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1.0 INTRODUCTION 

ODOT desires to improve signalized intersection operations through identifying malfunctioning 

detectors. Past research (Smaglik et al. 2017) has shown declining operational performance from 

invasive and non-invasive detection units at intersections across Oregon. Specifically, errors in 

data quality and accuracy showed widespread issues with aging equipment and unmet 

maintenance needs. Accordingly, there is a need for policies, procedures, and techniques to 

identify malfunctioning detection equipment and evaluate the quality of data produced by 

detectors.  

Current tools, including those available through newer Advanced Traffic Controller (ATC) 

standards, are able to detect major detector failures by examining the presence, absence, or 

frequency of data being sent by a detector, but these tools are not able to assess the quality of the 

information sent; therefore, the health of the detector is commonly unmonitored. For example, 

detrimental detector behaviors at signalized intersections such as a loop that fails for 3 minutes 

and works for 1 minute may not send a phase into recall. This partial failure could go unnoticed 

leading to poor performance and potentially encourage unsafe driver behaviors such as 

disobedience of signal indications. Complete failure of a detection zone is identified, but if the 

detector is operating, it can be hard to discern the quality of the data provided. To address this 

issue, this project developed a technology agnostic detector health monitoring procedure that can 

be deployed to identify detection performance issues beyond complete detector failure. This 

research provides guidance for the action and implementation of detector health analysis as a 

low-cost option for identifying faulty infrastructure.  
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2.0 LITERATURE REVIEW 

The objective of this literature review is to explore previous research relevant to the areas of 

detector performance, detector health monitoring, and traffic flow theory as it applies to detector 

operations. 

2.1 DETECTION TECHNOLOGY 

Outside of downtown grid networks, signalized intersections are typically operated with some 

type of actuation. The complexity of the actuated control algorithm is directly related to the 

vehicle detection required to effectively operate the control. With control algorithms ranging 

from legacy call and extend operation to complex traffic responsive and adaptive operations, 

detection requirements can vary from as simple as a presence detection zone to call a side street 

phase for service to an array of sensors covering a network tasked with delivering presence, 

count, and occupancy information. 

Vehicle detection falls into two general categories, invasive technologies, those which are within 

the pavement, and non-invasive technologies, located outside of the roadway surface. Invasive 

sensors are commonly based upon inductive detection, taking the form of an in-pavement wire 

loop, preformed loop, small form factor loop (micro-loop), or wireless magnetometer. Non-

invasive sensors vary in technology, including video, both visible and infrared, radar, and 

recently to the market, combination video and radar units. In-pavement wired loops have been 

deployed in vehicle sensing operations for fifty years, with wireless magnetometer units entering 

the marketplace a little more than a decade ago. Various non-invasive sources have been 

employed in assorted vehicle detection operations for more than twenty years. It is noted that, 

per the direction of the SPR 837 Technical Advisory Committee (TAC), inductive loop and radar 

technologies will be used to develop the algorithms in this work; as such, little focus will be 

given to other detection sources.   

2.1.1 Inductive Loop Detector 

Historically, inductive loop detection has been the most widely used sensor for vehicle detection 

(Day et al. 2011) and, when functioning properly, have been purported to be the most accurate 

detection technology available. Loop detectors are installed in the pavement at various points 

leading up to an intersection. Figure 2.1 shows an example schematic of a typical loop 

installation. 
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Figure 2.1: Wire inductive loop setup (Lamas-Seco et al. 2016) 

Inductive loop detection has been used as a ground truth in a number of other detection 

performance evaluations (Day et al. 2010) (Rhodes, Bullock, and Sturdevant 2006) (Grossman et 

al. 2012), and using the performance characteristics of an inductive loop, the Indiana Department 

of Transportation (INDOT) developed detection performance specification (INDOT 2015) 

(Middleton et al. 2009) to address the issue of detector latency and other performance issues 

identified with non-invasive detection devices. Inductive loops are not without their challenges, 

however. Placing loops directly into the pavement can exacerbate pavement distress. While 

preformed loops placed under the surface course do not have this drawback, both types of 

installations are susceptible being compromised due to common in-ground hazards, including 

freeze/thaw cycling, vermin, and wayward construction equipment, all of which can cause 

performance degradation and impact detector health.   

2.1.2 Radar Detection 

Radar technology has been in use for the development of vehicle performance measures on 

freeway facilities for a number of years, however, only recently have products been brought to 

market to employ this technology at signalized intersections. Earlier units focused on advance 

detection only, avoiding the inherent challenge of detection vehicles at the stop line with a 

technology that uses object motion to operate.  Researchers at the Texas A&M Transportation 

Institute (TTI) tested a unit in 2008 and found that the unit accounted for a 23-48% increase in 

phase termination over video detection (Middleton, Charara, and Longmire 2009). Research 

personnel at Purdue University noted that the use of this type of technology for advance 

detection has the potential to increase both efficiency and safety of dilemma zone protection 



 

5 

 

since it tracks the vehicle all the way through the detection zone as opposed to extrapolating 

from an advance speed trap (Sharma et al. 2008). These results were supported by (Hurwitz et al. 

2012) who documented a reduced frequency of drivers captured in the type two dilemma zone 

when a wide area radar detection system was employed as compared to in-pavement loops. 

Another research group noted that the units recorded speed and volume values comparable to 

loops during both free flow and congested conditions, although some occlusion issues were 

noted (Minge, Kotzenmacher, and Peterson 2010). In favorable weather conditions, false and 

missed calls ranged from 0.4% to 6.1% of vehicles. Investigation into the performance of these 

units under varying environmental conditions has been conducted, with the researchers noting 

that an increase in precipitation was correlated to performance degradation (Medina, Ramezani, 

and Benekohal 2013). Performance degradation for radar units can also come from out-of-date 

software, movement of the unit so that it no longer is pointing at the proper target area, and 

failure of the individual radio channels inside the unit. 

Figure 2.2 shows a radar set up on a pole at an intersection in Florida from the brand 

Wavetronix. Radar detectors are most commonly positioned at a high elevation to provide a 

wide, unobstructed view of the intersection to minimize issues with occlusion. 

 

Figure 2.2: Wavetronix radar detector (Huotari 2015) 

2.2 DETECTOR HEALTH MONITORING 

Monitoring of detector health can be generally divided into three separate methods: monitoring 

through traffic control products, monitoring through traffic control software / algorithm, and 

monitoring through the use of in-person assessments. The following subsections will detail what 

is available in scientific as well as vendor literature regarding these techniques.  
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2.2.1 Detector Health Monitoring with Traffic Control Products and 

Software 

As was noted earlier, most traffic controllers and detection devices are able to detect major 

detector failures by examining the presence, absence, or frequency of data being sent by a 

detector, but these tools are not able to assess the quality of the information sent; therefore, the 

health of the detector is commonly unmonitored. For example, detrimental detector behaviors at 

signalized intersections such as a loop that fails for 3 minutes and works for 1 minute may not 

send a phase into recall, and therefore may not be observed.  

Given the implementation of Q-Free/Intelight products on the ODOT system, the research team 

reached out to the vendor to request information regarding how their products monitor detector 

health (Q-Free Intelight, 2020). An excerpt from the email response from a project manager at 

Q-Free is summarized as follows:  

MAXTIME local control software includes three ways to identify a malfunctioning 

sensor. Collectively these features are called “detector diagnostics” in the software. These 

are an optional feature that can be programmed per detector. 

• No Activity – Assume a failure if no calls are received on a detector for a 

configurable period of time. 

• Max Presence – Assume a failure if a continuous call is placed on a detector 

for a configurable period of time. 

• Erratic Count – Assume a failure if a more than a specified number of calls 

are placed on a detector in a configurable period of time. 

When a detector is considered failed, a couple responses are possible. 

• Place a minimum or maximum recall. 

o MAXTIME software is pretty flexible on this and lets you pick 

between Min 1 or Min 2 and Max 1, Max 2, or Max 3. 

• Define a “failed link” detector. 

o This defines a detector that will be used in lieu of inputs from a failed 

detector. 

The controller has some internal storage where detector failures will be logged for a 

limited period of time. If a jurisdiction is using MAXVIEW atms (central system) then 

they can also get alarms pulled into a Traffic Management Center type program for 

review. 

