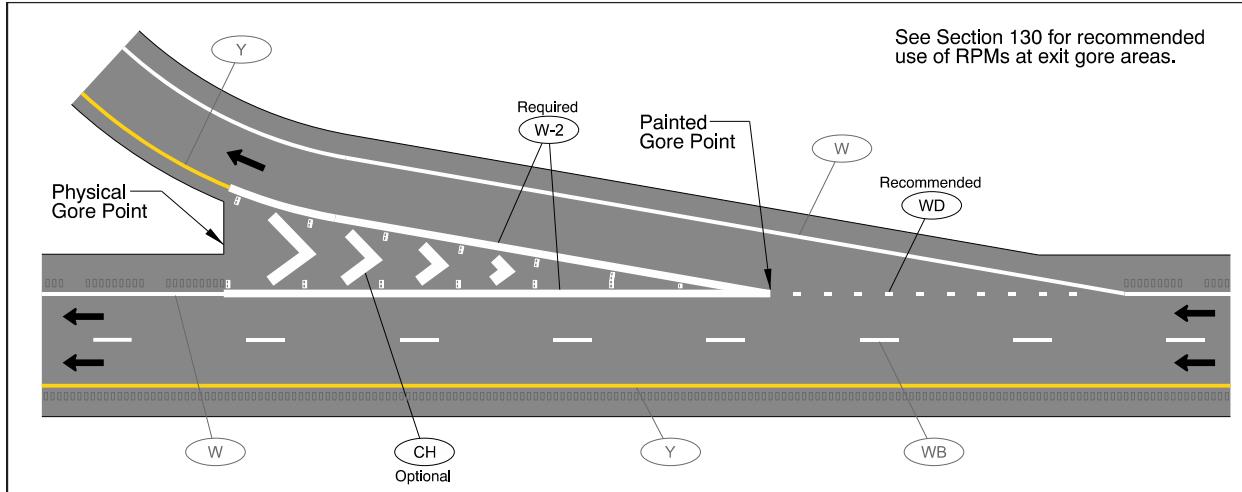
08 Chevron bars (CH) may be used in the neutral area to discourage road users from using this area.

Required Approvals

An engineering study and region traffic engineer approval is required for any modifications to the entrance ramp markings shown in Figures 360-D and 360-E, including but not limited to extending the wide white channelizing line (W-2) beyond the painted gore point.

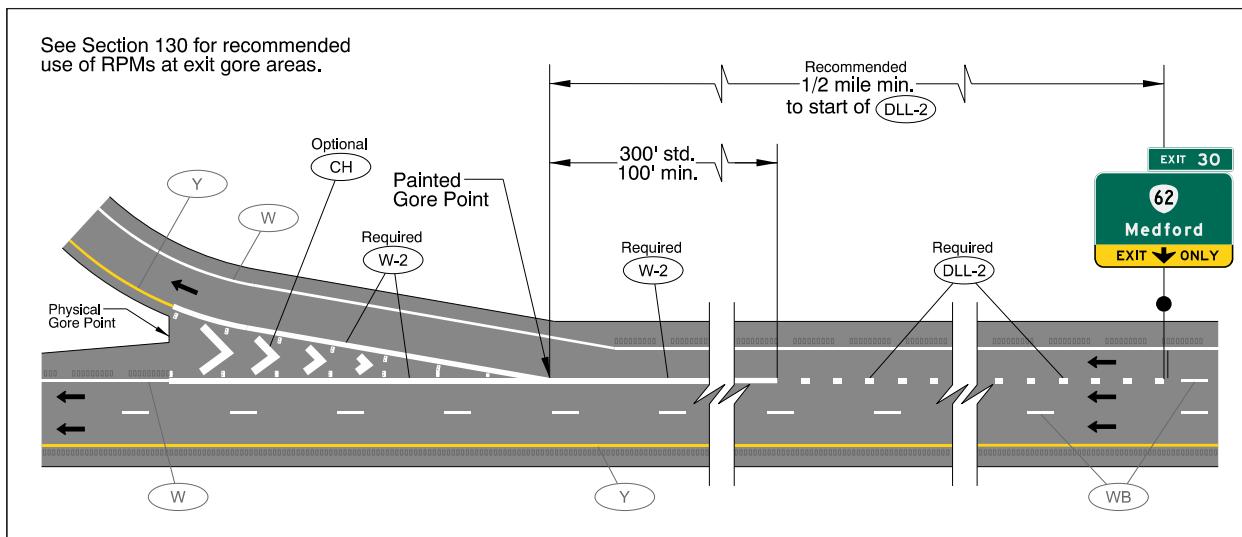
Design Issues

An exit lane with a parallel deceleration lane (a lane developed shortly before the gore point) is not typically used in Oregon. Contact the Traffic Engineering Section for guidance in these cases.


A tapered acceleration lane is characterized by a tangent entrance ramp without an acceleration lane section (both Figures 360-D and 360-E have an acceleration lane parallel to the thru lanes). ODOT currently does not design this type of entrance ramp; however, there may be existing entrance ramps with this type of design. Contact the Traffic Engineering Section for guidance in these cases.

Interchange Ramps: Exit & Entrance Ramps

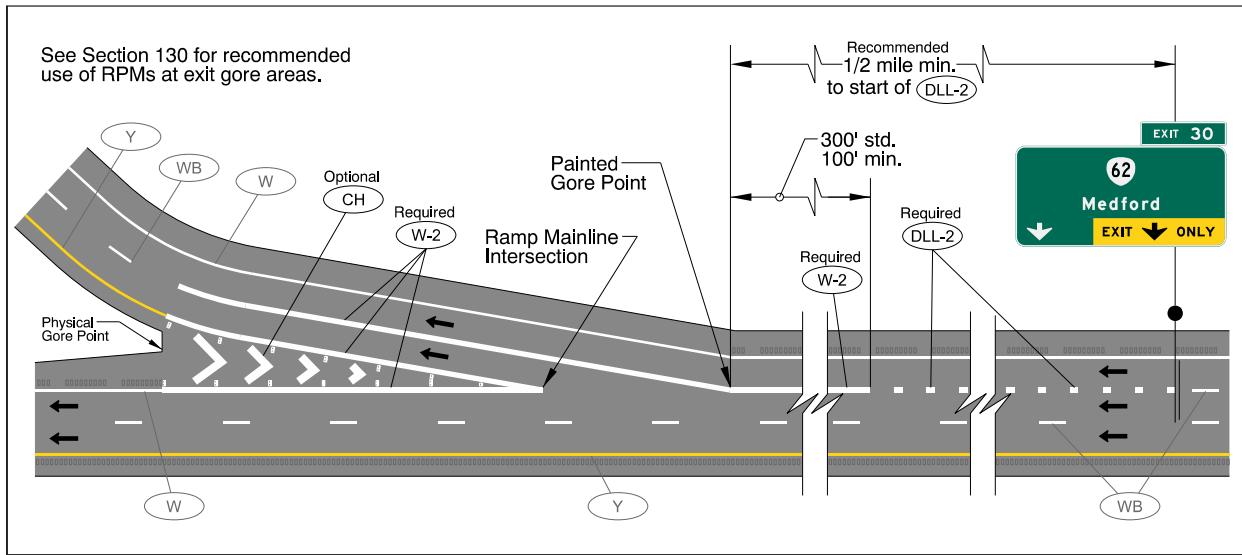
Section 360


Figures & Tables

56 Figure 360-A: Typical Freeway Exit Ramp Markings (Tapered Deceleration Lane)

58

59 Figure 360-B: Typical Freeway Exit Ramp Markings (Single Lane Drop)

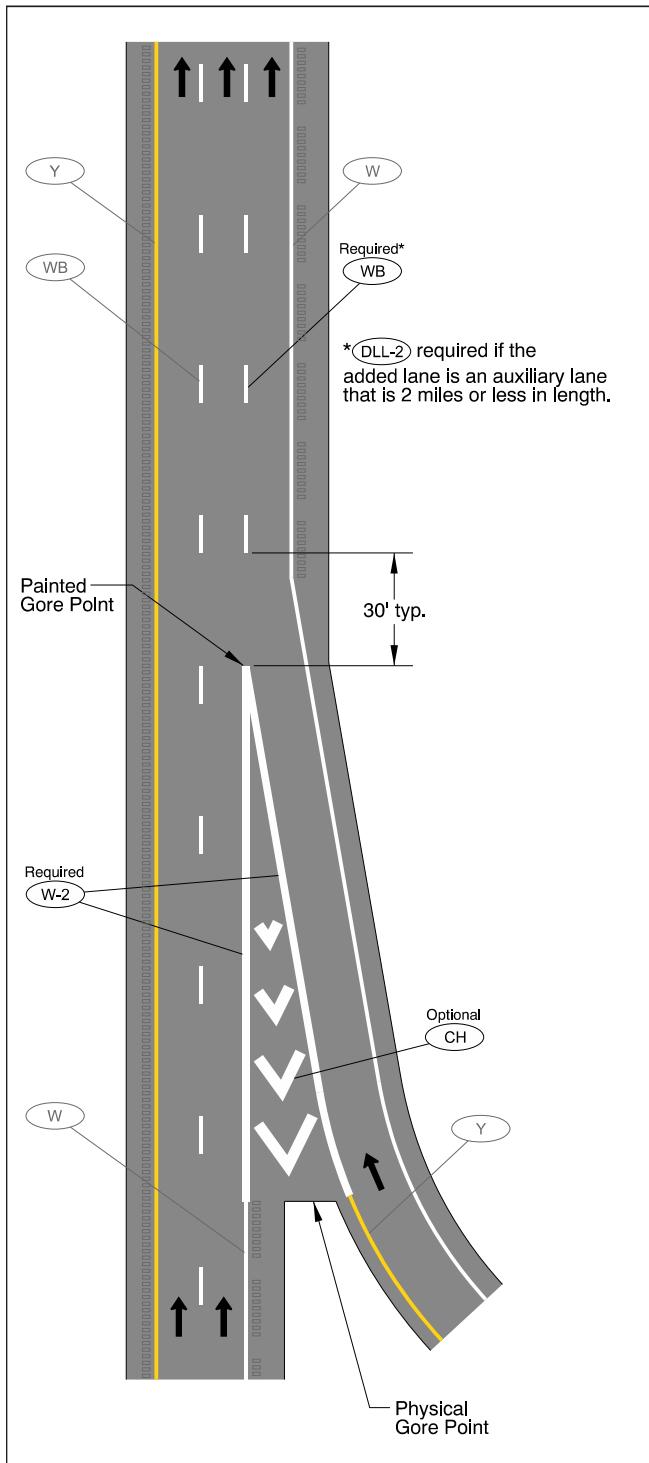


60

Interchange Ramps: Exit & Entrance Ramps

Section 360

61 Figure 360-C: Typical Freeway Exit Ramp Markings (Two-Lane Exit with Single Lane Drop)

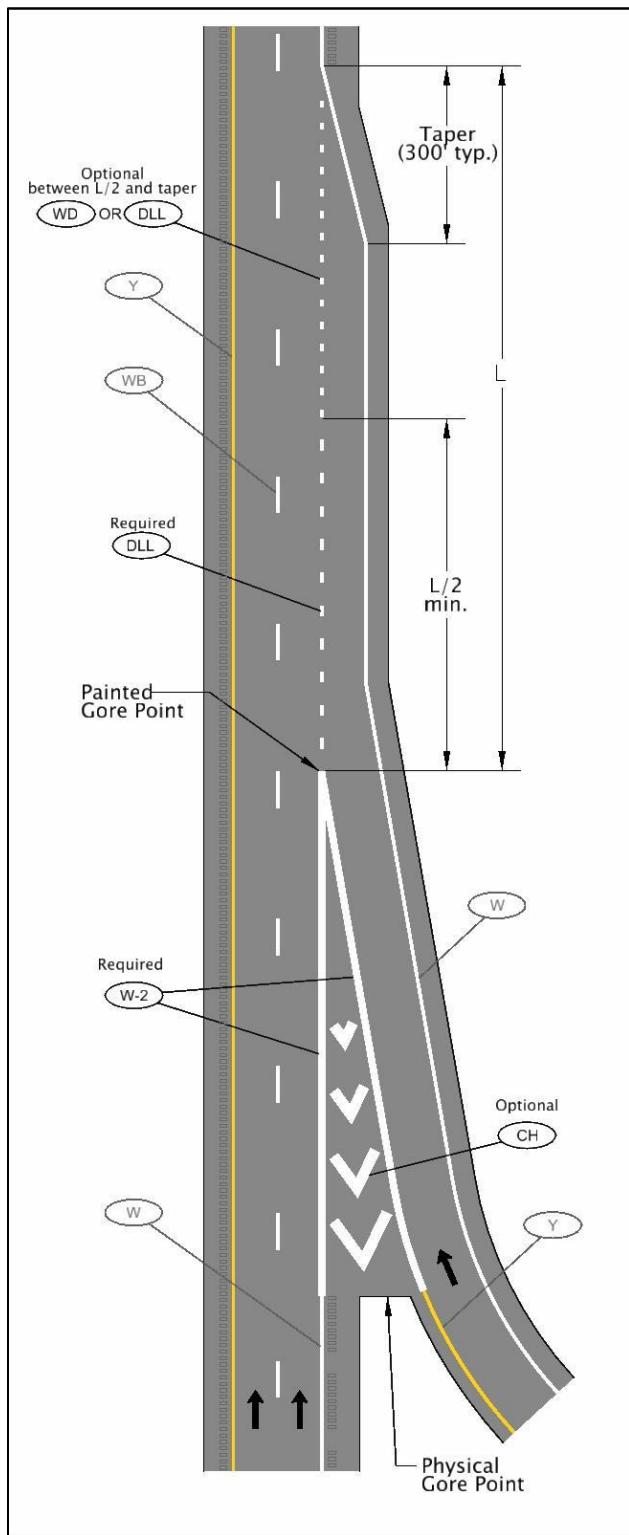


62

Interchange Ramps: Exit & Entrance Ramps

Section 360

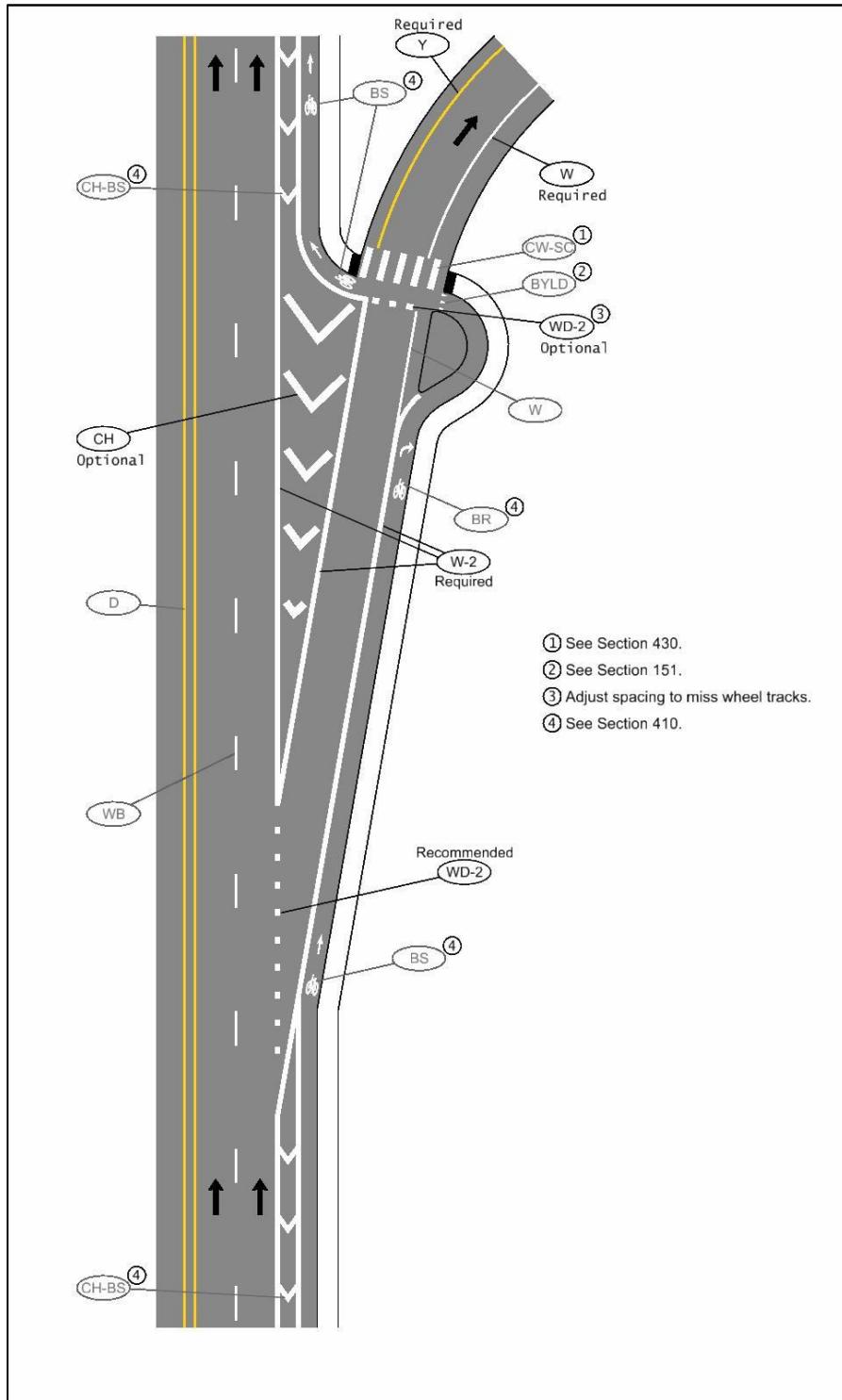
63 Figure 360-D: Typical Freeway Entrance Ramp Markings (With Added Lane)



64

Interchange Ramps: Exit & Entrance Ramps

Section 360


65 Figure 360-E: Typical Freeway Entrance Ramp Markings (With Parallel Acceleration Lane)

Interchange Ramps: Exit & Entrance Ramps

Section 360

67 Figure 360-F: Typical Markings for Perpendicular Crossing of Through Bicycle and Pedestrian
68 Facilities Across a Ramp

69

**Interchange Ramps:
Exit & Entrance Ramps****Section 360****70 Support**

71 Clear guidance through signing and markings is needed to safely and efficiently guide drivers
72 through interchange areas. This is especially true at complex, unfamiliar interchanges where
73 multiple simultaneous driving tasks can be expected of a driver (reading signs, finding gaps,
74 changing lanes, responding to slower traffic, etc.). A driver's workload and stress increases
75 when they do not receive the information they expect, if they are surprised, or need to execute
76 multiple lane changes in a short distance. Drivers expect sufficient advance warning through
77 signing and markings of critical decision points to make any lane changes in a safe and timely
78 manner (1). Adequate and consistent information provided by signing and striping in advance
79 of and at interchanges helps drivers know if they need to take action or if other drivers around
80 them need to act (2).

81 Using a wide dotted lane line (DLL-2) in advance of a dropped lane improves driver
82 understanding that he or she must exit soon but still has time to change lanes. This
83 understanding of an impending dropped lane improves with the use of a solid line (3). A field
84 study (4) confirmed this understanding by changing broken lines in advance of several freeway
85 dropped lanes to dotted lanes with a solid line shortly before the painted gore. Researchers
86 observed an upstream shift in the location where drivers made lane changes in advance of the
87 dropped lanes, fewer drivers changing lanes near the gore points, and fewer drivers making
88 erratic maneuvers at the gore areas. These changes in lane line patterns, along with advance
89 overhead signing, helps communicate the upcoming change and needed actions.

90 Chevrons in gore areas could be beneficial at locations where additional path guidance is
91 needed due to a dropped lane, crash history, unusual vertical and/or horizontal geometry, or
92 complex interchanges, though there is little research qualifying the benefits of gore area
93 chevrons at this time.

94 Use of a dotted lane line at an acceleration lane (instead of a broken line like past MUTCD
95 practice) is intended to communicate that the acceleration lane does not continue ahead (5).

96 The taper length at the end of the parallel acceleration lane (Figure 360-E) is typically 300 feet,
97 which comes from the AASHTO Green Book (6). This taper length, which is shorter than the
98 lane reduction tapers used in Section 250, is intended to give drivers a clear visual cue that the
99 acceleration lane is ending with sufficient length to make an emergency stop if needed (7). See
100 the AASHTO Green Book and the Highway Design Manual (8) for more information.

101 Cross References

102 Colors	Section 110
103 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
104 Typical Layouts for RPMs	Section 133
105 Yield Lines	Section 151
106 Lane Lines	Section 220

**Interchange Ramps:
Exit & Entrance Ramps****Section 360**

107	Edge Lines.....	Section 230
108	Interchange Ramps: Ramp Terminals	Section 361
109	Bicycle Lanes.....	Section 410
110	Bicycle Lane Buffers	Section 412
111	Marked Crosswalks	Section 430

112 Key References

- 113 1. Richard, C. M., and M. G. Lichty. Driver Expectations When Navigating Complex Interchanges. Federal Highway Administration Office of Safety Research and Development, McLean, VA, Final Report FHWA-HRT-13-048, 2013. <https://www.fhwa.dot.gov/publications/research/safety/13048/13048.pdf>.
- 114 2. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_600Second.pdf. Accessed October 23, 2012.
- 115 3. Fitzpatrick, K., M. Ogden, and T. Lienau. Motorists' Comprehension of Exit Lane Drop Signs and Markings. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1464, 1994, pp. 51-59. <http://onlinepubs.trb.org/Onlinepubs/trr/1994/1464/1464-007.pdf>.
- 116 4. Fitzpatrick, K., M. Lance, and T. Lienau. Effects of Pavement Markings on Driver Behavior at Freeway Lane Drop Exits. *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 1495, 1995, pp. 17-27. <http://onlinepubs.trb.org/Onlinepubs/trr/1995/1495/1495-003.pdf>.
- 117 5. Washington, D.C.: United States Government Publishing Office, 2009, p. 66796. <https://www.gpo.gov/fdsys/pkg/FR-2009-12-16/pdf/E9-28322.pdf>.
- 118 6. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and Streets*, 6th ed. Washington, D.C., 2011.
- 119 7. Reilly, W. R., R. C. Pfefer, R. M. Michaels, A. Polus, and J. M. Schoen. NCHRP Project 3-35: Speed-Change Lanes. Northwestern University, Washington, D.C., Final Report 1989. http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP03-35_FR.pdf.
- 120 8. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem, Oregon, 2012.
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133

1 Interchange Ramps: 2 Ramp Terminals

Section 361

3 Introduction

4 Markings at ramp terminals provide positive direction and reinforcement to minimize wrong-
5 way turns.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 9 • [MUTCD 11th Edition: 3B.23 Lane-Use Arrows](#)
- 10 • [MUTCD 11th Edition: 3B.24 Wrong-Way Arrows](#)

11 Design Parameters

12 01 Exit ramps shall:

- 13 • Include lane use arrows in each lane at the terminal intersection.
- 14 • Include lane use arrows in each lane at the beginning of the wide white line (W-2)
15 when there is more than one lane on the exit ramp approaching the terminal
16 intersection (Figures 361-A and 361-B).
- 17 • Be marked with edge lines and a traversable median on the two-way portion for
18 ramps that carry two-way traffic on some of its length (such as folded diamond
19 interchanges) as shown in Figure 361-D. One-way portions shall be marked with
20 standard edge lines.

21 02 A wrong-way arrow may be used instead of a lane use arrow on one-lane exit ramps and at locations
22 where lane-use arrows are not appropriate to show the correct direction of traffic flow.

23 03 If used, a wrong-way arrow should be installed within 50 feet of the "DO NOT ENTER" sign(s) or in
24 a location where an engineering study demonstrates the wrong-way arrow will be clearly visible to
25 potential wrong-way road users.

26 04 At ramps that carry two-way traffic on some of its length (such as folded diamond interchanges) where
27 channelization or ramp geometrics do not make wrong-way movements difficult:

- 28 • A dotted line extension should be used from a left turn lane on the crossroad to the entrance
29 ramp (Figure 361-D).
- 30 • A wrong-way arrow should be used on single-lane exit ramps in addition to the lane use arrow
31 located at the terminal intersection (Figure 361-D).

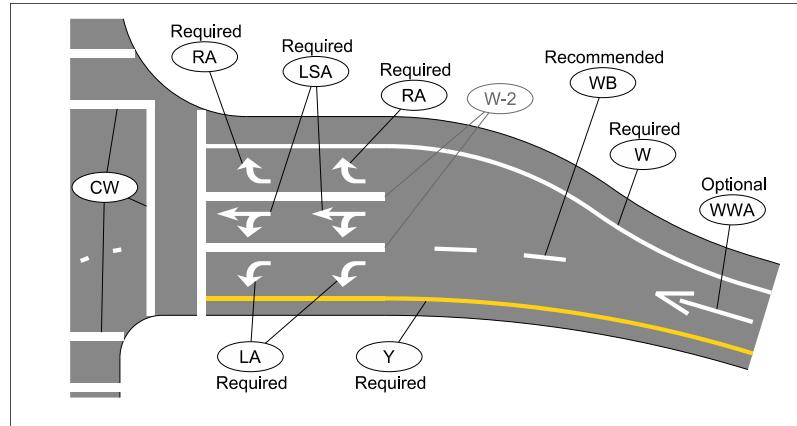
32 05 Multi-lane exit ramps should include a lane line as soon as the pavement width is sufficient for two
33 lanes with adequate shoulders. If this point is located prior to storage requirements, a white broken
34 line (WB) should be used as the lane line until the beginning of turn lanes at the ramp terminal. For

Interchange Ramps: Ramp Terminals

Section 361

35 ramps with three or more lanes, the lane line should guide drivers into the lane that will minimize lane
36 changes or into the lane containing the heaviest movement (Figure 361-A).
37 06 If a stop bar is used across an exit ramp, it should be a wide stop bar (S-2).
38 07 On two-lane, two-way crossroads, crossroad approaches to the terminal intersection should include
39 no-passing zone markings in the approach direction a minimum distance from the terminal
40 intersection listed in Table 211-2 in Section 211.
41 08 Exit ramps may include an additional wrong-way arrow at a location upstream of the
42 terminal intersection to discourage wrong way movement.

Required Approvals

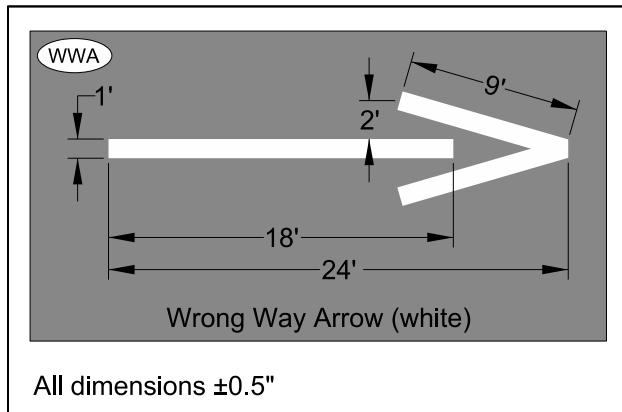

44 Region traffic engineer approval is required for use of red-backed raised pavement markers
45 used for wrong-way treatments.

Design Issues

47 Installation and maintenance of in-lane arrows are generally close to the ramp terminal where
48 wrong-way drivers can see the arrow as they enter the ramp, and where vehicle speeds are
49 significantly less than a location closer to the gore point. Red-backed RPMs can require
50 significant attention from maintenance crews with less benefit compared to in-lane arrows.

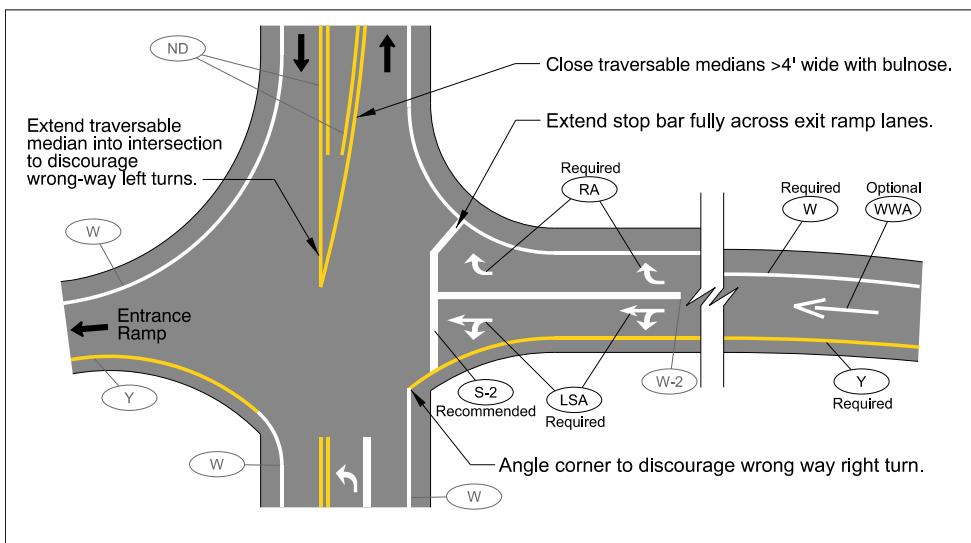
Figures & Tables

52 Figure 361-A: Typical Exit Ramp Lane Addition Transition



53

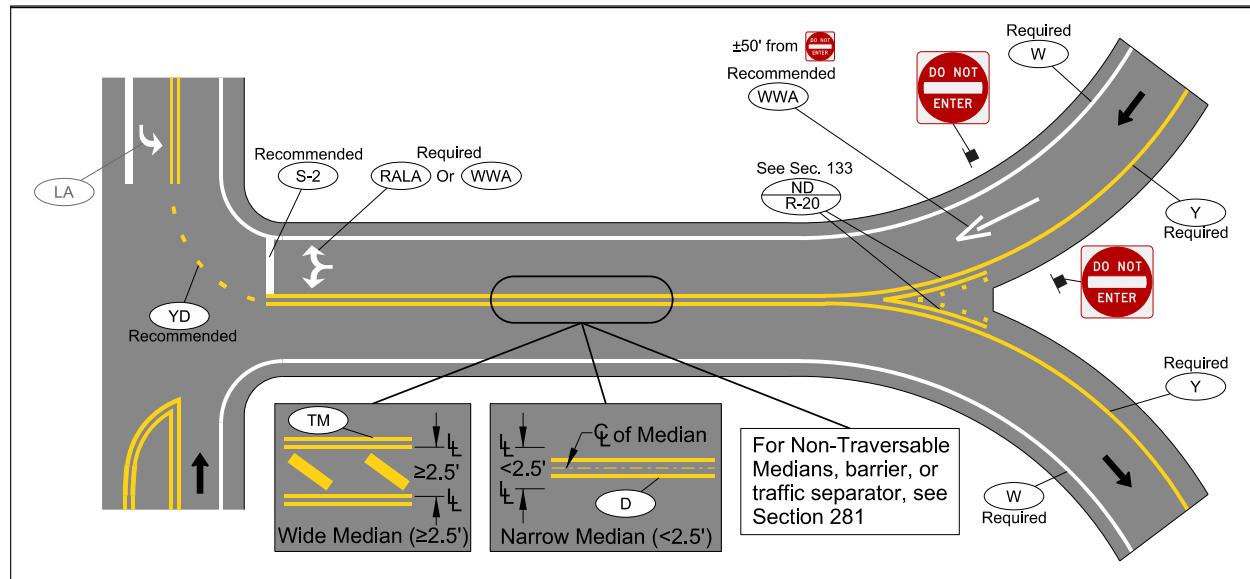
Interchange Ramps: Ramp Terminals


Section 361

54 Figure 361-B: Directional Arrow Marking Types

55

56 Figure 361-C: Typical Rural, Non-Signalized Ramp Terminal Markings



57

Interchange Ramps: Ramp Terminals

Section 361

58 Figure 361-D: Typical Two-Way Ramp Terminal Markings

59

Support

60 61 Wrong-way events are rare and unpredictable and often result in severe and newsworthy crashes. However, there are some trends that help put these events in context. There have been numerous domestic and international research efforts to determine contributing factors for wrong-way driving (1) (2) (3) (4) (5) (6) (7) (8). These efforts are consistently finding:

- 62 • Wrong-way crashes are more likely to occur during early morning hours and on weekends.
- 63 • Wrong-way crashes are more severe than other freeway crashes.
- 64 • Older drivers and male drivers are overrepresented in wrong-way crashes.
- 65 • Impaired driving is a significant factor in the majority of wrong-way driving.
- 66 • Most wrong-way entries are made at freeway exit ramps. Certain interchange types are more susceptible to wrong-way entries, including partial cloverleaf and folded diamond interchanges.
- 67 • Most wrong-way vehicles are passenger cars, used for personal purposes, and have a single occupant.

73 Other factors that were not as consistent but still mentioned in the literature included driver inattention, insufficient knowledge of the road or loss of bearings, and insufficient lighting, signing, and pavement markings.

78 In-lane arrows overwhelmingly improve understanding of lane directionality and add significant value where road users could be confused about the proper direction of traffic flow (9). Because of this high level of road user understanding, literature on mitigating wrong-way

Interchange Ramps: Ramp Terminals

Section 361

81 movements consistently recommends in-lane arrows as an effective low-cost mitigation (5) (3)
82 (10) (11) (8). Section 2B.41 in the 2009 MUTCD (12) also recommends lane use arrows in each
83 lane of an exit ramp near the ramp terminal where they will be clearly visible to potential
84 wrong-way road users.

85 Red-backed raised pavement markers (RPMs) have been used in varying degrees and
86 configurations by some states since the 1970s. However, red-backed RPMs are not universally
87 understood and in-lane arrows communicate wrong-way direction much better (13). Some
88 states use red-backed RPMs to simulate a wrong-way arrow, but this configuration requires
89 more maintenance than a standard wrong-way arrow to make sure the arrow is always present
90 and legible (2).

91 If it is desired to use red-backed RPMs, see section 406.1 Wrong-Way Treatments of the Traffic
92 Manual (14) for more information on wrong-way treatments and considerations. The red side of
93 a red-backed RPM is be placed so that it is visible to vehicles that would be traveling in the
94 wrong direction. With the many designs of ramps used, the design of red-backed RPMs will
95 vary depending on location. It is also important to work with maintenance forces when
96 planning to install red-backed RPMs.

97 Some left turn lanes on cross roadways at ramp terminals extend beyond the other ramp
98 terminal and can be confusing to drivers where they turn left to access the freeway/expressway
99 (2). In these cases, installing a straight arrow and additional guide signs in the portion of the left
100 turn lane upstream from the other ramp terminal can help provide positive guidance to the
101 proper intersection to make a left turn.

102 Ramps with two-way traffic can also be confusing for drivers making a left turn to the entrance
103 ramp. Using a left-turn intersection guide line can help guide turning motorists into the correct
104 lane (Figure 361-D), especially when the ramp's lanes are separated by a non-traversable
105 median (3) (6) (8). Extending stop bar fully across one-way ramp terminals can also help
106 discourage wrong-way entry (15).

107 Road user surveys suggest drivers use color of centerlines to determine directionality of a two-
108 lane roadway but some 20-30 percent of surveyed road users did not know the centerline color
109 communicated directionality (yellow for two-way, white for one-way) (9). These findings
110 support marking the left side of ramps yellow but this is generally not considered an effective
111 wrong-way countermeasure because of the high misinterpretation of color meaning.

