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10 Il NTRODUCTI ON

ODOT desires to improve signalized intersection operations through identifying malfunctioning
detectors. Past resear@maglik et al. 201 7has shown declining operational performance from
invasive andhoninvasive detection units at intersections across Oregon. Specifically, errors in
data quality ad accuracy showed widespread issues with aging equipment and unmet
maintenance needs. Accordingly, there is a need for policies, procedures, and techniques to
identify malfunctioning detection equipment and evaluate the quality opdadacedby

detectos.

Current tools, including those available throumgwer Advanced Traffic Controlle’NTC)
standardsare able to detect majdetector failures by examinirtge presence, absence, or
frequencyof data being sent by a detector, but these toolsarable to assess the quality of the
information sent; therefore, the health of the detastoommonly unmonitored. For example,
detrimental detector behaviors at signalized intersections such as a loop that fails for 3 minutes
and works for 1 minute nyanot send a phase into recall. This partial failure could go unnoticed
leading to poor performance and potentially encourage unsafe driver belsaciotss

disobedience of signaitdications Complete failure of a detection zone is identified, but if the
detector is operating, it can be hard to discern the quality of the data provided. To address this
issue this projectdeveloped &echnology agnostidetectohealth monitoring procedure thedn

be deployed to identify detection performance issues loegomplete detector failur&his

research provideguidance for the action and implementation of detector health analysis as a
low-cost option folidentifying faulty infrastructure.






20 LI TERATRRYI EW

The objective ofhis literature review is to explore previous research relevant to the areas of
detector performance, detector health monitoring, and traffic flow theory as it applies to detector
operations.

2.1 DETECTION TECHNOLOGY

Outside of downtown grid networks, signalizintersections are typically operated with some

type of actuation. The complexity of the actuated control algorithm is directly related to the
vehicle detection required to effectively operate the control. With control algorithms ranging

from legacy calland extend operation to complex traffic responsive and adaptive operations,
detection requirements can vary from as simple as a presence detection zone to call a side street
phase for service to an array of sensors covering a network tasked with dglpresence,

count, and occupancy information.

Vehicle detection falls into two general categories, invasive technologies, those which are within
the pavement, and nenvasive technologies, located outside of the roadway surface. Invasive
sensors are commty based upon inductive detection, taking the form of gmavement wire

loop, preformed loop, small form factor loop (midomp), or wireless magnetometer. Non

invasive sensors vary in technology, including video, both visible and infrared, radar, and
recently to the market, combination video and radar uniggalement wired loops have been
deployed in vehicle sensing operations for fifty years, with wireless magnetometer units entering
the marketplace a little more than a decade ago. Variouswasive sources have been

employed in assorted vehicle detection operations for more than twenty years. It is noted that,
per the direction of thEPR 837Technical Advisory Committee (TAC), inductive loop and radar
technologies will be used to develop thgaaithms in this work; as such, little focus will be

given to other detection sources.

2.1.1 Inductive Loop Detector

Historically, inductive loop detection has been the most widely used sensor for vehicle detection
(Day et al. 2011and, when functioning properly, have been purported to be the most accurate
detection technology available. Loop detectors are installed in the pavement at paindsis

leading up to an intersectiofigure2.1 shows an example schematic of a typical loop

installation.



Electronic detector Cabinet

N\

Inductive loop

N\ .

N N
. T
\

N\

Wire leads

Figure 2.1: Wire inductive loop setup (Lamas-Secoet al. 2016)

Inductive loop detection has been used as a ground truth in a number of other detection
performance evaluatiorfPay et al. 2010jJRhodes, Bullock, and Sturdevant 20Q06yossman et

al. 2012) and using the performance characteristics of an inductive loop, the Indiana Department
of Transportation (INDOT) developed detection performance specificdh@OT 2015)
(Middleton et al. 2009)0 address the issue of detector latency and other penficerissues
identified with norinvasive detection devices. Inductive loops are not without their challenges,
however. Placing loops directly into the pavement can exacerbate pavement distress. While
preformed loops placed under the surface course daametthis drawback, both types of
installations are susceptible being compromised due to comrgyound hazards, including
freeze/thaw cycling, vermin, and wayward construction equipment, all of which can cause
performance degradation and impact detelogalth.