As noted from this communication, MAXVIEW does identify detector faults, but only at the 

ends of the performance spectrum. If performance has degraded slightly due to increased latency 

or some other performance issue, this would likely not be identified.   
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Other vendors incorporate similar capabilities in their control software. Econolite’s Centracs 

SPM central system specifications notes that this system applies statistical data science to 

analyze detectors that may not be fully operational, and creates a list within the monitored 

corridor that may have degraded detector performance (Econolite 2020b). To accomplish this, 

Econolite’s traffic controller can be programmed to identify a lack of activity on a certain 

detector by time of day as a possible failure. Additionally, their SPM tool can look historically at 

previous days to identify differences and use that information to flag a failure. 

McCain is another manufacturer that sells controllers and intersection control software, but their 

published literature does not detail how their products address sensor health (McCain 2020), and 

attempts to acquire further information from the manufacturer were unsuccessful.   

In researching detector health monitoring accomplished by detection devices, the research team 

reviewed various inductive loop and radar detection units and noted that the extent of health 

monitoring is reporting faults and logging them. Vendor websites did not provide detail on how 

faults were identified, however given what is known about common practices by the research 

team, it is presumed that faults are identified by examining the presence, absence, or frequency 

of data being sent by a detector. (Econolite 2020a; Iteris 2020; Wavetronix - SmartSensor V 

2020) 

2.3 DETECTOR HEALTH MONITORING THROUGH ALGORITHMS / 

POST PROCESSING 

Algorithms can be used either in real time or through post-processing to identify problematic 

detector operation. Statistical methods can be used to identify outliers, infeasible data, and 

erroneous data, making it suitable to develop graphs and tables to find the location of the 

erroneous data within the data set. From there, it is possible to find the detector itself that was 

causing the poor data quality. While the work in this project is focused on interrupted flow 

facilities, algorithms in applied to uninterrupted flow are considered as well. 

Researchers at the Washington State Transportation Center developed an algorithm to identify 

and correct dual-loop sensitivity problems that resulted in inaccurate reporting of truck volumes. 

Using individual vehicle information developed from event based high resolution data, the 

researchers were able to identify sensitivity discrepancies and then retune the detectors, the end 

result of this work being the implementation of the algorithm in a software tool for convenient 

usage (Nihan et al. 2006). In a study that used loop detector data from almost 15,000 Caltrans 

inductive loops, malfunctioning loops are identified through their volume and occupancy 

measurements. These measurements are compared against values at neighboring detectors as 

well as historical data to identify when a detector may be problematic, improving on earlier 

methods that only relied on data from a single detector (Chen et al. 2003). In related work, 

researchers at the University of Nebraska developed a methodology to identify malfunctions 

such as detector and communication failures that lead to erroneous data (Vanajakshi & Rilett 

2006). This research focused on the conservation of vehicles principle on a system-wide level to 

identify locations where the principle was violated. It was then validated using a CORSIM 

model. 
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The Portland Oregon Regional Transportation Archive Listing (PORTAL) is the ITS data 

archive for freeway loop detector data for the Portland metropolitan region, documenting 

aggregated data and performance measures. Data uploaded into PORTAL is filtered to identify 

erroneous data through a series of data quality flags as well as comparison against plausibility 

thresholds.  For the former technique, if a detector logs a speed as zero when the same detector 

logs a count greater than zero, a flag is raised. For the latter technique, data samples that have a 

speed above100 miles per hour, or below five miles per hour would be flagged. Data samples are 

then broken into four categories: Good, Suspicious (failed one or more data quality conditions), 

No Traffic, or Communication Failure. This information is then made known to the user when 

downloaded and can also be plotted to identify the scale of erroneous data by type of filter. 

Figure 2.3 shows a monthly report that is used to compare data samples from detectors to find 

failing units based on occupancy, volume, and speed thresholds (Tufte et al. 2007). 

 

Figure 2.3: PORTAL - Number of samples failing selected conditions (Tufte et al. 2007) 

Researchers in Sweden and Finland collaborated to develop a Fuzzy Intelligent Traffic Signal 

(FITS) control, a method which provides an inexpensive approach to improve signal control 

based on road infrastructure (J Jin et al. 2016). A simulation-based framework is used to evaluate 

different traffic control strategies based on certain criteria such as vehicle flows, pedestrian 

flows, priorities, and platoon management. In this methodology, stop line detectors assist in 

vehicle actuated timing and advance detectors play a crucial role in the decision making process 

(J Jin et al. 2016). In running their FITS simulations, the researchers determined that traffic states 

can still be properly estimated and proper decisions can be made even if a few detectors are 

malfunctioning, though the authors noted that there is a threshold where this falls apart (J Jin et 

al. 2016). Another project that related detection performance to advanced signal control was 

commissioned by Oregon DOT and completed in 2017. In this project, researchers at Northern 

Arizona University led a team that investigated the impact on non-invasive detection 

performance on adaptive control.  As part of their site evaluation researchers noted that only 42% 

of the coupled detection zones (inductive loop and non-invasive technology) passed a human 

ground truth comparison. Additionally, the research team was able to identify other poorly 

performing detectors by comparing collected detector data (for example, occupancy with a video 

detector) with expected performance norms.  One of the conclusions of this study was that 
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detector health monitoring is critical for sensors used for higher level control (Smaglik et al., 

2017).  

2.3.1.1 Automated Traffic Signal Performance Measures (ATSPMs) 

Use of ATSPMs began in the mid-2000s with the collection and analysis of high-

resolution event based data for traffic signal performance (Smaglik et al., 2007). 

Since then, researchers at Purdue University along with practitioners at the Indiana 

Department of Transportation and Utah Department of Transportation have evolved 

the use of event based data into a method of assessing and improving the performance 

of traffic signals, traffic signal systems, and traffic signal system business practices 

(Day et al., 2014). From a technical standpoint, the suite of ATSPMs can allow an 

agency to monitor capacity, progression, multimodal, and maintenance performance 

measures without the added expense of a central- or adaptive traffic signal system. 

These performance measures can be developed though robust communication and 

typical traffic signal detector information, though additional detection is required to 

take advantage of all the performance measures. On the topic of detection 

performance, detector health can be determined through identification of phases in 

recall over time, as this is an indication that the detector is not performing properly. 

These locations are aggregated and then reported to agency managers for repair 

prioritization. 

2.4 DETECTOR HEALTH MONITORING THROUGH ON-SITE 

INVESTIGATION 

While it is preferable to identify malfunctioning detectors through off-site means, equipment and 

procedures can be implemented on-site as well. Researchers in Germany developed a portable 

Malfunction Sniffer to identify errors in inductive loop detector outputs (Kuhnel et al 2011). 

Their device, shown in Figure 2.4, was effectively a portable method of ground truthing detector 

data. Once programmed with the exact location of the detection zones, the system would 

corroborate the outputs of the detectors with an audiovisual signal indicating vehicle passage so 

that supervisor could monitor the output. It was noted that this system did not work as well for 

video detectors. 
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Figure 2.4: Malfunction sniffer (Kuhnel, Weisheit, and Hoyer 2011) 

A project sponsored by the Federal Highway Administration (FHWA) attempted to use Ground 

Penetrating Radar (GPR) to identify the location of loop detectors, determine if they were 

functioning, and perform detailed analysis to assess the conditions of the sensor (Arnold et al. 

2011). While the device developed and deployed in this work was able to accomplish all three 

goals to some degree, it was noted that the device was not able to detect defect and deterioration, 

and further work is required. Lastly, in a study performed by Purdue University, wireless 

magnetometers were tested against a standard loop detector to evaluate their effectiveness and 

accuracy at picking up calls. While wireless magnetometers are not the focus of this work, one 

conclusion of this study was that 8 foot spacing be observed between sensors adjacent to the stop 

line to minimize missed calls, indicating that design standards may have an impact on the 

performance of detection devices (Day et al. 2010). 

2.5 TRAFFIC FLOW THEORY AND FUNDAMENTAL WORK 

2.5.1 Greenshields Model 

Traffic flow theory is the basis of conceptual modeling of traffic. Greenshields Model of traffic 

flow (Greenshields 1935) is an elegant relationship that illustrates the connected nature of 

volume, speed, and density within traffic operations. This relationship, shown in Equation 2-1, 

leads to the fundamental diagrams of the Greenshields model, shown in Figure 2.5. 