112 Cross References

113 Colors	Section 110
114 Center Lines	Section 210
115 Lane Lines	Section 220
116 Edge Lines	Section 230
117 Left Turn Lanes	Section 310

**Interchange Ramps:
Ramp Terminals****Section 361****118 Key References**

- 119 1. Cooner, S. A., A. S. Cothron, and S. E. Ranft. Countermeasures for Wrong-Way Movements on Freeways:
120 Overview of Project Activities and Findings. Texas Transportation Institute, Texas A&M University, Austin,
121 Texas, FHWA/TX-04/4128-1, 2004. <http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/4128-1.pdf>.
- 122 2. North Texas Tollway Authority. Keeping NTTA Roadways Safe: Wrong-Way Driver Task Force Staff Analysis.
123 Plano, TX, 2009. <https://www.ntta.org/newsresources/safeinfo/wrongway/Documents/WWDAnalysisAUG2011.pdf>.
- 125 3. Zhou, H., J. Zhao, R. Fries, M. R. Gahrooei, L. Wang, B. Vaughn, K. Bahaaldin, and B. Ayyalasomayajula.
126 Investigation of Contributing Factors Regarding Wrong-Way Driving on Freeways. Department of Civil and
127 Environmental Engineering, Illinois Center for Transportation, Springfield, Illinois, ICT-12-010, 2012. <http://cetrans.isg.siu.edu/wwd/FHWA-ICT-12-010.pdf>.
- 129 4. Braam, A. C. Wrong way Crashes: Statewide Study of Wrong Way Crashes on Freeways in North Carolina. 2006.
130 <https://connect.ncdot.gov/resources/safety/Documents/Crash%20Data%20and%20Information/WrongWayCrash.pdf>.
- 132 5. Neuman, T. R., J. J. Nitzel, N. Antonucci, S. Nevill, and W. Stein. NCHRP Report 500, Volume 20: A Guide for
133 Reducing Head-On Crashes on Freeways. Washington, D.C., 2008. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v20.pdf.
- 135 6. National Transportation Safety Board. Highway Special Investigation Report: Wrong-Way Driving. Washington,
136 D.C., NTSB/SIR-12/01, 2012. <https://www.ntsb.gov/doclib/safetystudies/SIR1201.pdf>.
- 137 7. Lathrop, S. L., T. B. Dick, and K. B. Nolte. Fatal Wrong-Way Collisions on New Mexico's Interstate Highways,
138 1990-2004. *Journal of Forensic Sciences*, Vol. 55, no. 2, March 2010, pp. 432-437. http://www.ce.siu.edu/faculty/hzhou/ww/paper/Fatal%20wrong-way%20on%20new%20mexico_2010.pdf.
- 140 8. Monsere, C., S. Kothuri, and A. Razmpa. Wrong Way Driving Analysis and Recommendations. Portland State
141 University, Portland, Oregon, 2017. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Wrong-Way-Driver-Report.pdf.
- 143 9. Hawkins, H. G., A. H. Parham, and K. N. Womack. NCHRP Report 484: Feasibility Study for an All-White
144 Pavement Marking System. Texas Transportation Institute, Washington, D.C., ISBN 0-309-06772-3, 2002. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_484.pdf.
- 146 10. Cooner, S. A., A. S. Cothron, and S. E. Ranft. Countermeasures for Wrong-Way Movement on Freeways:
147 Guidelines and Recommended Practices. Texas Transportation Institute, Texas A&M University, Austin, Texas,
148 Texas, FHWA/TX-04/4128-2, 2004. <http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/4128-2.pdf>.
- 149 11. Schrock, S. D., H. G. Hawkins, and S. T. Chrysler. Effectiveness of Lane Direction Arrows as Pavement Markings
150 in Reducing Wrong-Way Movements on Two-Way Frontage Roads. *Transportation Research Record: Journal of the*
151 *Transportation Research Board of the National Academies*, no. 1918, 2005, pp. 63-67. <http://trrjournalonline.trb.org/doi/10.3141/1918-08>.
- 153 12. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
154 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 155 13. Miles, J. D., P. J. Carlson, B. Ullman, and N. Trout. Red Retroreflective Raised Pavement Markings: Driver
156 Understanding of Their Purpose. *Transportation Research Record: Journal of the Transportation Research Board*, Vol.
157 2056, 2008, pp. 34-42. <http://trb.metapress.com/content/82wx451g816p37mn/fulltext.pdf>.
- 158 14. Oregon Department of Transportation. Traffic Manual, 2021 Edition. January 2021. https://www.oregon.gov/odot/Engineering/Docs_TrafficEng/Traffic-Manual-2021.pdf. Accessed September 2, 2021.

**Interchange Ramps:
Ramp Terminals****Section 361**

160 15. Vaswani, N. K. Measures for Preventing Wrong-Way Entries on Highways. University of Virginia,
161 Charlottesville, Virginia, VHRC 72-R41, 1973. [http://www.virginiadot.org/vtrc/main/online_reports/pdf/72-
162 r41.pdf](http://www.virginiadot.org/vtrc/main/online_reports/pdf/72-r41.pdf).

1 **Bicycle Lanes**

Section 410

2 **Introduction**

3 A bicycle lane is a portion of the roadway designated by pavement markings and/or signs for
4 the preferential or exclusive use of people riding bicycles.

5 **Relevant MUTCD Sections**

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • MUTCD 11th Edition: Chapter 9E. Markings
 - 8 ○ The 11th Edition of the MUTCD majorly expanded the Chapter 9E. Markings
9 section with many more options and support information related to design
10 around bicycles.

11 **Design Parameters**

12 01 Bicycle lane markings shall consist of:

- 13 • A wide longitudinal white lane line (W-2) to separate motor vehicle lanes from a
14 bicycle lane traveling in the same direction.
- 15 • A double yellow line (D or ND) to separate motor vehicle lanes from a bicycle lane
16 traveling in the opposite direction.
- 17 • Bicycle stencils or "Bicycle Lane" signs placed after intersections.

18 02 Except at dropped lanes (see Section 330), wide white dotted lines (WD-2) shall be used to
19 extend longitudinal bicycle lane lines through areas where motor vehicles weave across a
20 bicycle lane.

21 03 At signalized intersections where the crossing distance between crosswalks is greater than 60 feet, the
22 bicycle lane line should be extended through the intersection with a wide dotted line (WD-2) (see
23 Figure 410-C). If both intersecting roadways have bicycle lanes and the crossing distance of both
24 roadways is greater than 60 feet, only the bicycle lane line on the major roadway should be extended.

25 04 At unsignalized intersections, the bicycle lane line on an uncontrolled approach should be extended
26 through the intersection with a wide dotted line (WD-2) where the distance between the wide solid
27 white bicycle lane lines (W-2) is greater than 60 feet (see Figure 410-D).

28 05 Additional bicycle stencils or signs should be installed on long sections of roadway with no
29 intersections at an approximate spacing (in feet) of 40 times the posted speed (in mph).

30 06 Bicycle stencils or signs may be omitted immediately after intersections where blocks are
31 short.

32 07 **A through bicycle lane shall not be positioned to the right of a right-turn lane or to the left
33 of a left turn lane unless conflicting movements are controlled by a traffic control signal.**

34 08 When adjacent to parallel on-street parking, a buffer should be provided according to Section 412
35 between the bicycle lane and parked vehicles so the right edge of the bicycle lane is at least 11 feet from
36 the face of the curb, or from the edge of the pavement where there is no curb.

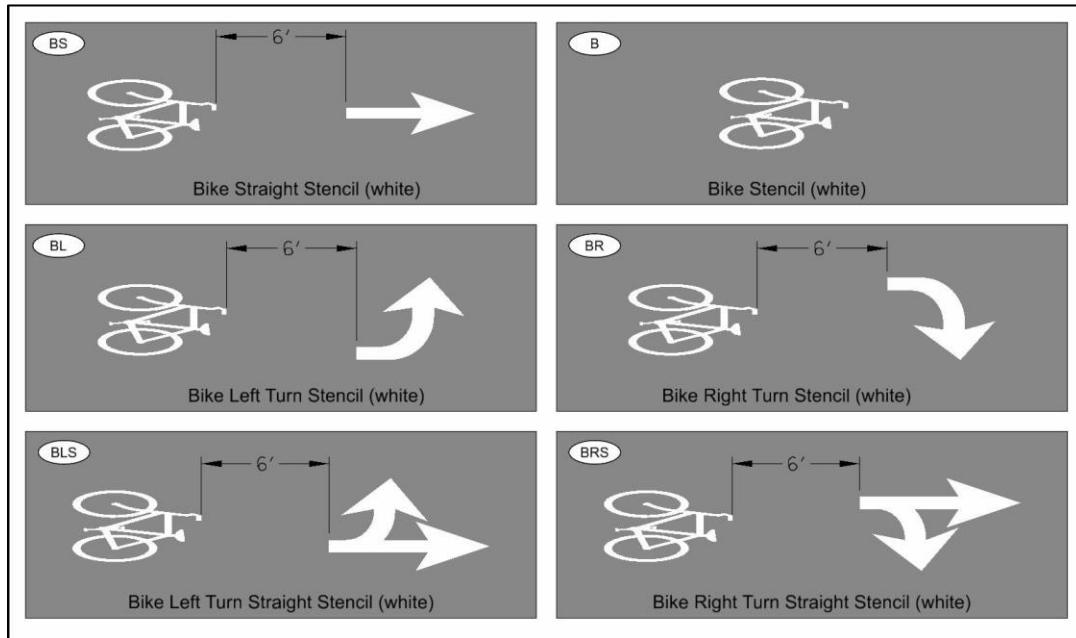
Bicycle Lanes**Section 410**

37 09 Where a bicycle lane is 7 feet wide or wider, the bicycle lane width should be reduced with a buffer
38 according to Section 412, an edge line to the right of the bicycle lane according to Section 230, or a
39 white dotted lane line (DLL) to create two adjacent bicycle lanes according to Section 220.

40 10 At an intersection with a left turn bicycle lane, a wide white dotted line (WD-2) may be used
41 to extend the bicycle lane line through the intersection if there is a receiving bicycle lane (see
42 Figure 410-E).

43 11 A white solid line (W) should be used as shown in Figure 440-C where it is not practical to eliminate
44 an obstruction or drain grate located within the bicycle lane that is inappropriate for bicycle travel.

45 12 Where the path of the bicycle lane through the intersection is contiguous to a crosswalk,
46 two wide dotted lines (WD-2) shall be provided to establish the lateral limits of the
47 bicycle lane extension. The transverse line establishing one side of the crosswalk, or the
48 limit of a high-visibility crosswalk pattern that does not employ a transverse line, shall
49 not be used to demarcate one side of the bicycle lane extension (examples in Figure 410-F
50 and Figure 410-H).

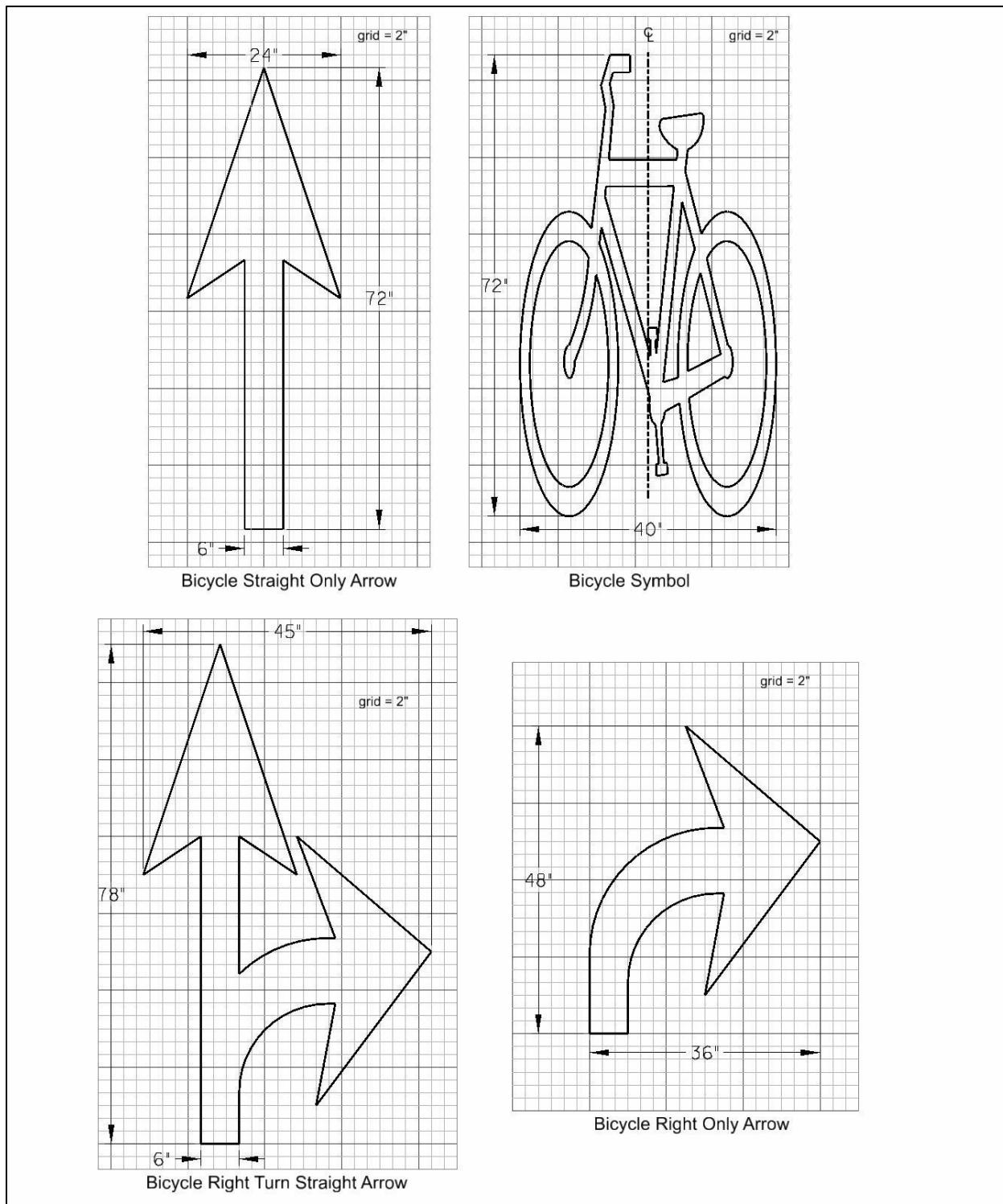

51 **Design Issues**

52 Low raised devices (e.g.: raised pavement markers) can cause steering difficulties for people on
53 bicycles if they need to leave the bicycle lane to avoid debris or make a turn (1)

54 See Section 330 for design parameters related to bicycle lanes at dropped right turn lanes. See
55 Section 350 for design parameters related to bicycle lanes at roundabouts. See Section 411 for
56 information on ending bicycle lanes.

57 **Figures & Tables**

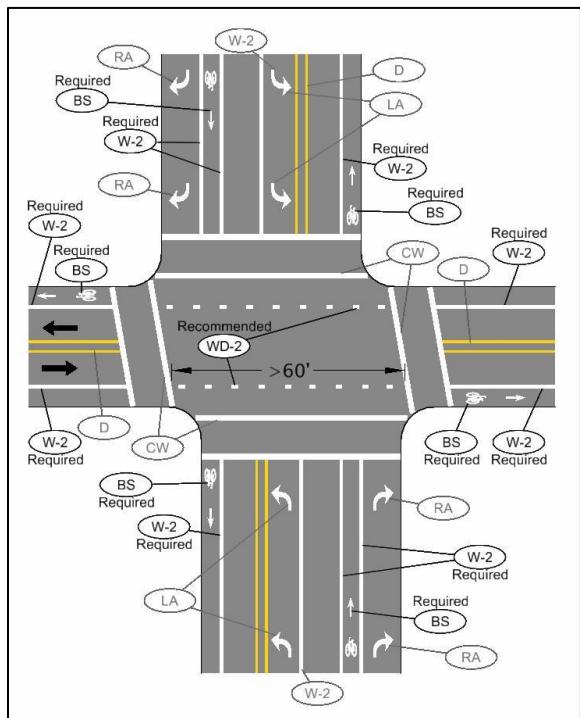
58 Figure 410-A: Bicycle Lane Stencil Types



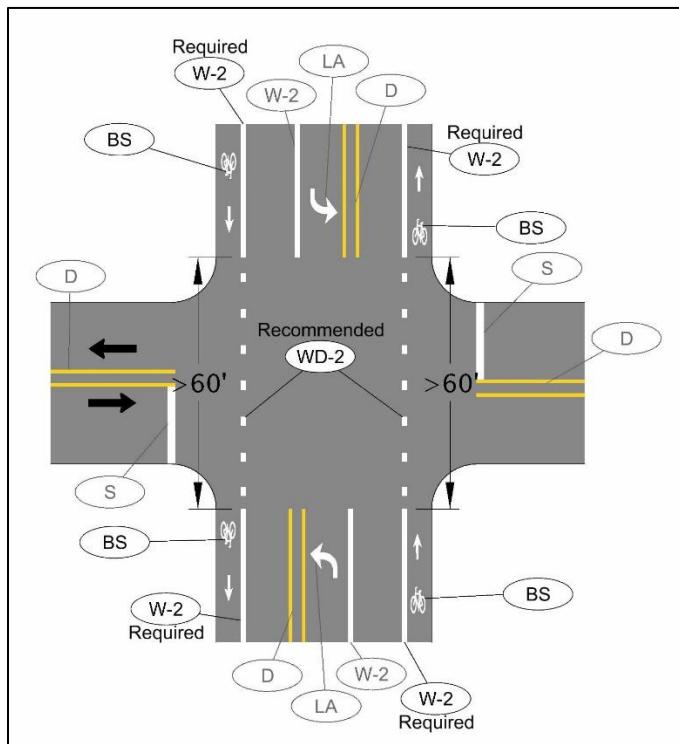
59

Bicycle Lanes

Section 410

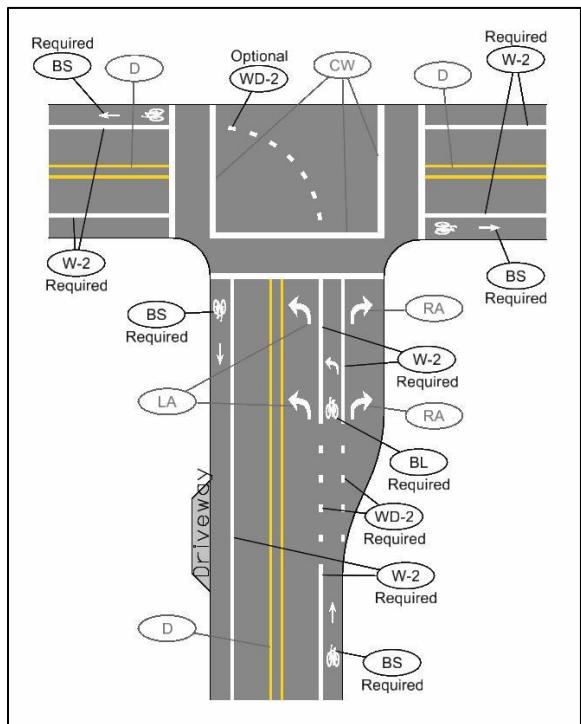

60 Figure 410-B: Bicycle Lane Stencil Dimensions

61

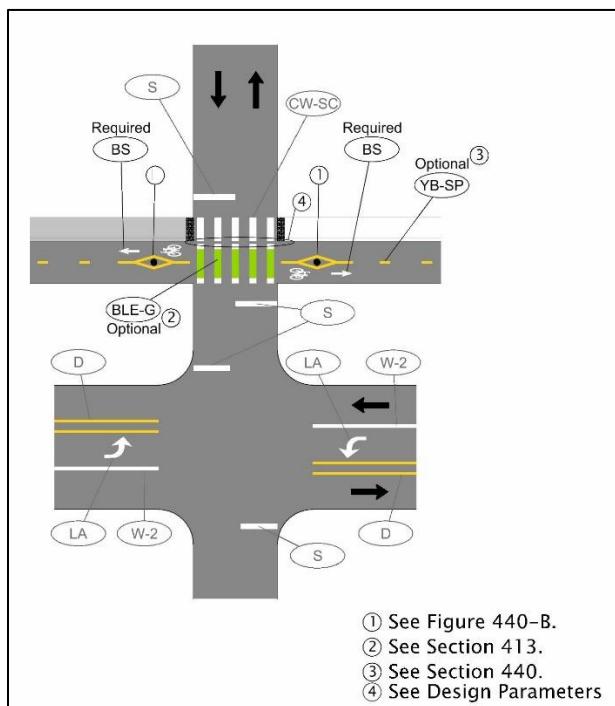

Bicycle Lanes**Section 410**

62 Figure 410-C: Typical Bicycle Lane Markings at a Signalized Intersection

63


64 Figure 410-D: Typical Bicycle Lane Markings at an Unsignalized - Long Bicycle Crossing

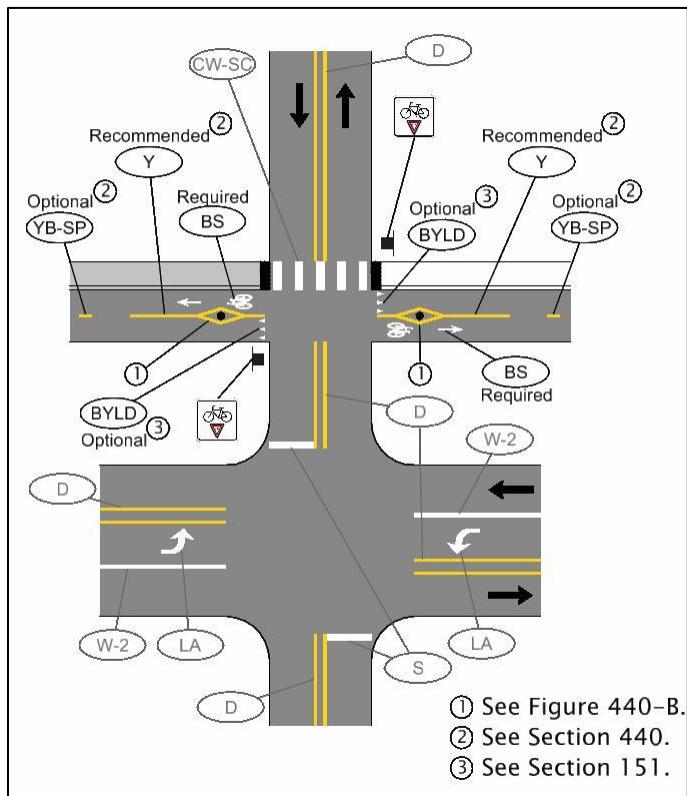
65


Bicycle Lanes**Section 410**

66 Figure 410_E Typical Bicycle Lane Markings at a Signalized T-Intersection

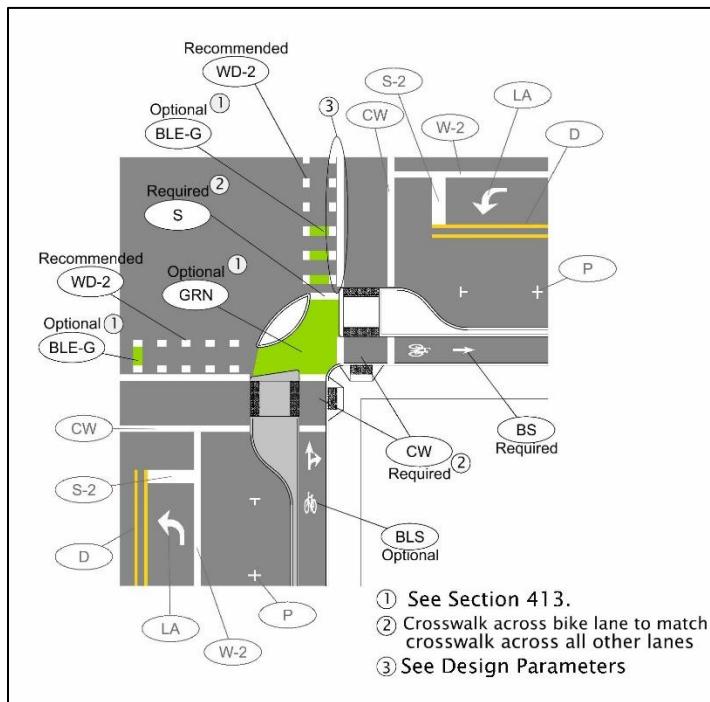
67

68 Figure 410-F: Typical 2-Way Separated Bicycle Lane Crossing - Road Stop Controlled



69

Bicycle Lanes


Section 410

70 Figure 410-G: Typical 2-Way Separated Bicycle Crossing - Bicycle Lanes Yield Controlled

71

72 Figure 410-H: Example Separated Bicycle Lane Markings at a Signalized Intersection

73

74 Support

75 Bicycle lanes are one-way lanes specifically for cycling that let people on bicycles ride at their
76 preferred speed. By providing a designated place to ride, people on bicycles generally position
77 themselves and behave more predictably in bicycle lanes and reduce sidewalk riding (1) (2).
78 Bicycle lanes typically run in the same direction as adjacent travel lanes, but could run counter-
79 flow on one-way roadways for route connectivity and to minimize out-of-direction travel.
80 Bicycle lanes are typically most helpful on roadways with an ADT of 3000 vehicles per day or
81 greater, roadways with a posted speed of 25 mph or greater, and on streets with high transit use
82 (3).

83 The width of a bicycle lane directly affects the safety and comfort of the facility. Several factors
84 affect the operating space of a bicycle lane, including speed of adjacent motor vehicles,
85 proportion of heavy vehicles, adjacent parked vehicles, storm grates, debris, and uneven
86 longitudinal surfaces. As traffic volume, speed, and heavy vehicle percentages increase, people
87 on bicycles tend to move further from the motor vehicle lane toward parked vehicles, the curb,
88 or edge of pavement. There is also natural side-to-side movement that varies with bicycle speed,
89 wind, and rider proficiency. All these variables require a wider bicycle lane than the width the
90 bicycle physically occupies (2).

91 The standard width of a bicycle lane is 6 feet. The minimum width of a bicycle lane with open
92 shoulders is 4 feet. The minimum width of a bicycle lane against curb, guardrail, or parked cars
93 is 5 feet (4).

94 “Right-hook” crashes are a common crash type in urban areas. This crash type occurs where a
95 right turning driver crosses over the bicycle lane and hits a cyclist. Recent simulator research
96 suggests providing a dotted line across the intersection and a bicycle stencil at the right-hook
97 conflict point improves driver searching and crash avoidance of this crash type (5). A dotted
98 line extension also adds path guidance for drivers and cyclists through skewed intersections,
99 intersections through horizontal curves, and long intersection crossings. A 60-foot intersection
100 crossing is about 3 to 5 seconds travel time for a typical adult cyclist on level grade (1). There is
101 insufficient research on preview needs for cyclists; this crossing length recommendation for a
102 dotted line extension is based on human factors studies that estimate drivers need to be able to
103 preview the road 2 to 3 seconds ahead to maintain lane position (6).

104 “Dooring” crashes are also a severe crash type for people on bicycles (7). This crash type occurs
105 where a bicycle lane is positioned next to parallel parking and open vehicle doors extend into
106 the bicycle lane. To avoid this crash type, a very high level of concentration is required by the
107 cyclist to continually check parked vehicles ahead, which can reduce a cyclist’s ability to assess
108 other hazards. Avoiding an opening door also requires a complex and rapid reaction,
109 simultaneously swerving to avoid the door, checking surrounding traffic, and possibly rapid
110 braking (7). Without a buffer between parked vehicles and the bicycle lane, cyclists tend to
111 position themselves in this “door zone,” likely to move away from moving traffic (2); a buffer
112 helps reduce the need to continuously monitor parked vehicles and focus on other upcoming

Bicycle Lanes**Section 410**

113 hazards (8). If only markings are used to mitigate dooring crashes, a buffer between parallel
114 parking and the bicycle lane is more effective at moving bicyclists outside the door zone than
115 simply providing a wider bicycle lane (2) (9). For standard parking widths, 95th percentile
116 vehicle displacement, and an open door width of 45 inches, the open door zone width of parked
117 vehicles extends to approximately 11 feet from the curb (2).

118 Obstructions within a bicycle lane such as bollards need to be clearly marked to guide cyclists
119 around the obstruction. Abrupt sunken grates or other obstructions unsafe for bicycling might
120 need temporary delineation if it cannot be corrected in a timely manner. Grates within 0.25 inch
121 below the path surface are generally sufficient for bicycle traffic (1) (4).

122 See the ODOT Bicycle and Pedestrian Design Guide (4), AASHTO Guide for the Development
123 of Bicycle Facilities (1), NCHRP Report 766 (2), and NACTO Urban Bikeway Design Guide (3)
124 for more details on bicycle lane design. See the Oregon Supplement to the MUTCD for more
125 Oregon-specific info (10).

126 **Cross References**

127 Colors	Section 110
128 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
129 Transverse Markings	Section 125
130 Lane Lines	Section 220
131 Edge Lines	Section 230
132 Added Right Turn Lanes	Section 320
133 Channelized Right-Turn Lanes	Section 321
134 Dropped Lanes and Auxiliary Lanes on Conventional Roads	Section 330
135 Line Extensions Through Intersections	Section 340
136 Roundabouts	Section 350
137 Bicycle Lane End Transitions	Section 411
138 Bicycle Lane Buffers	Section 412
139 Colored Pavement in Bicycle Lanes	Section 413
140 Intersection Bicycle Box	Section 414
141 Shared Lane Markings	Section 420
142 Shared-Use Path Markings	Section 440
143 Railroad Crossing Markings	Section 510
144 Bus Pullouts	Section 520
145 Preferential Lane Markings	Section 530
146 Parking Space and Curb Markings	Section 630

147 **Key References**

- 148 1. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
149 4th ed. Washington, D.C., 2012.
- 150 2. Torbic, D. J., K. M. Bauer, C. A. Fees, D. W. Harwood, R. V. Houten, J. LaPlante, and N. Roseberry. NCHRP
151 Report 766: Recommended Bicycle Lane Widths for Various Roadway Characteristics. Transportation Research
152 Board of the National Academies, Washington, D.C., ISBN 978-0-309-28416-5, 2014. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_766.pdf.

Bicycle Lanes**Section 410**

154 3. National Association of City Transportation Officials. *NACTO Urban Bikeway Design Guide*, 2nd ed. Island Press,
155 New York, New York, 2014. <http://nacto.org/cities-for-cycling/design-guide/>.

156 4. Oregon Department of Transportation. *Bicycle and Pedestrian Design Guide*, 3rd ed. Oregon Department of
157 Transportation, Salem, Oregon, 2011. http://www.oregon.gov/ODOT/Engineering/Documents_RoadwayEng/
158 *HDM_L-Bike-Ped-Guide.pdf*.

159 5. Hurwitz, D. H., C. Monsere, M. Jannat, J. Warner, and A. Razmpa. Towards Effective Design Treatment for Right
160 Turns at Intersections with Bicycle Traffic. Oregon State University and Portland State University, Salem, Oregon,
161 Final Technical Report FHWA-OR-RD-16-06, 2015. <http://www.oregon.gov/ODOT/Programs/>
162 *ResearchDocuments/SPR767_FinalReport_070815.pdf*.

163 6. Campbell, J. L., M. G. Lichty, J. L. Brown, C. M. Richard, J. S. Graving, J. Graham, M. O'Laughlin, D. Torbic, and
164 D. Harwood. NCHRP Report 600: Human Factors Guidelines for Road Systems. 2012. <http://onlinepubs.trb.org/>
165 *onlinepubs/nchrp/nchrp_rpt_600Second.pdf*. Accessed October 23, 2012.

166 7. Johnson, M., S. Newstead, J. Oxley, and J. Charlton. Cyclists and Open Vehicle Doors: Crash Characteristics and
167 Risk Factors. *Safety Science*, Vol. 59, November 2013, pp. 135-140. <http://www.sciencedirect.com/science/article/pii/S0925753513001057>. DOI: <http://dx.doi.org/10.1016/j.ssci.2013.04.010>

168 8. Monsere, C. M., N. McNeil, and J. Dill. Multiuser Perspectives on Separated, On-Street Bicycle Infrastructure.
169 *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2314, 2012,
170 pp. 22-30. <http://trrjournalonline.trb.org/doi/abs/10.3141/2314-04>. DOI: <http://dx.doi.org/10.3141/2314-04>

171 9. Duthie, J., J. F. Brady, A. F. Mills, and R. B. Machemehl. Effects of On-Street Bicycle Facility Configuration on
172 Bicyclist and Motorist Behavior. *Transportation Research Record: Journal of the Transportation Research Board of the*
173 *National Academies*, Vol. 2190, 2010, pp. 37-44. <http://trrjournalonline.trb.org/doi/abs/10.3141/2190-05>. DOI:
174 <http://dx.doi.org/10.3141/2190-05>

175 10. Oregon Department of Transportation. *Oregon Supplement to the 2009 MUTCD*, 2009 ed. Oregon Department of
176 Transportation, Salem, Oregon, 2011. http://www.oregon.gov/ODOT/Engineering/Documents_TrafficStandards/
177 *MUTCD-OR-Supplement.pdf*.

178

1 **Bicycle Lane End Transitions**

Section 411

2 **Introduction**

3 The end of a bicycle lane is a critical transition area where there is not sufficient riding space on
4 the shoulder or other separate cycling facility downstream from the transition. Like a motor
5 vehicle lane reduction, a standard layout for ending bicycle lanes provides advance warning of
6 the transition and encourages cyclists to take advantage of sufficient gaps in traffic before
7 reaching the taper.

8 **Relevant MUTCD Sections**

9 See the following sections for standards, guidance, and options not found in this manual:

- 10 • [MUTCD 11th Edition: Chapter 9E. Markings](#)

11 **Design Parameters**

12 01 *Except on an approach to a roundabout, the bicycle lane end transition markings shown in Figure 411
13 should be used where a bicycle lane ends on roadways with a posted or 85th percentile speed of 35 mph
14 or greater and where the shoulder or other separate cycling facility downstream of the transition does
15 not provide at least 4 feet of clear riding space.*

16 02 *A wide white dotted line (WD-2) should be used between the bicycle lane and general lane a distance
17 "d" from the beginning of the taper and continue to the beginning of the taper. The transition taper
18 length should be computed by the formula $L=WS$ (see Figure 411).*

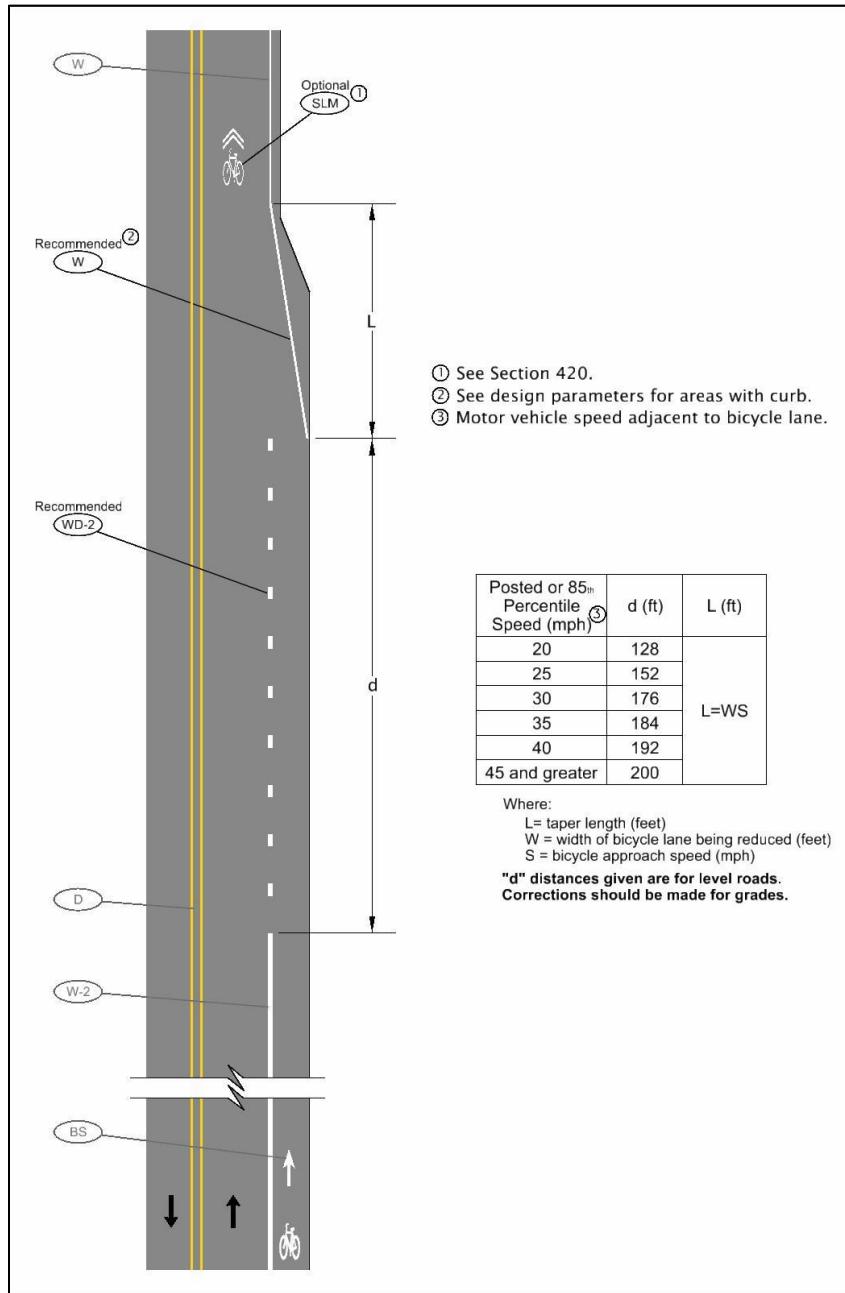
19 03 Where a curb clearly defines the roadway edge in the taper area, the edge line shown in
20 Figure 411 may be omitted in the taper area as determined by engineering judgement.