2.1.2 Radar Detection

Radar technology has been in use for the development of vehicle performance measures on
freeway facilities for a number of yeahgwever,only recently have products been brought to
market to employ this technology at signalinetgrsections. Earlier units focused on advance
detection only, avoiding the inherent challenge of detection vehicles at the stop line with a
technology that uses object motion to operate. Researchers at the Texas A&M Transportation
Institute (TTI) testec unit in 2008 and found that the unit accounted for-4&38 increase in

phase termination over video detect{diddleton, Charara, and Longmire 200Reseech
personnel at Purdue University noted that the use of this type of technology for advance
detection has the potential to increase both efficiency and safety of dilemma zone protection

4



since it tracks the vehicle all the way through the detection zomgpased to extrapolating

from an advance speed trggharma et al. 2008Y hese results were supported(byrwitz et al.
2012)who documented a reduced frequency of drivers captured in the type two dilemma zone
when a wide area radar detection systememagloyed as compared toravement loops.

Another research group noted that the units recorded speed and volume values comparable to
loops during both free flow and congested conditions, although some occlusion issues were
noted(Minge, Kotzenmacher, and Peterson 201®favorable weather conditions, false and
missed calls ranged from 0.4% to 6.1% of vehicles. Investigation into the performance of these
units under varying envirenental conditions has been conducted, with the researchers noting
that an increase in precipitation was correlated to performance degrgtiédina, Ramezani,

and Benekohal 2013Performance degradation for radar units can@sae from oubf-date
software, movement of the unit so that it no longer is pointing at the proper target area, and
failure of the individual radio channels inside the unit.

Figure2.2 shows a radar set up on a pole at an intersection in Florida from the brand
Wavetronix. Radar detectors are most commonly positioned at a high elevation to provide a
wide, unobstructed view of the intersection to minimsgeies with occlusion.

Figure 2.2: Wavetronix radar detector (Huotari 2015)

2.2 DETECTOR HEALTH MONITORING

Monitoring of detector health can be generally divided into three separate methods: monitoring
through traffic control products, monitoring through traffic control software / algorithm, and
monitoring through the use of-person assessments. The following subsections will detail what
is available in scientific as well as vendor literature regarding these techniques.



2.2.1 Detector Health Monitoring with Traffic Control Products and
Software

As was noted earlier, most traffic controllers and detection dewzable to detect major
detector failures by examining the presence, absence, or frequency of data being sent by a
detector, but these tools are not able to assess the quality of the irdorsesit; therefore, the
health of the detector is commonly unmonitotféor example, detrimental detector behaviors at
signalized intersections such as a loop that fails for 3 minutes and works for 1 minute may not
send a phase into recadind thereforenay not be observed

Given the implementation of-Bree/Intelight products on the ODOT system, the research team
reached out to the vendor to request information regarding how their products monitor detector
health(Q-Free Intelight2020) An excerpt fromte email respondeom a project manager at
Q-Free is summarized as follows:

MAXTIME local control software includes three ways to identify a malfunctioning
sensor. Collectively these features are ca
are an optional feature tharcbe programmed per detector.

1 No Activity i Assume a failure if no calls are received on a detector for a
configurable period of time.

1 Max Presencé Assume a failure if a continuous call is placed on a detector
for a configurable period of time.

1 Erratic Countt Assume a failure if a more than a specified number of calls
are placed on a detector in a configurable period of time.

When a detector is considered failed, a couple responses are possible.
1 Place a minimum or maximum recall.

o MAXTIME software is pretty flexible on this and lets you pick
between Min 1 or Min 2 and Max 1, Max 2, or Max 3.

M Define a nfailed |Iinko detector.

o This defines a detector that will be used in lieu of inputs from a failed
detector.

The controller has some internal storageere detector failures will be logged for a
limited period of time. If a jurisdiction is using MAXVIEW atms (central system) then
they can also get alarms pulled into a Traffic Management Center type program for
review.

As noted from this communication, AKVIEW does identify detector faults, but only at the
ends of the performance spectrum. If performance has degraded slightly due to increased latency
or some other performance issue, this would likely not be identified.
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Other vendors incorporate simierapabi | i ti es in their control
SPM central system specifications notes that this system applies statistical data science to
analyze detectors that may not be fully operational, and creates a list within the monitored
corridorthat may have degraded detector performgicenolite 2020h)To accomplish this,
Econol i tcenirdler tan lzefprbgrammed to identify a lack of activity on a certain
detector by time of day as a possible failure. Additionally, their SPM tool can look historically at
previous days to identify differences and use that information to flag a failure.