𝑽 = 𝑺 ∗ 𝑫 

(2-1) 

where: 

V = Volume (vehicles/hour) 
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S = Speed (miles/hour) 

D = Density (vehicles/mile) 

 
(a) Speed vs Density 

 
(b) Speed vs Flow (Volume) 

 
(c) Flow (Volume) vs Density 

Figure 2.5: Fundamental diagrams of Greenshields model 

These diagrams illustrate the idealized conceptual relationships between the three macroscopic 

traffic stream parameters, Volume, Speed, and Density. They encompass two distinct regions of 

flow, undersaturated (under capacity) and oversaturated (over capacity). These diagrams are 

conceptual in nature, in that Volume, Speed, and Density data collected to model traffic flow at 

any given location when plotted would not give way to a smooth diagram as is shown in Figure 

2.5, but would look more like Figure 2.6, which is a Speed / Density plot developed from real 

world data. The linear dashed line in Figure 2.6 represents Greenshields model, while the red 

points are the empirical data. 



 

12 

 

   

Figure 2.6: Real world speed-density plot (Wang et al. 2011) 

The fundamental diagrams have been used in traffic research to assist in the investigation of 

incident detection (Jing Jin and Ran 2009), car-following models for simulation (Deng & Zhang 

2012), the effects of weather on traffic operations (Dhaliwal et al. 2017), and variable speed 

limits (Bertini et al 2006), among countless other topics, but to the research team’s knowledge 

have not been used in detector health applications.  

2.5.2 Saturated Flow Rate and Headways 

The departing vehicle flow rate at capacity from a signalized intersection is defined as the 

Saturation Flow Rate. This rate of flow occurs as vehicles in a standing queue depart, starting 

from the 5th vehicle in the queue as the first four vehicles in the queue depart at a lower flow rate 

due to time lost as the queue moves from a stopped to a moving queue (Transportation Research 

Board 2016). This Saturation Flow Rate can be determined in three separate ways. First, it can be 

calculated based upon site characteristics using methods set forth in the Highway Capacity 

Manual, as shown in Figure 2.7. 
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Figure 2.7: Calculation of saturation flow rate (Transportation Research Board 2016) 

Second, it can be directly measured in the field by counting the vehicles departing at capacity 

during a certain time period. Lastly, it can be determined in the field by measuring departure 

headways of vehicles departing at capacity, with headway defined as, “the time between 

successive vehicles as they pass a point on a lane or roadway, measured from the same point on 

each vehicle” (Transportation Research Board 2016). The relation between headway and volume 

is shown in Equation 2-2.  If the headway measured occurs during queue discharge at capacity, 

the corresponding volume that will be calculated will be that of the saturation flow rate. 

𝑽 =  
𝟑𝟔𝟎𝟎

𝒉
 

(2-2) 

where: 

V = Volume (vehicles/hour) 

h = Departure headway (seconds/vehicle) 

The concepts of headway, saturation headway, and saturation flow rate were developed through 

applied research, and as part of the foundation of traffic operations theory, appear in research 
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endeavors covering all aspects of traffic theory, including intersection capacity (Laufer et al. 

2019), the impact of automated vehicles on mixed-use lanes (Mohajerpoor & Ramezani 2019), 

bicycle operations (Raksuntorn & Khan 2003), geometric design (Potts et al. 2007), and weather 

conditions (Asamer & Van Zuylen 2011), among others, but they have not been applied to 

detector health.  

2.6 CONCURRENT RESEARCH PROJECTS 

The research team was aware of one concurrent research project that had a similar focus to this 

project: 

• Multi-Stage Algorithm for Detection-Error Identification and Data Screening (Azin & 

Yang, 2020) 

o Funding Agency: Utah Department of transportation 

o Contractor: University of Utah. 

o PI: Xianfeng Terry Yang 

o Project Start Date: 01/24/2019 

o Project End Date: October 2020 

o Funding Amount: Not listed 

o The goal of this project was to develop a screening tool to identify detector 

errors from data within the Utah DOT detector data database. This work used 

statistical analysis as well as historical detector information to identify 

malfunctioning detectors from data within the database through a multi-stage 

process, using a combination of historical data, data from neighboring 

detectors, and the application of traffic flow theory to detector data to identify 

problematic detectors. The outcome of this project was a methodology that 

can conduct in-depth data reviews of those identified detector stations with 

potential detection-errors. 

In this study, data is compiled from UDOT's Performance Measurement System (PeMS) from 

detectors along a corridor. The PeMS system receives vehicle count and occupancy data at 20 

second intervals. Speed, flow, and occupancy are analyzed to find potential errors in a one-

month data collection period. The primary method of detector health evaluation in this study is 

through comparison of adjacent detectors upstream or downstream of each other on this 

roadway.  

While this project is related to the work described in the SPR 837 workplan, it was strictly 

concerned with detectors on free-flow facilities. Second, this work uses neighboring detectors in 

its identification algorithm; SPR 837 relies on detectors at an isolated signalized intersection. 

(Azin & Yang, 2020) 
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2.7 CONCLUDING REMARKS 

This literature review has covered the basics of inductive loop and radar detection technology, 

the state of the practice regarding detector health monitoring, and the elements of traffic theory 

that will be used in monitoring detector health. Inductive loops, when functioning properly, are 

purported to be the most accurate detection technology, likely due to their close proximity to the 

traffic being detected, a consequence of being an invasive technology. But, because of their 

invasive nature, there are a number of issues that can compromise the performance of an 

inductive loop detection. Radar detection, one type of non-invasive detection, has been shown in 

research to be generally reliable, with environmental factors causing a minimal impact on 

performance, however internal components can fail without a complete failure of the unit, which 

can also compromise performance. 

In the area of detector health, three different techniques were covered in this literature review: 

monitoring with traffic control products and software, monitoring with algorithms / post 

processing, and on-site monitoring. Traffic control products and software typically identify 

poorly performing detectors through monitoring for flickering, lack of a call, or a constant call 

from a specific detector. Most online vendor literature is vague when it comes to describing how 

detector health is monitored, if mentioned at all. This, combined with the lack of information in 

the literature focused on detector health monitoring in the field, indicates that detector health 

monitoring is typically accomplished with these aforementioned heuristics. If data is post 

processed, a number of different methods can be used to identify problems with detector health.  

This can be accomplished through comparing detector outputs with outputs of neighboring 

detectors, comparing detector outputs with historical data, or evaluating detector data with 

plausibility thresholds. Additionally, using ATSPMs, the health of a detector is monitored by 

identifying actuated phases operating in recall, an indication that the detector is not providing 

proper information to the controller. Lastly, on-site investigations can also be conducted to 

identify poorly performing detectors, if so desired. 

Finally, Greenshields model and content within the Highway Capacity Manual form the 

theoretical basis for capacity analysis of interrupted and uninterrupted flow facilities. Each 

intersection approach has a unique discharge capacity that can be either calculated or measured 

in the field through two separate methods. These methods, along with the fundamental diagrams 

yielded through application of Greenshields’ model, and combined with high resolution detection 

data, reveal an opportunity to monitor detector health through traffic flow information on a per 

intersection approach basis. 

2.7.1 Application to the Project 

There were no methods found through the literature review that are directly similar to the 

evaluation this study develops. This project incorporates aspects from each of the detector health 

monitoring topics researched in this literature review: data collection software and post-

processing in this project integrates existing traffic theory, and a new method of on-site 

investigation is introduced to validate the project’s health-monitoring algorithm.  

In this project, the Fundamental Diagrams of Greenshields Model, Figure 2.5, and the associated 

theories are used to develop an algorithm for identifying detector malfunctions. The conceptual 
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quadratic relationship between Density and Volume is integral in deriving methods of detector 

health evaluation. Other relationships derived from the fundamental relationship between 

volume, speed, and density, shown in Equation 2-1, incorporate additional aspects of the detector 

data and the detector’s location characteristics into this evaluation. Approximating uninterrupted 

saturated traffic flow is necessary for analyzing the data using existing traffic theory. 

The remainder of this report is structured as follows. Chapter 3 will describe the analysis of the 

selected study sites, the process of data collection and reduction, and the manual verification of 

the selected detectors. Chapter 4 will be on data processing and data analysis, and the 

development of the health assessment algorithm. Chapter 5 will be the system design and 

implementation plan for incorporating the developed detector health monitoring algorithm. 