21 04 A different "d" value may be used based on engineering judgement if the "d" value in
22 Figure 411 is not practical.

23 05 A shared lane marking may be used after the bicycle lane end transition according to Section
24 415.

25 **Design Issues**

26 Where a wide shoulder or other riding space is provided after the bicycle lane ends so cyclists
27 do not need to merge into the motor vehicle lane, the bicycle lane can be ended by transitioning
28 from a bicycle lane line (W-2) to a standard edge line (W).


29 A "Bicycle Lane Ends" warning sign (OBW1-9) (1) might need to be used in advance of the
30 taper to provide advance warning to cyclists to find a gap in traffic and merge into the travel
31 lane and warn drivers of merging cyclists. See the MUTCD (2) for advance placement of
32 warning signs. For example, an advance warning distance using Condition B decelerating to 10

Bicycle Lane End Transitions**Section 411**

33 mph might be sufficient to give drivers advance warning of merging cyclists and cyclists
 34 enough time to find a gap to merge.

Figures & Tables

35 Figure 411: Typical Bicycle Lane End Transition, Narrow Downstream Shoulder

37

38 Support

39 Like standard lane reductions, the end of a bicycle lane can be a complex driving and riding
40 situation. Some roads with bicycle lanes can have a segment of narrow width, such as at a
41 narrow bridge, but then widen back out with bicycle lanes on the far side. Bicycle lanes end at
42 other locations where it has been provided for a long distance, such as a suburban fringe or
43 entering a downtown area. In each case, drivers need to be given enough time to watch for
44 bicycles merging into their lane, bicyclists need to find an acceptable gap in traffic and merge,
45 and all road users need to know where to expect the merge.

46 Because of the lack of national guidance on these transitions, the layout given in Figure 411 is
47 based on guidance in the AASHTO Guide for the Development of Bicycle Facilities (3) for
48 terminating bicycle lanes at roundabouts. The taper length comes from standard obstruction
49 markings at the edge of path or roadways for biking given in Figure 9C-8 of the 2009 MUTCD
50 (2).

51 Changing the wide solid bicycle lane line to a wide dotted line can encourage cyclists to take
52 advantage of gaps in traffic to merge, rather than delay to a point where, if there are no gaps in
53 traffic, the only practical alternative is to stop and wait for one (3). The "d" distance of dotted
54 line derives from the travel time in a standard lane reduction between the end of the lane line
55 and beginning of the taper (0.75d, between 5 and 10 seconds) at a high typical riding speed on
56 level terrain (15 mph) (3) and is consistent with recommended dotted line distance at
57 roundabouts in the AASHTO Guide for the Development of Bicycle Facilities (3). Distances are
58 rounded up to the nearest multiple of 8 feet to accommodate the standard 8-foot cycle length for
59 dotted lines.

60 Cross References

61 Colors	Section 110
62 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
63 Edge Lines	Section 230
64 Lane Reduction Transitions	Section 250
65 Bicycle Lanes	Section 410
66 Shared Lane Markings	Section 420

67 Key References

- 68 1. Oregon Department of Transportation. Sign Policy and Guidelines. July 2014. http://www.oregon.gov/ODOT/HWY/TRAFFIC-ROADWAY/docs/pdf/entire_sign_policy.pdf. Accessed November 25, 2014.
- 70 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 72 3. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*, 4th ed. Washington, D.C., 2012.

1 **Bicycle Lane Buffers**

Section 412

2 **Introduction**

3 A bicycle lane buffer is a neutral space between a bicycle lane and a motor vehicle lane. This
4 space improves road user comfort by separating cyclists from motor vehicles more than a
5 standard bike lane (1).

6 **Relevant MUTCD Sections**

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: Chapter 9E. Markings
- 9 • MUTCD 11th Edition: 9E.06 Buffer-Separated Bicycle Lanes

10 **Design Parameters**

11 01 A buffer may be marked between a bicycle lane and an adjacent lane where roadway width
12 allows.

13 02 **A marked buffer between a bicycle lane and another lane traveling in the same general
14 direction shall consist of a wide white line (W-2) along both edges of the buffer (Figure
15 412-A).**

16 03 **Counter-flow bicycle lanes located at the edge of the roadway shall use double yellow
17 center line pavement markings, a painted median island, a raised median island, or some
18 form of physical separation where the speed limit is 30 mph or less.**

19 04 **For speed limits 35 mph or greater, a buffer per Section 3B.25, a painted or raised median
20 island, or some form of physical separation shall be used to separate a counter-flow
21 bicycle lane from the adjacent travel lane .**

22 05 **A marked buffer between a bicycle lane and a parking lane shall consist of a normal white
23 line (W) along the bicycle lane side of the buffer and on-street parking markings (P) on
24 along the parking lane side of the buffer according to Section 630 (Figure 412-A).**

25 06 *If used, a buffer between a bicycle lane and another travel lane should not be less than 2 feet wide and
26 should not be greater than 6 feet wide.*

27 07 *Where a buffer space is 3 feet wide or wider and separates traffic traveling in the same general
28 direction, crosshatch markings should be used in the buffer.*

29 08 **Where crosshatch markings are used to separate traffic flows in the same general
30 direction, they shall be white buffer space chevron bars (CH-BS) (Figure 412-A).**

31 09 *The longitudinal spacing of the chevrons should be determined using engineering judgement
32 considering factors such as speeds and desired visual impacts and at least spaced 10' or greater.*

Bicycle Lane Buffers

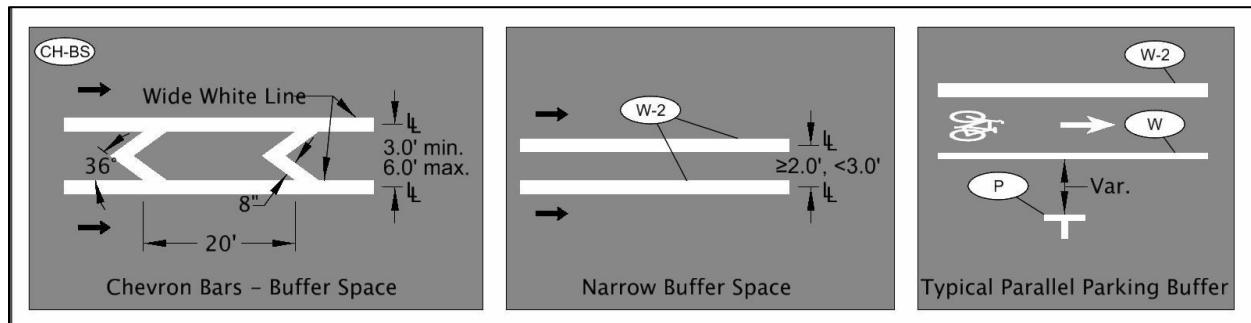
Section 412

33 10 Except as provided in paragraph 10 and Section 340, buffer markings shall not continue
34 across intersections.

35 11 If a buffer line is extended through an intersection according to Section 340 with no horizontal
36 curvature or lane offset, the line closest to the bicycle lane should be extended through the intersection
37 (Figures 412-B and 412-C).

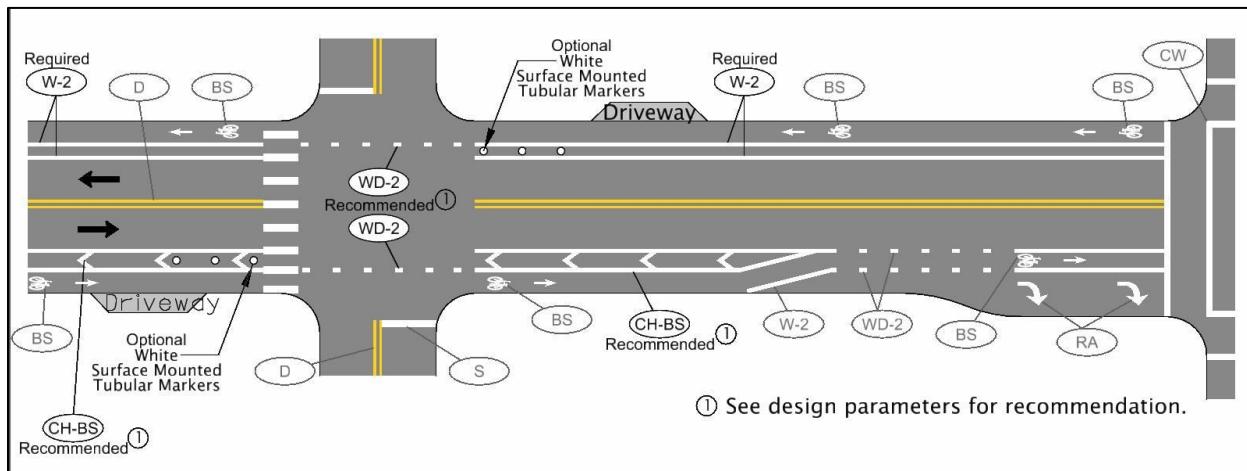
38 12 Buffer markings should continue across minor driveways (private or public) and alleys.

39 13 Tubular markers or other channelizing devices may be used within buffers based on
40 engineering judgement (see Section 140).

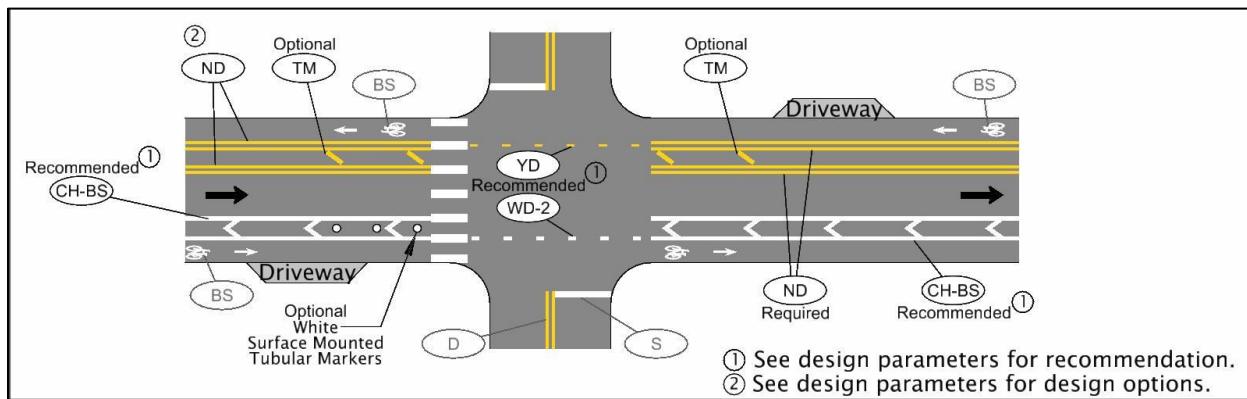

Design Issues

42 In Oregon, it is illegal to cross a traversable median with yellow transverse median bars.
43 Contact the region access management engineer when considering yellow transverse median
44 bars near accesses.

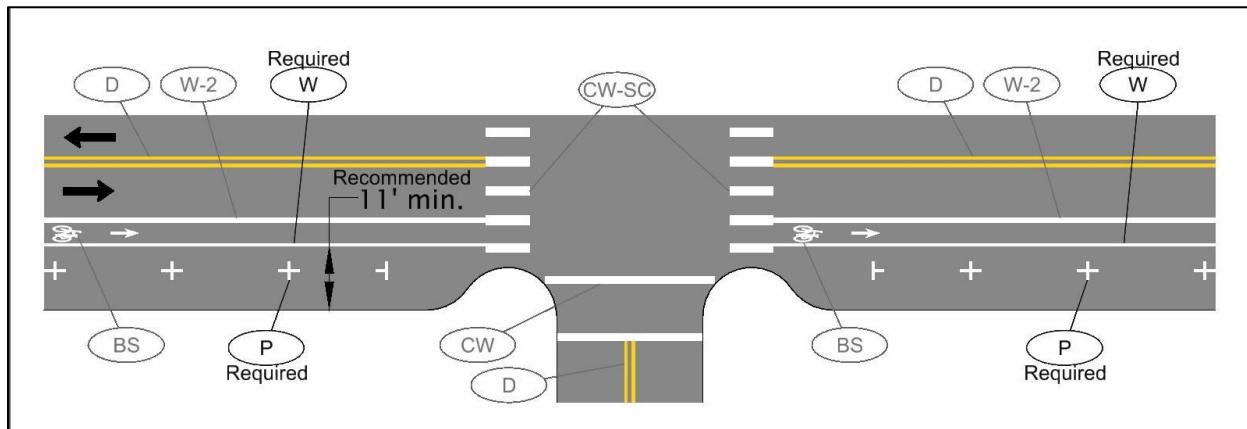
45 If tubular markers are used in the buffer, use a type that is easily removed and replaced for
46 maintenance activities (sweeping, replacement of damaged markers, restriping, etc.). Consider
47 maintenance needs of roadway elements in and near the buffer and bike lane and needs of
48 surrounding land uses when choosing the location of tubular markers (additional pavement
49 markings, stormwater facilities, utilities, business deliveries, oversize freight, etc.).


Figures & Tables

51 Figure 412-A: Bicycle Lane Buffer Types


Bicycle Lane Buffers**Section 412**

53 Figure 412-B: Typical Buffered Bicycle Lanes, Low & High Right Turn Volumes


54

55 Figure 412-C: Typical Buffered Counter-Flow Bicycle Lane Markings

56

57 Figure 412-D: Typical Buffer Between Bicycle Lane and Parallel Parking

58

59 Support

60 Greater separation between people on bicycles and motor vehicles as traffic volume and motor
61 vehicle speed increase is a widely recognized design recommendation. A buffer between a
62 bicycle lane and motor vehicles is one way to provide this separation. This additional space can
63 improve cyclist comfort, increase the number of people biking (1) (2), and can improve cyclist
64 safety when properly designed (3) (4), all of which are stated goals and policies in ODOT's
65 Bicycle and Pedestrian Plan (5). Painted buffers (even buffers with tubular markers) provide
66 minimal additional separation with no changes to the road cross-section; some road contexts
67 may need other separation measures to meet local needs and goals.

68 Buffered bicycle lanes are still relatively new and can be confusing to road users if not properly
69 designed. When first implemented on Portland streets, there appeared to be confusion on how
70 and where motorists were allowed to use the buffered bicycle lane, especially at intersections
71 with no right turn lane and at parallel parking (1). Crosshatching in the buffer and additional
72 bicycle lane stencils can help define the function of the buffer space and bicycle lane between
73 intersections. Providing a right turn lane (even if it removes a short section of buffer), extending
74 the bicycle lane line through the intersection, separate signal phases, or tubular markers or
75 other vertical elements can help positively guide road users at intersections.

76 "Dooring" crashes are a severe crash type for people on bicycles (6). Providing a buffer between
77 a bicycle lane and parallel parking can help move cyclists outside the door zone significantly
78 better than a wide bicycle lane alone (3) (7), and can let cyclists focus on other upcoming riding
79 hazards. See Section 410 for additional support.

80 Vertical elements in the buffer, such as tubular markers, can improve cyclist comfort and help
81 open new cycling routes to "interested but concerned" riders (1) (2) (4) (also in support of
82 policies stated in ODOT's Bicycle and Pedestrian Plan (5)). In narrow bicycle lanes, vertical or
83 raised devices in the buffer need to be placed far enough outside the bicycle lane to avoid
84 creating a collision potential for cyclists (8). The minimum operating width for a typical upright
85 adult cyclist is 4 feet (handlebar to handlebar) to account for natural side-to-side movement (9).
86 Tubular marker height also needs to be considered; the typical adult bicycle has a handlebar
87 height 36 to 44 inches above the pavement (9) and most tubular markers come in standard
88 heights of 28, 36, 42, or 48 inches.

89 Vertical or raised devices also need to be placed far enough outside a motor vehicle lane to
90 minimize maintenance of the device and to allow enough space for striping equipment to
91 maintain the buffer line on the motor vehicle side. Striping equipment typically cannot maintain
92 a line placed closer than 1.5 feet from the face of a vertical object.

93 Past practice has recommended crosshatching (chevrons or diagonal bars) in buffers 4 feet wide
94 or wider based on recommendations in the Motor Vehicle Preferential Lane Markings section of
95 the 2009 MUTCD (Chapter 3D.02) (8). This section is focused on separating lanes of motor
96 vehicle traffic, especially on high speed, high volume, and limited access highways. Because
97 bicycles operate in a smaller space than motor vehicles, small buffers with no crosshatching can
98 begin to look like a bicycle lane in urban contexts at lower speeds, so the purpose of buffer

99 spaces can be less clear compared to high speed limited access contexts. For these reasons and
100 accounting for practical limits on narrow buffer markings, crosshatching is recommended for
101 buffers as narrow as 3 feet in the design parameters.

102 **Cross References**

103 Colors	Section 110
104 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
105 Transverse Markings	Section 125
106 Tubular Markers and Lane Separators	Section 140
107 Center Lines	Section 210
108 Lane Lines	Section 220
109 Traversable Medians	Section 260
110 Channelizing Lines and Traversable Channelizing Islands	Section 270
111 Non-Traversable Medians & Channelizing Islands	Section 281
112 Line Extensions Through Intersections	Section 340
113 Bicycle Lanes	Section 410
114 Colored Pavement in Bicycle Lanes	Section 413
115 Parking Space and Curb Markings	Section 630

116 **Key References**

- 117 1. Monsere, C. M., N. McNeil, and J. Dill. Multiuser Perspectives on Separated, On-Street Bicycle Infrastructure. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2314, 2012, pp. 22-30. <http://trrjournalonline.trb.org/doi/abs/10.3141/2314-04>. DOI: <http://dx.doi.org/10.3141/2314-04>
- 118 2. McNeil, N., C. M. Monsere, and J. Dill. Influence of Bike Lane Buffer Types on Perceived Comfort and Safety of Bicyclists and Potential Bicyclists. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2520, January 2015, pp. 132-142. <http://trrjournalonline.trb.org/doi/abs/10.3141/2520-15>. DOI: <http://dx.doi.org/10.3141/2520-15>
- 119 3. Torbic, D. J., K. M. Bauer, C. A. Fees, D. W. Harwood, R. V. Houten, J. LaPlante, and N. Roseberry. NCHRP Report 766: Recommended Bicycle Lane Widths for Various Roadway Characteristics. Transportation Research Board of the National Academies, Washington, D.C., ISBN 978-0-309-28416-5, 2014. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_766.pdf.
- 120 4. Federal Highway Administration. *Separated Bike Lane Planning and Design Guide*. U.S. Department of Transportation, Washington, D.C., 2015. https://www.fhwa.dot.gov/environment/bicycle_pedestrian/publications/separated_bikelane_pdg/separatedbikelane_pdg.pdf.
- 121 5. Oregon Department of Transportation. *Oregon Bicycle and Pedestrian Plan*. Oregon Department of Transportation, 2016. <https://www.oregon.gov/odot/Planning/Documents/OBPP.pdf>.
- 122 6. Johnson, M., S. Newstead, J. Oxley, and J. Charlton. Cyclists and Open Vehicle Doors: Crash Characteristics and Risk Factors. *Safety Science*, Vol. 59, November 2013, pp. 135-140. <http://www.sciencedirect.com/science/article/pii/S0925753513001057>. DOI: <http://dx.doi.org/10.1016/j.ssci.2013.04.010>
- 123 7. Duthie, J., J. F. Brady, A. F. Mills, and R. B. Machemehl. Effects of On-Street Bicycle Facility Configuration on Bicyclist and Motorist Behavior. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 2190, 2010, pp. 37-44. <http://trrjournalonline.trb.org/doi/abs/10.3141/2190-05>. DOI: <http://dx.doi.org/10.3141/2190-05>
- 124 8. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed. Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

Bicycle Lane Buffers**Section 412**

142 9. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
143 4th ed. Washington, D.C., 2012.

Colored Pavement in Bicycle Lanes

Section 413

Introduction

Green colored pavement is an optional way to enhance the conspicuity of bicycle lanes and extensions of bicycle lanes through conflict areas with motor vehicles. ODOT is generally reserving green colored pavement to conflict areas with motor vehicles to prevent diluting the unique message green colored pavement provides, to minimize maintenance costs, and where pavement markings are used to provide color, to minimize friction concerns over the life of the marking material. Other applications of green colored pavement might require experimental approval.

Relevant MUTCD Sections

See the following sections for standards, guidance, and options not found in this manual:

- [MUTCD 11th Edition: Chapter 9E. Markings](#)
- [MUTCD 11th Edition: 3H.06 Green-Colored Pavement](#)

Design Parameters

01 If used, green colored pavement shall be limited to:

- Bicycle lane,
- Extension of a bicycle lane through intersections,
- Extensions of bicycle lanes through areas where motor vehicles enter a mandatory turn lane in which motor vehicles must weave across bicyclists in bicycle lanes,
- Two-stage bicycle turn boxes,
- Bicycle Boxes and
- As a background for bicycle detector symbols.

02 Green colored pavement shall not be:

- Incorporated into electric-vehicle parking stations or parking stalls,
- Incorporated into crosswalks,
- Used as a background for shared-lane markings or
- Used instead of the required markings for bicycle facilities.

03 If used, green colored pavement should be limited to conflict areas to enhance the conspicuity of the bicycle lane or extension of a bicycle lane or in other areas determined by engineering judgment.

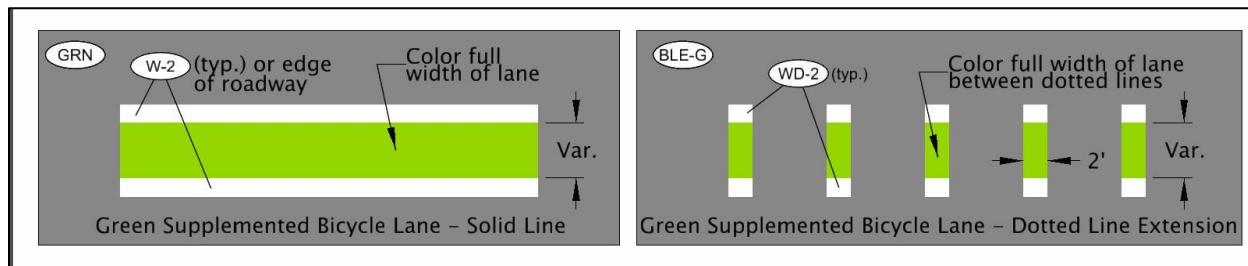
04 If used, green colored pavement should fill the full width of the bicycle lane and should match the pattern of the white longitudinal line(s) the green colored pavement supplements (see Figure 413-A).

Colored Pavement in Bicycle Lanes

Section 413

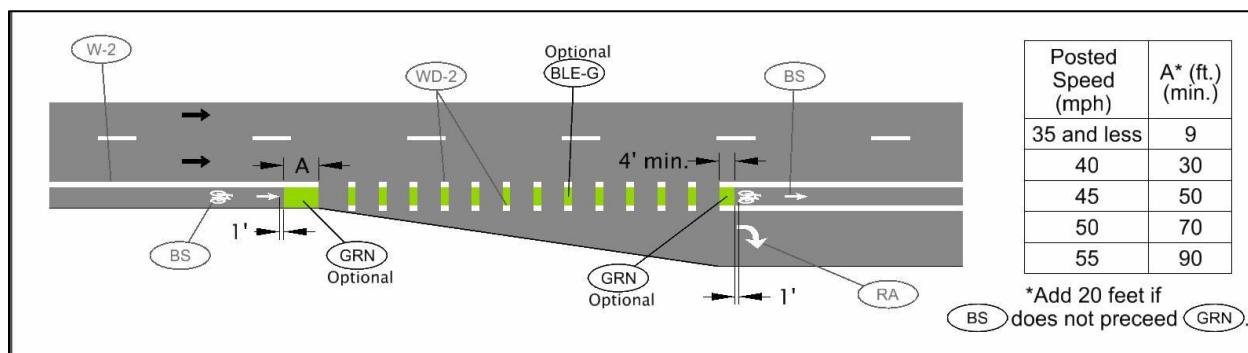
33 05 If used at a conflict area where the upstream travel paths for motor vehicles and bicycles are in the
 34 same general direction, a bicycle stencil (BS) should be used upstream from the green colored
 35 pavement, and green colored pavement should begin a distance "A" before the conflict area and
 36 continue at least 4 feet beyond the conflict area, as shown in Figure 413-B and 413-C.

Required Approvals


37 An engineering study and region traffic engineer approval is required for installation of green
 39 colored pavement.

Design Issues

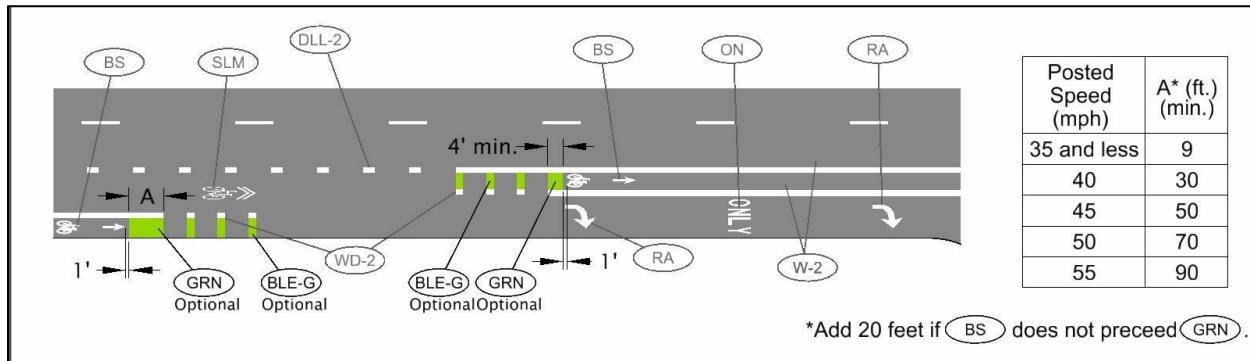
41 FHWA terminated all interim approval under the 2009 MUTCD when the 11th edition of the
 42 MUCTD became effective. Green colored pavement now needs to comply with 11th edition of
 43 the MUTCD.
 44 When possible, separate legends from green pavement markings to simplify installation and
 45 maintenance.


Figures & Tables

47 Figure 413-A: Green Supplemented Bicycle Lane Types

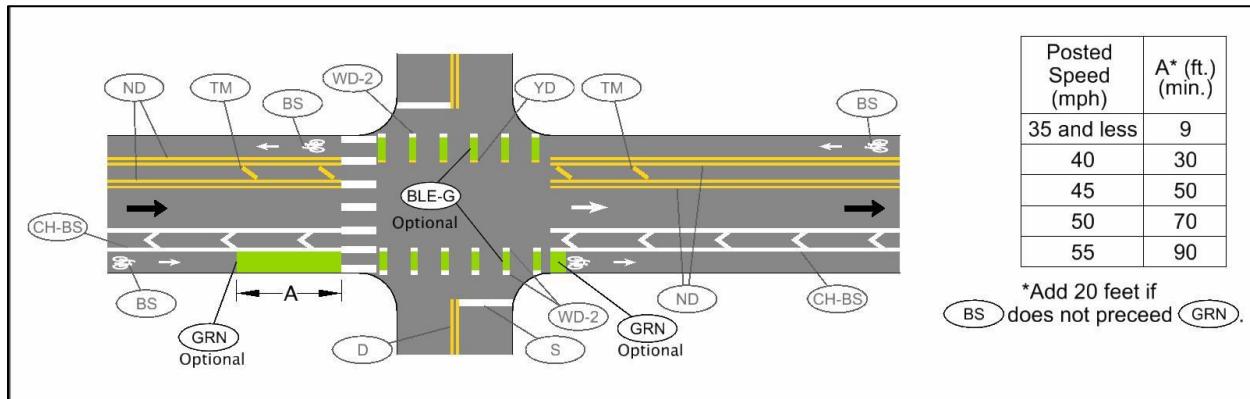
48

49 Figure 413-B: Typical Green Supplemented Bicycle Lane Across an Added Right Turn Lane Taper



50

Colored Pavement in Bicycle Lanes


Section 413

51 Figure 413-C: Typical Green Supplemented Bicycle Lane at a Dropped Right Turn Lane

52

53 Figure 413-D: Typical Green Supplemented Buffered Bicycle Lane at an Intersection

54

Support

55 56 Green colored pavement is a way to highlight space used for cycling. Green markings are not a
57 substitute for greater separation and good geometric design. In high speed, high volume areas
58 green markings might not have a significant impact on operations or safety (1).

59 People on bicycles tend to position themselves and behave more predictably in bicycle lanes
60 supplemented with green markings. Cyclists also report feeling safer when green markings are
61 used, and motorists report green markings increase their awareness that a cyclist might be
62 present and where those cyclists are likely to be positioned on the road (2) (3) (1). For these
63 reasons, and to minimize installation and maintenance costs, green markings are generally
64 being reserved by road authorities to highlight conflict areas where people on bicycles have the
65 right-of-way, locations where a bicycle lane is in an unusual location or configuration, and
66 features intended for the exclusive use of bicycling (e.g.: bike boxes, left turn queue boxes).

67 Green colored pavement is recommended to match the longitudinal lines it supplements
68 because road users might interpret solid green areas differently from dotted green areas (4).
69 This is generally supported in field applications (5) (3) that have shown road users tend to

Colored Pavement in Bicycle Lanes

Section 413

70 misinterpret solid coloring in conflict areas as an area where motorists are not allowed to cross –
71 crossing the bicycle lane before or after the intended conflict area. Matching the pattern of the
72 white longitudinal markings can better communicate where motorists are supposed to cross the
73 bicycle lane at conflict areas.

74 Full-width coloring is recommended because nearly all applications and studies of green
75 pavement markings have been full-width coloring, national guidance (7) shows and describes
76 full-width coloring, and recent National Committee on Uniform Traffic Control Devices
77 recommendation on MUTCD language for colored pavements is to apply color to the full width
78 of the lane (8). Full-width applications clearly communicate a warning to road users about the
79 presence of the bicycle lane, and a potential conflict area. It also maximizes the legibility
80 distance for approaching road users.

81 Surface treatments like green markings change the riding surface's friction available for
82 maneuvering and stopping. This is primarily why retroreflectivity (achieved by covering the
83 surface with glass beads) is not typically used. Construction specifications ensure a minimum
84 friction level is provided when the marking is new. However, applications of green colored
85 pavement are not installed along long lengths of bicycle lanes because surface friction changes
86 over time, to reduce maintenance, reduce installation costs, and protect how green colored
87 pavement can highlight areas road users need to watch for conflicts.

88 The upstream extension distance "A" in Figures 413-A, 413-B, 413-C, and 413-D is based on
89 motor vehicle approach speeds, a perception-reaction time for drivers of 2.5 seconds, a bicycle
90 stencil (BS) length of 18 feet, a marking legibility distance (to the bicycle stencil) of 100 feet, and
91 a motor vehicle deceleration to 10 mph when the driver reaches the conflict area. The advance
92 bicycle stencil provides context for the green colored pavement immediately downstream. For
93 posted speeds under 35 mph (where most bicycle lanes are located), this layout fits into the
94 existing standard layout for added right turn lanes without needing to remove, move, or
95 replace existing markings. This also allows flexibility to use green colored materials that may
96 not be compatible with preformed thermoplastic – commonly used for bicycle stencils.

97 The minimum downstream extension distance of 4 feet highlights the end of the conflict area
98 without requiring removal and replacement of the required bicycle stencil (BS) typically 5 feet
99 after the conflict area.

100 Cross References

101 Colors Section 110
102 Functions, Widths, and Patterns of Longitudinal Lines Section 120
103 Transverse Markings Section 125
104 Added Right Turn Lanes Section 320
105 Channelized Right-Turn Lanes Section 321
106 Dropped Lanes and Auxiliary Lanes on Conventional Roads Section 330
107 Line Extensions Through Intersections Section 340

Colored Pavement in Bicycle Lanes

Section 413

108	Bicycle Lanes.....	Section 410
109	Bicycle Lane Buffers	Section 412
110	Intersection Bicycle Box	Section 414
111	Shared Lane Markings	Section 420
112	Preferential Lane Markings.....	Section 530

113 Key References

- 114 1. Sadek, A. W., A. Dickason, and J. Kaplan. Effectiveness of a Green, High-Visibility Bike Lane and Crossing Treatment. in *Transportation Research Board 86th Annual Meeting Compendium of Papers CD-ROM*, Washington, D.C., 2007. <https://wiki.cecs.pdx.edu/pub/ItsWeb/BikeBoxes/07-0990.pdf>.
- 115 2. Hunter, W. W., D. L. Harkey, R. Stewart, and M. L. Birk. Evaluation of Blue Bike-Lane Treatment in Portland, Oregon. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1705, 2000, pp. 107-115. <http://trrjournalonline.trb.org/doi/pdf/10.3141/1705-16>.
- 116 3. Brady, J., A. Mills, J. Loskorn, J. Duthie, and R. Machemehl. Effects of Colored Lane Markings on Bicyclist and Motorist Behavior at Conflict Areas. Center for Transportation Research, University of Texas at Austin, Austin, Texas, 2010. http://library.ctr.utexas.edu/ctr-publications/iac/COAbike_ColoredLanes-final.pdf.
- 117 4. Hurwitz, D. H., C. Monsere, M. Jannat, J. Warner, and A. Razmpa. Towards Effective Design Treatment for Right Turns at Intersections with Bicycle Traffic. Oregon State University and Portland State University, Salem, Oregon, Final Technical Report FHWA-OR-RD-16-06, 2015. http://www.oregon.gov/ODOT/Programs/ResearchDocuments/SPR767_FinalReport_070815.pdf.
- 118 5. Hunter, W. W., R. Srinivasan, and C. A. Martell. Evaluation of a Green Bike Lane Weaving Area in St. Petersburg, Florida. Highway Safety Research Center, University of North Carolina, Tallahassee, Florida, 2008. http://nacto.org/wp-content/uploads/2011/01/Evaluation_of_Green_Bike_Lane_Weaving.pdf.
- 119 6. National Association of City Transportation Officials. *NACTO Urban Bikeway Design Guide*, 2nd ed. Island Press, New York, New York, 2014. <http://nacto.org/cities-for-cycling/design-guide/>.
- 120 7. Markings Technical Committee of the National Committee on Uniform Traffic Control Devices. Colored Pavements (Yellow, White, Green, Red, and Purple). National Committee on Uniform Traffic Control Devices, Surprise, Arizona, 2014. http://www.ncutcd.org/Documents/Meetings/June_2016/Attach%20No.23%20Markings%20Interim%20No.%202.pdf.
- 121 8. U.S. Department of Transportation Federal Highway Administration. Bicycle Facilities and the Manual on Uniform Traffic Control Devices. *Federal Highway Administration Bicycle and Pedestrian Program*, December 15, 2015. http://www.fhwa.dot.gov/environment/bicycle_pedestrian/guidance/mutcd/index.cfm. Accessed August 24, 2016.