McCain is another manufacturer that sells controllers and intersection control software, but their
published literature does not detail how their products address sensol(kMe&ldin 2020) and
attempts to acquire further information from the manufacturer were unsuccessful.

In researching detector health monitoring accomplished by detection devicesgtremgeam
reviewed various inductive loop and radar detection units and noted that the extent of health
monitoring is reporting faults and logging them. Vendor websites did not provide detail on how
faults were identified, however given what is knownwthmmmon practices by the research
team, it is presumed that faults are identifiecekgmining the presence, absence, or frequency
of data being sent by a detectconolite 2020a; Iteris 2020; Wavetmon SmartSensor V

2020)

2.3 DETECTOR HEALTH MONITORING THROUGH ALGORITHMS /
POST PROCESSING

Algorithms can be used either in real time or through-postessing to identify problematic
detector operation. Statistical methods can be used to identifyrsyuitliteasible data, and
erroneous data, making it suitable to develop graphs and tables to find the location of the
erroneous data within the data set. From there, it is possible to find the detector itself that was
causing the poor data quality. Whileetivork in this project is focused on interrupted flow
facilities, algorithms in applied to uninterrupted flow are considered as well.

Researchers at the Washington State Transportation Center developed an algorithm to identify
and correct dudbop sensitrity problems that resulted in inaccurate reporting of truck volumes.
Using individual vehicle information developed from event based high resolution data, the
researchers were able to identify sensitivity discrepancies and then retune the detectais, the e
result of this work being the implementation of the algorithm in a software tool for convenient
usaggNihanet al.2006) In a study that used loop detector data from almost 15,000 Caltrans
inductive loops, malfunctioning loops are identifiedotigh their volume and occupancy
measurements. These measurements are compared against values at neighboring detectors as
well as historical data to identify when a detector may be problematic, improving on earlier
methods that only relied on data from agie detecto(Chen et al. 2003)n related work,
researchers at the University of Nebraska developed a methodology to identify malfunctions
such as detector and communication failures that lead to erroneo(¥alzgkshi& Rilett

2006) This research focused on the conservadiovehicles principle on a systewide level to
identify locations where the principle was violated. It was then validated using a CORSIM
model.

S
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The Portland Oregon Regional Transportation Archive Listing (PORTAL) is the ITS data

archive for freeway loopetector data for the Portland metropolitan region, documenting
aggregated data and performance measures. Data uploaded into PORTAL is filtered to identify
erroneous data through a series of data quality flags as well as comparison against plausibility
thresholds. For the former technique, if a detector logs a speed as zero when the same detector
logs a count greater than zero, a flag is raised. For the latter technique, data samples that have a
speed abeel00 miles per hour, or below five miles per houtdobe flagged. Data samples are
then broken into four categories: Good, Suspicious (failed one or more data quality conditions),
No Traffic, or Communication Failure. This information is then made known to the user when
downloaded and can also be plotteddentify the scale of erroneous data by type of filter.
Figure2.3 shows a monthly report that is used to compare data samples from detectors to find
failing units based on occupancy, volume, and speed threghoifis et al. 2007)

800,000 @ occ > 95 W speed <5
700,000 W vol > 17 O speed > 100

600,000
500,000
400,000
300,000
200,000
100,000

0 ! |
Jan Feb Mar Apr May Jun

Number of Samples

Figure 2.3: PORTAL - Number of samplesfailing selectedconditions (Tufte et al. 2007)

Researchers in Sweden and Finland collaborated to develop a Fuzzy Intelligent Traffic Signal
(FITS) control, a method which provides an inexpensive approach to improve signal control
based a road infrastructuré] Jin et al. 2016)A simulationbased framework igsed to evaluate
different traffic control strategies based on certain criteria such as vehicle flows, pedestrian
flows, priorities, and platoon management. In this methodology, stop line detectors assist in
vehicle actuated timing and advance detecttag @ crucial role in the decision making process