Chapter 6 will then explore the conclusions, lessons learned, and limitations of this project. 
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3.0 SITE SELECTION AND DETECTOR PERFORMANCE 

EVALUATION 

Development of an algorithm to assess detector health is predicated on using developmental data 

from detectors that are performing properly. As such, a heuristic was developed to assess the 

performance of detectors in situ, comparing event-based data provided by ODOT to detector 

performance data reduced from field observations. This chapter documents this approach, and 

the outcome of the assessment. Table 3.1 lists all sites considered for analysis during this 

approach. Some sites were removed from consideration because of broken detection, 

unavailability of data during specific date ranges, or other reasons as noted in Table 3.1.  
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Table 3.1: Sites Evaluated During Site Selection Process 

Number Site Location Notes Reason for Inclusion/Exclusion 

1 Technology Loop Corvallis  Some loops ground out 

2 US101@N22nd Lincoln City Has extend/delay on detectors 

(removed 8/25) 

Has extend/delay on detectors 

(removed 8/25) 

3 OR34@Peoria Corvallis Loops and radar, has 

extend/delay on detectors 

(removed 8/24) 

Loops and radar, has extend/delay 

on detectors (removed 8/24) 

4 OR212@135th Happy Valley Replaces OR99W @ Tualatin-

Sherwood-RD 

Too much broken data 

5 OR51@16th Independence - Replaces OR34@I-5 N B Ramp; 

PreCovid data not available 

6 OR99W@OR18 Dundee - PreCovid data not available; No 

detector event data 

7 OR22@I-5 S B Off Ramp Salem Has extend/delay on detectors 

(removed 8/24) 

Added as an option 

8 US20@15th Corvallis Extend/delay on detectors 

removed 

- 

9 OR34@I-5 S B Ramp Albany Has loops and radar and no 

stretch or delay time on loops 

(verified August 17) 

- 

10 US26@Meinig-Pioneer Sandy Delay/extend removed from 

detectors 

Replaces OR34@I-5 N B Ramp 

for something closer to Portland 

and isn’t an on/off ramp 

- OR99W@Tualatin-Sherwood-RD Sherwood - - 

- OR34@I-5 N B Ramp Albany Has loops and radar and no 

stretch or delay time on loops 

(verified August 17) 

Removing to replace with 

oversaturated location 

Notes: 

Gray shading indicates the site was excluded from the study 

Unshaded rows indicate the location was a study site 



 

19 

 

Event-based data for the six sites, provided by ODOT personnel, were compiled for analysis. All 

data for this project, collected and compiled by the project team, and collected by ODOT, are 

stored securely on Box.com. Additionally, all video files are held onsite at Oregon State 

University, and all Event Log files are stored on an NAU Research Dropbox Account. 

3.1 EVENT LOG AND DRONE VIDEO DATA COLLECTION 

This section covers the types of data collected or compiled as part of this task: Event Log data, 

drone video data, and elements obtained from drone video reduction. 

3.1.1 ODOT-Provided Event Log Data 

Event Log data from vetted detection devices at the six selected sites were used in subsequent 

tasks to develop algorithm(s) to identify poorly performing detectors. This Event Log Data 

reports information using Event IDs and corresponding Parameters (Day et al., 2014). While 

there are many different types of events contained in a typical log, the list of Event IDs and the 

corresponding Parameter used in this task are shown in Figure 3.1. Event IDs 1 and 8 were used 

to identify the start of each green and yellow phase, with timestamps attached to specific events 

used to determine the length of each cycle and each green and yellow/red phase. Event IDs 82 

and 81 indicated the Vehicle Detector On and Vehicle Detector Off, respectively. With all radar 

and loop detection zones operating in presence, data from these events can be used to determine 

activations (which are used as a surrogate for vehicle counts in this work, as count detector 

outputs are not available) and occupancy, which will be used in subsequent sections to evaluate 

the efficacy of the detection zones at the study sites. Parameter outputs of Event IDs 81 and 82 in 

the Event Log are MaxTime (MT) numbers, which correlate to either inductive loop or radar 

detection zones as shown on intersection plans. Table 3.2 documents the correlations between 

the field loop / radar zones and the MaxTime numbers. Only detection zones which have valid 

Event ID 81/82 detector activity are listed in Table 3.2. 

 

 

 

 

Figure 3.1: Event log IDs and parameters (Day et al., 2014)  
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Table 3.2: MaxTime Numbers and Corresponding Detector Numbers 

MaxTime Numbers and Corresponding Detector Numbers (1-14) 

Intersection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

OR22 @ I-5SB Ramp  1 2 3 4-6   7 8 9-10 11-12 13-14   

OR34 @ I-5  2     Rad7  7 8  9 Rad13 Rad14 

OR34 @ Peoria 20 1 2   3-4  10 11-12    21-22 28-29 

US20 @ 15th 13 1 2     8 9-10    11-12  

US26 @ Meinig  1 2 3    4 5-6      

US101 @ 22nd 21 1 2 3-4 5-6   10 11-12 13-14   22-23  

MaxTime Numbers and Corresponding Detector Numbers (15-28) 

Intersection 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

OR22 @ I-5SB Ramp  15 16 17-18           

OR34 @ I-5 1      Rad21  Rad23 Rad24 Rad25  Rad27 Rad28 

OR34 @ Peoria  15 16     23 24 26-27  25   

US20 @ 15th 3 15 14     19 17-18    4-5  

US26 @ Meinig       7 10 11-12 13-14    8-9 

US101 @ 22nd 7 15 16 17-18 19-20   24 25-26    8-9  
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Two of the sites provided for this work, OR34 @ I5 and OR34 @ Peoria, are equipped with 

radar detection, in addition to inductive loop detection. At the outset of the analysis, it was 

determined that only radar count zones operating in ‘Normal’ mode (which is akin to a loop 

detector operating in presence mode) would be used in this analysis, as the outputs of the larger 

stop line and advance radar detection zones are manipulated by proprietary vendor software to 

achieve various objectives, and as such cannot be linked to traffic theory. Thus, they are 

excluded from analysis, and are not shown in Table 3.2. Table 3.3 lists the number of days of 

event-based data available for each site.   

Table 3.3: Event Log Data Availability for Each of Six Intersections 

Intersection Dates Days Available 

OR22 @ I-5SB Ramp 8/2/20 – 8/8/20; 10/5/20 – 2/15/21 133 

OR34 @ I-5 8/2/20 – 8/8/20; 10/5/20 – 2/15/21 140 

OR34 @ Peoria 8/2/20 – 8/8/20; 10/5/20 – 2/15/21 133 

US20 @ 15th  8/14/20 – 8/17/20; 10/5/20 – 2/15/21 137 

US26 @ Meinig 8/26/20; 10/5/20 – 2/15/21 134 

US101@ 22nd  8/2/20 – 8/8/20; 10/5/20 – 2/15/21 133 

 

3.1.2 Drone Video Collection 

Oregon State University research team members were responsible for the acquisition of field 

data to provide an inventory of existing infrastructure elements, to support the validation of 

controller logs of detector calls for service, and to support the calculation of saturation flow rates 

based on the current Highway Capacity Manual methodology. The following sections document 

how this work was conducted. 

3.1.2.1 Roles and Responsibilities 

Research team member roles and responsibilities were established to ensure the safe 

and efficient collection of field data. As this field work required the use of a small, 

unmanned aircraft system (i.e., drone) to collect aerial videos that would clearly show 

vehicles passing over in-pavement loop detectors, the following team roles were 

defined: 

• Remote Pilot-in-Command (PIC): The PIC checked local air traffic control 

requirements and submitted the application for controlled area if required. On 

site, the PIC led the team to find an appropriate place to test and set up the 

equipment. The PIC was responsible for operating the drone and making any 

needed flight adjustments to account for other users in the field or changing 

weather conditions.  

• Visual Observer (VO): Once the drone was prepared to fly, the VO scanned 

the airspace in which the drone would operate to detect any potential collision 

hazards. Also, the VO maintained awareness of the position of the drone and 

effective communication with PIC. When data was being recorded, the VO 

alerted the PIC of any changes in safety relevant conditions.  
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• Research Assistants: During the drone data collection, the research assistant 

measured the position and length of detectors as well as other relevant 

measurements. After data collection, the research assistants edited the video 

data, and annotated the detector numbers, lengths, and positions on photos 

from the field.  