1 Intersection Bicycle Box

Section 414

2 Introduction

3 An intersection bicycle box is a designated area on the approach to a signalized intersection
4 between an advance stop line and the crosswalk intended to provide people on bicycles a space
5 to wait in front of stopped motor vehicles during a red signal phase. At intersections with high
6 bicycle volumes and high right-turning motor vehicle volumes, this can improve signal
7 operations by letting bicycle queues discharge faster compared to a typical bicycle lane.

8 Relevant MUTCD Sections

9 See the following sections for standards, guidance, and options not found in this manual:

- 10 • [MUTCD 11th Edition: Chapter 9E. Markings](#)
- 11 • [MUTCD 11th Edition: 9E.12 Bicycle Box](#)

12 Design Parameters

13 01 Where used, a bicycle box shall be formed by the following parameters:

- 14 • A wide advance stop bar (S-2) placed at least 10 feet in advance of the intersection
15 stop line.
- 16 • At least one bicycle symbol placed within the bicycle box (see Figure 414-A and 414-
17 B).

18 02 At least 50 feet of bicycle lane should be provided on the approach to a bicycle box.

19 03 Green colored pavement should be used within a bicycle box and for at least 30 feet in the approach
20 bicycle lane, where one is provided (see Figure 414-A and 414-B).

21 04 A bicycle box should not extend across more than one motor vehicle lane.

22 Required Approvals

23 An engineering study and state traffic engineer approval is required for installation of an
24 intersection bicycle box at a state highway intersection.

25 Design Issues

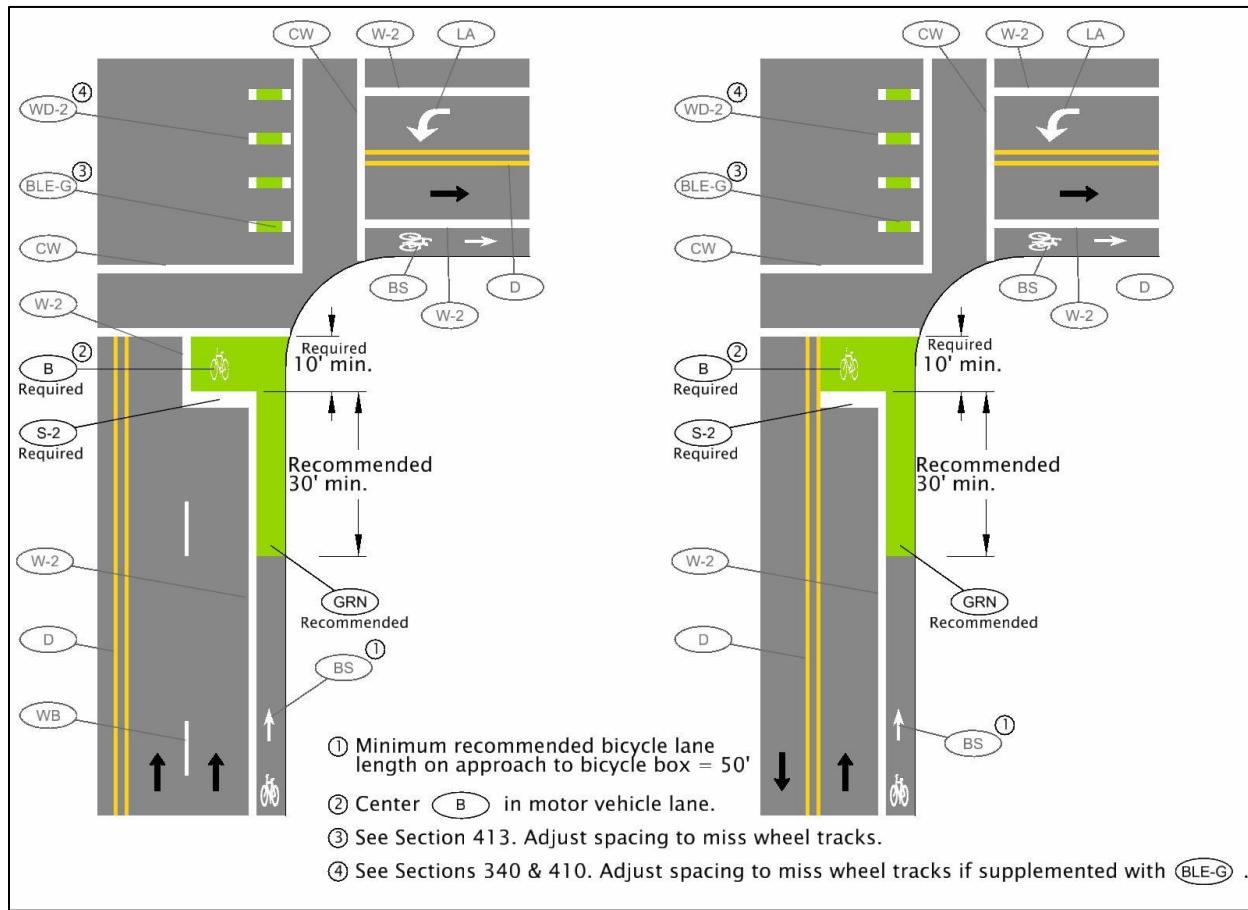
26 FHWA terminated all interim approvals under the 2009 MUTCD when the 11th edition of the
27 MUCTD became effective. Intersection bicycle box now need will comply with 11th edition of
28 the MUTCD.

29 Placement of signal detection is based on distance from the stop bar and partially based on
30 signal head height. Signal detection will need to be modified at retrofit installations of bicycle

Intersection Bicycle Box

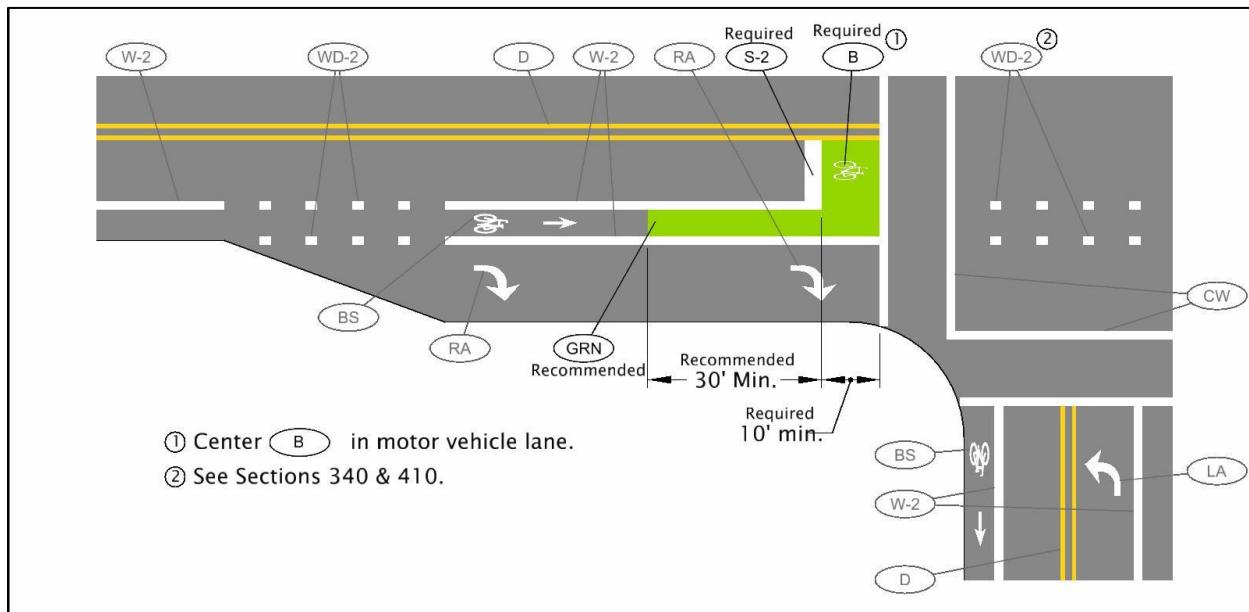
Section 414

31 boxes to ensure motor vehicles are detected at the advance stop bar and bicycles are detected
32 within the bicycle box. Signal timing will also need to be adjusted.


33 High motor vehicle volume and poor pavement conditions can lead to rapid deterioration and
34 discoloration of bicycle box markings (1).

35 At intersections with a receiving bicycle lane and regular bicycle traffic, but where bicycle
36 queues are not significantly impacting signal operations, a motor vehicle advance stop bar
37 (Section 150) and bicycle lane coloring (Section 413) might improve awareness and visibility of
38 cyclists similar to a bicycle box (1).

39 Bicycle boxes can reduce right-hook conflicts at the onset of the green phase, but might not
40 significantly reduce right-hook conflicts once traffic is moving (2). Downhill intersection
41 approaches can contribute to bicycles overtaking motor vehicles at a higher speed during a
42 green phase which might increase right-hook collisions or conflicts, regardless of the presence
43 of a bicycle box, after the initial onset of green (approximately the first 5 seconds of green) (3).


44 Figures & Tables

45 Figure 414-A: Typical Intersection Bicycle Box Layouts without a Right Turn Lane

Intersection Bicycle Box**Section 414**

47 Figure 414-B: Typical Intersection Bicycle Box Layout with a Right Turn Lane

48

Support

50 At intersections with high bicycle volumes, bicycle boxes can improve signal operations. Bicycle
 51 queues discharge faster because cyclists can queue in a group within the box instead of in a line
 52 in a typical bicycle lane. In lane configurations like shared right-through lanes to the left of a
 53 bicycle lane, this can improve intersection capacity and reduce delay to motor vehicle drivers
 54 (4).

55 Bicycle boxes place cyclists at the front of a queue at signalized intersections, which allows
 56 cyclists to take a more visible stopping position in front of drivers (1) (5). Through the
 57 experimentation process in the United States, bicycle boxes have been shown to reduce conflicts
 58 between people on bikes and turning drivers, reduce the number of avoidance maneuvers
 59 between road users, and reduce encroachment by cyclists and motorists into crosswalks.

60 Bicycle boxes can reduce right-hook conflicts at the onset of the green phase but might not
 61 significantly reduce right-hook conflicts once traffic is moving (2). Downhill intersection
 62 approaches can contribute to bicycles overtaking motor vehicles at a higher speed during a
 63 green phase which might increase right-hook collisions or conflicts, regardless of the presence
 64 of a bicycle box, after the initial onset of green (3).

65 Unless there are multiple cyclists in the queue, people on bicycles tend to stay aligned with the
 66 bicycle lane when stopped in a bicycle box (not in the box directly in front of motor vehicles).
 67 This minimizes cyclists' out-of-direction travel and still places them in a visible location to
 68 motorists who are stopped at the advance stop bar (1) (5).

Intersection Bicycle Box**Section 414**

69 Green colored pavement in the bicycle lane a short distance on the approach to the bicycle box
70 and in bicycle box itself might improve operational predictability for all road users. Both cyclists
71 and motorists tend to stop where they're intended to stop more consistently with colored
72 bicycle boxes – i.e. cyclists tend to stop ahead of motor vehicles and stay outside the crosswalk,
73 and motorists tend to stop more consistently at the advance stop bar without encroaching on
74 the bicycle box (1) (5).

75 On intersection approaches where a bicycle lane ends at the intersection (shared lane on the
76 downstream side of the intersection, especially shared lanes too narrow to operate side-by-side),
77 a bicycle box can reduce merging conflicts in the intersection between cyclists and drivers at the
78 beginning of the green signal phase (1). This lets cyclists position themselves at the front of the
79 queue instead of attempting to merge with motor vehicle traffic in the intersection before
80 reaching the narrower roadway section. Bicycle queues still need to be large enough and motor
81 vehicle speeds low enough to support a bicycle box in this situation.

82 Some installations of bicycle boxes have been used to transition from right-side to left-side
83 bicycle lanes, position cyclists ahead of a left turn lane, or make other cross-intersection
84 movements (6). This application typically requires extending the bicycle box across all approach
85 lanes of the intersection. While this is allowed under the MUTCD, this is not recommended at
86 ODOT-owned intersections because it requires cyclists to judge whether or not they have
87 enough time during a red phase to maneuver across motor vehicle lanes in the bicycle box
88 before the beginning of the green phase. The MUTCD requires use of countdown pedestrian
89 signals for bicycle boxes across multiple lanes to show this remaining time. This can require the
90 pedestrian phase to be recalled every cycle which can reduce operational efficiency in some
91 cases. This also might not let cyclists make this maneuver safely near the end of the red phase
92 and through the green phase; cyclists will either need to make a two-stage maneuver with the
93 cross street or merge into motor vehicle lanes (7). Other ADA considerations are also needed
94 when upgrading pedestrian signal heads. Other strategies like a bicycle signal or experimental
95 two-stage left turn box might allow for safer operations.

Cross References

97 Colors	Section 110
98 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
99 Transverse Markings	Section 125
100 Stop Bars	Section 150
101 Lane Lines	Section 220
102 Line Extensions Through Intersections	Section 340
103 Roundabouts	Section 350
104 Bicycle Lanes	Section 410
105 Colored Pavement in Bicycle Lanes	Section 413

106 Key References

107 1. Loskorn, J., A. F. Mills, J. F. Brady, J. C. Duthie, and R. B. Machemehl. Effects of Bicycle Boxes on Bicyclist and
108 Motorist Behavior at Intersections in Austin, Texas. *ASCE Journal of Transportation Engineering*, Vol. 139, no. 10,
109 October 2013, pp. 1039-1046. [http://dx.doi.org/10.1061/\(ASCE\)TE.1943-5436.0000584](http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000584).

110 2. Hurwitz, D. H., C. Monsere, M. Jannat, J. Warner, and A. Razmpa. Towards Effective Design Treatment for Right
111 Turns at Intersections with Bicycle Traffic. Oregon State University and Portland State University, Salem, Oregon,
112 Final Technical Report FHWA-OR-RD-16-06, 2015. <http://www.oregon.gov/ODOT/Programs/>
113 ResearchDocuments/SPR767_FinalReport_070815.pdf.

114 3. Farley, W. R. An Analysis of Bicycle-Vehicle Interactions at Signalized Intersections with Bicycle Boxes. Portland
115 State University, Portland, Oregon, Dissertations and Theses Paper 1618, 2014. <http://archives.pdx.edu/ds/psu/>
116 11016.

117 4. Monsere, C., M. Figliozzi, S. Thompson, and K. Paulsen. SPR 747: Operational Guidance for Bicycle-Specific
118 Traffic Signals in the United States. Portland State University, Portland, Oregon, FHWA-OR-RD-14-06, 2013.
119 http://www.oregon.gov/ODOT/TD/TP_RES/.

120 5. Dill, J., C. M. Monsere, and N. McNeil. Evaluation of Bike Boxes at Signalized Intersections. *Accident Analysis &*
121 *Prevention*, Vol. 44, no. 1, January 2012, pp. 126-134. <http://dx.doi.org/10.1016/j.aap.2010.10.030>.

122 6. Hunter, W. Evaluation of Innovative Bike-Box Application in Eugene, Oregon. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1705, 2000, pp. 99-106. <http://trjournalonline.trb.org/doi/abs/10.3141/1705-15>. DOI: <http://dx.doi.org/10.3141/1705-15>

123 7. National Association of City Transportation Officials. *NACTO Urban Bikeway Design Guide*, 2nd ed. National
124 Association of City Transportation Officials, New York, New York. <http://nacto.org/cities-for-cycling/design-guide/>.

125

126

127

1 Two-Stage Bicycle Turn Boxes

Section 415

2 Introduction

3 Two-stage bicycle turn boxes allow bicyclists the opportunity to make turns at an intersection or
4 crossing point instead of requiring them to merge into traffic upstream or to dismount and use a
5 crosswalk at the intersection or crossing point.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: Chapter 9E. Markings
- 9 • MUTCD 11th Edition: 9E.11 Two-Stage Bicycle Turn Boxes

10 Design Parameters

11 ODOT does not currently have specific requirement related to two-stage bicycle turn boxes that
12 differ from the MUTCD (1), follow the 11th edition of the MUTCD section 9E.11 for use of this
13 traffic control device

14 Required Approvals

15 An engineering study and state traffic engineer approval is required for installation of two-
16 stage bicycle turn boxes at a state highway intersection.

17 Key References

18 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
19 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

20

1 **Bicycle Detector Markings**

Section 416

2 **Introduction**

3 The bicycle detector pavement marking shows people on bikes where to position themselves for
4 passive detection at a traffic signal.

5 **Relevant MUTCD Sections**

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • [MUTCD 11th Edition: Chapter 9E. Markings](#)
- 8 • [MUTCD 11th Edition: 9E.15 Bicycle Detector Symbol](#)
- 9 • [Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines.](#)

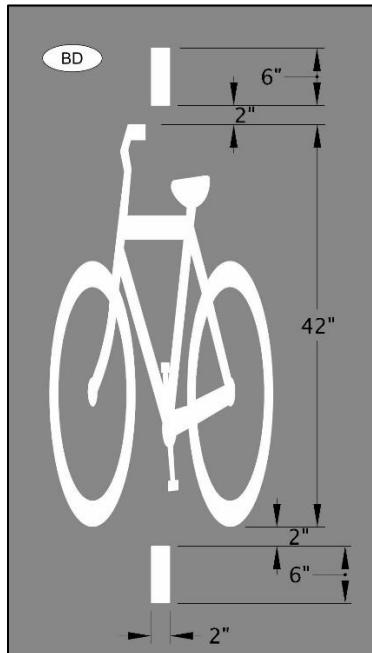
10 **Design Parameters**

11 01 A bicycle detector symbol (see Figure 416-A) may be placed on the pavement indicating the
12 optimum position for a bicyclist to actuate a traffic signal (see Figures 416-B and 416-C).

13 02 *Appropriately-sized WAIT HERE FOR GREEN word markings may be placed on the pavement
14 immediately below the bicycle detector symbol (see figure 9E-16 – MUTCD 11th Ed.).*

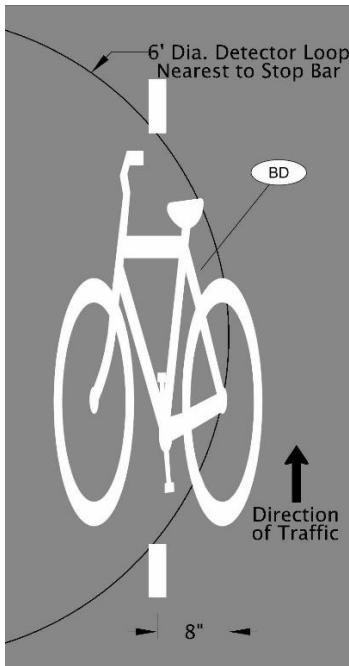
15 03 Smaller size bicycle detector symbol and word markings than shown in MUTCD 11th Ed.
16 Figure 9E-16 may be used.

17 **Design Issues**


18 Where non-intrusive detection is used instead of inductive loops (e.g.: video, infrared, radar,
19 etc.), contact the region signal operations engineer for assistance locating the optimum detection
20 location for application of the bicycle detector marking.

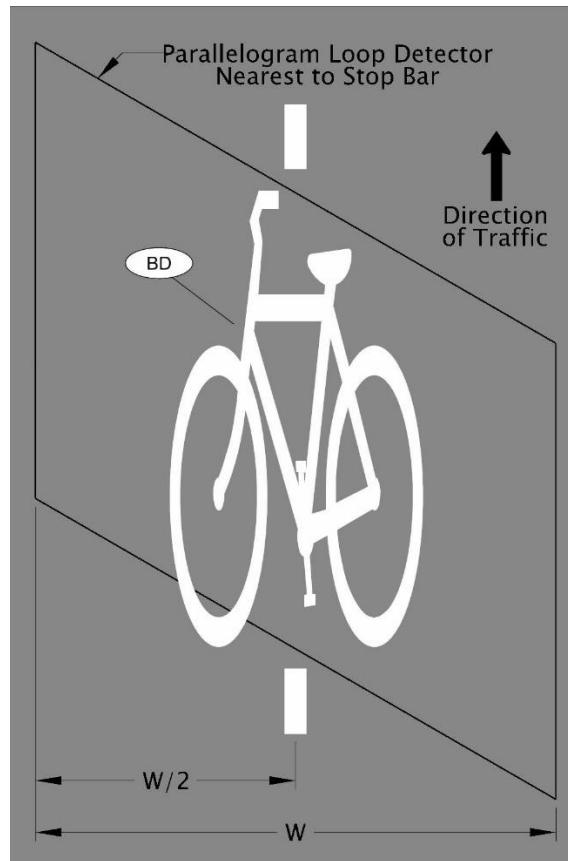
21 Circular loop detectors have two optimum detection zones for bicycles (1); place the bicycle
22 detector symbol on the right side so cyclists can stay as far to the right as practical as required in
23 ORS 814.430.

24 See the 11th edition of the MUTCD (2) for additional signing associated with bicycle detector
25 markings.


26 **Figures & Tables**

27 Figure 416-A: Bicycle Detector Pavement Marking Types

28


29 Figure 416-B: Typical Bicycle Detector Placement at 6-Foot Loop Detector

30

Bicycle Detector Markings**Section 416**

31 Figure 416-C: Typical Bicycle Detector Placement at Parallelogram Loop Detector

32

Support

33 There are many different kinds of signal detectors and the location for optimum bicycle detection can be difficult to find for cyclists, especially if the detection area is out of the normal riding path, where induction loops are paved over, or where non-intrusive detection is used (e.g.: video, infrared, etc.). If a cyclist does not position themselves where they will be detected by a traffic signal they will either have to wait until a motor vehicle is detected or they might grow impatient and run the red light (3). ORS 811.360 allows a cyclist to go against a red light if the signal does not detect the cyclist after one cycle.

34 The bicycle detector marking from Figure 9E-16 in the 11th Edition of the MUTCD (2) is intended to show cyclists where to position their bicycles to actuate a traffic signal. The meaning of the symbol is not well known at this time; less than half of cyclists surveyed in Portland understood the meaning of the marking, and field installations in Portland only slightly improved cyclist positioning for detection, even with supplemental signing (4).

35 At inductive loops, bicycles are best detected when both wheels are on or very near the perimeter of the detector (1). Placing the marking 8 inches from the edge of a 6-foot circular

Bicycle Detector Markings**Section 416**

48 loop detector positions the bicycle in this optimum detection area. Bicycles are typically
49 detected best at parallelogram loop detectors when positioned over the loop's center (5).

50 **Cross References**

51 Colors	Section 110
52 Bicycle Lanes	Section 410

53 **Key References**

- 54 1. Kidarsa, R., T. Pande, S. V. Vanjari, J. V. Krogmeier, and D. M. Bullock. Design Considerations for Detecting
55 Bicycles with Inductive Loop Detectors. *Transportation Research Record: Journal of the Transportation Research Board of*
56 *the National Academies*, Vol. 1978, 2006, pp. 1-7. <http://trrjournalonline.trb.org/doi/abs/10.3141/1978-03>. DOI:
57 <http://dx.doi.org/10.3141/1978-03>
- 58 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
59 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 60 3. Boudart, J., R. Liu, P. Koonce, and L. Okimoto. Assessment of Bicyclist Behavior at Traffic Signals with a Detector
61 Confirmation Feedback Device. *Transportation Research Record: Journal of the Transportation Research Board of the*
62 *National Academies*, Vol. 2520, 2015, pp. 61-66. <http://trrjournalonline.trb.org/doi/abs/10.3141/2520-08>. DOI:
63 <http://dx.doi.org/10.3141/2520-08>
- 64 4. Bussey, S., C. M. Monsere, and P. Koonce. Paper 15-2501: Does the Bicycle Detector Symbol Change Cyclist
65 Queuing Position at Signalized Intersections? in *Transportation Research Board 94th Annual Meeting*, Washington,
66 D.C., 2015. <http://amnonline.trb.org/trb57535-2015-1.1793793/t024-1.1811852/593-1.1812263/15-2501-1.1812276/15-2501-1.1940644?qr=1>.
- 68 5. Nordback, K., S. Kothuri, M. Figliozzi, T. Phillips, C. Gorecki, and A. Schrophe. Investigation of Bicycle and
69 Pedestrian Continuous and Short Duration Count Technologies in Oregon. Portland State University, Portland,
70 Oregon, FHWA-OR-RD-16-15, 2016. http://www.oregon.gov/ODOT/Programs/ResearchDocuments/SPR772_Bicycle_PedestrianTechnologies.pdf.

1 Shared-Lane Markings

Section 420

2 Introduction

3 Shared-lane markings, also known as “sharrows,” are used to communicate a shared lane
4 environment for biking and driving. The markings assist bicyclists with lane positioning and
5 remind motorists they can expect people on bikes in the lane.

6 Relevant MUTCD Sections

7 See the following sections for standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: Chapter 9E. Markings
- 9 • MUTCD 11th Edition: 9E.09 Shared-Lane Marking

10 Design Parameters

11 01 A shared-lane marking shall consist of a bicycle symbol and two chevrons as shown in
12 Figure 420-A.

13 02 Shared-lane markings may be used to:

- 14 • Assist bicyclist lateral positioning in a shared lane with on-street parallel parking to
15 reduce the chance of a bicyclist’s impacting the open door of a parked vehicle.
- 16 • Assist with lateral positioning in lanes that are too narrow for a motor vehicle and a
17 bicycle to travel side by side within the same traffic lane.
- 18 • Alert motorists of the lateral location bicyclists are likely to occupy within the traveled
19 way.
- 20 • Encourage safe passing of bicyclists by motorists.
- 21 • Reduce wrong-way biking.
- 22 • Assist bicyclist with lateral positioning in mixing zones.

23 03 Shared lane markings shall not be used on shoulders, in designated bicycle lanes, or in
24 travel lanes adjacent to a bicycle lane traveling in the same direction.

25 04 Shared lane markings should not be placed on roadways that have a speed limit above 35 mph or in
26 areas with limited sight distance.

27 05 If shared lane markings are used on roadway segments with a speed limit above 35 mph
28 or in areas with limited sight distance, other traffic control devices that warn drivers of the
29 shared roadway condition shall be used.

30 06 If used in a shared lane without on-street parking, shared lane markings should be positioned in the
31 middle of the shared lane. If used in a shared lane with adjacent on-street parking, shared lane

Shared-Lane Markings

Section 420

32 markings should be placed in the middle of the shared lane so the center of the marking is at least 12
33 feet from the face of the curb, or from the edge of the pavement where there is no curb (Figure 420-B).

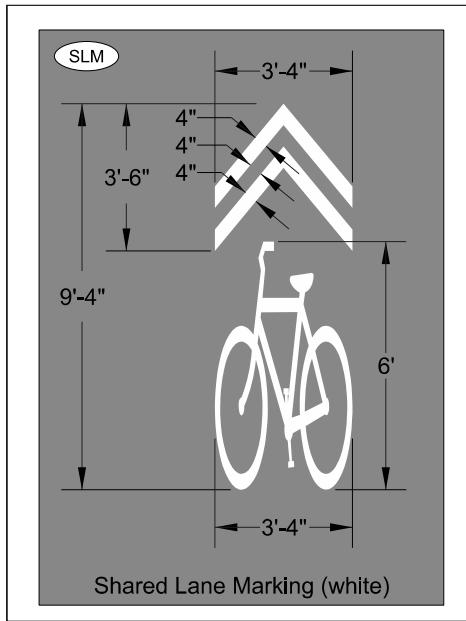
34 07 If used, shared lane markings should be placed immediately after an intersection and spaced at
35 intervals not less than 50 feet and not greater than 250 feet thereafter.

36 08 Shared-lane markings shall not be used in:

- 37 • Shoulders;
- 38 • Bicycle lanes or in designated extensions of bicycle lanes through intersections or
39 driveways,
- 40 • A travel lane in which light-rail transit vehicles also travel;
- 41 • The transition area where a motor vehicle entering a mandatory turn lane must
42 weave across bicyclists in bicycle lanes;
- 43 • Two-stage turn boxes;
- 44 • Bicycle boxes;
- 45 • Shared-use paths or shared-use path crossings; or
- 46 • Physically-separated bikeways, either in the roadway or on an independent right-of-
47 way

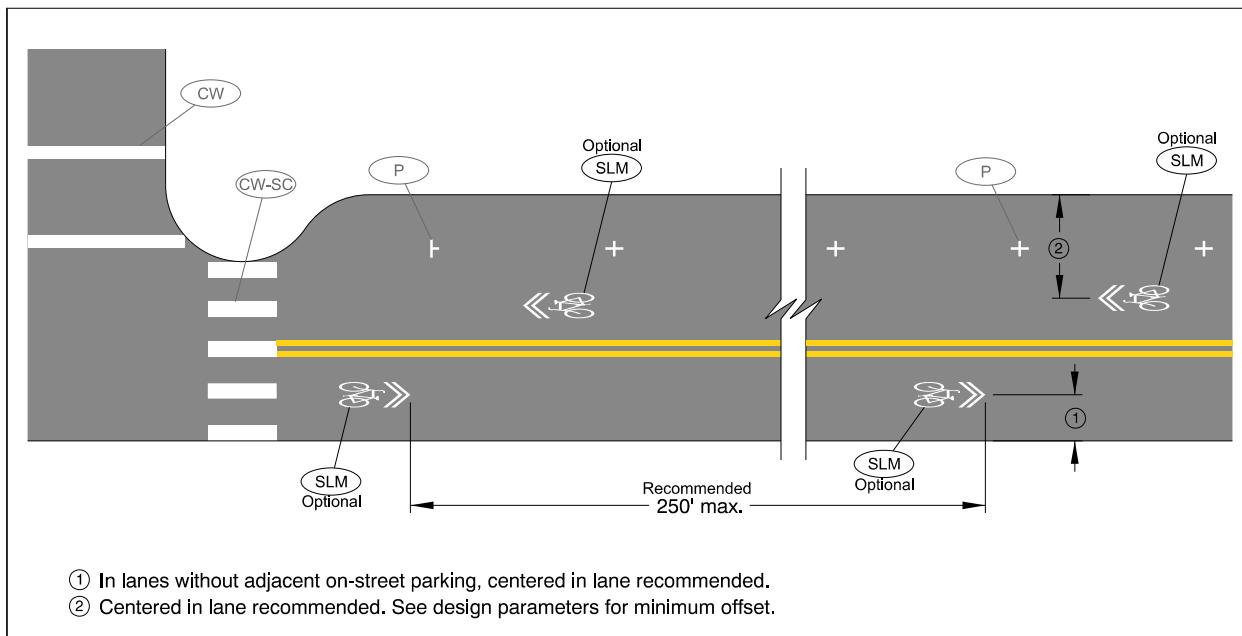
Required Approvals

49 An engineering study and state traffic engineer approval is required for applications of shared
50 lane markings on roadway segments with posted speeds above 30 mph, or an 85th percentile
51 operating speed above 35 mph, that has limited alternative routes and high bicycle volumes
52 where the narrow roadway width requires bicyclists to ride in the travel lane (e.g.: narrow
53 bridges, tunnels, etc.).


54 An engineering study and region traffic engineer review is recommended for applications of
55 shared lane markings on roadway segments with posted speeds up to 30 mph and an 85th
56 percentile operating speed up to 35 mph.

Design Issues

58 The MUTCD recommends spacing of not less than 50' and not more than 250' between
59 markings so bicyclists can see the next marking (1); longer spacing could be appropriate based
60 on engineering judgement.


61 Figures & Tables

62 Figure 420-A: Shared Lane Marking Detail

63

64 Figure 420-B: Typical Urban Shared Lane Marking Layout

65

66 Support

67 When applied appropriately, shared lane markings generally (2) (3):

Shared-Lane Markings

Section 420

- Alert motorists of the potential presence of people on bikes.
- Guide bicyclists to a safer position within the lane.
- Alert motorists of the lateral position people on bikes are likely to occupy.
- Encourage safer passing practices by motorists.
- Reduce wrong-way and sidewalk biking.
- Supplement wayfinding along bike routes and bikeways.

The AASHTO Guide for the Development of Bicycle Facilities (2) includes additional guidance including a list of typical applications or scenarios where shared lane markings could be beneficial.

Shared lane markings are not cycling infrastructure and does not substitute for cycling infrastructure (bike lanes or separated bikeways) when those are a preferable and feasible solution. Application of shared lane markings does not change the responsibilities of road users and does not lessen any need for bike lanes or other separated facilities. The markings could give a false sense of safety to people on bikes if used on high speed roadways or in areas with limited sight distance. In these cases, other warning devices are more appropriate.

In many cases, the best location for the shared lane marking is in the middle of the travel lane for suggested bicycle positioning and reduced maintenance needs. Placement needs to encourage bicyclist to fully occupy a narrow lane where a motor vehicle cannot safely pass a bike without leaving the shared lane, but without contradicting the expectation of ORS 814.430 that bicyclists ride as far to the right as "practicable."

Early use of the shared lane markings included experimentation with different orientations of chevrons for wayfinding and direction of bikeways. Shared lane markings are not intended to communicate a direction message; the FHWA has disallowed experimentation with alterations of the shared lane marking symbol, including its chevrons (4).

Cross References

Colors	Section 110
Transverse Markings	Section 125
Dropped Lanes and Auxiliary Lanes on Conventional Roads	Section 330
Bicycle Lanes	Section 410
Bicycle Lane End Transitions	Section 411

Key References

1. *Federal Register: Volume 74, Number 240.* Washington, D.C.: United States Government Publishing Office, 2009, p. 66860. <https://www.gpo.gov/fdsys/pkg/FR-2009-12-16/pdf/E9-28322.pdf>.
2. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*, 4th ed. Washington, D.C., 2012.

Shared-Lane Markings**Section 420**

103 3. National Association of City Transportation Officials. *NACTO Urban Bikeway Design Guide*, 2nd ed. Island Press,
104 New York, New York, 2014. <http://nacto.org/cities-for-cycling/design-guide/>.

105 4. U.S. Department of Transportation Federal Highway Administration. Bicycle Facilities and the Manual on
106 Uniform Traffic Control Devices. *Federal Highway Administration Bicycle and Pedestrian Program*, December 15,
107 2015. http://www.fhwa.dot.gov/environment/bicycle_pedestrian/guidance/mutcd/index.cfm. Accessed August 24,
108 2016.

1 **Marked Crosswalks**

Section 430

2 **Introduction**

3 A marked crosswalk is any portion of a roadway at an intersection or elsewhere that is
4 distinctly indicated for pedestrian crossing by lines or other markings on the surface of the
5 roadway that conform in design to the standards established for crosswalks under [ORS 810.200](#).
6 See the ODOT Traffic Manual (1) for criteria and considerations on marking crosswalks, section
7 310.2 for controlled marked crosswalks and section 310.3 for uncontrolled marked crosswalks.
8 Crosswalk markings are classified as either transverse line or high-visibility. Transverse
9 crosswalk markings consist of two transverse lines. High-visibility markings consist of
10 longitudinal lines parallel to traffic flow with or without transverse lines. This Section uses
11 ODOT's preferred design for transverse line (transverse crosswalk) and high-visibility
12 (staggered continental crosswalk) crosswalk markings. Other crosswalk marking design options
13 should follow the proper process of design flexibility from section 102 of this manual for use.