(J Jin et al. 2016)n running their FITS simulations, the researchers determined that traffic states
can still be properly estimated and proper decisions can be made even if a few detectors are
malfunctioning, though the authors noted that there is a threshold where trapéat(d Jin et

al. 2016) Another project that related detection perfang®to advanced signal control was
commissioned by Oregon DOT and completed in 2017. In this project, researchers at Northern
Arizona University led a team that investigated the impact oAmasive detection

performance on adaptive control. As parthdir site evaluation researchers noted that only 42%
of the coupled detection zones (inductive loop andinwasive technology) passed a human
ground truth comparison. Additionally, the research team was able to identify other poorly
performing detectorBy comparing collected detector data (for example, occupancy with a video
detector) with expected performance norms. One of the conclusions of this study was that

8



detector health monitoring is critical for sensors used for higher level c¢Bimalglik ¢ al.,
2017).

2.3.1.1 Automated Traffic Signal Performance Measures (ATSPMS)

Use ofATSPMsbeganin the mid2000s with the collection and analysis of kigh
resolution event based data for traffic signal perform@8oeaglik et al., 2007)

Since then, researchers at Purdue University along with practitioners at the Indiana
Department of Transportation and Utah Department of Transportation have evolved
the use of event based data into ahmoétof assessing and improving the performance
of traffic signals, traffic signal systems, and traffic signal system business practices
(Day et al., 2014)From a technical standpoint, the suite of ATSPMs can allow an
agency to monitor capacity, progression, multimodal, and maintenance performance
measures without the added expense of a centradaptive trdic signal system.

These performance measures can be developed though robust communication and
typical traffic signal detector information, though additional detection is required to
take advantage of all the performance meas@eshe topic of detection

performance, detector health can be determined through identification of phases in
recall over time, as this is an indication that the detector is not performing properly.
These locations are aggregated and then reported to agency managers for repair
prioritization.

2.4 DETECTOR HEALTH MONITORING THROUGH ON -SITE
INVESTIGATION

While it is preferable to identify malfunctioning detectors througksd& means, equipment and
procedures can be implementedsite as well. Researchers in Germany developed a portable
Malfunction Sniffer to identify errors in inductive loop detectatputs(Kuhnelet al2011)

Their device, shown iRigure2.4, was effectively a portable method of ground truthing detector
data. Once programmed Wwithe exact location of the detection zones, the system would
corroborate the outputs of the detectors with an audiovisual signal indicating vehicle passage so
that supervisor could monitor the output. It was noted that this system did not work as well for
video detectors.
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Figure 2.4: Malfunction sniffer (Kuhnel, Weisheit, and Hoyer 2011)

A project sponsored by the Federal Highway Administration (FHWA) attempted to use Ground
Penetrating Radar (GPR) to identify the location of loop detectors, determine if they were
functioning, and perform detailed analysis to assess the conditions ehgw(arnold et al.

2011) While the device developed and deployed in this work was able to accomplish all three
goak to some degree, it was noted that the device was not able to detect defect and deterioration,
and further work is required. Lastly, in a study performed by Purdue University, wireless
magnetometers were tested against a standard loop detector to ehainatiéectiveness and

accuracy at picking up calls. While wireless magnetometers are not the focus of this work, one
conclusion of this study was that 8 foot spacing be observed between sensors adjacent to the stop
line to minimize missed calls, indigag that design standards may have an impact on the
performance of detection devicg3ay et al. 201Q)

2.5 TRAFFIC FLOW THEORY AND FUNDAMENTAL WORK
2.5.1 Greenshields Model

Traffic flow theory is the basis of conceptual modeling of itaféreenshields Model of traffic
flow (Greenshields 19333 an elegant relationship that illustrates¢banected nature of
volume, speed, and density within traffic operations. This relationship, shdwquation2-1,
leads to the fundamental diagranishee Greenshields model, shownFigure2.5.

