Transportation Electrification
Infrastructure Needs Analysis

Charger density heat maps:
Micromobility (reduced), Direct current fast charger

June 2021
Micromobility (reduced): Direct current fast charger

Business as usual | Rapid recovery | Slow recovery

2020 - 2035

What “reduced” means: micromobility options, like electric scooters, will reduce demand for light duty vehicle charging across all three scenarios (BAU, rapid and slow recovery). Demand for light duty vehicle charging is represented by the Urban & Rural set of heat maps. However, the Urban & Rural maps were created without factoring in reduced demand brought on by micromobility options.

Which begs the question: what if we factored in the reduced charging demand that micromobility options give us? How many fewer light duty vehicle charging ports would we need in urban and rural areas?

The “Micromobility (reduced)” heat maps answer that question. They are standalone maps, based on the Urban & Rural map baseline, that show how many fewer charging ports we’d need for each scenario.
Micromobility (reduced): DCFC
Scenario: Business as usual
Year: 2020
Micromobility (reduced): DCFC
Scenario: Business as usual
Year: 2025
Micromobility (reduced): DCFC

Scenario: Business as usual
Year: 2030
Scenario: Business as usual
Year: 2035

Micromobility (reduced): DCFC
Micromobility (reduced): DCFC

Scenario: Rapid recovery
Year: 2020
Micromobility (reduced): DCFC

Scenario: Rapid recovery
Year: 2025
Micromobility (reduced): DCFC
Scenario: Rapid recovery
Year: 2030

[Map of Oregon showing DCFC Ports with labels -1 to 0]
Micromobility (reduced): DCFC
Scenario: Rapid recovery
Year: 2035
Micromobility (reduced): DCFC
Scenario: Slow recovery
Year: 2020
Micromobility (reduced): DCFC
Scenario: Slow recovery
Year: 2025
Micromobility (reduced): DCFC

Scenario: Slow recovery
Year: 2030
Scenario: Slow recovery
Year: 2035

Micromobility (reduced): DCFC