3.1.2.2 Equipment 

This experiment required the use of a drone, a distance measuring wheel, and a high-

resolution camera, among other items. These tools are described in the subsections 

3.1.2.2.1 and 3.1.2.2.2. 

3.1.2.2.1 Drone 

A DJI Mavic 2 Pro was used to collect all drone data in the field. Figure 3.2 and 

Figure 3.3 display the components stored in a Pelican case and Shoulder bag. 

 

Figure 3.2: Primary drone components and registration 
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Figure 3.3: Drone batteries and charging tools 

3.1.2.2.2 Supplemental Equipment 

In addition to the drone equipment, the field work was supported by a landing 

pad, a solar powered electric generator, and a measuring wheel. The landing pad 

made it easier to initiate takeoffs and landings on uneven terrain, the field 

generator was used to recharge drone batteries in the field between flights, the 

measuring wheel was used to document the dimensions of detectors and their 

distance from the stop lines, and personal protective equipment (PPE) contributed 

to the safety of researchers in the field. Figure 3.4 displays images of the 

supplemental equipment used in the field. 
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(a) Landing Pad (b) Generator 

      
(c) Measuring Wheel (d) PPE 

Figure 3.4: Supplemental equipment including (a) Landing pad, (b) Generator, (c) 

Measuring wheel, and (d) PPE 

3.1.2.3 ODOT UAS Contractor Requirements 

Before the field work could be performed, OSU fulfilled nine ODOT UAS Contractor 

Requirements. Those requirements include:  

1. UAS needs to be registered with the Oregon Department of Aviation and FAA 

and proof of registration needs to be submitted; 

2. Proof of UAS Insurance; 

3. FAA Part 107 Registration for PIC for all missions; 

4. ODOT requires a PIC and Visual Observer for all missions;  

5. Provide waiver documentation, if needed; 

6. Have and follow “rules of engagement,” which includes what to do during an 

emergency;  
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7. Pilot must have flown at least 3 missions in the last 90 days;  

8. Pilot must follow all Part 107 regulations, with exception of airspace with a 

waiver of authorization;  

9. If the work is construed as surveying, photogrammetry, or engineering, the 

work must be performed under the responsible charge of a professional 

engineer, professional land surveyor or professional photogrammetrist in the 

State of Oregon.  

OSU completed all applicable requirements within this set of requirements and was 

granted approval by ODOT to perform the field work. 

3.1.2.4 Experimental Data Collected 

Three primary types of data were collected in the field: detector position and 

dimensions, aerial video of vehicles driving over detectors, and inputs to calculate the 

HCM adjusted saturation flow rate. 

3.1.2.4.1 Detector Position and Dimensions 

Research assistants used signal plans provided by ODOT, photographs collected 

on site, and distance measuring wheels, to confirm the existence, placement, and 

dimensions of detectors. These details were then annotated on photos from the 

field and the provided signal plans. Figure 3.5 shows the road measurement 

details. A research assistant measured the diameter of the circular detectors, the 

nearest length from detector to stop line (placement), and the dimensions of the 

parallelogram detectors. 

 

Figure 3.5: Road measurement details 
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3.1.2.4.2 Drone Video of Vehicles Driving over Detectors 

As noted earlier, six intersections were selected as experimental sites for this 

research. Each site has a unique configuration (e.g., number, position, and 

dimensions) of detectors. To collect usable videos, i.e., stable images with good 

contrast of detectors against pavement, the weather conditions and the drone 

position had to be carefully considered. Additionally, some detectors are located 

hundreds of feet away from each other. This combination of factors required 

multiple drone flights on each approach to directly observe each individual in-

pavement detector. With one available drone (DJI Mavic 2 Pro) and nine 

batteries, the video observations were collected one intersection per day and one 

video at a time with a maximum video duration of approximately 20 minutes.  

To ensure the safety of the drone, the research team, and the traveling public as 

well as to ensure the quality of videos, research assistants found an appropriate 

area to set up the landing pad. This is a critical choice in avoiding collisions with 

power lines, span wires, tree branches, and other overhead obstacles. Once the 

drone was in flight, as stipulated by the FAA, the maximum flight elevation 

cannot exceed 400 ft, and the drone must not fly over the road or any non-

research personnel. Moreover, the VO needed to continuously surveil the 

surrounding environment while the PIC adjusted the camera angle to ensure the 

detectors and traffic signal display were captured on video simultaneously. 

During the recording period, the PIC was responsible for attending to the drone 

and the controller, maintaining constant communication with the VO, and 

ensuring the flight occurred safely until the drone had landed. After the field data 

was collected from all six locations, research assistants cropped the videos, added 

timestamps, and designed an Excel template to transcribe the video data. 

3.1.2.5 HCM Adjusted Saturated Flow Rate 

The Highway Capacity Manual (HCM) describes a methodology for evaluating the 

capacity and quality of service provided to motorized vehicles at a signalized 

intersection. One aspect of this methodology includes a calculation procedure for 

determining an adjusted Saturation Flow Rate. The procedure includes several 

elements: adjustments for lane width, heavy vehicle and grade, parking, bus blockage, 

area type, right turns and left turns, pedestrians and bicycles, work zone presence, 

downstream lane blockage, and sustained spillback. In the field, research assistants 

collected inventory data related to each of these adjustment factors for each 

intersection approach. Figure 2.7, i.e., Equation 19-8 from the 2016 version of the 

HCM, was used to compute the adjusted Saturation Flow Rate per lane for the subject 

lane group. The individual factors were documented in the field in the template 

displayed in Figure 3.6. This information will be used for algorithm development 

work in subsequent tasks. 
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Figure 3.6: Adjustment factors form 

3.2 DATA TRANSCRIPTION AND REDUCTION 

3.2.1 Drone Video Data Transcription 

The video captured by the drone was transcribed to obtain usable ground truth information about 

detector calls. From the video, research assistants concentrated on any vehicles that traversed an 

active detector. Time stamps were recorded when the front bumper of the vehicle arrived at the 

upstream edge of the detector zone (Figure 3.7a) and then again when the rear bumper of the 

vehicle departed the downstream edge of the detector zone (Figure 3.7b). Additionally, the active 

traffic signal display was recorded during each call for service. Transcription for an individual 

detection zone was performed for the either the duration of the entire video or for the first 100 

vehicle incursions. 

   
(a) (b) 

Figure 3.7: Detector 19 on the NB approach of US20 and 15th Street. (a) Detector 19 call 

on. (b) Detector 19 call off. 

Figure 3.8 shows the data transcribed for Detector 19 on the NB approach of US20 and 15th 

Street, the same scenario described in Figure 3.7. The white van arrived at 13:07:29:10 and left 
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at 13:07:30:27 on November 20, 2020. Equation 3-1 was used to calculate the duration of the call 

for service. 

[(𝑫𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆 𝑯𝒐𝒖𝒓 ∗ 𝟑𝟔𝟎𝟎) + (𝑫𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆 𝑴𝒊𝒏𝒖𝒕𝒆 ∗ 𝟔𝟎) + (𝑫𝒆𝒑𝒂𝒓𝒕𝒖𝒓𝒆 𝑺𝒆𝒄𝒐𝒏𝒅) +

(
𝑭𝒓𝒂𝒎𝒆𝒔

𝟑𝟎
)] − [(𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑯𝒐𝒖𝒓 ∗ 𝟑𝟔𝟎𝟎) + (𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑴𝒊𝒏𝒖𝒕𝒆 ∗ 𝟔𝟎) + (𝑨𝒓𝒓𝒊𝒗𝒂𝒍 𝑺𝒆𝒄𝒐𝒏𝒅) +

(
𝑭𝒓𝒂𝒎𝒆𝒔

𝟑𝟎
)] = 

((𝟏𝟑 ∗ 𝟑𝟔𝟎𝟎) + (𝟕 ∗ 𝟔𝟎) + 𝟐𝟗 + (
𝟏𝟎

𝟑𝟎
)) − ((𝟏𝟑 ∗ 𝟑𝟔𝟎𝟎) + (𝟕 ∗ 𝟔𝟎) + 𝟑𝟎 + (

𝟐𝟕

𝟑𝟎
))

= 𝟏. 𝟓𝟕𝒔 

(3-1) 

 

Figure 3.8: Sample data transcription form 

3.2.2 Manual vs Event Log Comparison 

Detector performance was evaluated by comparing manually reduced drone-video data of 

vehicles entering and exiting detection zones to the corresponding Event Log detector outputs.  