T 77
(2-1)
where:

V = Volume (vehicles/hour)
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S = Speed (miles/hour)

D = Density(vehicles/mile)
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Figure 2.5: Fundamental diagrams of Greenshieldsmodel

These diagrams illustrate the idealized conceptual relationships between the three macroscopic
traffic stream parameters, Volume, Speed, and Density. They encompass two distinct regions of
flow, undersaturated (under capacity) and oversaturated (oveitgapBoese diagrams are
conceptual in nature, in that Volume, Speed, and Density data collected to model traffic flow at
any given location when plotted would not give way to a smooth diagram as is shiéigari

2.5, but would look more lik&igure2.6, which is a Speed / Density plot developed froatl re

world data. The linear dashed lineFigure2.6 represents Greenshields model, while the red

points are the empirical data.
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Figure 2.6: Real world speeddensity plot (Wang et al. 2011)

The fundamental diagrams have been used in traffic research to assist in the investigation of

160

incident detectiorfding Jin and Bn 2009) carfollowing models for simulatiofDeng& Zhang
2012) the effects of weather on traffic operatigbsaliwal et al. 2017)and variable speed

limits (Bertiniet al2006) a mo n g

count |

have not been used in detector health applications.

2.5.2 Saturated Flow Rate and Headways

eSS

ot her

topi cs,

The departing vehicle fle rate at capacity from a signalized intersection is defined as the

Saturation Flow Rate. This rate of flow occurs as vehicles in a standing queue depart, starting

from the %" vehicle in the queue as the first four vehicles in the queue depart at dltweate

due to time lost as the queue moves from a stopped to a moving(guausportation Research
Board 2016) This Saturation Flow Rate can be determined in three separate ways. First, it can be
calculated based upon site characteristics using methods set forth in the Highway Capacity

Manual, as shown iRigure2.7.
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where
s = adjusted saturation flow rate (veh/h/In),
5, = base saturation flow rate (pc/h/ln),
f, = adjustment factor for lane width,
Juv; = adjustment factor for heavy vehicles and grade,

f; = adjustment factor for existence of a parking lane and parking activity
adjaoent to lane group,
fw = adjustment factor for blocking effect of local buses that stop within

intersection area,

e
I

adjustment factor for area type,
fin = adjustment factor for lane utilization,

fir = adjustment factor for left-turn vehicle presence in a lane group,
far = adjustment factor for right-turn vehicle presence in a lane group,
fi» = pedestrian adjustment factor for left-turn groups,

fre = pedestrian-bicycle adjustment factor for right-turn groups,

fe = adjustment factor for work zone presence at the intersection,

f. = adjustment factor for downstream lane blockage, and

f» = adjustment factor for sustained spillback.

Figure 2.7: Calculation of saturation flow rate (Transportation Research Board 2016)

Second, it can be diregtmeasured in the field by counting the vehicles departing at capacity
during a certain time period. Lastly, it can be determined in the field by measuring departure
headways of vehicles departing at capacity,
sucessive vehicles as they pass a point on a lane or roadway, measured from the same point on
e ac h v (&ransportateod Research Board 2QIR)e relation between headway and volume

is shown inEquation2-2. If the headway measured occurs during queue discharge at capacity,
the corresponding volume that will be calculated will be that of the saturation flow rate.

L
(2-2)
where:
V = Volume (vehicles/hour)
h = Departure headway (seconds/vehicle)

The concepts of headway, saturation headway, and saturation flow rate were developed through
applied research, and as part of the foundation of traffic operations theory, appear in research

13
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endeavors covering all aspects of traffic theory, including ietéien capacityLaufer et al.
2019) the impact of automated vehicles on mixesg lanegMohajerpoor& Ramezani 2019)
bicycle operationgRaksuntorr& Khan 2003) geometric desig(Potts et al. 2007)and weather
conditions(Asamer& Van Zuylen 2Q1), among others, but they have not been applied to
detector health.

2.6 CONCURRENT RESEARCH PROJECTS

The research teamasaware of oneoncurrentesearch project thaada similar focus to this
project:

1 Multi-Stage Algorithm for Detectioi&rror Identfication and Data Screenirfg§zin &
Yang,2020)

o Funding Agency: Utah Department of transportation
o Contractor: University of Utah.

o PI: Xianfeng Terry Yang

o Project Start Date: 01/24/2019

o Project End DateDctober 2020

o Funding Amount: Not listed

o The goal of this projeatasto develop a screening tool to identify detector
errors from data within the Utah DOT detector data database. Thisuaerk
statistical analysis as well as historical detector information to identify
malfunctioning detectors from data within the datalthssugh a multistage
process, using a combination of historical data, data from neighboring
detectors, and the application of traffic flow theory to detector data to identify
problematic detectors. Tlmitcome of this project wasmethodology that
can onduct irdepth data reviews of those identified detector stations with
potential detectiomrrors.