14 **Relevant MUTCD Sections**

15 See the following sections for standards, guidance, and options not found in this manual:

- 16 • [MUTCD 11th Edition: Chapter 3C. Crosswalk Markings](#)
- 17 • [Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines.](#)

18 **Design Parameters**

- 19 01 Unless officially closed, crosswalks shall be marked at signalized intersections (all
20 crossings with pedestrian "WALK/DON'T WALK" indications) and at established school
21 crossings (see Sec. 610).
- 22 02 Crosswalks should be marked across roundabout entrances and exits if sidewalks or multi-use paths
23 are provided at the roundabout (see Section 350).
- 24 03 Staggered continental crosswalk markings (Figure 430-B) should be used for all marked crosswalks
25 across uncontrolled approaches, yield-controlled approaches, midblock crosswalks, roundabouts,
26 unsignalized channelized right turn lanes, and crossings using a pedestrian activated flashing beacon.
- 27 04 If the staggered continental crosswalk is skewed, the staggered continental bars shall run
28 parallel to the direction of motor vehicle traffic to miss wheel tracks.
- 29 05 Transverse crosswalk markings (Figure 430-A) should be used for marked crosswalks across stop-
30 controlled approaches (other than a channelized right-turn lane) and at signalized intersections.
- 31 06 Marked crosswalks shall have ADA compliant curb ramps or blended transitions at each
32 end of the crosswalk, and shall have the throat of the ADA curb ramp (the portion flush
33 with the pavement surface) or blended transition entirely inside the crosswalk markings.

Marked Crosswalks**Section 430**

34 07 At non-signal controlled channelized right turn lanes, marked crosswalks should be located 25 to 40
35 feet from the yield line, stop bar, or island gore point (Figure 430-D).

36 08 Except at roundabouts, marked crosswalks across uncontrolled, multi-lane approaches should include
37 wide advance stop bars (S-2) 20 to 50 feet (typically 30 feet) from the nearside crosswalk edge (Figure
38 430-E). A wide solid lane line (W-2) should be used a length "B" in advance of the
39 stop bar where the posted or 85th percentile approach speed is greater than or equal to 35 mph and at
40 school crossings.

41 09 At marked crosswalks across uncontrolled, multi-lane approaches

42 • A wide solid lane line (W-2) may be included a length "B" in advance of the stop bar
43 where the posted or 85th percentile approach speed is less than 35 mph (Figure 430-E).

44 • The broken line (WB) may be omitted between the wide advance stop bar (S-2) and the
45 staggered continental crosswalk (CW-SC) (Figure 430-E).

46 • If a wide solid lane line (W-2) is used in advance of the stop bar it may be extended past
47 the wide advance stop bar (S-2) to the staggered continental crosswalk (CW-SC) (Figure
48 430-E).

49 10 Marked crosswalks across uncontrolled, single-lane approaches may include wide advance
50 stop bars (S-2) 20 to 50 feet (typically 30 feet) from the nearside crosswalk edge.

51 11 The distance between transverse crosswalk bars (in Figure 430-A, measured from inside to
52 inside of the bars) may be narrowed to less than 10 feet to a minimum of 6 feet if a wide
53 advance stop bar is used.

54 12 **On roadways with centerline markings, no-passing zone markings shall be used on
55 approaches to marked crosswalks a minimum distance shown in Table 211-2 in Section
56 211.**

57 13 **The minimum number of individual longitudinal elements to establish a staggered
58 continental crosswalk or other high-visibility crosswalks shall be three.**

59 14 *The dimensions of the individual longitudinal element and the lateral spacing between subsequent
60 individual longitudinal elements for a staggered continental crosswalk and other high-visibility
61 crosswalks should be uniform when establishing the crosswalk.*

62 15 *The dimensions of the individual longitudinal element and the lateral spacing between subsequent
63 individual longitudinal elements for a staggered continental crosswalk and other high-visibility
64 crosswalks should be uniform when establishing separate crosswalks on multiple approaches to the
65 same intersection and on both sides of a median refuge if one is present.*

66 16 *The individual longitudinal elements of a staggered continental crosswalk and other high-visibility
67 crosswalks should be angled such that they are parallel to the travel path of approaching traffic.*

68 17 The lateral spacing between longitudinal elements may be staggered to avoid wheel paths,
69 center lines, and lane lines.

Required Approvals


See the ODOT Traffic Manual (1) for approvals related to Marked Crosswalks. These approvals include marked crosswalks across roadway approaches controlled by a stop sign, unsignalized channelized right turn lanes (see Section 321), rural roundabouts (see Section 350), and at other locations approved by the state traffic engineer (e.g.: mid-block).

Design Issues

The design of crosswalks in this manual shows the typical sizes. For project design wider crosswalks may be needed to accommodate curb ramp locations at skewed intersections.

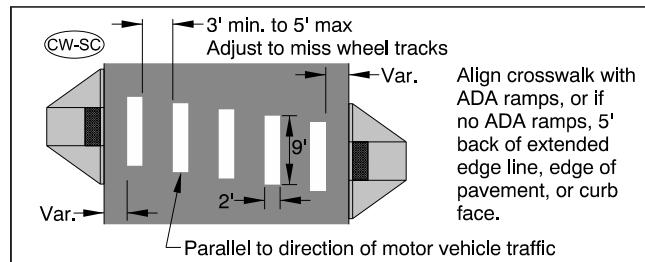
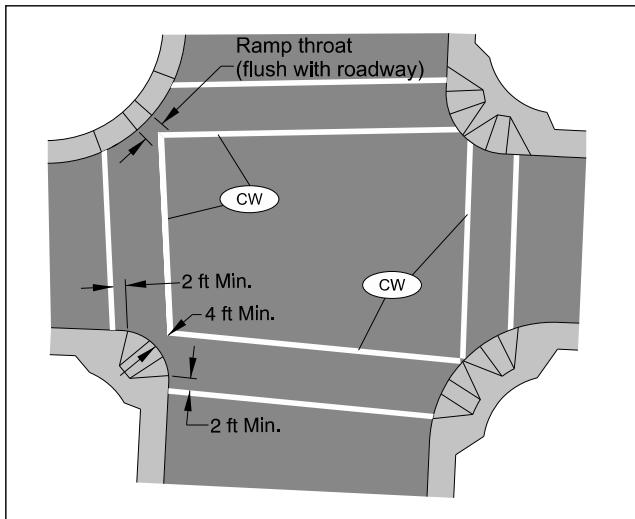

Figures & Tables

Figure 430-A Transverse Crosswalk (Two 1' White Bars)

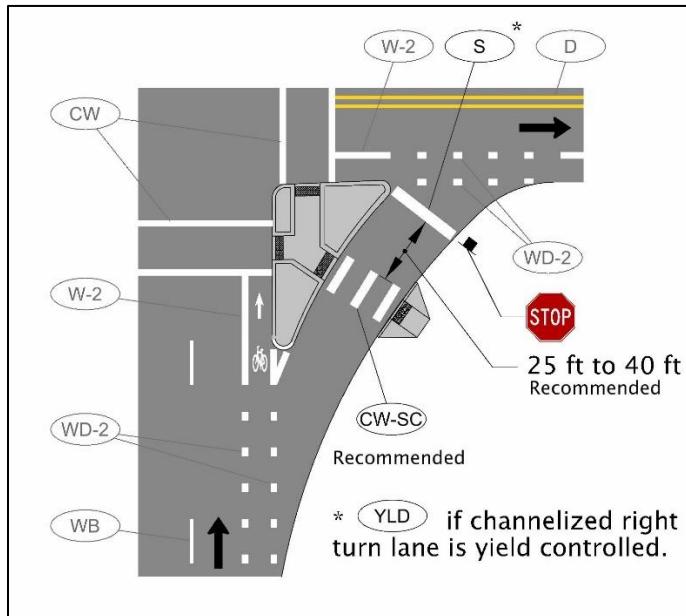
80

Figure 430-B: Staggered Continental Crosswalk (2' White Bars)



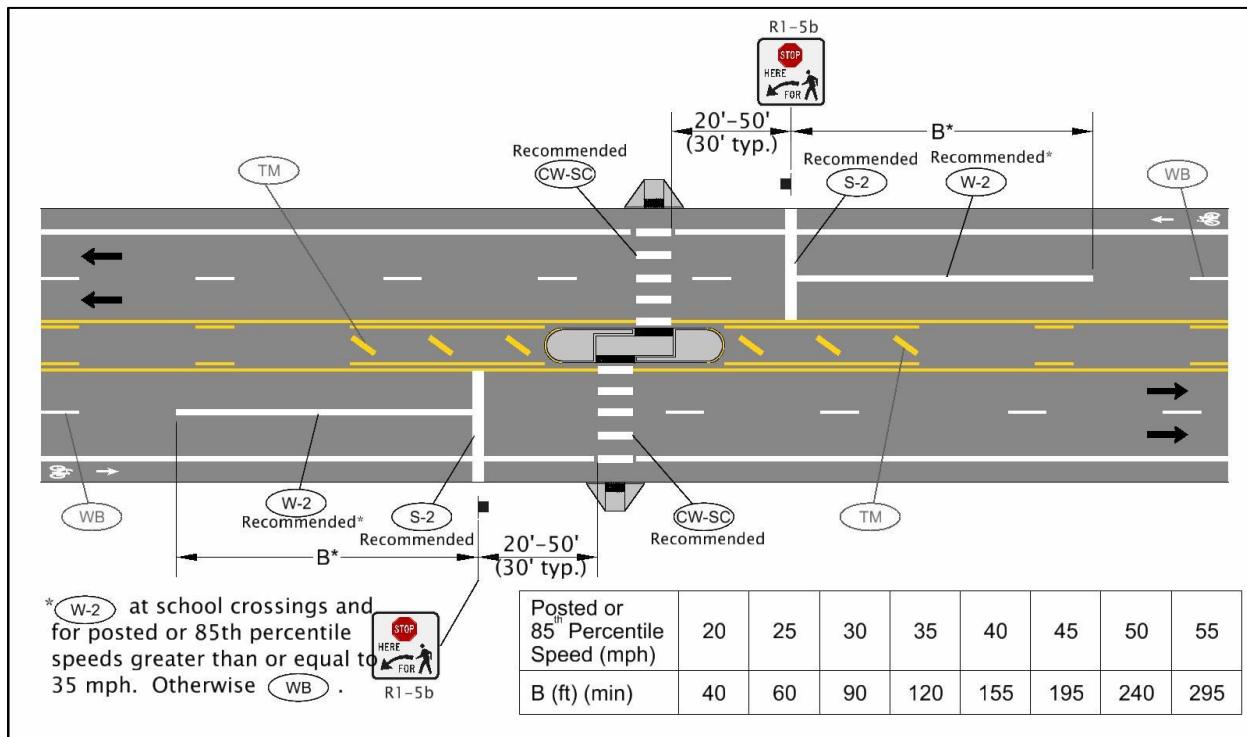
82

Marked Crosswalks


Section 430

83 Figure 430-C: Typical Signalized or Stop-Controlled Intersection Crosswalk Markings

84


85 Figure 430-D: Typical Marked Crosswalk at Unsignalized Channelized Right Turn Lane

86

Marked Crosswalks**Section 430**

87 Figure 430-E: Typical Multi-Lane Midblock Crosswalk Markings

88

Support

90 Crosswalk markings are just one part of an effective pedestrian crossing. Simply marking a
 91 crosswalk could be insufficient to improve pedestrian safety, particularly on high-speed, high-
 92 volume, and multilane roadways. On low volume (<12,000 ADT) two-lane roadways, marked
 93 crosswalks generally do not have any positive or negative effect on pedestrian crash rates, but
 94 choose even these locations carefully; additional traffic control measures could be needed.
 95 Advance signing, pavement markings, removing parking, illumination, curb extensions,
 96 median refuge islands, traffic signals/beacons, and traffic calming measures are some tools to
 97 help pedestrians cross the roadway safely (2).

98 Drivers are much more likely to stop at a crosswalk when they have a clear line of sight to the
 99 pedestrian. Crosswalks across multilane, uncontrolled approaches are prone to “multiple-
 100 threat” crash types. This occurs when a vehicle stops for the pedestrian too close to the
 101 crosswalk, blocking sight lines of drivers approaching from the same direction in an adjacent
 102 lane. Advance stop bars paired with other treatments help reduce this crash type and improve
 103 compliance of approaching drivers (3). Advance stop bars and crosswalk signing are
 104 considerably more effective if parking is removed between the crosswalk and advance stop bar
 105 by improving sight lines between pedestrians and drivers (4) (5) (6). Risk of fatal injury for a
 106 pedestrian hit by a motor vehicle increases above 45 percent as speeds exceed 30 mph (7) (8);
 107 discouraging lane changes on higher-speed approaches can help reduce the chance of a crash

Marked Crosswalks**Section 430**

108 due to a lane change to pass a vehicle slowing for the pedestrian. "B" is the braking distance
109 from the Green Book (9).

110 Transverse ("standard") crosswalk markings are the preferred style on controlled approaches
111 (stop sign and signal controlled). In these locations the crosswalk marking is a secondary traffic
112 control device that often doubles as a stop bar. Drivers at these approaches are required to stop
113 at all times (stop sign) or part of the time (traffic signal) regardless of the presence of a
114 pedestrian.

115 Continental crosswalk markings are the preferred style on uncontrolled approaches because
116 they are visible from a significantly greater distance than transverse crosswalk markings (10).
117 This gives drivers more preview time to scan for pedestrians as they approach a crosswalk and
118 determine if they need to stop. Uniform use of continental crosswalk markings across
119 uncontrolled approaches also helps reinforce different duties of drivers to pedestrians at these
120 locations compared to stop-controlled approaches. Continental crosswalk markings require
121 more material and labor to install, but they will typically not require as much maintenance if
122 they are installed to avoid wheel tracks.

123 Special emphasis for particular crosswalks can be added through other traffic control devices
124 and design strategies such as school zone signs, school markings, curb extensions, median
125 refuge islands, etc. The added preview time of continental crosswalk markings makes them an
126 important tool at all uncontrolled approaches to highlight an area where a pedestrian could
127 cross.

128 It is ODOT's policy not to install textured or colored crosswalks. If colored or textured
129 treatment is desired for a crosswalk, ensure the materials used for the coloring are subdued and
130 non-retroreflective, texturing will not cause tripping and is a non-slip material, and the whole
131 system does not diminish the effectiveness of the white pavement markings used to establish
132 the marked crosswalk (11). Avoid pavers and textures that tend to shift and settle and make
133 traversing difficult, especially for people with walkers, in wheelchairs, and sight impaired
134 people using canes (7).

135 On diagonal curb ramps, the 4 foot minimum distance from the throat of the ramp allows
136 people in wheelchairs to enter and exit the crosswalk while remaining completely in the
137 crosswalk (12).

138 In some cases, the crosswalk might need to be wider than standard to satisfy ADA design
139 requirements.

140 For more information on criteria and considerations for marking and closing crosswalks on
141 state highways, see the ODOT Traffic Manual (1), Chapter 3C in the 11th Ed. MUTCD (13) and
142 Oregon Supplement to the MUTCD.

143 For uncontrolled, multi-lane approaches to crosswalks, the wide advance stop bar has an
144 allowed range of placement. Depending on where this advance stop bar is placed it may result
145 in no broken line or partial broken line markings between the stop bar and the crosswalk. Due
146 to this variance of distance WB markings may be removed in the section between the advance

Marked Crosswalks**Section 430**

147 stop bar and the crosswalk. It may also be desired to remove the broken line marking to give
148 the advance stop bar more of an intersection feel to drivers. There is also the option to add a
149 wide solid lane line in this location at the crosswalk. This marking would discourage changing
150 lanes near the crosswalk and it also gives the opportunity to match the look of a turn bay if the
151 scenario has multiple through lanes and a dedicated turn lane.

152 **Cross References**

153 Functions, Widths, and Patterns of Longitudinal Lines.....	Section 120
154 Transverse Markings.....	Section 125
155 Stop Bars	Section 150
156 No-Passing Zone Markings.....	Section 211
157 Lane Lines	Section 220
158 Non-Traversable Medians & Channelizing Islands	Section 281
159 Channelized Right-Turn Lanes	Section 321
160 Roundabouts	Section 350
161 Shared-Use Path Markings	Section 440
162 School Markings	Section 610

163 **Key References**

- 164 1. Oregon Department of Transportation. Traffic Manual, 2024 Edition. January 2024. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf.
- 165 2. Zegeer, C. V., J. R. Stewart, H. H. Huang, P. A. Lagerwey, J. Feaganes, and B. J. Campbell. Safety Effects of
166 Marked versus Unmarked Crosswalks at Uncontrolled Locations: Final Report and Recommended Guidelines.
167 University of North Carolina, Chapel Hill, NC, FHWA-HRT-01-100, 2005. <https://www.fhwa.dot.gov/publications/research/safety/04100/04100.pdf>.
- 168 3. Zegeer, C., R. Srinivasan, B. Lan, D. Carter, S. Smith, C. Sundstrom, N. J. Thirsk, C. Lyon, B. Persaud, J. Zegeer, E.
169 Ferguson, and R. V. Houten. NCHRP Research Report 841: Development of Crash Modification Factors for
170 Uncontrolled Pedestrian Crossing Treatments. Transportation Research Board of the National Academies,
171 Washington, D.C., ISBN 978-0-309-44626-6, 2017. <http://www.trb.org/Publications/Blurbs/175381.aspx>. DOI:
172 <http://dx.doi.org/10.17226/24627>
- 173 4. Samuel, S., M. R.E. Romoser, L. R. Gerardino, M. Hamid, R. A. Gomez, M. A. Knodler, Jr., J. Collura, and D. L.
174 Fisher. Effect of Advance Yield Markings and Symbolic Signs on Vehicle-Pedestrian Conflicts: Field Evaluation.
175 *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 2393, 2013, pp. 139-146. <http://trrjournalonline.trb.org/doi/pdf/10.3141/2393-16>. DOI: 10.3141/2393-16
- 176 5. Gomez, R. A., S. Samuel, L. R. Gerardino, M. R.E. Romoser, J. Collura, M. Knodler, and D. L. Fisher. Do Advance
177 Yield Markings Increase Safe Driver Behaviors at Unsignalized, Marked Midblock Crosswalks? *Transportation
178 Research Record: Journal of the Transportation Research Board*, Vol. 2264, 2011, pp. 27-33. <http://trrjournalonline.trb.org/doi/pdf/10.3141/2264-04>. DOI: 10.3141/2264-04
- 179 6. Van Houten, R., J.E. L. Malfant, and D. McCusker. Advance Yield Markings: Reducing Motor Vehicle -
180 Pedestrian Conflicts at Multilane Crosswalks with Uncontrolled Approach. *Transportation Research Record: Journal
181 of the Transportation Research Board*, Vol. 1773, 2001, pp. 69-74. <http://trrjournalonline.trb.org/doi/pdf/10.3141/1773-08>.
- 182 7. American Association of State Highway and Transportation Officials. *Guide for the Planning, Design, and Operation
183 of Pedestrian Facilities*. American Association of State Highway and Transportation Officials, Washington, D.C.,
184 2004.
- 185 8. American Association of State Highway and Transportation Officials. *Guide for the Planning, Design, and Operation
186 of Pedestrian Facilities*. American Association of State Highway and Transportation Officials, Washington, D.C.,
187 2004.
- 188 9. American Association of State Highway and Transportation Officials. *Guide for the Planning, Design, and Operation
189 of Pedestrian Facilities*. American Association of State Highway and Transportation Officials, Washington, D.C.,
2004.

Marked Crosswalks**Section 430**

190 8. American Association of State Highway and Transportation Officials. *Highway Safety Manual*, 1st ed. AASHTO,
191 Washington, D.C., 2010.

192 9. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
193 *Streets*, 6th ed. Washington, D.C., 2011.

194 10. Fitzpatrick, K., S. T. Chrysler, V. Iragavarapu, and E. S. Park. Crosswalk Marking Field Visibility Study. Texas
195 Transportation Institute, Texas A&M University, McLean VA, Technical Report FHWA-HRT-10-068, 2010. <http://www.fhwa.dot.gov/publications/research/safety/pedbike/10068/10068.pdf>.

196 11. Lindley, J. A. (2013, August) MUTCD - Official Ruling 3(09)-24(I)-Application of Colored Pavement.
197 Memorandum. [Online]. http://mutcd.fhwa.dot.gov/resources/interpretations/pdf/3_09_24.pdf.

199 12. U.S. Architectural and Transportation Barriers Compliance Board (Access Board). *Americans with Disabilities Act*
200 *(ADA) Accessibility Guidelines for Buildings and Facilities*, 2004 ed. U.S. Architectural and Transportation Barriers
201 Compliance Board (Access Board), Washington, D.C., 1991. <https://www.access-board.gov/guidelines-and->
202 [standards/buildings-and-sites/about-the-ada-standards/background](#).

203 13. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
204 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 Shared-Use Path Markings

Section 440

2 Introduction

3 A shared-use path is outside the traveled way and physically separated from motor vehicle
4 traffic by an open space or barrier and either within the highway right-of-way or within an
5 independent alignment. Unlike separated bicycle lanes, shared use paths are also used by
6 pedestrians (including skaters, users of manual and motorized wheelchairs, and joggers) and
7 other authorized users.

8 Relevant MUTCD Sections

9 See the following sections for standards, guidance, and options not found in this manual:

- 10 • [MUTCD 11th Edition: Chapter 9E. Markings](#)
- 11 • [MUTCD 11th Edition: 9E13 Shared-Use Paths](#)

12 Design Parameters

13 01 **Markings used on shared-use paths shall be retroreflectorized.**

14 02 On shared-use paths 10 feet wide or wider, a solid yellow centerline (Y) may be used to
15 separate two directions of travel where passing is not permitted, and a broken yellow line
16 may be used where passing is permitted.

17 03 *Broken lines on shared use paths should consist of a 3-foot line segment with 9-foot gaps.*

18 04 *A solid yellow centerline should be used on shared use paths 10 feet wide or wider:*

- 19 • *Where conditions make it desirable to separate two directions of travel at particular locations to
20 indicate no passing and no traveling to the left of the line.*
- 21 • *On an approach to a bikeway stop sign or yield sign a distance "A" shown in Figure 440-E.*

22 05 *Markings shown in Figures 440-B and 440-C should be used where obstructions are located in the
23 path, including vertical elements intended to prevent unauthorized vehicles from entering the path.*

24 06 Smaller size pavement word markings and symbols may be used on shared-use paths.
25 Where arrows are needed on shared-use paths, half-size layouts of the arrows may be used.

26 07 A stop bar should be placed on the shared use path where bicycle traffic is required to stop
27 in compliance with a standard bikeway stop sign (OBR1-1 or R1-1).

28 08 **Where used on a shared-use path, a stop bar shall consist of a solid white 12-inch wide
29 line extending across approach lanes to indicate the point at which a stop is intended or
30 required to be made.**

31 09 A yield line may be placed on the shared use path where bicycle traffic is required to yield in
32 compliance with a standard bikeway yield sign (OBR1-2 or R1-2).

Shared-Use Path Markings

Section 440

33 10 Where used on a shared-use path, a yield line shall be marked using the bicycle yield line
34 according to Section 151.

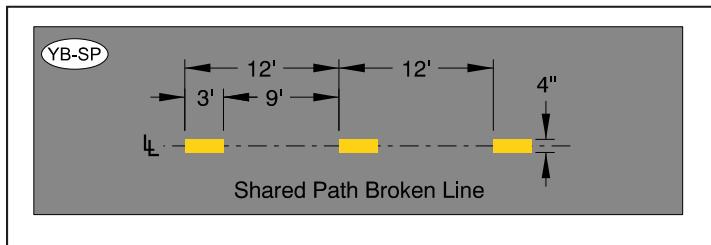
35 11 If a shared-use path does not include a centerline on the approach to a stop bar or yield line,
36 the stop bar or yield line may extend across the full width of the shared-use path.

37 12 If marked, shared-use path crossings shall be marked across roadways according to
38 Section 430.

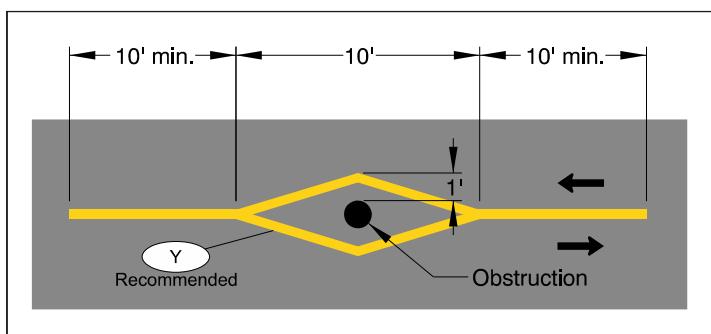
39 13 Shared-use paths shall be marked according to Section 510 at railroad grade crossing.

40 14 A normal width solid white line may be used on shared-use paths:

41 • As an edge line.

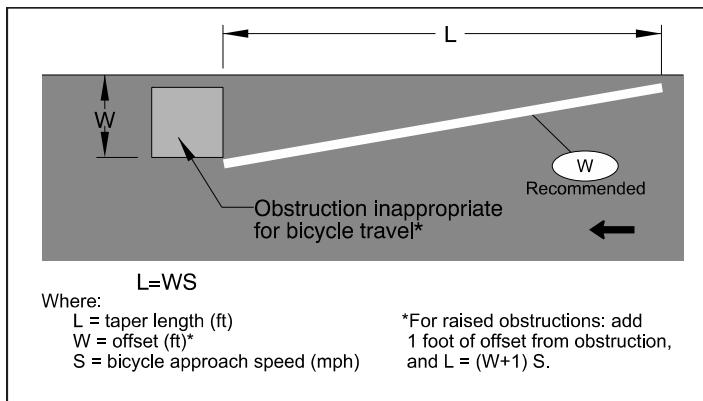

42 • To separate different types of users.

Design Issues

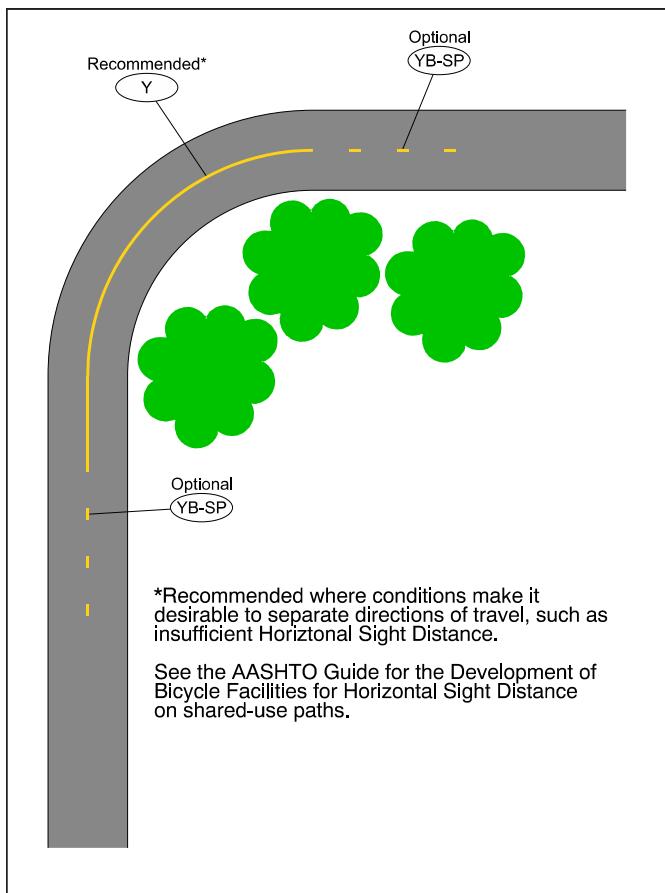

44 Shared-use paths serve a wide variety of users. Speed variability of each mode effects design
45 treatments at path-roadway intersections. Consider needs for the fastest vehicles on approaches
46 and needs of slower users (typically pedestrians) at crossings due to greater exposure to traffic.
47 See the AASHTO Guide for the Development of Bicycle Facilities (1) for more on design
48 considerations.

Figures & Tables

50 Figure 440-A: Shared Use Path Line Types



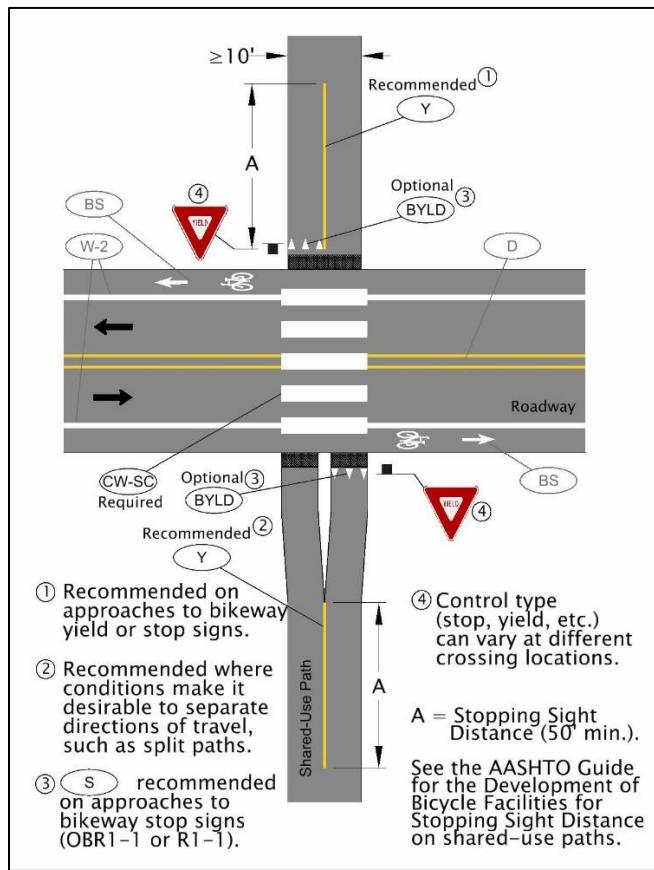
52 Figure 440-B: Typical Markings for Obstruction within Path


Shared-Use Path Markings**Section 440**

54 Figure 440-C: Typical Markings for Obstruction at Edge of Path or Lane

55

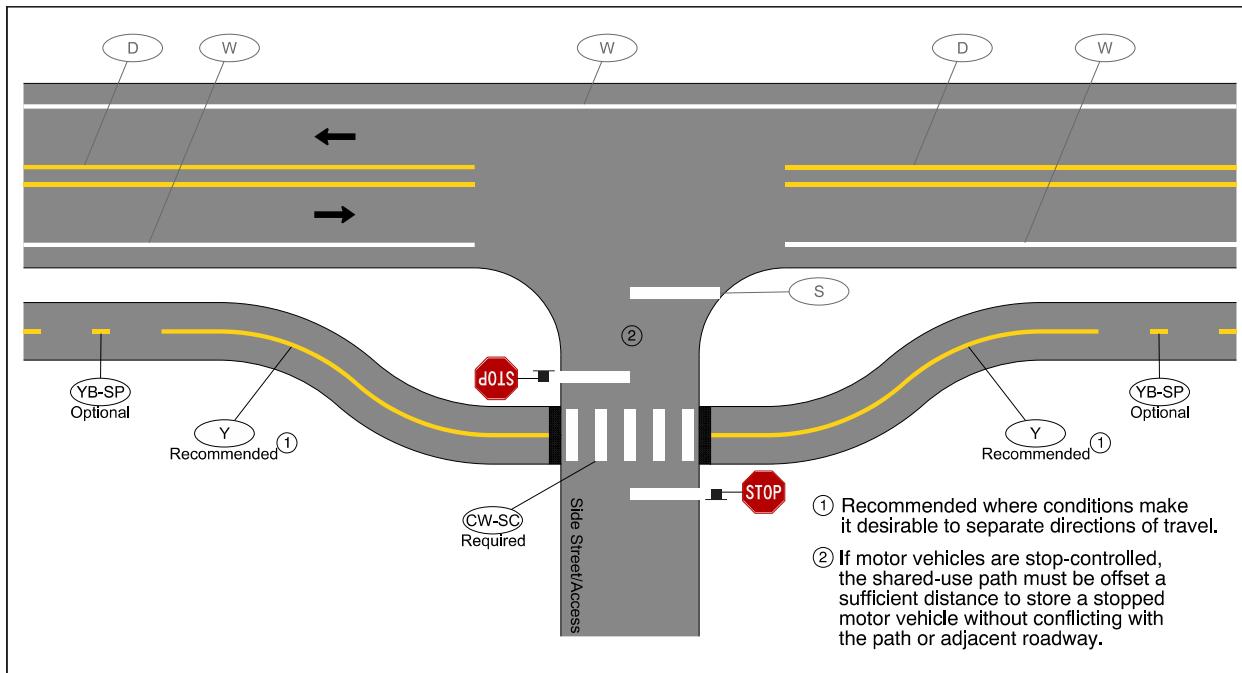
56 Figure 440-D: Typical Path Centerline for Insufficient Horizontal Sight Distance



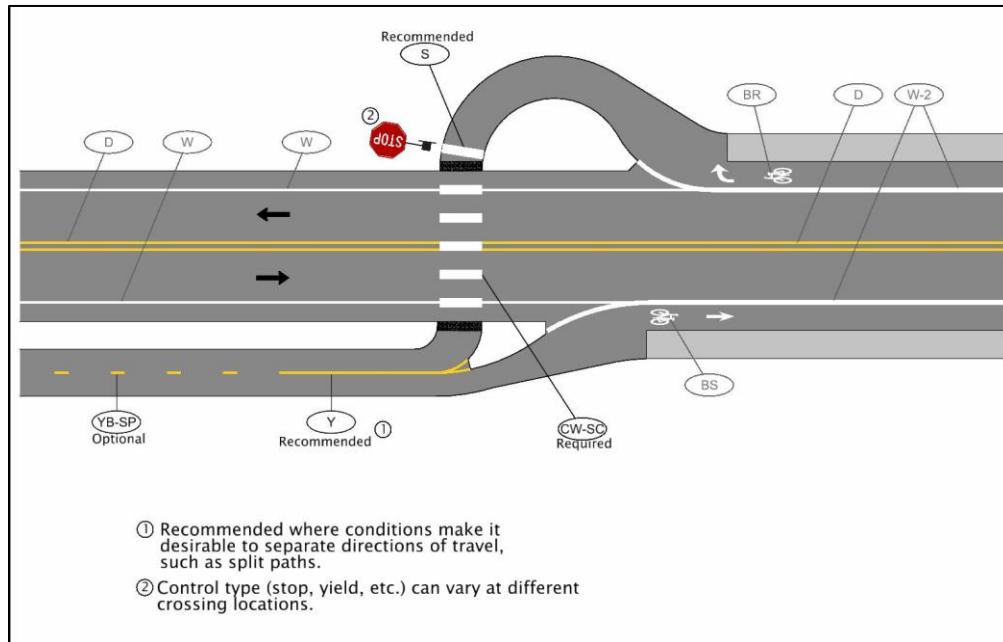
57

Shared-Use Path Markings

Section 440

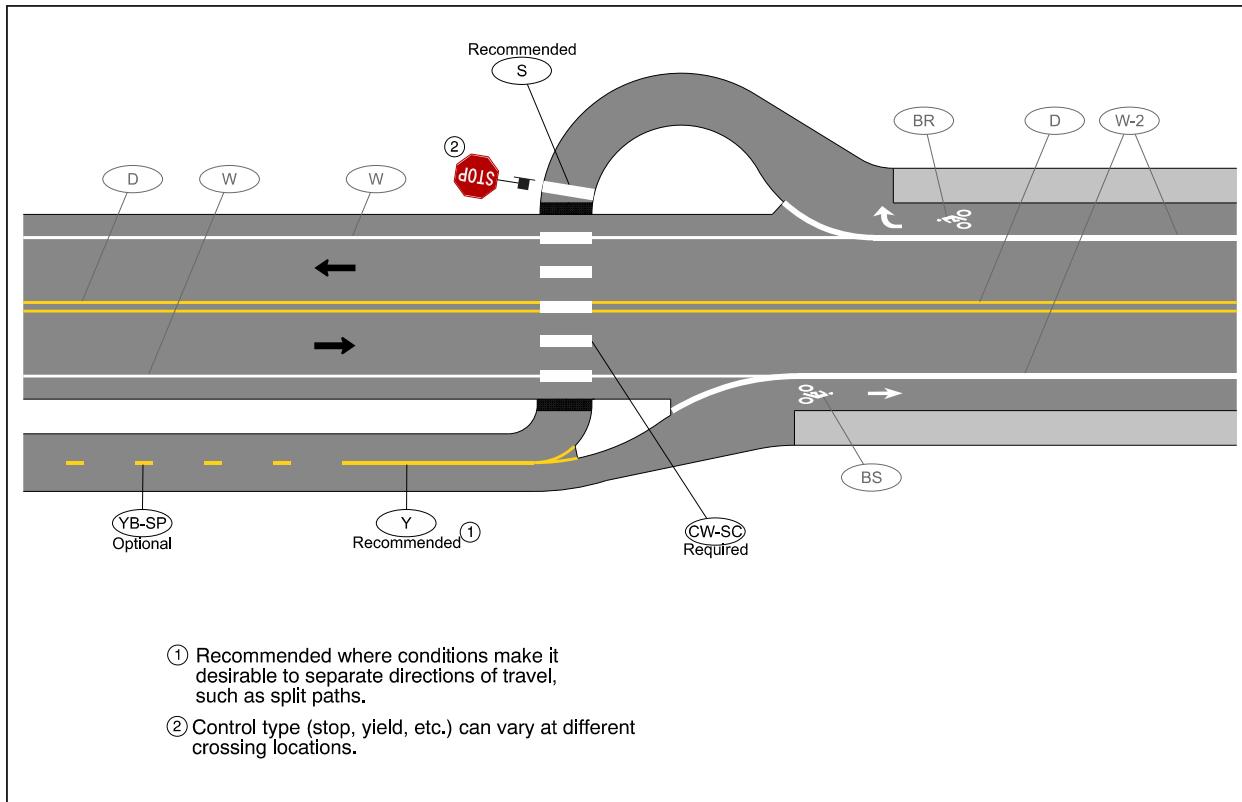

58 Figure 440-E: Typical Path Markings at a Mid-Block Intersection with a Roadway

Shared-Use Path Markings


Section 440

60 Figure 440-F: Typical Sidepath Markings at Minor Street Intersection with Separation from
61 Intersection and Side Street/Access Stop Controlled

62


63 Figure 440-G: Typical Sidepath Markings at Minor Street Intersection with Separation from
64 Intersection and Sidepath Yield Controlled

65

Shared-Use Path Markings**Section 440**

66 Figure 440-H: Typical Path Markings at One-Way to Two-Way Transition

67

68 **Support**

69 Shared-use paths serve a wide variety of users and transportation functions. Where needed,
 70 markings on shared-use paths can provide important guidance, warning, and regulatory
 71 information to path and road users.