3.2.2.1 Event Log Data Reduction and Data Set Preparation 

While the timestamps on the drone Video Log were close to the timestamps in the 

Event Log (within a minute, generally), the specific Event Log data which 

corresponded directly to the reduced drone video data needed to be identified. To 

accomplish this, individual vehicles were identified within both data sets, and the 

time between Vehicle Detector On indications in both the Video Log and Event Log 

were used to match up a specific Event Log vehicle activation with the corresponding 

Video Log vehicle activation. This process was conducted for the first and last 

vehicle of each manually reduced Video Data log to develop a complete list of Event 

Log Vehicle Detector On and Vehicle Detector Off activations that would correspond 

to activity in the Video Log during the same timeframe. Once this was accomplished, 
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the initial vehicle green indication noted in the Video Log was used to shift the 

timestamps so that the initial vehicle activation in both the Video Log and Event Log 

occurred simultaneously. This process was undertaken for each detection zone for 

which data were available, as was noted in Section 3.1.1. An example of this data 

reduction is shown in Table 3.4 below for Detector 7 of the intersection of OR22 and 

I-5. In this example, the detector on duration is calculated for each activation to be 

used for comparative analysis.   

Table 3.4: Timestamps Example: Detector On and Off Indications for Detector 7 OR22 at 

I-5 

Detector Indication (minutes:seconds.00) Detector On Duration 

Video Log Event Log Video Log Event Log 

On Off On Off = Off - On = Off - On 

43:29.67 43:31.13 43:30.10 43:31.70 0:00:01.46 0:00:01.60 

43:32.13 43:33.27 43:32.60 43:33.80 0:00:01.14 0:00:01.20 

43:37.80 43:38.67 43:38.20 43:39.10 0:00:00.87 0:00:00.90 

43:44.37 43:44.90 43:44.90 43:45.40 0:00:00.53 0:00:00.50 

43:46.53 43:47.10 43:47.00 43:47.60 0:00:00.57 0:00:00.60 

43:59.33 43:59.90 43:59.70 44:00.40 0:00:00.57 0:00:00.70 

44:07.23 44:08.40 44:07.80 44:09.00 0:00:01.17 0:00:01.20 

44:12.43 45:24.77 44:12.90 45:25.40 0:01:12.34 0:01:12.50 

45:28.30 45:29.60 45:28.80 45:30.30 0:00:01.30 0:00:01.50 

45:31.00 45:32.23 45:31.70 45:32.80 0:00:01.23 0:00:01.10 

45:34.87 45:36.03 45:35.50 45:36.70 0:00:01.16 0:00:01.20 

45:47.63 45:47.93 45:48.20 45:48.50 0:00:00.30 0:00:00.30 

 

Finally, it should be noted that for radar count detection zones at the intersection of OR34 @ I5, 

the Event Log outputs were compared to the Video Log for closest neighboring inductive loop 

detector as the exact location of the radar count zone is not visible. For the advanced detectors 7 

and 21 that span the width of the entire approach, the activations of multiple neighboring loop 

detectors were compiled chronologically to develop a consistent comparative set.  

3.3 DETECTOR PERFORMANCE EVALUATION 

3.3.1 Comparative Metrics 

With the data sets prepared as shown in Table 3.4, the research team settled on two separate 

metrics for comparative analysis of the two logs to determine whether or not the detector would 

be considered suitable for the basis of this work. It should be noted that a detector noted as 

suitable in the context of this work does not imply the detector is not able to perform its 

prescribed traffic control function; it means that the detector is able to perform at a higher level 

of consistency for the purpose of algorithm development. The first comparative metric used was 

the total number of activations noted by each log during the analysis period. A difference 
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threshold of 10% was used to determine whether or not the radar / loop detector was healthy with 

regard to activations. The calculation is shown in Equation 3-2.  

𝑻𝒐𝒕𝒂𝒍 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝑬𝒗𝒆𝒏𝒕 𝑳𝒐𝒈 𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝒔 − 𝑻𝒐𝒕𝒂𝒍 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝑽𝒊𝒅𝒆𝒐 𝑳𝒐𝒈 𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝑽𝒊𝒅𝒆𝒐 𝑳𝒐𝒈 𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔
 

(3-2) 

While the threshold of 10% is a general rule of thumb when comparing counts from vehicle 

sources, it has been used in previous research works for this same purpose (detector 

performance) (Smaglik et al. 2007) (Smaglik et al. 2017). The second metric used for 

determining health of the detectors in this study is the Detector On Duration. This value, when 

combined with an analysis period duration, can be used to determine the occupancy of a 

detection zone. As was shown in Table 3.4, the Detector On Duration was found for each 

activation for both the Event Log and Video Log data sets. The distributions of Detector On 

Durations for both the Video Log and Event Log were compared using a paired t-Test to identify 

statistically significant differences (an F-Test was used to check whether each pair of 

distributions had Equal or Unequal Variances, and the corresponding t-test was used based upon 

the outcome of that test). If the t-Test indicated a Significant Difference, then the detector was 

determined to be unhealthy for the purpose of this analysis (Montgomery, 2018). 

3.3.2 Results 

Table 3.5 lists the detectors that passed the comparative analysis undertaken in this work. A total 

of 79 detection zones underwent the above comparative analysis (70 inductive loop and 9 radar). 

The comparative analysis in this chapter is to select the detectors for further data analysis and 

algorithm development for this project. The detectors that did not pass the comparative analysis 

may not have issues because the detectors’ health should be verified by signal timers or 

electricians. On the following pages, Table 3.6 through Table 3.11 and Figure 3.9 through Figure 

3.14 list the results of the comparative analysis for each of the six study intersections. The subset 

of detection zones that passed the comparative analysis include stop line, advanced, single lane, 

multiple lane, short, and long detection zones over a variety of lane usages and provided a robust 

basis for development of a detector health monitoring algorithm. 
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Table 3.5: Usable Detectors Summary Table 

Usable Detectors from Each Study Intersection 

Intersection Det# MT#  Lanes Location 

OR22 at I-5 

1 2 

L
o
o
p
 

1 Advanced 

2 3 1 Advanced 

4-6 5 3 Advanced 

7 8 1 Advanced 

8 9 1 Advanced 

9-10 10 2 Advanced 

17-18 18 2 Advanced 

OR34 at I-5 

2 2 

L
o
o
p
 1 Advanced 

7 8 1 Advanced 

8 9 1 Advanced 

9 12 1 Advanced 

13 13 

R
ad

ar
 

1 Stop Bar 

14 14 1 Stop Bar 

23 23 1 Stop Bar 

25 25 1 Stop Bar 

27 27 1 Stop Bar 

28 28 1 Stop Bar 

OR34 at Peoria 

3-4 6 

L
o
o
p
 

2 Advanced 

10 7 1 Advanced 

16 17 1 Advanced 

20 1 1 Advanced 

21-22 13 1 Stop Bar 

23 22 1 Advanced 

24 23 1 Advanced 

US20 at 15th  1 2 

L
o
o
p
 

1 Advanced 

2 3 1 Advanced 

3 15 1 Advanced 

4-5 27 1 Stop Bar 

8 8 1 Advanced 
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Usable Detectors from Each Study Intersection 

Intersection Det# MT#  Lanes Location 

9-10 9 1 Stop Bar 

13 1 1 Advanced 

15 16 1 Advanced 

19 22 1 Advanced 

US26 at Meinig 4 8 

L
o
o
p
 1 Advanced 

5-6 9 1 Stop Bar 

7 21 1 Advanced 

US101 at 22nd  3-4 4 

L
o
o
p
 

1 Stop Bar 

5-6 5 1 Stop Bar 

7 15 1 Advanced 

8-9 27 1 Stop Bar 

17-18 18 1 Stop Bar 

19-20 19 1 Stop Bar 

21 1 1 Advanced 

24 22 1 Advanced 

25-26 23 1 Stop Bar 
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Table 3.6: Difference Summary Table: OR22 at I-5 