In this study, data is compiled frodDOT's Performance Measurement System (PeMS) from
detectorsalong a corridorThe PeMS system receives vehicle coumt accupancy data at 20
second intervalsSpeed flow, and occupancgre analyzetb find potential errors in a one

month data collection perio@he primary method of detector health evaluation in this study is
through comparison of adjacent detectorsngash or downstream of each other on this
roadway.

While this project is related to the work described in the SPR 837 workpleas strictly
concerned with detectors on frew facilities. Secondthis workusesneighboring detectors in
its identificaion algorithm; SPR 83iklieson detectors at an isolated signalized intersection.
(Azin & Yang,2020)
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2.7 CONCLUDING REMARKS

This literature relew has covered the basics of inductive loop and radar detection technology,
the state of the practice regarding detector health monitoring, and the elements of traffic theory
that will be used in monitoring detector health. Inductive loops, when funagjgmoperly, are
purported to be the most accurate detection technology, likely due to their close proximity to the
traffic being detected, a consequence of being an invasive technology. But, because of their
invasive nature, there are a number of issi@sdan compromise the performance of an

inductive loop detection. Radar detection, one type ofineaisive detection, has been shown in
research to be generally reliable, with environmental factors causing a minimal impact on
performance, however intedln@mponents can fail without a complete failure of the unit, which
can also compromise performance.

In the area of detector health, three different techniques were covered in this literature review:
monitoring with traffic control products and softwaregmitoring with algorithms / post
processing, and esite monitoring. Traffic control products and software typically identify
poorly performing detectors through monitoring for flickering, lack of a call, or a constant call
from a specific detector. Moshbine vendor literature is vague when it comes to describing how
detector health is monitored, if mentioned at all. This, combined with the lack of information in
the literature focused on detector health monitoring in the field, indicates that detadttor he
monitoring is typically accomplished with these aforementioned heuristics. If data is post
processed, a number of different methods can be used to identify problems with detector health.
This can be accomplished through comparing detector outpit®utiputs of neighboring
detectors, comparing detector outputs with historical data, or evaluating detector data with
plausibility thresholds. Additionally, using ATSPMs, the health of a detector is monitored by
identifying actuated phases operating irate@n indication that the detector is not providing
proper information to the controller. Lastly,-eite investigations can also be conducted to
identify poorly performing detectors, if so desired.

Finally, Greenshields model and content within the Migg Capacity Manual form the

theoretical basis for capacity analysis of interrupted and uninterrupted flow facilities. Each
intersection approach has a unique discharge capacity that can be either calculated or measured
in the field through two separate theds. These methods, along with the fundamental diagrams
yielded through application of Greenshiel ds?d
data, reveal an opportunity to monitor detector health through traffic flow information on a per
intersection approach basis.

2.7.1 Application to the Project

There were no methods found through the literature revievatbdirectly similar to the
evaluation this studglevelops This project incorporasaaspects from each of the detector health
monitoringtopics researched in this literature review: data collection software and post
processing in this project integraxisting traffic theory, and a new method ofsite
investigationsintroducedtovli dat e t h e -nonitoringealgdrithra. heal t h

In this project theFundamental Diagrams of Greenshields MpHegjure2.5, and the associated
theoriesareused to develop an algorithm fiolentifying detector malfunctions. Tleenceptual
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guadratic relationship between Density and Volusrietegralin deriving methods of detector
health evaluatiorOther relationships derived from the fundamentati@iahip between
volume, speed, and density, showrtnuation 21, incorporateadditionalaspects of the detector
data and t he detezsigtidcs oo this evaluvatoi@pproxonating umiaterrapted
saturated traffic flowss necessary for analyzing the data usngsting traffic theory.