72 A continuous centerline is typically not needed on shared use paths and might not be desirable
 73 in some contexts such as parks or other natural settings. Users can typically coexist even in
 74 areas with higher user volumes if there is sufficient sight distance. However, on paths where a
 75 centerline is not provided, appropriate locations for a centerline still need to be considered. Path
 76 users typically travel side-by-side, and on narrow paths cyclists tend to ride near the center of
 77 the path. A centerline can help clarify direction and organization of path traffic during heavy
 78 travel times or seasonal use or where other operational challenges like limited or insufficient
 79 stopping sight distance, areas with design speeds less than 14 mph, and unlit paths create safety
 80 concerns (1). Limiting a centerline to these areas can help increase respect for the line where it is
 81 needed (2). The AASHTO Guide for the Development of Bicycle Facilities (1) contains more
 82 information on stopping sight distance and minimum horizontal sightline offsets for horizontal
 83 curves on shared-use paths.

84 If used consistently on approaches to an intersection with a roadway, a centerline can also
 85 increase awareness of the upcoming intersection, discourage passing, remind users that the

Shared-Use Path Markings**Section 440**

86 path is a two-way facility, and position users in a predictable location at the crossing (1) (2).
87 This can also make the path look less like a lane for motor vehicles. The AASHTO Guide for the
88 Development of Bicycle Facilities (1) recommends the centerline be solid from the path's
89 stopping sight distance to the edge of the intersection.

90 Edge lines can also be beneficial on unlit paths and on approaches to intersections (1). Edge
91 lines can also be helpful on unlit shared-use paths on elevated alignments, such as along dykes
92 or approaches to bridges, and through horizontal alignment changes where there is insufficient
93 width for a centerline.

94 On paths at least 15 feet wide with high use, separate travel areas for wheeled and foot users
95 can be created with a solid white line. This path width provides a minimum space for two-way
96 wheeled traffic (10 feet) and at least 5 feet for pedestrians. On paths with views, position the
97 pedestrian space on the side with the view (1).

98 Right-of-way at intersections with roadways is unique given the different responsibilities
99 between varieties of intersecting users. Because of these complexities, the need to provide
100 uniform traffic control, and the fact that slowest users experience the most exposure while
101 crossing these intersections, the design user at path crossings is the pedestrian (i.e.: standard
102 crosswalk markings if the crossing is marked). The design user for approaches to path crossings
103 is faster users like cyclists. On these approaches, like on roadways, an advance word messages
104 like "HWY XING" supplements warning signs, a centerline helps alert users of the upcoming
105 intersection, and stop bars and yield lines supplement appropriate signs (1).

106 Bollards are common on shared-use paths to limit motor vehicle access. However, bollards
107 introduce a significant hazard to wheeled path users. Obstruction markings help highlight
108 bollards and other vertical elements, especially where unlit. An alternative to bollards is a path
109 split like in Figure 440-E. A centerline, edge lines, and/or arrows can help path users navigate
110 through the split, especially in unlit areas. See the ODOT Bicycle and Pedestrian Design Guide
111 (3) and AASHTO Guide for the Development of Bicycle Facilities (1) for more alternative
112 treatments to bollards.

113 Other unavoidable obstructions on shared-use paths such as abutments or piers need to be
114 clearly marked as shown in Figures 440-B and 440-C to guide cyclists around the obstruction.
115 Abrupt sunken grates or other grates unsafe for bicycling might need temporary delineation if it
116 cannot be corrected in a timely manner. Grates within 0.25 inch below the path surface are
117 generally sufficient for bicycle traffic (1) (3).

Cross References

119 Colors	Section 110
120 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
121 Transverse Markings	Section 125
122 Stop Bars	Section 150
123 Yield Lines	Section 151
124 Center Lines	Section 210

Shared-Use Path Markings**Section 440**

125	Lane Lines	Section 220
126	Edge Lines	Section 230
127	Non-Traversable Medians & Channelizing Islands	Section 281
128	Bicycle Lanes	Section 410
129	Bicycle Lane End Transitions	Section 411
130	Bicycle Lane Buffers	Section 412
131	Colored Pavement in Bicycle Lanes	Section 413
132	Intersection Bicycle Box	Section 414
133	Shared Lane Markings	Section 420
134	Marked Crosswalks	Section 430
135	Railroad Crossing Markings	Section 510
136	Bus Pullouts	Section 520
137	Preferential Lane Markings	Section 530
138	School Markings	Section 610

139 Key References

- 140 1. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*, 4th ed. Washington, D.C., 2012.
- 142 2. Jordan, G., and L. Leso. Power of the Line: Shared-Use Path Conflict Resolution. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1705, 2000, pp. 16-19. <http://trrjournalonline.trb.org/doi/abs/10.3141/1705-03>. DOI: <http://dx.doi.org/10.3141/1705-03>
- 145 3. Oregon Department of Transportation. *Bicycle and Pedestrian Design Guide*, 3rd ed. Oregon Department of Transportation, Salem, Oregon, 2011. http://www.oregon.gov/ODOT/Engineering/Documents_RoadwayEng/HDM_L-Bike-Ped-Guide.pdf.

Railroad Crossing Markings

Section 510

Introduction

Railroad crossings and the traffic control devices used within the crossing area are under the jurisdiction of the ODOT Rail and Public Transportation Division. A rail crossing order for each public road grade crossing summarizes the obligations for all involved parties, including obligations related to pavement markings.

Relevant MUTCD Sections

See the following for additional standards, guidance, and options not found in this manual:

- [MUTCD 11th Edition: Part 8 Traffic Control for Railroad and Light Rail Transit Grade Crossing- Chapter 8C Markings](#)
- [Oregon Supplement to the MUTCD- 11th Edition Chapter 8C.](#)

Design Parameters

01 Unless otherwise authorized by the crossing order, pavement markings for approaches to railroad crossings shall be installed at all crossings and conform to the requirements of the 11th Edition of the MUTCD (1).

02 Railroad crossing markings shall:

- Include no-passing zone markings on two-lane roadways where a centerline is used for traffic approaching the rail crossing.
- Include 2-foot wide transverse bars, extended across all approach lanes for multi-lane highways (Figure 510-C).
- Include RXR symbol markings (Figure 510-A) in each approach lane on all paved approaches to grade crossings (including bicycle lanes).
- Include a wide stop bar (S-2) at least 15 feet from the nearest rail and approximately 8 feet in advance of the location where the gate arm crosses the roadway.

03 The stop line may be omitted if a marked crosswalk (transverse style only, see Figure 3C-1 of the 11th Edition MUTCD), stop line for a marked crosswalk, or a stop line for a signalized approach is present and can serve the function of indicating where motor vehicles are required to stop for pedestrians or a traffic signal and the rail crossing.

04 *Stop bars should be perpendicular to the roadway or parallel to the gate if a gate is present (Figures 510-B, 510-C, and 510-D).*

05 On an approach to a grade crossing that is also controlled by traffic signal indications, the required stop bar may be placed closer than 40 feet from signal indications where a non-overhead supplemental signal indication is installed at a sufficient height to be seen at the closer stop location.

06 *Where a railroad crossing is close enough to a signalized intersection that vehicles must stop upstream of the railroad crossing on a red signal indication, as determined by the crossing order, the marked crosswalk parallel and closest to the railroad crossing should be continental-style.*

Railroad Crossing Markings**Section 510**

Required Approvals

An engineering study and ODOT Rail and Public Transportation Division approval (in consultation with Region Traffic) is required for removal or alternate placement of pavement markings for approaches to railroad crossings.

Design Issues

ODOT Rail and Public Transportation Division's jurisdiction for grade crossing regulation extends back from the stop bar for the grade crossing a distance equal to safe stopping distance (see Table 510) according to the posted or statutory speed (OAR 741-100-0005). Contact the Rail and Public Transportation Division's Crossing Safety Unit when working near grade crossings.

Figures & Tables

Figure 510-A: Typical Railroad Grade Crossing Marking Types

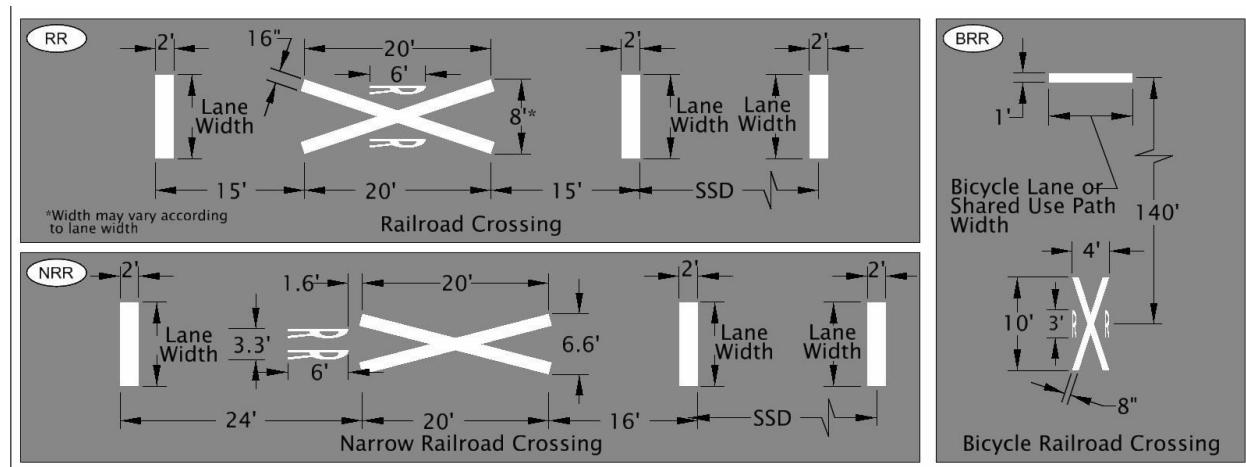
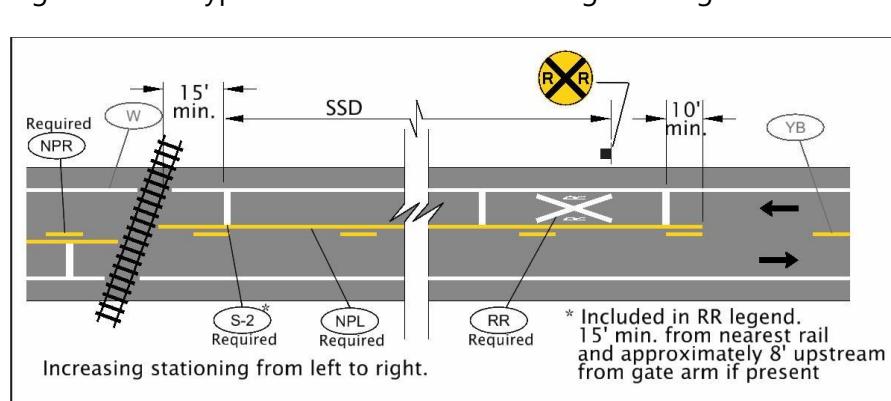
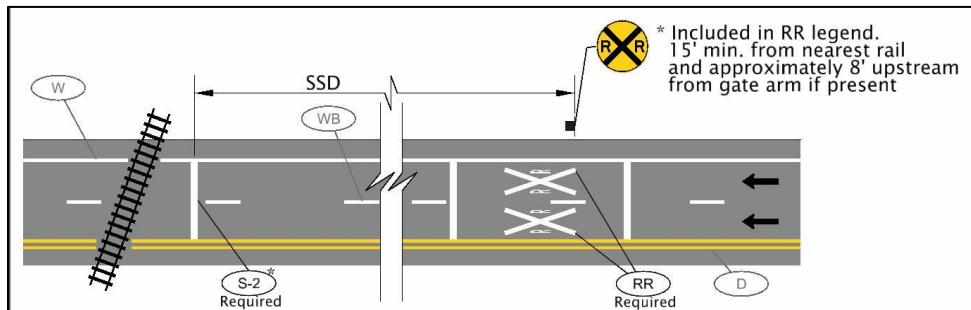
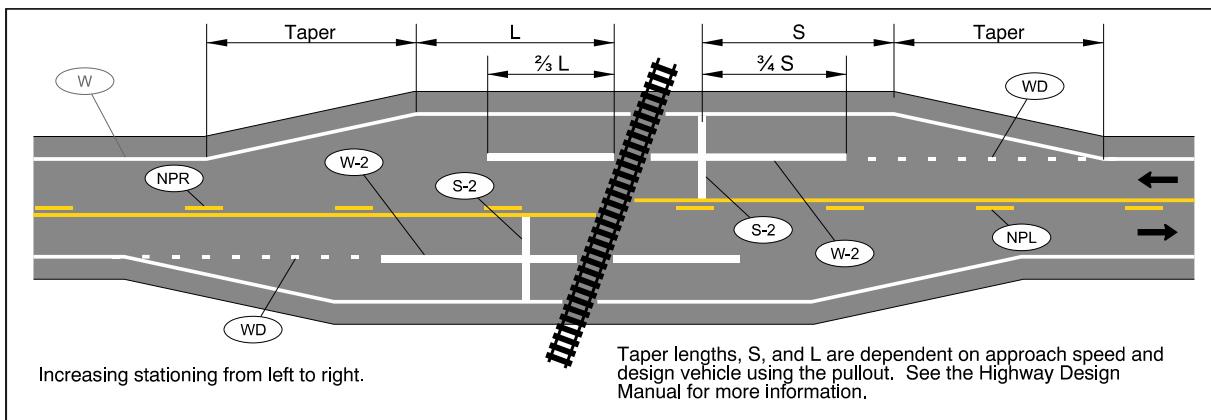




Figure 510-B: Typical Railroad Grade Crossing Markings


Railroad Crossing Markings**Section 510**

52 Figure 510-C: Typical Multi-Lane Railroad Grade Crossing Markings

53

54 Figure 510-D: Typical Railroad Grade Crossing Truck & Bus Pullout Markings

55

56 Table 510: Railroad Grade Crossing Safe Stopping Distances

Posted or 85th Percentile Speed (mph)	Safe Stopping Distance, SSD (ft.)
10	50 (100 std.)
15	80 (100 std.)
20	115
25	155
30	200
35	250
40	305
45	360
50	425
55	495
60	570
65	645

Railroad Crossing Markings

Section 510

Posted or 85th Percentile Speed (mph)	Safe Stopping Distance, SSD (ft.)
70	730
75	820

57 Support

58 Layout of railroad crossing markings in Oregon used to be different than the standard layout
59 shown in the MUTCD. With the adoption of the 11th Edition of the MUTCD ODOT moved to
60 follow the MUTCD. All markings must be installed according to the grade crossing's crossing
61 order issued by the ODOT Rail & Public Transportation Division.

62 The safe stopping distance (SSD) is stopping sight distance based on vehicle speed approaching
63 the grade crossing on level pavement. This value is prescribed in the Curve warning section off
64 the MUTCD which is derived from AASHTO Policy.

65 No-passing markings are used on the approach to grade crossings to prevent a motorist from
66 attempting to pass a decelerating vehicle (due to a train crossing) within the safe stopping
67 distance of the rail crossing. The no-passing marking makes this maneuver illegal and
68 enforceable. If a motorist does attempt to pass a vehicle prior to the start of the no-passing zone,
69 there is enough room to stop their vehicle prior to the rail crossing and avoiding a collision with
70 the train.

71 Bicycles usually travel at slower speeds than motor vehicles and have different stopping
72 distance requirements than motor vehicles (3). People on bicycles could need to change how
73 they operate their vehicle by slowing because of changes to the road surface (rails and gaps)
74 and changing their travel path to be perpendicular to rails and gaps. Additionally, bicycles
75 experience significant loss of stopping efficiency in wet conditions (2). Because of these
76 considerations, a BRR legend needs to be used in bicycle lanes and on multi-use paths
77 approaching rail grade crossings.

78 Placement of the BRR marking in the bicycle lane shown in Figure 510-A is conservative based
79 on typical safe stopping distance considerations for a typical upright adult bicyclists traveling at
80 18 mph on wet pavement on a 1% downgrade with 2.5 seconds of perception-reaction time
81 (design values from AASHTO Guide for the Development of Bicycle Facilities (3)). Some cyclists
82 are capable of traveling faster in bicycle lanes than 18 mph, however the W10-1 RXR warning
83 sign will be placed for motor vehicle speeds and still provides warning for these faster cyclists.

84 Certain vehicles (school buses, hazardous material trucks, etc.) are required to stop at railroad
85 crossings. A pull-out lane can help reduce the risk of rear-end crashes with these special
86 vehicles when they stop at railroad crossings and are typically considered at high speed and/or
87 multi-lane approaches where there is a significant volume of trucks or buses required to stop
88 (4). Taper rates, deceleration, and acceleration lengths are dependent on the approach speed to

Railroad Crossing Markings

Section 510

89 the rail grade crossing and the design vehicle using the pull-out. See the Highway Design
90 Manual (5) for more information on these design values. See the ODOT Traffic Manual (6) for
91 more information on the process for approving a pull-out lane.

92 At some grade crossings very close to signalized intersections, it could be beneficial to reduce
93 the distance between signal indications and the stop bar to better coordinate with the placement
94 of crossing gate arms. This is especially applicable at channelized right turn lanes where the
95 railroad closely parallels the highway. To maintain a sufficient viewing angle between the stop
96 location and the top of the signal indication, the stop bar can be moved closer to the signal
97 indications if a non-overhead supplemental signal is installed at a lower height. See the ODOT
98 Traffic Signal Design Manual (7) for more information.

99 At some grade crossings very close to signalized intersections, the distance between the railroad
100 crossing and signalized intersection can be too small for a vehicle to safely queue at the
101 intersection. At these locations, the crossing order specifies that motor vehicles must stop ahead
102 of the railroad crossing when the signal is red. Using a continental-style crosswalk is intended
103 to minimize confusion on the appropriate place for drivers to stop by showing only one
104 transverse bar on the approach to the signal.

Cross References

106 Colors	Section 110
107 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
108 Transverse Markings	Section 125
109 Stop Bars	Section 150
110 Center Lines	Section 210
111 No-Passing Zone Markings	Section 211
112 Lane Lines	Section 220
113 Edge Lines	Section 230
114 Bicycle Lanes	Section 410

Key References

- 116 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
117 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.
- 118 2. American Association of State Highway and Transportation Officials. *Guide for the Development of Bicycle Facilities*,
119 4th ed. Washington, D.C., 2012.
- 120 3. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
121 *Streets*, 6th ed. Washington, D.C., 2011.
- 122 4. Ogden, B. D. Railroad-Highway Grade Crossing Handbook. Washington, D.C., FHWA-SA-07-010, 2007. <https://www.fra.dot.gov/Elib/Details/L02829>.
- 124 5. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
125 Oregon, 2012.
- 126 6. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.

Railroad Crossing Markings**Section 510**

128 7. Oregon Department of Transportation. *Traffic Signal Design Manual*, 2016 ed. Oregon Department of
129 Transportation, Salem, OR, 2016. <http://www.oregon.gov/ODOT/Engineering/Pages/Signal-Design-Manual.aspx>.

1 Bus Pullouts

Section 520

2 Introduction

3 Bus pullouts allow buses to pull out of traffic for alighting, boarding, and long dwell times or
4 layovers. A closed bus pullout has entrance and exit tapers into and out of the bus pullout (like
5 in Figure 520-A). An open bus pullout is located on the immediate far side of an intersection
6 without an entrance taper and typically includes bus exceptions if used with an upstream right
7 turn lane (like in Figure 520-C).

8 Relevant MUTCD Sections

9 See the following sections for standards, guidance, and options not found in this manual:

- 10 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)

11 Design Parameters

12 01 A wide white dotted line (WD-2) shall be used to extend longitudinal bicycle lane lines at
13 bus pullouts where buses weave across a bicycle lane (see Figures 520-A through 520-D).

14 02 The bicycle lane line separating a bicycle lane and a closed bus pullout designed for one bus
15 at a time may be omitted based on engineering judgement (see Figure 520-A).

16 03 *Where an edge line is used on the roadway at a bus pullout designed for one bus at a time, the edge
17 line should be extended across the bus pullout with a white dotted line (WD) (see Figure 520-E and
18 520-G).*

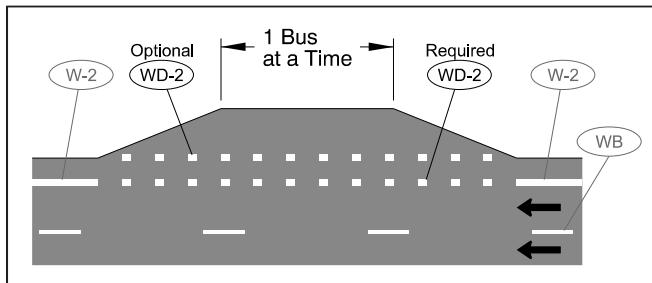
19 04 *Where an edge line is used on the roadway at a closed bus pullout designed for more than one bus at a
20 time, the edge line should be extended across the entrance and exit tapers of the bus pullout with a
21 white dotted line (WD) and a wide white solid line (W-2) should be used to separate the bus stop area
22 from the adjacent travel lane (see Figure 520-F).*

23 05 The edge line across the bus pullout in Figures 520-E and 520-F may be omitted if edge lines
24 are not present on the roadway (for example, in an urban area with curb and sidewalk).

25 06 *A BUS ONLY legend should be used at the beginning of an open bus pullout (see Figures 520-C, 520-
26 D, 520-G, and 520-H).*

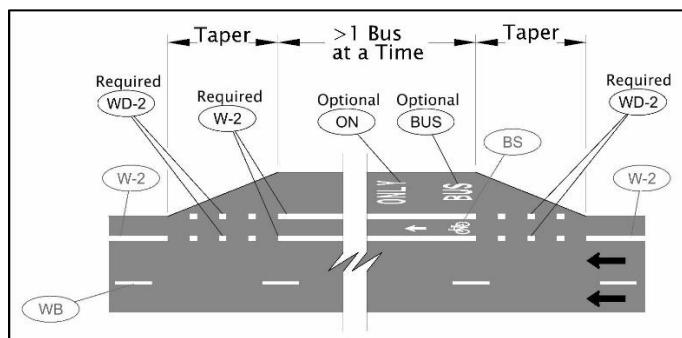
27 07 *At an open bus pullout designed for more than one bus at a time, a wide white solid line (W-2) should
28 be used to separate the bus stop area from the adjacent travel lane and a white dotted line (WD) should
29 be extended across the exit taper of the bus pullout (see Figure 520-H).*

30 08 One or more BUS ONLY legends may be used in bus pullouts based on engineering
31 judgement.


32 Design Issues

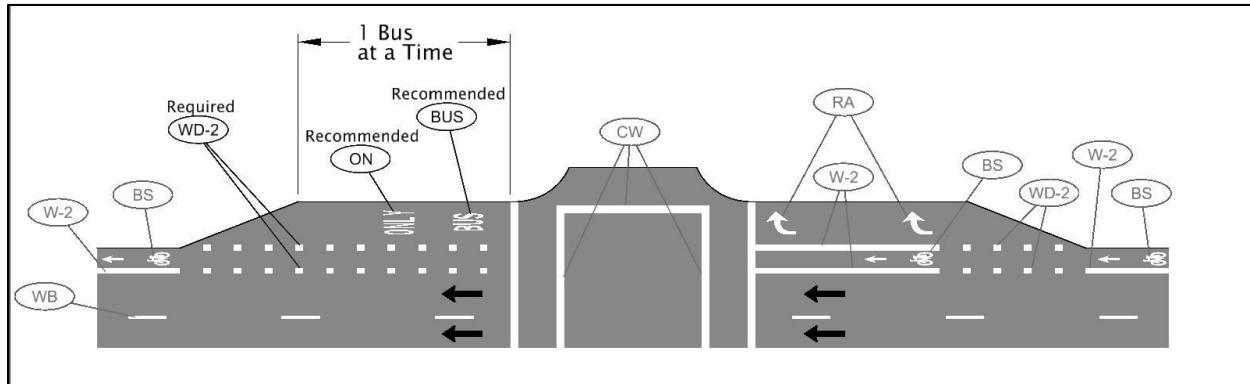
33 Many other bus stop designs and arrangements are used other than a bus pullout to meet the
34 needs of all road users, transit corridors, and transit providers. Many bus stop arrangements do
35 not need special pavement markings. Work with the local transit agency to ensure the bus stop
36 is marked for the intended operation.

37 See the ODOT Highway Design Manual (1) and the AASHTO Guide for Geometric Design of
38 Transit Facilities on Highways and Streets (2) for more information about siting and design of
39 bus pullouts. The NACTO Transit Street Design Guide (3) gives information about different
40 transit stop arrangements and how they relate to other modes (such as positioning bicycle lanes
41 to the right of an island for a transit stop), and the AASHTO Guide for Park and Ride Facilities
42 (4) gives information on park and ride facilities. See Section 530 for information on preferential
43 lane markings.


44 Figures & Tables

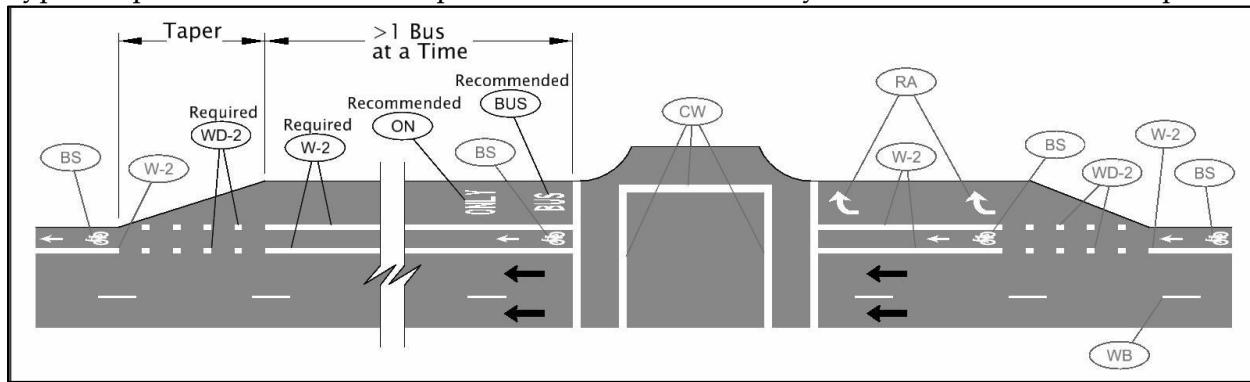
45 Figure 520-A: Typical Closed Bus Pullout - One Bus Accommodation Bicycle Lane To Left of Bus
46 Stop

47

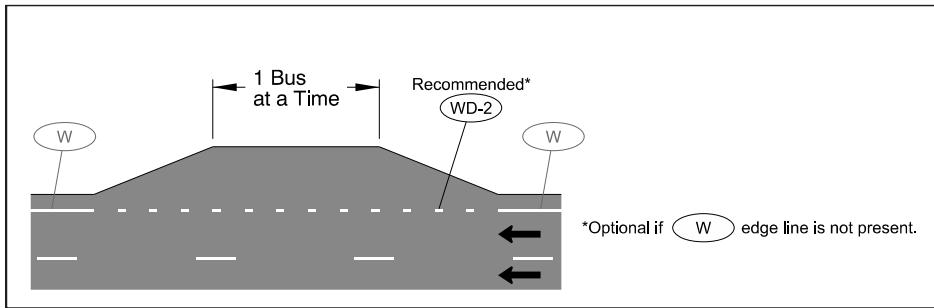

48 Figure 520-B: Typical Closed Bus Pullout - Multiple Bus Accommodation Bicycle Lane To Left of
49 Bus Stop

50

Bus Pullouts**Section 520**

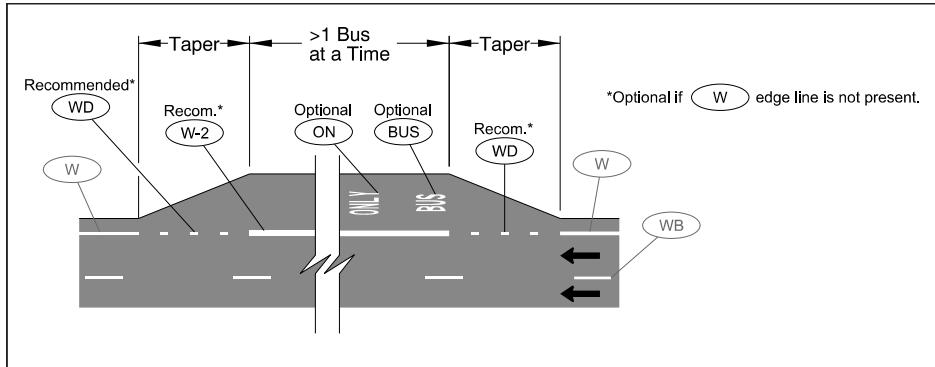

51 Figure 520-C: Typical Open Bus Pullout - One Bus Accommodation Bicycle Lane To Left of Bus Stop

53

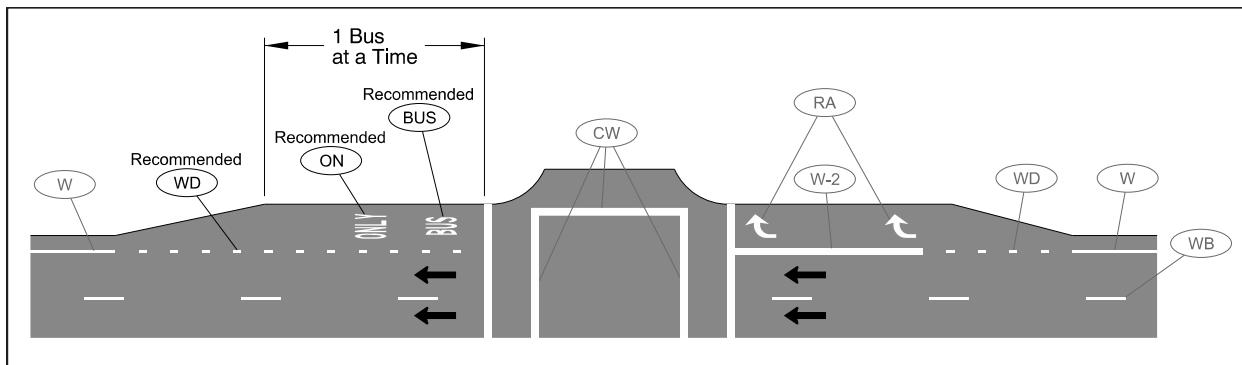

54 Figure 520-D: Typical Open Bus Pullout - Multiple Bus Accommodation Bicycle Lane To Left of Bus Stop

55 Typical Open Bus Pullout - Multiple Bus Accommodation Bicycle Lane To Left of Bus Stop

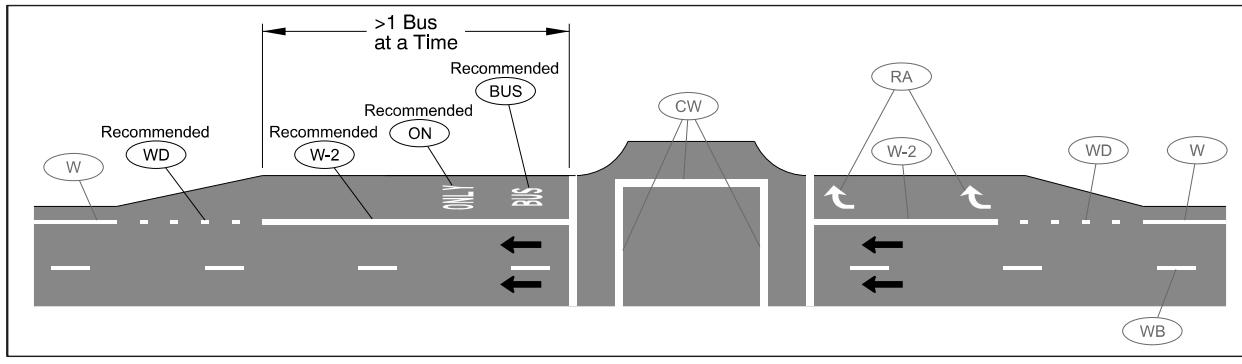
57


58 Figure 520-E: Typical Closed Bus Pullout - One Bus Accommodation No Bicycle Lane

59


Bus Pullouts**Section 520**

60 Figure 520-F: Typical Closed Bus Pullout - Multiple Bus Accommodation No Bicycle Lane


61

62 Figure 520-G: Typical One Bus Pullout - One Bus Accommodation No Bicycle Lane

63

64 Figure 520-H: Typical Open Bus Pullout - Multiple Bus Accommodation No Bicycle Lane

65

Support

66 Edge line extensions across bus pullouts visually separate the pullout space from travel lanes.

67 There are several different arrangements of bus pullouts. The most common is the "closed" bus pullout (shown in Figures 520-A, 520-B, 520-E, and 520-F) and includes entrance and exit tapers at both ends of the pullout. An edge line extension at these pullouts helps prevent unintentional entrance or encroachment into the pullout.