Det MT 

Activations Detector On Duration Mean 

Usable? 
Manual 

Event 

Log 
Difference Manual 

Event 

Log 
Difference 

1 2 100 95 -5* 00:00.34 00:00.37 00:00.03 Y 

2 3 105 103 -2 00:00.34 00:00.36 00:00.02 Y 

3 4 72 72 0 00:00.28 00:00.33 00:00.05** N 

4-6 5 100 90 -10 00:00.40 00:00.47 00:00.07 Y 

7 8 58 58 0 00:03.69 00:03.72 00:00.03 Y 

8 9 75 75 0 00:02.39 00:02.55 00:00.16 Y 

9-10 10 103 98 -5 00:03.78 00:04.87 00:01.10 Y 

11-12 11 59 76 17* 00:09.36 00:07.96 -00:01.40 N 

13-14 12 78 59 -19* 00:07.75 00:09.31 00:01.56 N 

15 16 100 48 -52* 00:00.24 00:00.58 00:00.34** N 

16 17 100 58 -42* 00:00.27 00:00.86 00:00.59** N 

17-18 18 100 93 -7 00:00.95 00:01.04 00:00.09 Y 

* indicates a difference of >10% between the Manually reported and Event Log number of 

activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-

Test 

Green cell shading indicates the detector had neither a Significant Difference in the Detector On 

Durations as reported by the t-Test, nor a difference of >10% between the Manually reported and 

Event Log number of activations. Red cell shading indicates that the detector had one or both of 

these. 

 

 

Figure 3.9: Comparative analysis results: OR22 at I-5 
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Table 3.7: Difference Summary Table: OR34 at I-5 

Det MT 

Activations Detector On Duration Mean 

Usable? 
Manual 

Event 

Log 
Difference Manual 

Event 

Log 
Difference 

1 15 25 35 10* 00:00.80 00:00.55 -00:00.25 N 

2 2 100 110 10 00:00.41 00:00.41 00:00.00 Y 

7 8 92 95 3 00:00.68 00:00.65 -00:00.03 Y 

8 9 29 30 1 00:00.53 00:00.51 -00:00.02 Y 

9 12 54 53 -1 00:01.41 00:01.45 -00:00.04 Y 

RAD7 7 156 125 -31*       N 

RAD13 13 27 26 -1       Y 

RAD14 14 100 101 1       Y 

RAD23 23 53 53 0       Y 

RAD24 24 25 30 5*       N 

RAD25 25 98 93 -5       Y 

RAD27 27 64 63 -1       Y 

RAD28 28 57 58 1       Y 

RAD21 21 131 106 -25*       N 

* indicates a difference of >10% between the Manually reported and Event Log number of 

activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-

Test 

Green cell shading indicates the detector had neither a Significant Difference in the Detector On 

Durations as reported by the t-Test, nor a difference of >10% between the Manually reported and 

Event Log number of activations. Red cell shading indicates that the detector had one or both of 

these. 



 

35 

 

 

Figure 3.10: Comparative analysis results: OR34 at I-5 
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Table 3.8: Difference Summary Table: OR34 at Peoria 

Det MT 

Activations Detector On Duration Mean 

Usable? 
Manual 

Event 

Log 
Difference Manual 

Event 

Log 
Difference 

1 2 48 47 -1 00:00.23 00:00.40 00:00.18** N 

2 3 63 63 0 00:00.15 00:00.34 00:00.19** N 

3-4 6 100 98 -2 00:00.65 00:00.62 -00:00.03 Y 

10 8 6 6 0 00:01.39 00:01.58 00:00.20 Y 

11-12 9 6 5 -1* 00:10.13 00:11.76 00:01.63 N 

15 16 88 89 1 00:00.42 00:00.34 -00:00.08** N 

16 17 100 100 0 00:00.80 00:00.71 -00:00.10 Y 

20 1 4 4 0 00:02.08 00:01.73 -00:00.35 Y 

21-22 13 4 4 0 00:12.14 00:10.67 -00:01.47 Y 

23 22 24 24 0 00:02.53 00:02.50 -00:00.03 Y 

24 23 35 35 0 00:05.39 00:05.56 00:00.17 Y 

25 26 9 11 2* 00:16.87 00:12.69 -00:04.18 N 

26-27 24 14 18 4* 00:20.72 00:18.08 -00:02.64 N 

28-29 14 26 33 7* 00:23.16 00:17.76 -00:05.40 N 

* indicates a difference of >10% between the Manually reported and Event Log number of 

activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-

Test 

Green cell shading indicates the detector had neither a Significant Difference in the Detector On 

Durations as reported by the t-Test, nor a difference of >10% between the Manually reported and 

Event Log number of activations. Red cell shading indicates that the detector had one or both of 

these. 
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Figure 3.11: Comparative analysis results: OR34 at Peoria 

Table 3.9: Difference Summary Table: US20 at 15th 

Det MT 

Activations Detector On Duration Mean 

Usable? 
Manual 

Event 

Log 
Difference Manual 

Event 

Log 
Difference 

1 2 100 102 2 00:00.44 00:00.43 -00:00.01 Y 

2 3 100 100 0 00:01.02 00:01.01 -00:00.01 Y 

3 15 15 15 0 00:03.99 00:03.85 -00:00.14 Y 

4-5 27 13 14 1 00:28.90 00:26.57 -00:02.33 Y 

8 8 32 33 1 00:01.46 00:01.55 00:00.10 Y 

9-10 9 22 21 -1 00:18.84 00:19.39 00:00.55 Y 

11-12 13 7 9 2* 00:38.35 00:29.62 -00:08.73 N 

13 1 8 8 0 00:10.10 00:10.08 -00:00.02 Y 

14 17 100 100 0 00:00.97 00:00.78 -00:00.18** N 

15 16 100 99 -1 00:00.96 00:00.94 -00:00.02 Y 

17-18 23 18 22 4* 00:28.25 00:22.71 -00:05.54 N 

19 22 26 26 0 00:04.28 00:04.63 00:00.34 Y 

* indicates a difference of >10% between the Manually reported and Event Log number of 

activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-

Test 

Green cell shading indicates the detector had neither a Significant Difference in the Detector On 

Durations as reported by the t-Test, nor a difference of >10% between the Manually reported and 

Event Log number of activations. Red cell shading indicates that the detector had one or both of 

these. 
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Figure 3.12: Comparative analysis results: US20 at 15th 

Table 3.10: Difference Summary Table: US26 at Meinig 

Det MT 

Activations Detector On Duration Mean 

Usable? 
Manual 

Event 

Log 
Difference Manual 

Event 

Log 
Difference 

1 2 100 198 98* 00:01.33 00:01.84 00:00.52 N 

2 3 100 99 -1 00:01.29 00:01.91 00:00.62** N 

3 4 10 28 18* 00:01.11 00:00.87 -00:00.23 N 

4 8 35 35 0 00:04.75 00:05.70 00:00.95 Y 

5-6 9 36 35 -1 00:16.65 00:16.85 00:00.20 Y 

7 21 12 12 0 00:21.95 00:21.56 -00:00.39 Y 

8-9 28 13 15 2* 01:10.75 01:07.01 -00:03.74 N 

10 22 46 94 48* 00:11.37 00:08.23 -00:03.14** N 

11-12 23 83 48 -35* 00:18.04 00:20.86 00:02.82 N 

13-14 24 45 35 -10* 00:24.41 00:24.67 00:00.26 N 

* indicates a difference of >10% between the Manually reported and Event Log number of 

activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-

Test 

Green cell shading indicates the detector had neither a Significant Difference in the Detector On 

Durations as reported by the t-Test, nor a difference of >10% between the Manually reported and 

Event Log number of activations. Red cell shading indicates that the detector had one or both of 

these. 
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Figure 3.13: Comparative analysis results: US26 at Meinig  
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Table 3.11: Difference Summary Table: US101 at 22nd 