The remainder of this report is structured as follows. Chapter 8egtiribe the analysis of the
selectedstudy sites, the process of data collection and reduction, and the manual verification of
the selected detectors. Chapter 4 will be on data processing and data analysis, and the
development of the health assessment algorithm. Chapter 5 will be the dgsignand
implementatiorplan for incorporating the developed detector health monitoring algorithm.
Chapter 6 will then explore the conclusions, lessons learned, and limitations of this project.
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30 SI TELEBCT|I OSNIDETECTPRRFORMANCE
EVALUATI ON

Development of an algorithm to assess detector health is predicated odex@iapmental data
from detectors that are performing prdgeAs such, a heuristic was developed to assess the
performance of detectors in sittompariig eventbasedlata provided by ODOT to detector
performance data reduced from field observatidimés chapter documents this approach, and
the outcome of the assessmdrable3.1 lists all sites considered for analysis during this
approachSome sites were removed fraronsideratiorbecause of broken detection,
unavailabilityof data during specific date ranges, or other reasons as ndiaetleB.1.
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Table 3.1: Sites Evaluated During Site Selection Process

Number Site Location Notes Reason forInclusion/Exclusion
2 US101@N22nd Lincoln City Has extend/delay on detectors | Has extend/delay on detectors
(removed 8/25) (removed 8/25)
3 OR34@Peoria Corvallis Loops and radar, has Loops and radar, has extend/dele

extend/delay on detectors
removed 8/24

on detectors (removed 8/24)

7 OR22@15 S B Off Ramp Salem Has extend/delay on detectors | Added as an option
(removed 8/24)
8 Us20@18%' Corvallis Extend/delay on detectors -
removed
9 OR34@1#5 S B Ramp Albany Has loops and radar and no -
stretch or delay time on loops
(verified August 17)
10 US26@MeinigPioneer Sandy Delay/extend removed from Replaces OR34@8 N B Ramp

detectors

for something closer to Portland
and isndt an on

Notes:

Gray shading indicates the site was excluded from the study
Unshaded rows indicate the location was a study site
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Eventbased data for the six sites, provided by ODOT personnel, were compiled for analysis. All
data forthis project, collected and compiled by the project team, and collected by ODOT, are
stored securely on Box.com. Additionally, all video files are held onsite at Oregon State
University, and all Event Log files are stored on an NAU Research Dropbox Account

3.1 EVENT LOG AND DRONE VIDEO DATA COLLECTION

This sectiorcoversthe types of data collected or compiled as part of this task: Event Log data,
drone video data, and elements obtained from drone video reduction.

3.1.1 ODOT-Provided Event Log Data

Event Log data frm vetted detection devices at the six selectedwiesused in subsequent

tasks to develop algorithm(s) to identify poorly performing detectors. This Event Log Data

reports information using Event IDs and corresponding ParaniBlayset al., 2014)While

there are many different types of events contained in a typical log, theHigenf IDs and the
corresponding Parameter used in this task are showigure3.1. Event IDs 1 and 8 were used

to identify the start of each green and yellow phase, with timestamps attached to specific events
used to determine the length of each cycle and each green kvdngsl phase. Event IDs 82

and 81 indicated the Vehicle Detector On and Vehicle Detector Off, respectively. With all radar
and loop detection zones operating in presence, data from these events can be used to determine
activations (which are used as arsgate for vehicle counts in this work, as count detector

outputs are not available) and occupancy, which will be used in subsequent sections to evaluate
the efficacy of the detection zones at the study sites. Parameter outputs of Event IDs 81 and 82 in
the Event Log ar&axTime (MT) numbers, which correlate to either inductive loop or radar
detection zones as shown on intersection plBaisle3.2 documaets the correlations between

the field loop / radar zones and tMaxTimenumbers. Only detection zones which have valid

Event ID 81/82 detector activity are listedTiable3.2.

Event ID Name Description Parameter Description
1 Phase Begin Set when either solid or flashing green indication has begun. Phase #
Green
8 Phase Begin Yel Set when phaseyellow indication becomes activeand clearance Phase #
low Clearance timer begins.
81 Vehicle Detector Vehicle detector has turned off. Detector on and off events are Vehicle detector #
Off triggered post any detector delay/extension processing.
82 Vehicle Detector Vehicle detector has turned on. Detector on and off events are Vehicle detector #
On triggered post any detector delay/extension processing.

