Use of the GreenSTEP Model for Scenario Planning in Oregon

Approaches to Scenario Planning
2012 National Scenario Planning Peer Exchange
7/8/12

Brian Gregor
ODOT Transportation Planning Analysis Unit
Brian.J.Gregor@odot.state.or.us
Outline

• Scenario Planning in Oregon
• Overview of the GreenSTEP model
• Example: Statewide Transportation Strategy for Reducing GHG Emissions
• Lessons Learned
Oregon Planning Context & Background

- **1973: Comprehensive Planning Requirements**
 - Urban growth boundaries, resource lands protection, requirements to accommodate housing

- **1991: Transportation Planning Rule**
 - Require coordinated planning of land use & transportation

- **1992: Oregon Transportation Plan**
 - State multimodal transportation plan

- **1992-1995: Region 2040**
 - Scenario planning to develop 50-yr growth plan for the Portland metropolitan area

- **1999-2001: Willamette Valley Alternative Transportation Futures**
 - Large scale land use and transportation scenario planning for Oregon’s Willamette Valley
Current Scenario Planning Efforts

• Focus on greenhouse gas (GHG) mitigation
 – State GHG reduction goals from 1990 levels: 10% by 1990, 50% by 2050

• Statewide
 – Requirement to develop a statewide transportation strategy for reducing GHG emissions

• Portland metropolitan area
 – Requirement to develop and implement a scenario plan for reducing GHG emissions

• Eugene/Springfield metropolitan area
 – Requirement to develop a scenario plan for reducing GHG emissions

• Other urban areas
 – No current requirements. Figuring out how to move ahead.
GHG Mitigation Planning is a Strategic Planning Exercise

- Effects are large scale
 - Unlike criteria air pollutants, effects are not just local or regional

- Big challenge
 - If total GHG to be reduced by 75% while population doubles, per capita GHG has to be reduced by about 88%

- Many interacting factors
 - Demographics, economics, land use, transportation services, travel behavior, vehicle technology, fuels ...

- Many actors
 - Gov’t (federal, state, regional, local), Private (many various)

- Large amount of uncertainty
 - Prices, technological advances, federal actions (or inactions)
Models Important to Strategic Planning Processes

• Enable evaluation of complex systems
 – Mental models are insufficient
 – It’s important to model interactions between factors

• Enable evaluation of many scenarios
 – Large solution space to explore (but requires model to be fast enough: set up and run time)

• Facilitate discussions and consensus building among stakeholders
 – Differing mental models lead to conflict
 – Computer models bring together mental models and apply greater analytical rigor
 – Stakeholders see their mental models as important, but not the only important consideration
The GreenSTEP Model

- GreenSTEP = Greenhouse gas Strategic Transportation Energy Planning model
 - Requested by Oregon Global Warming Commission
 - Development started in 2008

- Models at the household level

- Two GreenSTEP versions
 - Statewide: supports strategic planning at the state level
 - Metropolitan: supports metropolitan area scenario planning

- Offshoots
Factors are Considered at the Household Level
Forecasts Are Made at the Household Level
Statewide Transportation Strategy (STS)

Phase I: Statewide Transportation Strategy
- **Clarify:**
 - The Problem
 - What it takes to reduce GHG
- **Establish:**
 - Future Vision (2050) of reduced GHG
 - Broad Recommendations for achieving the vision

Phase II: Implementation
- **In near-term, identify:**
 - Legislative concepts
 - Ways to work with federal partners and other partnership opportunities
 - Necessary policy changes
 - Necessary incentive programs
- **In mid-term, develop Implementation Plan:**
 - More detailed economic assessment of individual STS actions
 - Specific implementation actions, timelines and responsibilities
 - Performance measures
- **Long-term (ongoing):**
 - Execute implementation plan
 - Develop and/or amend long-range transportation policies

Phase III: Monitor and Adjust
- Regularly assess progress using performance measures
- Make any necessary changes to timelines
- Adjust strategy as needed
STS Scope

- **Travel market segments**
 - Ground passenger and commercial service
 - Freight
 - Air passenger

- **Geography**
 - Considers household travel of Oregonians
 - Only Oregonians
 - Regardless of where the travel occurs
 - Considers commodity movements from wherever they originate to final destinations in Oregon
Selection of STS Evaluation Measures

Average DVMT Per Capita

- Estimated 2010: 23
- Reference Case: 25
- STS Vision: 18

Average Annual Walk Trips Per Household

- Estimated 2010: 114
- Reference Case: 133
- STS Vision: 142

Percentage of Metropolitan Households Living in Urban Mixed Use Neighborhoods

- Estimated 2010: 20%
- Reference Case: 31%
- STS Vision: 31%
Selection of STS Evaluation Measures

Annual Statewide Light Vehicle GHG
(million metric tons)

- Estimated 1990: 13.1
- Reference Case: 8.4
- STS Vision: 2.7

Annual Light Vehicle Fuel Consumption
(million gasoline equivalent gallons)

- Estimated 1990: 1505
- Reference Case: 1045
- STS Vision: 314

Metropolitan Criteria Air Pollutants
(kilograms per day)

- Estimated 2010: 535
- Reference Case: 278
- STS Vision: 77
Selection of STS Evaluation Measures

Average Annual Household Costs for Owning & Operating Vehicles

Average Percentage of Income Spent on Owning & Operating Vehicles
Lessons Learned

• Scenario planning is a strategic planning exercise
• Planning for GHG reduction is a learning process
• An iterative approach is necessary
• Oregon’s land use framework is well established & carrying out existing plans will achieve most of the land use related benefits
• Many of the key issues are related to financing
• Need to monitor and continue to consider implications of vehicle and information technologies