Bus Pullouts**Section 520**

72 Where used, an “open” bus pullout (shown in Figures 520-C, 520-D, 520-G, and 520-H) is
73 commonly paired with a right turn lane on the near side of the intersection with a bus exception
74 for right turns, or with a bus queue jump lane (2). A line separating the bus pullout from the
75 adjacent lane and BUS ONLY stencil are recommended at these pullouts so road users can pick
76 the correct receiving lane at the intersection, especially those turning right towards the pullout.
77 Like other motor vehicle-bicycle conflict areas, wide dotted lines are used where buses cross a
78 bicycle lane (see Section 410).

79 **Cross References**

80 Colors	Section 110
81 Functions, Widths, and Patterns of Longitudinal Lines	Section 120
82 Transverse Markings	Section 125
83 Lane Lines	Section 220
84 Edge Lines	Section 230
85 Bicycle Lanes	Section 410
86 Marked Crosswalks	Section 430
87 Shared-Use Path Markings	Section 440
88 Railroad Crossing Markings	Section 510
89 Preferential Lane Markings	Section 530

90 **Key References**

- 91 1. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
92 Oregon, 2012.
- 93 2. American Association of State Highway and Transportation Officials. *Guide for Geometric Design of Transit Facilities
94 on Highways and Streets*. American Association of State Highway and Transportation Officials, Washington, D.C.,
95 2014.
- 96 3. National Association of City Transportation Officials. *Transit Street Design Guide*. Island Press, Washington, D.C.,
97 2016. <http://nacto.org/publication/transit-street-design-guide/>.
- 98 4. American Association of State Highway and Transportation Officials. *Guide for Park-and-Ride Facilities*, 2nd ed.
99 American Association of State Highway and Transportation Officials, Washington, D.C., 2004. https://bookstore.transportation.org/item_details.aspx?id=121.

1 Preferential Lane Markings

Section 530

2 Introduction

3 Preferential lanes serve a wide variety of special uses. This could include, but is not limited to,
4 high-occupancy vehicle (HOV) lanes, bus-only lanes, and taxi-only lanes.

5 Relevant MUTCD Sections

6 See the following sections for standards, guidance, and options not found in this manual:

- 7 • MUTCD 11th Edition: Chapter 3E. Preferential Lane Markings for Motor Vehicles

8 Design Parameters

9 01 When a lane is assigned full or part time to a particular class or classes of vehicles,
10 preferential lane markings shall be used.

11 02 All preferential lane word and symbol markings shall be white and shall be positioned
12 laterally in the center of the preferred-use lane. Preferential lane markings shall be placed
13 at the beginning of the preferential lane and after intersections.

14 03 Where a preferential lane use is established, the preferential lane shall be marked with
15 one or more of the following symbol or word markings for the use specified:

- 16 • HOV lane – the preferential lane use marking for high-occupancy vehicle lanes shall
17 consist of white lines formed in a diamond shape symbol shown in Figure 530.
- 18 • Bicycle lane – preferential lane use markings for a bicycle lane shall consist of
19 markings according to Section 410.
- 20 • Bus only lane – the preferential lane use marking for a bus only lane shall consist of
21 the word marking BUS ONLY (see Figure 530).
- 22 • Light rail transit lane – the preferential lane use marking for a light rail transit lane
23 shall consist of the word marking LRT ONLY (see Figure 530).

24 04 All longitudinal pavement markings, as well as word and symbol pavement markings,
25 associated with a preferential lane shall end where the "Preferential Lane Ends" sign (R3-
26 12a or R3-12c) designating the downstream end of the preferential only lane restriction is
27 installed.

28 05 Preferential lanes for motor vehicles shall be separated from other travel lanes using
29 longitudinal markings according to Section 3E.02 of the 11th Edition MUTCD.

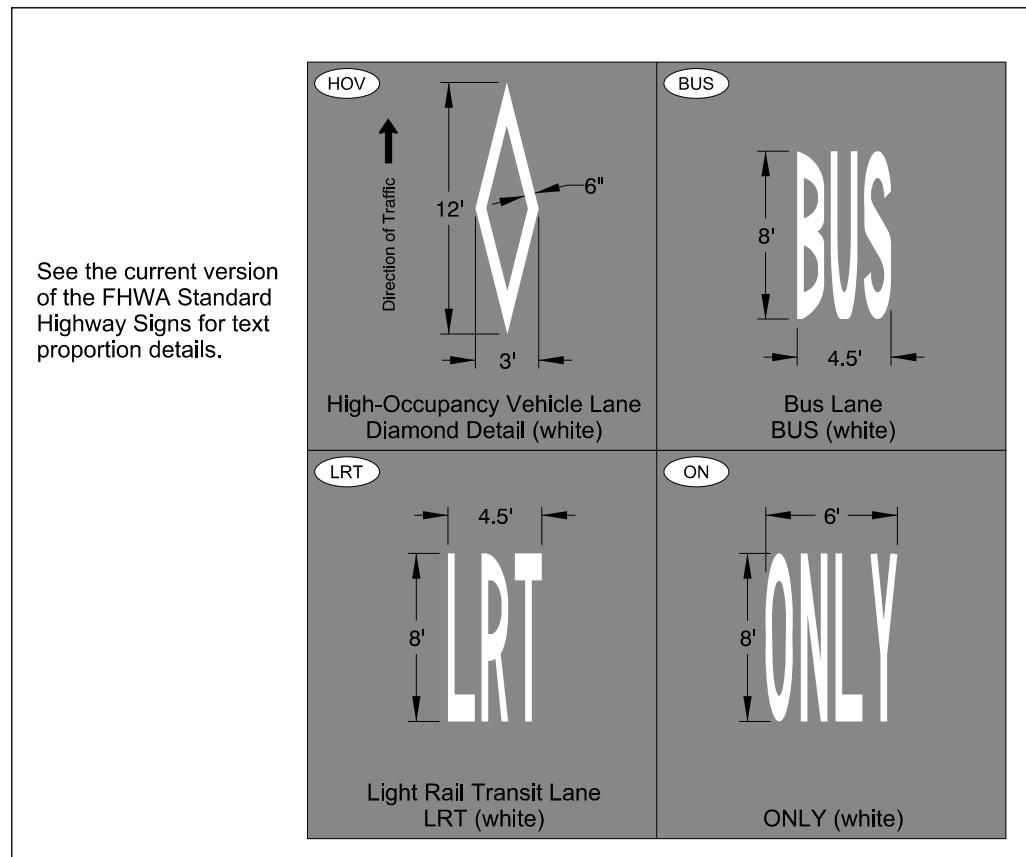
30 06 If two or more preferential lane uses are permitted in a single lane, the symbol or word
31 marking for each preferential lane use shall be installed.

32 07 *The spacing of preferential lane use markings should be based on engineering judgement that
33 considers the prevailing speed, block lengths, distance from intersections, and other factors that affect
34 clear communication to the road user.*

35 08 *In addition to a regular spacing interval, preferential lane markings should be placed at strategic
36 locations such as major decision points, direct exit ramp departures from the preferential lane, and*

37 along access openings to and from adjacent general-purpose lanes. At decision points, preferential lane
38 markings should be placed on all applicable lanes and should be visible to approaching traffic for all
39 available departures. At direct exits from preferential lanes where extra emphasis is needed, the use of
40 word markings (such as "EXIT" or "EXIT ONLY") in the deceleration lane for the direct exit and/or
41 on the direct exit ramp itself just beyond the exit gore should be considered.

42 Required Approvals


43 ORS 810.140 allows road authorities to designate bus or HOV lanes. On state highways, these
44 designations are set through Oregon Administrative Rule.

45 Design Issues

46 Other traffic control devices (signing, signals, etc.) are needed for preferential lanes. See
47 additional design parameters for marking, signing, and signals in the MUTCD (2).

48 Figures & Tables

49 Figure 530: Preferential Lane Marking Details

51 **Support**

52 Previously the only preferential lane order currently in effect on a state highway is OAR 734-
53 020-0043 for the I-5 HOV Lanes in North Portland (milepoint 303.98 to 307.49). In recent years
54 there have been agencies that have installed bus only lanes on part of or connecting to state
55 highways.

56 **Cross References**

57 Colors	Section 110
58 Transverse Markings	Section 125
59 Bicycle Lanes	Section 410
60 Bicycle Lane Buffers	Section 412
61 Bus Pullouts	Section 520
62 Ramp Meters	Section 620

63 **Key References**

64 2. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
65 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 Colored Pavement in Transit Lanes Section 531

2 Introduction

3 Red-colored pavement is used to enhance the conspicuity of locations, station stops, or travel
4 lanes in the roadway exclusively reserved for vehicles of public transit systems or multi-modal
5 facilities where public transit is the primary mode. These public transit vehicles include buses,
6 streetcars, trolleys, light-rail trains, and rapid transit fleets.

7 Relevant MUTCD Sections

8 See the following sections for standards, guidance, and options not found in this manual:

- 9 • MUTCD 11th Edition: 3H.07 Red-Colored Pavement for Public Transit Systems

10 Required Approvals

11 An engineering study and state traffic engineer approval is required for installation of colored
12 pavement in transit only lanes on a state highway.

13 Key References

14 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
15 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 School Markings

Section 610

2 Introduction

3 School markings supplement other required signing in a designated school zone.

4 Relevant MUTCD Sections

5 See the following sections for standards, guidance, and options not found in this manual:

- 6 • [MUTCD 11th Edition: 3B.19 Stop and Yield Lines](#)
- 7 • [MUTCD 11th Edition: 3B.20 Word, Symbol, and Arrow Pavement Markings – General](#)
- 8 • [Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines](#)
- 9 • [MUTCD 11th Edition: Part 7 Traffic Control for School Areas - Chapter 7C Markings](#)

10 Design Parameters

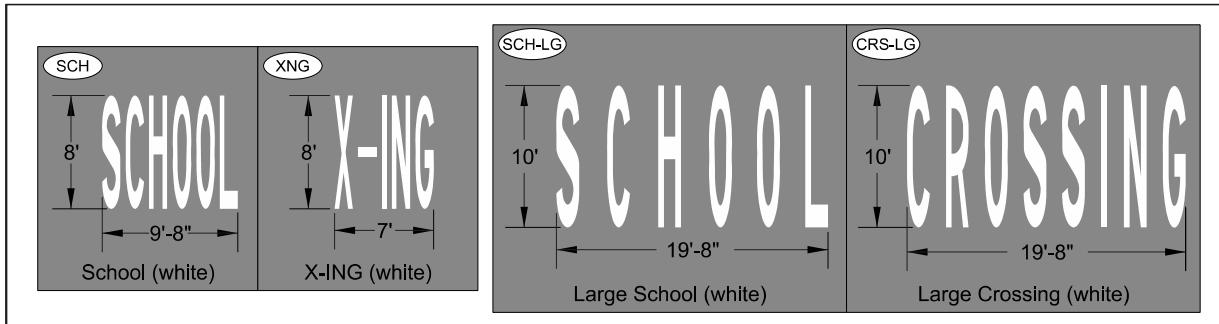
11 01 School legends may be installed if a school sign is installed (sign S1-1).

12 02 When used in advance of a marked school crossing, school markings shall include a small
13 SCHOOL legend in combination with X-ING placed on each lane (Figure 610-B). When
14 used where there is no marked school crossing, a SCHOOL legend shall be used alone
15 (Figure 610-D).

16 03 On roadways with centerline markings, no-passing zone markings shall be used on the
17 approach to and through school zones according to Table 211-2 (Figure 610-D).

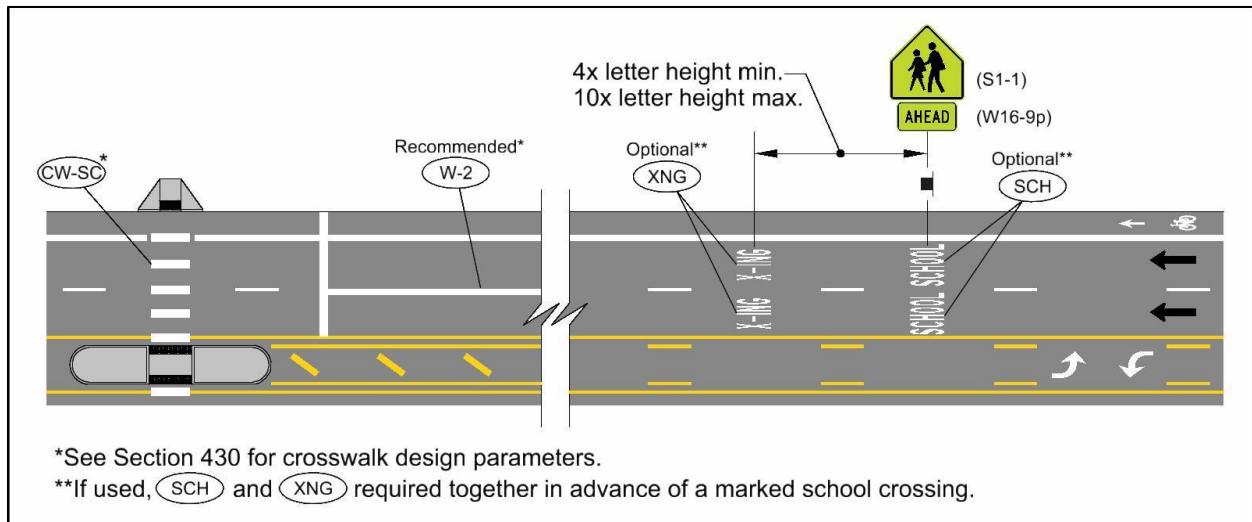
18 04 When used, the word SCHOOL should be placed adjacent to the advance school warning assembly
19 signing (Figures 610-B, 610-C, and 610-D). The word X-ING or CROSSING should be placed based
20 on the posted speed and roadway characteristics, a minimum of 4 times the letter height to a maximum
21 of 10 times the letter height (Figures 610-B and 610-C).

22 05 When school markings are used on multi-lane roadways, a large SCHOOL legend (with
23 CROSSING as appropriate) placed across the width of two lanes (Figure 610-C) may be used
24 instead of the single-lane layout shown in Figure 610-B.


25 Required Approvals

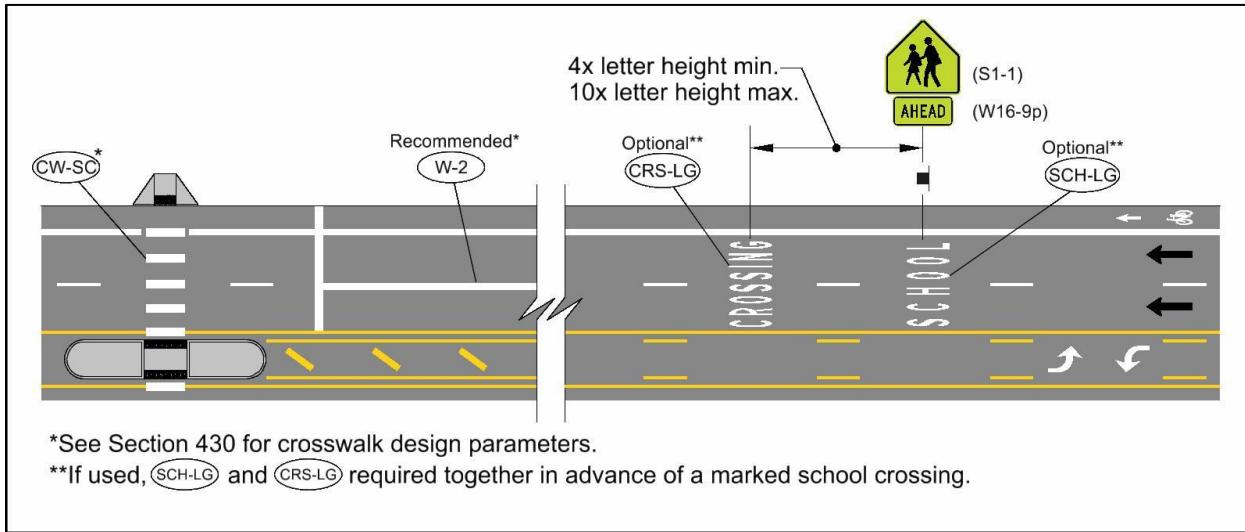
26 An engineering study and state traffic engineer approval is required for new school zones.

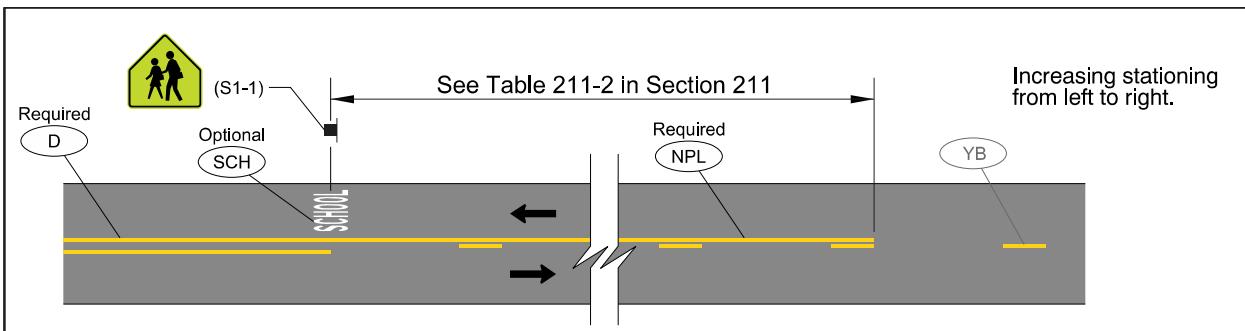
27 Region traffic engineer approval is required for use of the large SCHOOL legend (with
28 CROSSING as appropriate) shown in Figure 610-C.


School Markings**Section 610****Figures & Tables**

30 Figure 610-A: School Crossing Marking Types

31


32 Figure 610-B: Typical School Marking Layout with Crossing


33

School Markings**Section 610**

34 Figure 610-C: Typical Two-Lane School Marking Layout with Crossing

35

36 Figure 610-D: Typical One-Lane School Marking Layout without Crossing & No-Passing
37 Markings

38

Support

40 Pavement word legends supplement and add extra emphasis to signing. For more information
41 on benefits and limitations of transverse markings, see Section 125.

42 Pavement legends are just one part of an effective school zone traffic control strategy. There has
43 been limited research directly investigating the effect legends in school zones have on road user
44 behavior and speed; those that have studied these effects (1) (2) have shown no practical effect
45 on speeds but only examined a limited number of locations and facilities. Other traffic control
46 devices and strategies are summarized in ODOT's A Guide to School Area Safety (3).

Cross References

48 Colors.....	Section 110
49 Stop Bars	Section 150
50 No-Passing Zone Markings.....	Section 211

School Markings**Section 610**

51	Marked Crosswalks	Section 430
----	-------------------------	-------------

52 **Key References**

- 53 1. Schrader, M. H. Study of Effectiveness of Selected School Zone Traffic Control Devices. *Transportation Research Record: Journal of the Transportation Research Board of the National Academies*, Vol. 1692, 1999, pp. 24-29. <http://trrjournalonline.trb.org/doi/pdf/10.3141/1692-04>. DOI: 10.3141/1692-04
- 54 2. Radalj, T. Driver Speed Compliance within School Zones and Effects of "40" Painted Speed Limit on Driver Speed Behaviors. in *Road Safety Research, Policing and Education Conference*, Vol. 2, Adelaide, South Australia, Australia, 55 2002, pp. 207-14. <https://trid.trb.org/view.aspx?id=702285>.
- 56 3. Oregon Department of Transportation. A Guide to School Area Safety. Traffic Engineering & Operations Section 57 and Traffic Safety Division, Oregon Department of Transportation, Salem, Oregon, 2017. [http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Guide_to_School_Area_Safety.pdf](http://www.oregon.gov/58 ODOT/Engineering/Docs_TrafficEng/Guide_to_School_Area_Safety.pdf).

1 **Ramp Meters**

Section 620

2 **Introduction**

3 Ramp meters can reduce merge area turbulence by regulating vehicle flow entering the facility
4 and regulate total freeway traffic flow through downstream bottlenecks. Ramp meter stop bars
5 show drivers where to wait for the ramp meter signal and can guide drivers into multiple queue
6 lanes.

7 **Relevant MUTCD Sections**

8 See the following sections for standards, guidance, and options not found in this manual:

- 9 • [MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings](#)
- 10 • [MUTCD 11th Edition: 3B.19 Stop and Yield Lines](#)
- 11 • [Oregon Supplement to the MUTCD- 11th Edition Section 3B.19 Stop and Yield Lines](#).

12 **Design Parameters**

13 01 A stop bar shall be placed at the “STOP HERE ON RED” (R10-6) sign(s) as shown in
14 Figure 620-A.

15 02 At ramps that operate with two or more queue lanes when metered, a wide solid white
16 line shall be used as shown in Figure 620-A to separate the queue lanes.

17 03 If a ramp shoulder is used as a third general queue lane, the shoulder edge line should be dotted (WD)
18 where queueing traffic is intended to enter the shoulder lane and dotted (WD) after the stop bar
19 through the taper as shown in Figure 620-C.

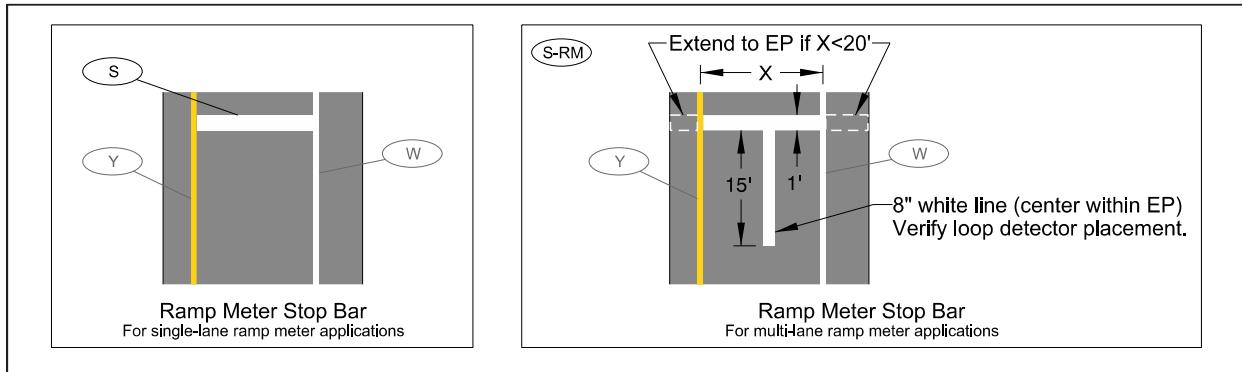
20 04 If a ramp meter queue lane is used as a preferential lane, preferential lane markings shall
21 be placed according to Section 530. A wide solid white line (W-2) shall separate the
22 preferential lane from the adjacent general lane(s) (see Figure 620-D).

23 05 If a ramp meter queue lane is used as a preferential lane, preferential lane markings should be placed at
24 the stop bar as shown in Figure 620-D. Where the wide white line (W-2) separating the preferential
25 lane from the adjacent lane(s) is longer than 400 feet, a preferential lane marking should be placed at
26 the mid-point of the preferential lane.

27 **Required Approvals**

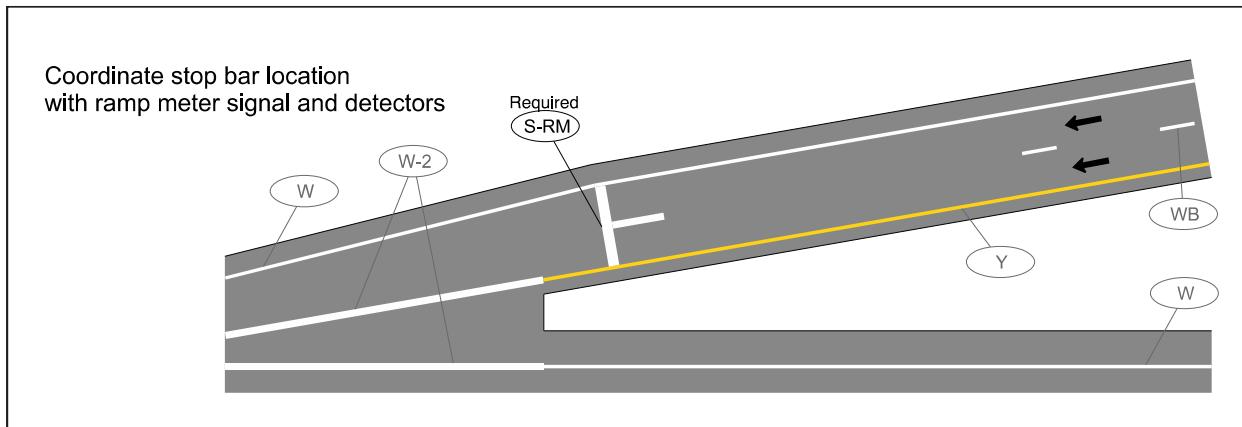
28 An engineering study and region traffic engineer/manager approval are required for ramp
29 meter installations.

Ramp Meters


Section 620

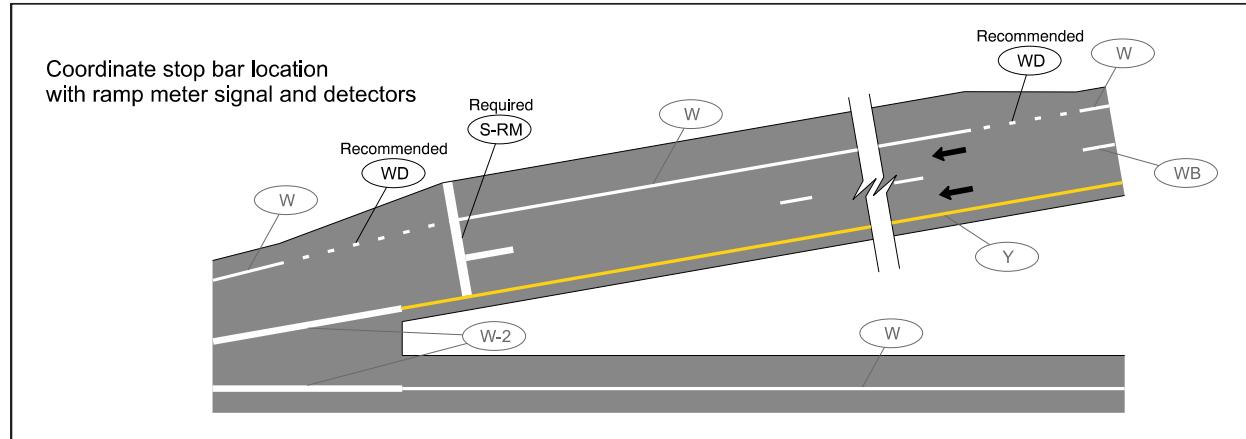
Design Issues

31 There are other signing and signaling requirements for ramp meters. See the ODOT Traffic
32 Manual (1) and ODOT Highway Design Manual (2) for more information on design parameters
33 and considerations for ramp meters.

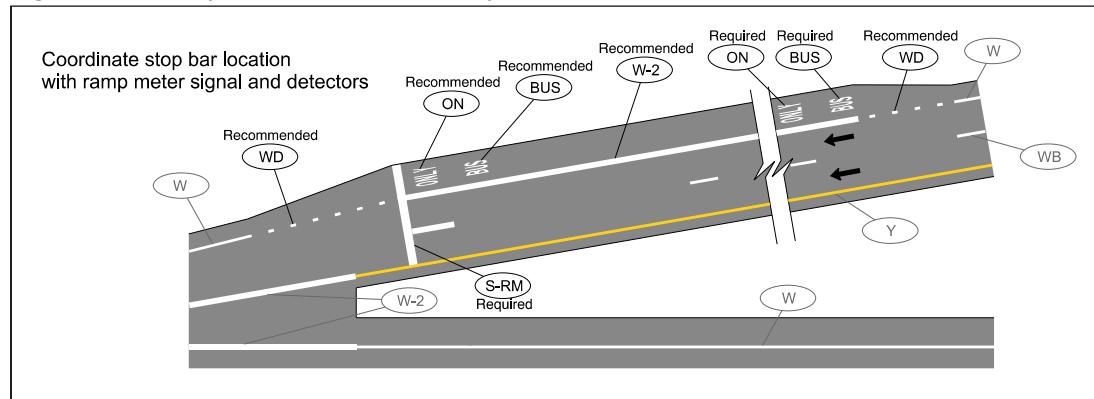

Figures & Tables

35 Figure 620-A: Ramp Meter Stop Bar Types

36


37 Figure 620-B: Typical Ramp Meter Layout - 2 Queue Lanes

38


Ramp Meters**Section 620**

39 Figure 620-C: Typical Ramp Meter Layout - Shoulder Queue Lane

40

41 Figure 620-D: Typical Ramp Meter Layout - Bus Queue Jump Lane

42

Support

44 The ramp meter stop bar is an Oregon-unique application to allow two-lane queueing on single
 45 lane ramps in areas with existing right-of-way constraints and legacy infrastructure. The detail
 46 first appeared in the January 1994 ODOT Ramp Meter Design Guidelines (3) and has operated
 47 well in the Portland area where additional ramp width for multiple standard travel lanes is not
 48 possible. On narrower on-ramps (pavement width <20 feet) drivers form two lines by straddling
 49 the ramp's edge lines so the stop bar needs to extend to the edge of pavement. On-ramp
 50 pavement widths 20 feet and greater allow two queue lanes to comfortably form between the
 51 edge lines so the stop bar is only extend to the edge lines.

52 The 15-foot long 8-inch wide line centered on the paved width, in addition to signs saying form
 53 two lines, gives motorists enough direction at the beginning of the queue to form two lines;
 54 motorists behind the front vehicles queue behind without the need for a lane line. Because there
 55 are additional traffic control measures, and viewed in context clearly intended for ramp
 56 metering, this application has performed well for its intended purpose. Additionally, ramp
 57 meter stop bars are frequently installed after the ramp's white broken line is ended for a lane
 58 reduction transition and before the ramp begins to taper to one lane. The 8-inch line does not

Ramp Meters

Section 620

59 generally interfere with the lane reduction transition because it is kept short at the stop bar
60 itself.

61 In some very constrained and over capacity areas, using the ramp's shoulder as a queue lane
62 could help provide additional space for ramp meter operations. Because the shoulder operates
63 as a normal shoulder under non-metered operations, a normal-width solid line is used as the
64 edge line except in the areas where queueing vehicles can enter the shoulder and merge back
65 into the ramp's lane (where it is dotted). See the ODOT Highway Design Manual (2) for more
66 information on this type of layout.

67 In some locations it could be desirable to provide a transit or high-occupancy vehicle queue
68 jump lane on metered ramps. In these cases, the lane becomes a preferential lane and needs to
69 be defined with preferential lane markings (like BUS ONLY legends). Additional traffic control
70 measures will be needed in addition to pavement markings (like signs and special signal
71 designs).

Cross References

72 Colors Section 110
73 Functions, Widths, and Patterns of Longitudinal Lines Section 120
74 Transverse Markings Section 125
75 Stop Bars Section 150
76 Lane Lines Section 220
77 Edge Lines Section 230
78 Interchange Ramps: Exit & Entrance Ramps Section 360
79 Preferential Lane Markings Section 530
80

Key References

81 1. Oregon Department of Transportation. *Traffic Manual*, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.
82 2. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
83 Oregon, 2012.
84 3. Oregon Department of Transportation. *Ramp Meter Design Guidelines*. Oregon Department of Transportation,
85 1994.
86

1 **Parking Space and Curb Markings Section 630**

2 **Introduction**

3 Parking space markings can encourage more orderly use of parking spaces where parking
4 turnover is substantial. Marked parking spaces tend to prevent encroachment into fire hydrant
5 zones, bus stops, loading zones, approaches to intersections, curb ramps, and clearance spaces
6 for islands and other zones where parking is restricted (1) (2).

7 **Relevant MUTCD Sections**

8 See the following for additional standards, guidance, and options not found in this manual:

- 9 • [MUTCD 11th Edition: 3A.03 Colors](#)
- 10 • [MUTCD 11th Edition: 3B.18 Curb Markings for Parking Regulations](#)
- 11 • [MUTCD 11th Edition 3B.22 Symbol Pavement Markings](#)

12 **Design Parameters**

13 01 Parallel on-street parking spaces may be marked with white parking tick markings (P)
14 shown in Figure 630-A.

15 02 *If marked, parallel on-street parking should be installed as shown in Figure 630-B.*

16 03 **Parking space markings shall be white, except for the optional background color of the**
17 **International Symbol of Accessibility.**

18 04 **Accessible parking places shall be marked according to the Oregon Transportation**
19 **Commission Standards for Accessible Parking Places.**

20 05 Curbs may be colored to supplement standard signs for parking regulations if requested by a
21 local jurisdiction.

22 06 *For construction of new parking areas in rest areas on the state highway system, large vehicle parking*
23 *spaces should be installed as shown in Figure 630-C.*

24 07 For repaving and restriping of current rest area parking areas on the state highway system
25 the layout of Figure 630-C may be met as long as the number of parking spaces is not
26 reduced (see Support section for more information on large vehicle parking in rest areas).

27 08 Curbs markings should not be used within 2 feet of a detectable warning surface (DWS).

28 09 Curb markings should not be used on the flared sides of curb ramps.

29 **Required Approvals**

30 New installations of diagonal on-street parking require a roadway design exception.

31 Design Issues

32 The number of accessible on-street parking spaces is based on the total number of marked or
33 metered parking spaces on the block perimeter. Marked or metered parking includes parking
34 spaces marked on the pavement, parking designated by permissive parking signs (limited time
35 parking or parking in a particular manner, see MUTCD Section 2B.52), or parking meters.

36 Accessible on-street parking spaces are generally located nearest a curb ramp – typically at
37 either end of the block face or nearest a pedestrian crossing. The area around the accessible
38 parking space will also need to be free from street furniture or other obstructions.

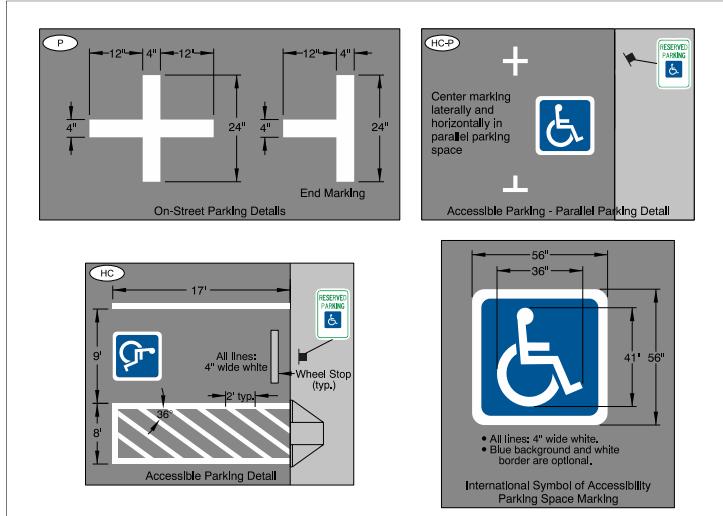
39 Accessible on-street parking located in a local jurisdiction might need an Intergovernmental
40 Agreement.

41 Contact the Roadway Section for more information on ADA considerations around on-street
42 parking.

43 Curb markings are typically not installed on state highways. If curb markings are requested by
44 a local jurisdiction, an intergovernmental agreement will be needed stating the curb markings
45 will be installed and maintained by the local jurisdiction. See section 281 for more information
46 on installing curb markings near detectable warning surfaces.