Figure 3.1: Eventlog IDs andparameters(Day et al., 2014)
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Table 3.2: MaxTime Numbers and Coresponding Detector Numbers

MaxTime Numbers and Corresponding Detector Numbers (114)

Intersection 1 2 3 4 5 6 7 8 9 10 11 12 13 14
OR22 @ F5SB Ramp 1 2 3 4-6 7 3 90-10 [11-12 1314
OR34 @ +5 2 Rad7 7 3 9 Rad13Rad14
OR34 @ Peoria 20 1 2 3-4 10 11-12 21-22 28-29
US20 @ 15th 13 1 2 0-10 11-12
US26 @ Meinig 1 2 3 4 5-6
US101 @ 22nd 21 1 2 3-4 |56 10 11-12 1314 22-23
MaxTime Numbers and Corresponding Detector Numbers (1:28)
Intersection 15 16 17 18 19 20 21 22 23 24 25 26 27 28
OR22 @ F5SB Ramp 15 16 17-18
OR34 @ +5 1 Rad21 Rad23Rad24Rad25 Rad27|Rad28
OR34 @ Peoria 15 16 23 24 26-27 25
US20 @ 15th 3 15 14 19 17-18 4-5
US26 @ Meinig 7 10 11-12 1314 8-9
US101 @ 22nd I 15 16 17-18 (19-20 24 2526 8-9
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Two of the sites provided for this work, OR34 @ 15 and OR34 @ Peoria, are equipped with

radar detection, in addition to inductive loop detection. At the outset of the analysis, it was
determined that only radar c ounstakictwalows oper at
detector operating in presence mode) would be used in this analysis, as the outputs of the larger
stop line and advance radar detection zones are manipulated by proprietary vendor software to
achieve various objectives, and as such cabadinked to traffic theory. Thus, they are

excluded from analysis, and are not showmable3.2. Table3.3 lists the number of days of
eventbaseddata available for each site

Table 3.3: Event Log Data Availability for Each of Six Intersections

Intersection Dates Days Available
OR22 @ F5SB Ramp | 8/2/201 8/8/20; 10/5/20 2/15/21 133
OR34 @ I5 8/2/20i1 8/8/20; 10/5/2G 2/15/21 140
OR34 @ Peoria 8/2/20i1 8/8/20; 10/5/20 2/15/21 133
UsS20 @ 1% 8/14/201 8/17/20;10/5/201 2/15/21 137
US26 @ Meinig 8/26/20; 10/5/20 2/15/21 134
US101@ 2% 8/2/20i1 8/8/20; 10/5/2G 2/15/21 133

3.1.2 Drone Video Collection

Oregon State University research team members were responsible for the acquisition of field
data toprovide an inventory of existing infrastructure elements, to support the validation of
controller logs of detector calls for service, and to support the calculation of saturation flow rates
based on the current Highway Capacity Manual methodology. Thevioth sections document

how this work was conducted.

3.1.2.1 Roles and Responsibilities

Research team member roles and responsibilities were established to ensure the safe
and efficient collection of field data. As this field work required the use of a small,
unmanned aircraft system (i.e., drone) to collect aerial videos that would clearly show
vehicles passing overqoavement loop detectors, the following team roles were
defined:

1 Remote Pilein-Command (PIC)The PIC checked local air traffic control
requiremets and submitted the application for controlled area if required. On
site, the PIC led the team to find an appropriate place to test and set up the
equipment. The PIC was responsible for operating the drone and making any
needed flight adjustments to acobtdor other users in the field or changing
weather conditions.

9 Visual Observer (VP Once the drone was prepared to fly, the VO scanned
the airspace in which the drone would operate to detect any potential collision
hazards. Also, the VO maintained awess of the position of the drone and
effective communication with PIC. When data was being recorded, the VO
alerted the PIC of any changes in safety relevant conditions.
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1 Research Assistant®uring the drone data collection, the research assistant
measued the position and length of detectors as well as other relevant
measurements. After data collection, the research assistants edited the video
data, and annotated the detector numbers, lengths, and positions on photos
from the field.

3.1.2.2 Equipment

This expeiment required the use of a drone, a distance measuring wheel, and a high
resolution camera, among other items. These tools are described in the subsections
3.1.2.2.1and3.1.2.2.2

3.1.2.2.1 Drone

A DJI Mavic 2 Prowasused to collect all drone data in the fidfgure3.2 and
Figure3.3 display the components stored in a Pelican case and Shoulder bag.

Figure 3.2: Primary drone components andregistration
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