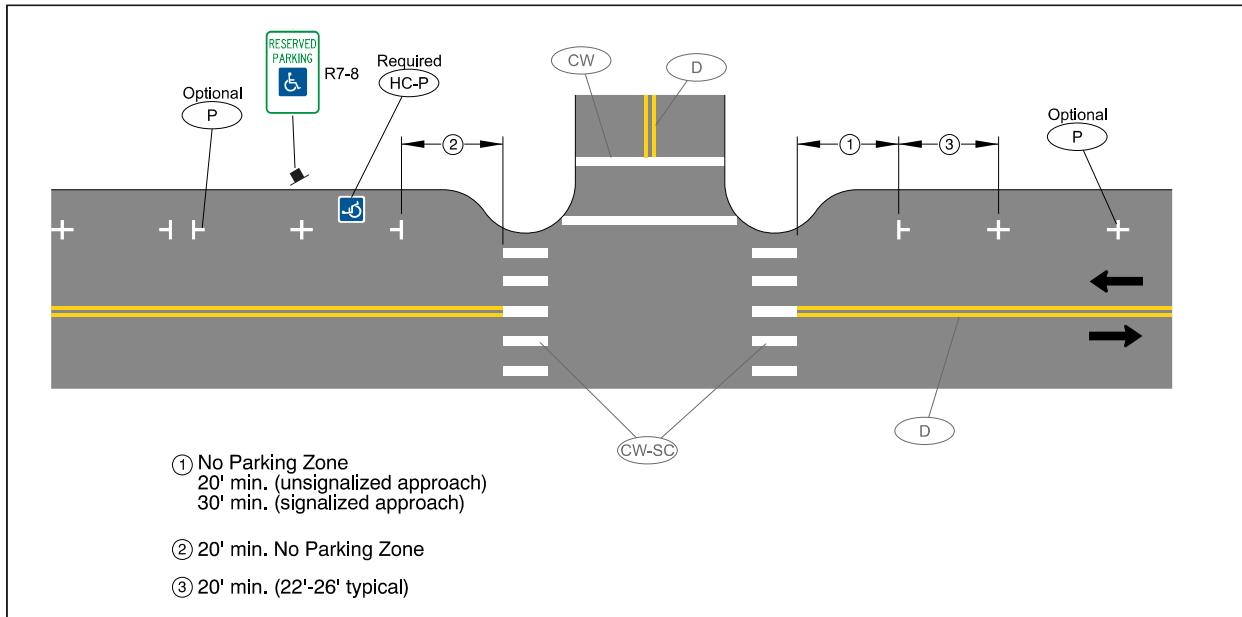
47 ORS 811.550 prohibits parking in several places, including within 20 feet of a crosswalk at an
48 intersection (marked or unmarked), and within 10 feet of a fire hydrant.

49 Since yellow and white curb markings are used for curb delineation and visibility, it is
50 advisable to establish parking regulations with standard signs.


51 When determining placement of curb markings, consideration should be given to the
52 conspicuity of any DWSs that are part of the project. It is beneficial to have a distance between a
53 yellow DWS and yellow curb markings. The distance gives more contrast which helps
54 pedestrians see where their path is. It is good to avoid monochromatic color schemes where
55 DWSs and supplemental markings are installed near each other.

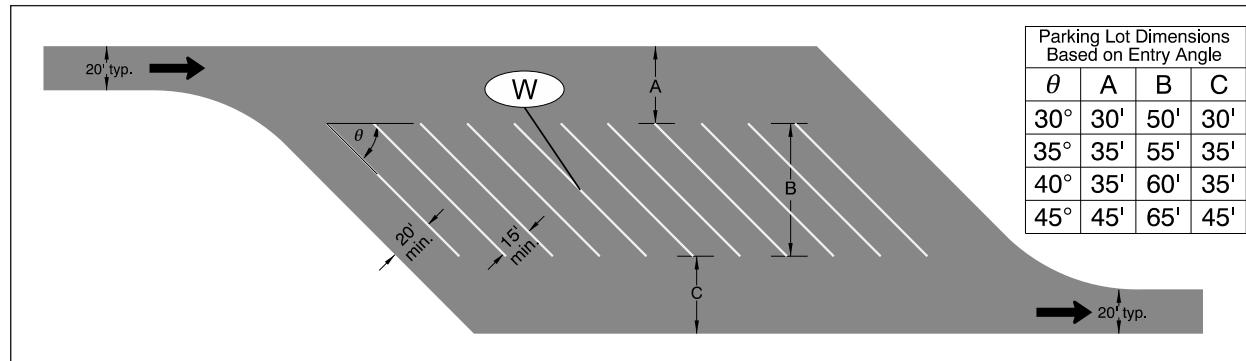
Parking Space and Curb Markings

Section 630


56 Figures & Tables

57 Figure 630-A: Parking Marking Types

58


59 Figure 630-B: Typical Layout for Marked Parallel On-Street Parking, No Bicycle Lane

60

Parking Space and Curb Markings**Section 630**

61 Figure 630-C: Typical Large Vehicle Parking Space Dimensions for New Rest Area Parking Areas

62

63 **Support**

64 **On-Street Parking**

65 If used, on-street parallel parking is typically installed on highways in downtown areas and
 66 commercial business districts. On-street parallel parking is generally more successful on low
 67 speed roadways (≤ 30 mph) with $< 15,000$ ADT; higher speeds and volumes are not conducive to
 68 parking maneuvers and might not provide enough time to exit/enter a vehicle on the traffic side
 69 of the parked vehicle (3).

70 Markings for on-street parking are optional in the design parameters. The MUTCD (1) and
 71 Green Book (2) say marking on-street parking encourages more orderly and efficient use of
 72 parking spaces where turnover is substantial and prevents encroachment where parking is
 73 restricted (e.g.: fire hydrant). However, recent research (4) has found marked parking spaces
 74 might or might not improve parking efficiency. Areas with relatively uniform vehicle lengths
 75 can benefit from marked spaces, but in high-demand areas and long block segment, and in
 76 areas with varying vehicle lengths, unmarked parking can eventually self-organize and provide
 77 comparable efficiency. Efficiency is only one consideration for marked versus unmarked on-
 78 street parking; the researchers also pointed to customer convenience and expectation,
 79 operational costs, metered parking, and local policies and strategies as other factors to consider.

80 On-street parallel parking space lengths in Figure 630-B come from the 2009 MUTCD (1). See
 81 the ODOT Highway Design Manual (5) for on-street parking space width considerations.

82 There are several considerations for on-street angled parking, including a roadway design
 83 exception. See the ODOT Highway Design Manual for more information about angled parking
 84 considerations.

85 **Off-Street Parking**

86 Off-street parking is typically installed in rest areas, park-and-ride lots, and viewpoints.
 87 Designing a safe and efficient parking layout off of the highway involves many factors. For
 88 detailed information on parking layout, consult the AASHTO Guide for Park-and-Ride

Parking Space and Curb Markings

Section 630

89 Facilities (6), AASHTO Guide for Development of Rest Areas on Major Arterials and Freeways
90 (7), and the ITE Traffic Engineering Handbook (3).

91 Off-street parking space dimensions can vary depending on the design vehicle for the parking
92 space, orientation of spaces, and how the space will be used (parking turnover, vehicle
93 loading/unloading, door-opening clearance, user maneuverability). Off-street parking spaces
94 for passenger vehicles are most commonly 8.5 to 9.0 feet wide, which allows for a mix of
95 standard and compact vehicles. Length for perpendicular spaces is most commonly 18 feet,
96 which allows for the 85th percentile vehicle length in the U.S. fleet (about 17 feet). Compact
97 spaces can be as small as 7.5 feet wide by 15 feet long (6) (7) (3).

98 Off-street parking spaces for an interstate design vehicle (WB-67) are typically 15 feet wide and
99 at least 80 feet long (7).

100 Accessible parking spaces are required for all affected buildings subject to the state building
101 code per ORS 447.233. The Oregon Transportation Commission Standards for Accessible
102 Parking Places (8) provides signing and pavement marking standards for all accessible parking
103 spaces in Oregon.

104 Off-street parking space markings on ODOT facilities are white to be consistent with on-street
105 markings.

Large Vehicle Parking in Rest Areas

106 Figure 630-C shows the ideal minimum dimension layouts for large vehicle parking in
107 new rest areas. This is not always attainable when modifying current rest area parking
108 areas due to limits of right of way, current paved surface, and funding. It is also not
109 desirable to remove current parking spaces to get closer to this standard. When repaving
110 current rest area parking areas it can be a good opportunity to evaluate the current
111 layout of the parking area to see if there can be an improvement to the design without
112 reducing the number of parking spaces.

Cross References

115 Colors	Section 110
116 Transverse Markings	Section 125
117 Edge Lines	Section 230
118 Bicycle Lanes	Section 410
119 Bicycle Lane Buffers	Section 412
120 Marked Crosswalks	Section 430

Key References

- 122 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
123 Washington, D.C., 2023.
- 124 2. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
125 *Streets*, 6th ed. Washington, D.C., 2011.

Parking Space and Curb Markings**Section 630**

126 3. Institute of Transportation Engineers. *Traffic Engineering Handbook*, 6th ed. Institute of Transportation Engineers,
127 Washington, D.C., 2010.

128 4. Dey, S. S., C. R. Dance, M. Darst, S. Dock, T. Silander, and A. Pochowski. To Demarcate or Not to Demarcate:
129 Analysis of Marked Versus Unmarked On-Street Parking Efficiency. *Transportation Research Record: Journal of the*
130 *Transportation Research Board of the National Academies*, Vol. 2562, 2016, pp. 18-27. <http://trrjournalonline.trb.org/>
131 doi/abs/10.3141/2562-03. DOI: <http://dx.doi.org/10.3141/2562-03>

132 5. Oregon Department of Transportation. *Highway Design Manual*. Oregon Department of Transportation, Salem,
133 Oregon, 2012.

134 6. American Association of State Highway and Transportation Officials. *Guide for Park-and-Ride Facilities*, 2nd ed.
135 American Association of State Highway and Transportation Officials, Washington, D.C., 2004. https://bookstore.transportation.org/item_details.aspx?id=121.

137 7. American Association of State Highway and Transportation Officials. *Guide for Development of Rest Areas on Major*
138 *Arterials and Freeways*, 3rd ed. American Association of State Highway and Transportation Officials, Washington,
139 D.C., 2001. https://bookstore.transportation.org/collection_detail.aspx?ID=104.

140 8. Oregon Transportation Commission. *Standards for Accessible Parking Places*. Oregon Department of Transportation,
141 Salem, Oregon, August 2018. https://www.oregon.gov/odot/Engineering/DOCS_ADA/ADA_Standards-Accessible-Parking.pdf.

143 9. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 11th ed.
144 Federal Highway Administration, Washington, D.C., 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm.

1 **Freeway Median Crossovers**

Section 640

2 **Introduction**

3 Freeway median crossovers provide an opportunity for emergency and ODOT Maintenance
4 vehicles to change directions on a freeway under certain conditions without needing to travel to
5 an interchange. In emergency situations, these crossovers save critical time for responders;
6 however, crossovers can be difficult for emergency drivers to locate at night or during
7 inclement weather. Providing advance warning a crossover is ahead can help emergency
8 drivers safely locate and use the crossover.

9 **Relevant MUTCD Sections**

10 See the following for additional standards, guidance, and options not found in this manual:

- 11 • [MUTCD 11th Edition: 3B.14 Raised Pavement Markers – General](#)

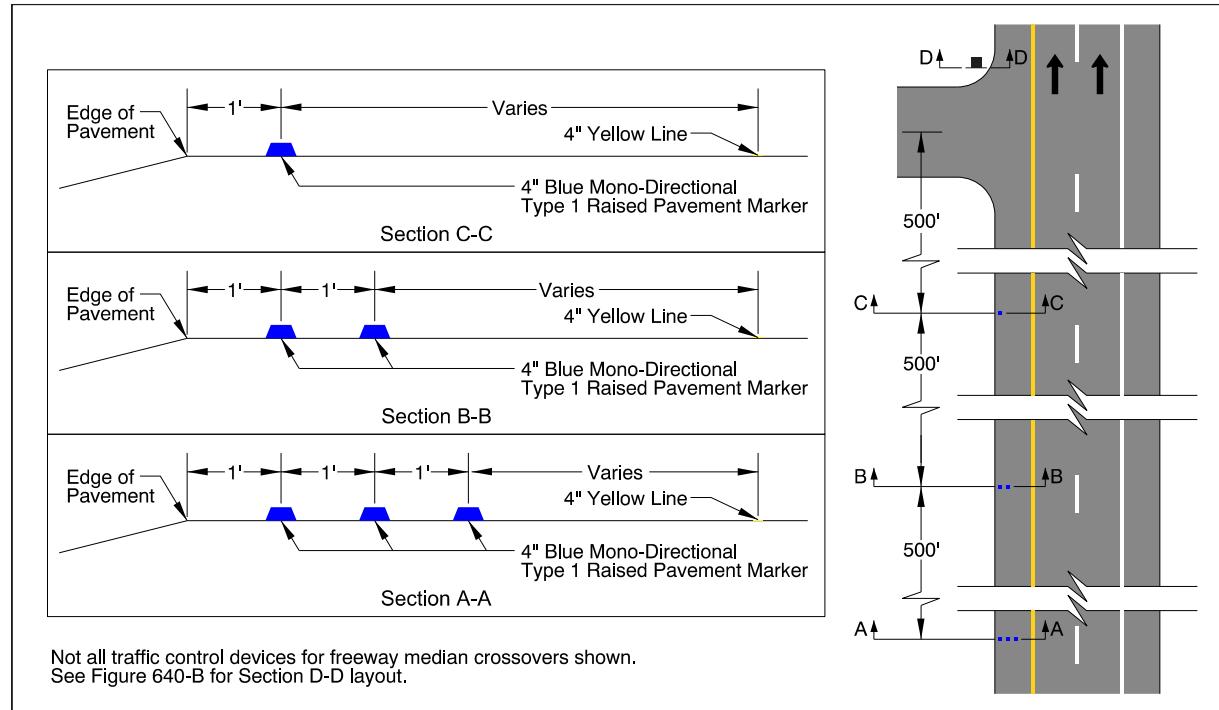
12 **Design Parameters**

13 01 *At freeway median crossovers, blue raised pavement markers (RPMs) should be used and placed as*
14 *shown in Figure 640-A.*

15 02 If the freeway median crossover is located in an area that is frequently snowplowed, blue
16 target identifier posts with blue targets may be used as shown in Figure 640-B instead of
17 RPMs.

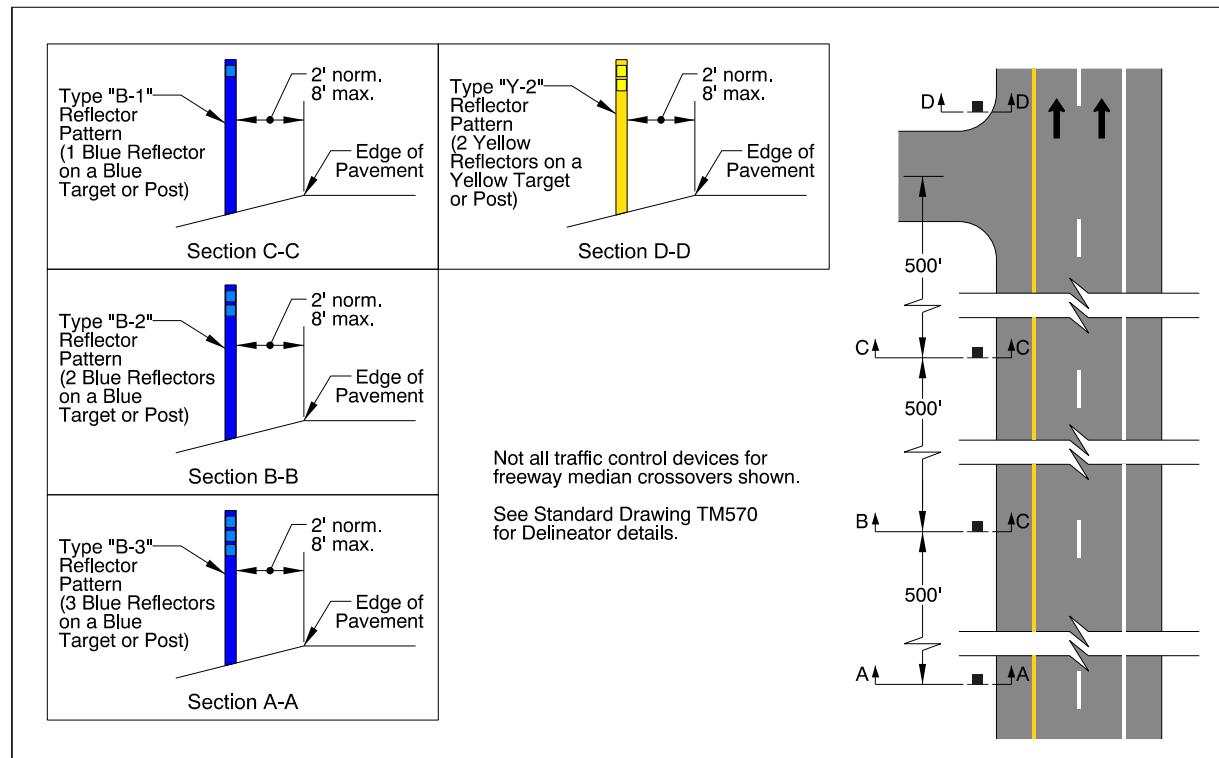
18 03 Blue target identifier posts may be used as shown in Figure 640-B in addition to RPMs where
19 added conspicuity is needed based on engineering judgement.

20 **Required Approvals**


21 An engineering study and state traffic engineer approval is required for freeway median
22 crossovers.

Freeway Median Crossovers

Section 640


23 Figures & Tables

24 Figure 640-A: Freeway Median Crossover Advance RPM Layout

25

26 Figure 640-B: Freeway Median Crossover Advance Target Identifier Layout

27

28 Support

29 This design is not based on an MUTCD layout but has been used with good results by ODOT
30 since at least 2000. Blue RPMs are used because:

- 31 1. Blue provides a unique, conspicuous marking.
- 32 2. Blue RPMs were previously mentioned in the 2009 MUTCD Section 3B.11 (1) to mark
33 locations of an important emergency services feature (fire hydrants). Since emergency
34 personnel already look for blue RPMs to help locate emergency infrastructure and there
35 are no known fire hydrants along ODOT freeways, blue RPMs can be used to identify
36 freeway crossovers without causing confusion.
- 37 3. The MUTCD does not use blue RPMs to provide information for the general public and
38 therefore would typically be ignored by the general public.

39 Placing three sets of RPMs 500 feet apart allows emergency drivers reasonable preview time
40 prior to the crossover (~11-18 seconds, depending on speed). The use of a 3-2-1 countdown is
41 simple to understand and gives emergency drivers enough information to determine how close
42 the crossover is, even if the first one or two sets are missed.

43 In areas frequently plowed or where there is a wide left shoulder, blue delineators (instead of
44 RPMs) can serve as target identifiers for emergency drivers approaching the crossover. When
45 used in this context, the delineators are target identifiers rather than roadway delineators used
46 by the general public. See Standard Drawings TM570 through TM577 for layout and installation
47 details of delineator posts.

48 Additional signing (such as R5-11) and other traffic control devices could be needed at median
49 crossovers. See the ODOT Traffic Manual (2) for more information.

50 Cross References

51 Raised Pavement Markers Section 130

52 Key References

- 53 1. Federal Highway Administration. *Manual on Uniform Traffic Control Devices for Streets and Highways*, 2009 ed.
54 Washington, D.C., 2009.
- 55 2. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.

1 Cattle Guard Markings

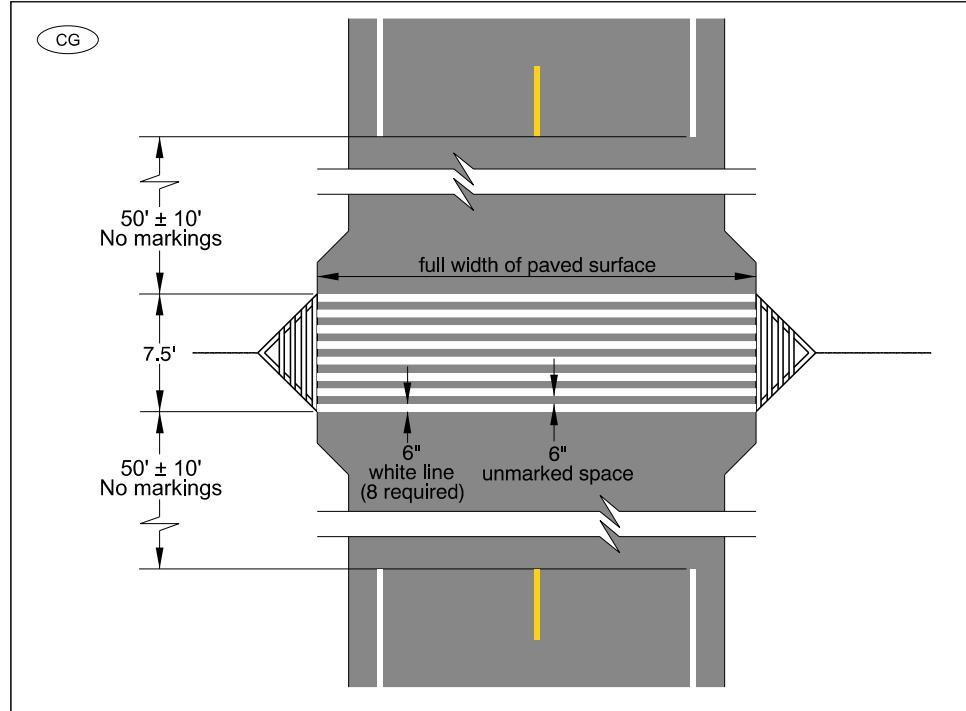
Section 650

2 Introduction

3 Painted cattle guards provide a smoother driving surface and lower-cost alternative to
4 traditional cattle guards in areas where keeping livestock contained is not critical.

5 Relevant MUTCD Sections

6 See the following sections for standards, guidance, and options not found in this manual:


- 7 • MUTCD 11th Editions: 3B.20 Word, Symbol, and Arrow Pavement Markings – General

8 Design Parameters

9 01 Cattle guard markings may be used based on engineering judgement.
10 02 If used, cattle guard markings shall be white and shall extend from edge of pavement to
11 edge of pavement as shown in Figure 650.

12 Figures & Tables

13 Figure 650: Standard Painted Cattle Guard

14

15 **Support**

16 Cattle guard markings have been used in the American West and internationally for many
17 decades and have been used in Oregon since at least 1965.

18 In theory, animals perceive the contrasting white and dark pattern of a painted cattle guard as
19 variations in the road surface like that of a traditional cattle guard. There is some anecdotal
20 evidence that this works to deter cattle (1) (2), though painted cattle guards might not be the
21 best tool where it is critical to keep livestock contained. Wildlife, however, does not appear to
22 be deterred by painted cattle guards (3).

23 The design of this marking is based on past practice. Compared with traditional cattle guards,
24 painted cattle guards are less expensive to install and maintain and they keep a smooth driving
25 surface for high-speed highways. Wider stripes are used to give the painted cattle guard greater
26 contrast for livestock to see; this contrast is enhanced if used on a dark pavement. It is thought
27 the 50-foot clearance from the painted centerline to the edge of the painted cattle guard helps
28 the cattle guard stand out as a barrier, though this has not been studied. The width of the cattle
29 guard marking set matches the width of the cattle guard barrier located off the edge of the
30 pavement.

31 **Cross References**

32 Colors	Section 110
33 Center Lines	Section 210
34 Edge Lines.....	Section 230

35 **Key References**

- 36 1. Reuer, C. Synthesis of Animal-Vehicle Mitigation Measures. HDR Engineering, Inc., Phoenix, AZ, FHWA-AZ-07-
37 612, 2007. https://apps.azdot.gov/ADOTLibrary/publications/project_reports/PDF/AZ612.pdf.
- 38 2. Telezhenko, E., L. Lidfors, and C. Bergsten. Dairy Cow Preferences for Soft or Hard Flooring when Standing or
39 Walking. *Journal of Dairy Science*, Vol. 90, no. 8, August 2007, pp. 3716-3724. <http://dx.doi.org/10.3168/jds.2006-876>
40 DOI: 10.3168/jds.2006-876
- 41 3. Cramer, P. Determining Wildlife Use of Wildlife Crossing Structures Under Different Scenarios. Department of
42 Wildland Resources and Utah Transportation Center, Utah State University, Logan, Utah, Final UT-12.07, 2012.
43 <http://www.udot.utah.gov/main/uconowner.gf?n=10315521671291686>.

1 Slow Moving Vehicle Turnouts

Section 660

2 Introduction

3 Slow moving vehicle turnouts are legacy features that are intended to allow drivers of slow
4 moving vehicles to exit the travel lane and allow queued traffic to pass. Slow moving vehicle
5 turnouts are shorter than a passing lane or climbing lane (1).

6 Relevant MUTCD Sections

7 See the following for additional standards, guidance, and options not found in this manual:

- 8 • MUTCD 11th Edition: 3B.06 White Lane Line Pavement Markings

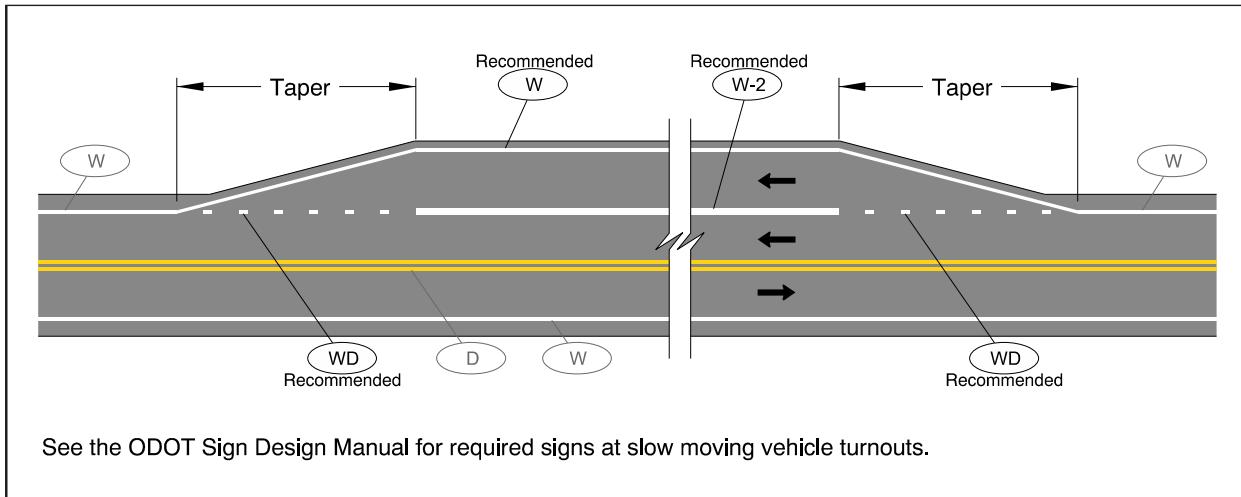
9 Design Parameters

10 01 A slow moving vehicle turnout may be marked if the slow moving vehicle turnout is signed
11 according to the ODOT Sign Design Manual.

12 02 **If no slow moving vehicle turnout signs are installed, the edge line shall continue as a
13 solid white line (W) through the widened paved shoulder area.**

14 03 *A white dotted line (WD) should be used in the slow moving vehicle turnout addition and reduction
15 tapers. A wide white solid line (W-2) should be used to separate the slow moving vehicle turnout from
16 the adjacent travel lane. The right edge of the slow moving vehicle turnout should be marked with a
17 solid white line (W) (Figure 660).*

18 Required Approvals


19 A roadway design exception is required for new slow moving vehicle turnouts.

Slow Moving Vehicle Turnouts

Section 660

Figures & Tables

Figure 660: Typical Slow Moving Vehicle Turnout

22

Support

24 New slow moving vehicle turnouts are not typically installed in Oregon anymore, but there are
25 legacy installations still in service.

26 Slow vehicle turnouts are not considered adequate for passing because they rely on the
27 cooperation of slower drivers, are generally too short to completely break up an established
28 queue, have little impact on percentage of following vehicles, and may not provide a net
29 reduction in delay on the highway (2) (3). These are only considered when a passing lane is not
30 feasible and not as an alternative to a passing lane (4).

31 Slow vehicle turnouts are short by design (1); the right edge of the turnout is marked with an
32 edge line to guide the slow vehicle driver into the turnout and show where the turnout ends,
33 especially at night and during poor weather.

34 The ODOT Sign Design Manual (5) contains more information on signs associated with slow
35 moving vehicle turnouts.

Cross References

37	Colors.....	Section 110
38	Edge Lines.....	Section 230

Key References

40 1. American Association of State Highway and Transportation Officials. *A Policy on Geometric Design of Highways and*
41 *Streets*, 6th ed. Washington, D.C., 2011.

Slow Moving Vehicle Turnouts**Section 660**

42 2. Koorey, G. Passing Opportunities at Slow-Vehicle Bays. *Journal of Transportation Engineering*, Vol. 133, no. 2,
43 February 2007, pp. 129-137. [http://dx.doi.org/10.1061/\(ASCE\)0733-947X\(2007\)133:2\(129\)](http://dx.doi.org/10.1061/(ASCE)0733-947X(2007)133:2(129)).

44 3. Bowie, J., and J. R. Kinney. Operational Effects of Slow Vehicle Turnouts on a Rurual Highway in Alaska. in
45 *International Conference on Transportation and Development 2016*, Houston, Texas, 2016, pp. 1087-1098. <http://dx.doi.org/10.1061/9780784479926.097>.

46 4. Oregon Department of Transportation. Traffic Manual, 2016 Edition. January 2016. http://www.oregon.gov/ODOT/Engineering/Docs_TrafficEng/Traffic-Manual-v2016.pdf. Accessed July 3, 2017.

47 5. Oregon Department of Transportation. *Traffic Sign Design Manual*, 3rd ed. Oregon Department of Transportation,
48 Traffic-Roadway Section, Salem, Oregon, 2013. http://www.oregon.gov/ODOT/Engineering/Documents_TrafficStandards/Sign-Design-Manual.pdf.

51

1 Placeholder Appendix

Appendix A

- 2 This section is reserved for future content.

ODOT Pavement Marking Contacts Appendix B

Traffic Engineering Section:

Frank Belleque, P.E. (Traffic Markings & Sign Engineer.) - 503-428-6874 -
Frank.BELLEQUE@odot.oregon.gov
Marie Kennedy, P.E. (State Traffic Sign Engineer) - 503-986-4013 - Marie.KENNEDY@odot.oregon.gov
Kevin Haas, P.E. (Traffic Standards Engineer) - 503-986-3583 - Kevin.J.HAAS@odot.oregon.gov
Angela Kargel, P.E. (State Traffic Engineer) - 503-986-3594 - Angela.J.KARGEL@odot.oregon.gov

Office of Maintenance:

Tony Perez (Field Operations Specialist) - 503-580-9857 - Tony.PEREZ@odot.oregon.gov
Rebecca Burrow (Maintenance Services Manager) - 503-951-9333 - Rebecca.BURROW@odot.oregon.gov

Construction Office:

Dean Chess (Qualified Products Coordinator) - 503-986-3059 - Dean.M.CHESS@odot.oregon.gov

Region 1:

Shyam Sharma, P.E., Ph.D. (Senior Traffic Manager) - 503-731-3427 - Shyam.SHARMA@odot.oregon.gov
Ali Goudarz Eghtedari, P.E. (Traffic Manager) - 503-731-3263 - Ali.G.EGHTEDARI@odot.oregon.gov
Kate Freitag, P.E. (Traffic Engineer) - 503-731-8220 - Kathleen.M.FREITAG@odot.oregon.gov
Jeffrey Hayes, P.E. (Traffic Engineer) - 503-731-8227 - Jeffrey.D.HAYES@odot.oregon.gov
Gary Copher (Striping Manager) - 503-781-2813 - Gary.W.COPHER@odot.oregon.gov

Region 2:

Keith Blair, P.E. (Traffic Manager) - 503-986-2857 - Keith.P.BLAIR@odot.oregon.gov
Jaime Schmidt, P.E. (Traffic Operations Engineer) - 971-208-4095 - Jamie.M.SCHMIDT@odot.oregon.gov
Christy Lafleur, P.E. (Traffic Design Engineer) - 503-986-2714 - Christina.L.LAFLEUR@odot.oregon.gov
Shawn Martin (Striping Manager) - 503-373-9420 - Shawn.MARTIN@odot.oregon.gov

Region 3:

Eric Finney, P.E. (Traffic Manager) - 971-719-6225 - Eric.FINNEY@odot.oregon.gov
Ray Lapke, P.E. (Traffic Engineer) - 541-957-3536 - Raymond.R.LAPKE@odot.oregon.gov
Scott Parker, P.E. (Traffic Design Engineer) - 541-864-8817 - Scott.PARKER@odot.oregon.gov
Steven Silva (Striping Manager) - 541-957-3651 - Steve.T.SILVA@odot.oregon.gov

Region 4:

Mark Barrett, P.E. (Traffic Manager) - 541-388-6120 - Mark.S.BARRETT@odot.oregon.gov
Rolon Williams (Striping Manager) - 541-508-9569 - Rolon.S.WILLIAMS@odot.oregon.gov

Region 5:

Daniel Fine, P.E. (Traf.-Rdw. Mgr.) - 541-963-1562 - Daniel.FINE@odot.oregon.gov
Marlow Stanton, P.E. (Traffic Engineer) - 541-805-0529 - Marlow.STANTON@odot.oregon.gov
Kenneth Dunham (Interim Striping Manager) - 541-963-1587 - Kenneth.S.Dunham@odot.oregon.gov

1 Critical Locations for Signing & Pavement

2 Marking Coordination Appendix C

3 Pavement Marking design needs to be coordinated with sign design for the following
4 situations. Refer to the ODOT Traffic Sign Design Manual and the Manual on Uniform Traffic
5 Control Devices (MUTCD) for more information.

- 6 • Lane addition transitions.
- 7 • Lane reduction transitions.
- 8 • Rural left-turn channelization.
- 9 • Roundabouts.
- 10 • Interchange exit ramps with drop lane(s).
- 11 • Wrong way arrows for interchange ramp terminals.
- 12 • Slow moving vehicle turnouts.
- 13 • Ramp meters.
- 14 • Mid-block crosswalks.
- 15 • School markings.
- 16 • Railroad crossing markings.
- 17 • Bike lane markings.
- 18 • Parking space markings.

1 Placeholder Appendix

Appendix D

- 2 This section is reserved for future content.

1 Pavement Markings Manual Revision History

2 Appendix E

Revision Date	Section	Description	Update Proposal
1/01/2026	Appendix E	Removed previous revision history under the 2009 MUTCD and started a new one for the adoption of the 11 th Edition MUTCD. For older revision history contact the Traffic Section Staff.	N/A
1/01/2026	All	Changed the name of the manual from the "Traffic Line Manual" to the "Pavement Markings Manual"	N/A
1/01/2026	All	The compiled references were removed from Appendix D and it is now a placeholder. References will remain in each specific section.	N/A
1/01/2026	All	In all Sections added a "Relevant MUTCD Sections" to direct users to the MUTCD sections that may have additional standards, guidance, or options not listed in the design parameters for that marking application.	N/A
1/01/2026	All	Updated Manual to be substantially conformant to the 11 th Edition MUTCD. Not all sections will be noted if changed, a select few higher impact changes will be noted.	N/A
1/01/2026	Sections 413, 414, 415, and 531	All Interim approvals are no longer applicable and guidance now follows the 11 th Edition MUTCD	N/A
1/01/2026	Section 261 Two-Way Left Turn Lanes	Guidance in the MUTCD was added that TWLTL should not extend to intersections and that guidance is now shown in this manual	N/A
1/01/2026	Section 410 – Bicycle Lanes	The MUTCD 11 th Edition removed one of the symbol options for bicycle lanes, as a result ODOTs default option was changes and that is shown in this section of the manual	N/A

Pavement Markings Manual Revision History**Appendix E**

Revision Date	Section	Description	Update Proposal
1/01/2026	Section 140 – Lane Separators & Tubular Markers	This section was expanded to include guidance on Lane Separators	N/A
1/01/2026	Section 146 – Other Channelizing Devices	New Section added	