Det MT 

Activations Detector On Duration Mean 

Usable? 
Manual 

Event 

Log 
Difference Manual 

Event 

Log 
Difference 

1 2 85 94 9* 00:00.63 00:00.55 -00:00.08 N 

2 3 100 101 1 00:00.75 00:00.62 -00:00.13** N 

3-4 4 100 102 2 00:02.17 00:02.02 -00:00.15 Y 

5-6 5 100 100 0 00:01.85 00:01.74 -00:00.11 Y 

7 15 19 20 1 00:00.90 00:00.86 -00:00.04 Y 

8-9 27 19 19 0 00:05.76 00:05.64 -00:00.12 Y 

10 8 26 37 11* 00:01.62 00:02.66 00:01.04** N 

11-12 9 22 17 -5* 00:07.63 00:14.12 00:06.49** N 

13-14 10 17 21 4* 00:21.25 00:06.86 -00:14.39** N 

15 16 90 139 49* 00:00.59 00:00.57 -00:00.02 N 

16 17 100 64 -36* 00:00.56 00:00.56 00:00.01 N 

17-18 18 86 90 4 00:03.50 00:03.13 -00:00.37 Y 

19-20 19 100 101 1 00:02.08 00:01.96 -00:00.12 Y 

21 1 3 3 0 00:01.01 00:00.83 -00:00.18 Y 

22-23 13 7 9 2* 00:12.08 00:09.36 -00:02.72 N 

24 22 13 14 1 00:01.89 00:02.08 00:00.18 Y 

25-26 23 10 11 1 00:34.77 00:31.18 -00:03.59 Y 

* indicates a difference of >10% between the Manually reported and Event Log number of 

activations 

** indicates Significant Difference at 95% CI in the Detector On Durations as reported by the t-

Test 

Green cell shading indicates the detector had neither a Significant Difference in the Detector On 

Durations as reported by the t-Test, nor a difference of >10% between the Manually reported and 

Event Log number of activations. Red cell shading indicates that the detector had one or both of 

these. 
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Figure 3.14: Comparative analysis results: US101 at 22nd 
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4.0 DATA ANALYSIS AND ALGORITHM DEVELOPMENT 

4.1 INTRODUCTION 

This section will describe the steps taken to develop the algorithm used to assess detector health. 

The general approach used was to link traffic detector data with traffic theory, using statistical 

rigor but with an eye for ease of implementation across the ODOT system. As part of this work, 

several performance datasets were developed for use in the algorithm’s comparative analytics. 

These performance datasets will also be described in this chapter. Lastly, the algorithm itself will 

be presented, with step-by-step instructions tied back to the analytic work covered earlier in the 

chapter. 

4.2 GENERAL FORM OF COMPARATIVE PROCESS 

The overall comparative process for the algorithm is illustrated in Figure 4.1. There are two 

separate health assessments that are part of the outcomes of this work. First, as shown by item 

‘1’ in Figure 4.1, an initial detector health assessment is undertaken. Site and detector data from 

the detector in question are used to develop two separate comparative points for initial health 

assessment, both of which use the mathematical concept of integration and Greenshields’s 

volume / density fundamental diagram (Figure 2.5c) as the basis for comparison. Comparative 

point one of the initial health assessment for a detector involves the development of a conceptual 

volume / density curve based upon site characteristics and detector data, development of a 

predicted volume / density curve based upon the outcome of modeling in this work (to be 

discussed in a successive section) and site characteristics, and then comparing the difference of 

integral values of those two curves to a performance dataset developed for this work (PPD, 

Predicted Performance Dataset). Figure 4.2 and Equation 4-1 illustrates this comparison, 

showing how the ‘percent difference’ value is generated from the predicted and the conceptual 

curves. 
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Figure 4.1: Data analysis flowchart 

 

Figure 4.2: Integral percent difference illustration 
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|
𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒍 − 𝑪𝒐𝒏𝒄𝒆𝒑𝒕𝒖𝒂𝒍 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒍

𝑪𝒐𝒏𝒄𝒆𝒑𝒕𝒖𝒂𝒍 𝑰𝒏𝒕𝒆𝒈𝒓𝒂𝒍
| = 𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 

(4-1) 

The second comparative point of the initial health assessment involves comparing the week-to-

week percent difference values between integrals of four weeks of empirical volume / density 

curves to a second performance data set (EPD, Empirical Performance Dataset) developed as 

part of this work. 

Item ‘2’ in Figure 4.1 is the second health assessment, that of detector health over time. For this 

assessment, percent difference values between integrals are computed from empirical data in 

rolling four-week increments. These values are then plotted on a control chart and compared 

with the EPD. Over time, the control chart limits can be adjusted based upon current data. 

The crux of these comparisons is the approximation of uninterrupted flow from detector data on 

an interrupted flow facility. To approximate this type of flow, several filtering techniques were 

applied to the raw data to remove vehicle actuations that are likely occurring outside of 

uninterrupted flow, allowing the isolation of the saturated portion of queue discharge to be used 

for this approximation. While it is expected that the resultant empirical curves will be the same 

general shape as a conceptual Volume vs. Density curve, it is not expected that they will closely 

approximate the x- and y-dimensions of such a curve. 

4.3 DATA CLEANSING AND APPROXIMATION OF 

UNINTERRUPTED FLOW 

ODOT personnel provided approximately 19 weeks of raw data for the six intersections. The 

first step in reduction was to remove any spurious data that would hinder data processing. There 

are two known issues with the provided event-based data, that of repeated ‘Detector On’ events 

for the same detector, and that of repeated ‘Green On’ interval data events. Any repeated 

‘Vehicle Detector On’ and ‘Vehicle Detector Off’ events were removed to allow for proper 

processing of the data, while the complete cycle was removed for any cycle that contained a 

repeating Green Time Start and Yellow Time Start. This was done to ensure that green durations 

and their related volume characteristics were consistent from cycle to cycle. These steps were 

completed for each detector that passed the performance heuristic applied in Section 3.3 of this 

work. Data from these detectors were used to build the relationships and algorithms documented 

in the subsequent sections. 

4.3.1 Peak Period Selection 

As noted earlier, a critical step in the modeling completed in this work is the approximation of 

uninterrupted flow from detector data, which is most likely to occur during the saturated flow 

period of queue discharge. To achieve this end, several filtering techniques were applied to 

remove data that were unlikely to reflect saturated conditions. Given that saturate discharge is 

most likely to occur during periods of high volumes, it was determined that the data from peak 

commuting periods (Tuesday, Wednesday, and Thursday, from 6:00 AM – 9:00 and 4:00 PM – 
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7:00 PM) would be used for analysis, as these time periods would likely provide the highest 

proportion of intervals exhibiting this type of discharge.  

4.3.2 Start-up Vehicles 

Each time an indication changes from red to green, and a stopped queue is transitioned to a 

moving, saturated queue, lost time is incurred. Equation 4-2 and 4-3 show the pertinent equations 

from the Highway Capacity Manual for this concept, with the former illustrating where the 

concept of lost time falls within the context of the effective green calculation, and the latter 

noting how many vehicles of the queue contribute to start-up lost time. Based upon this theory, 

the first four vehicles of each cycle would were removed from the analysis as they exhibit 

headways which are larger than headways expected during saturated flow (Transportation 

Research Board 2016). This process was undertaken for each traffic signal cycle of data 

analyzed. 

𝒈 = 𝑮 + 𝒀 + 𝑹 − (𝒍𝟏 + 𝒍𝟐) 

(4-2) 

where: 

g = Effective Green Time (seconds) 

G = Actual Green Interval (seconds) 

Y = Actual Yellow Change Interval (seconds) 

R = Actual Red Clearance Interval (seconds) 

l1 = Start-up Lost Time (seconds) 

l2 = Clearance Lost Time (seconds) 

𝒍𝟏 = ∑ 𝒕𝒊

𝟒

𝒊=𝟏

 

(4-3) 

where: 

l1 = Start-up Lost Time (seconds) 

ti = Lost time for ith vehicle in queue (seconds) 

4.3.3 Saturated Headway Value 

Additionally, activations with headways above a certain threshold would need to be removed 

from the analysis to ensure approximation of saturated flow. As part of the process of 



 

47 

 

determining a cutoff headway value (headways above this cutoff value would be removed from 

the analysis), headways were evaluated per vehicle position in the queue for each green-phase 

interval. Figure 4.3 illustrates three hours of afternoon peak period headway data for one 

detector, sorted by vehicle position (vehicles in positions 1-4 were removed from the 

visualization, per section 4.3.2).  

 

Figure 4.3: Headway data per vehicle position, no data removed, for one detector 

Of noted in Figure 4.3 is that the mean headway of each vehicle position, with the exception of 

positions 10 and 18, is between 2.0 and 3.5 seconds, reasonable values for a saturated headway 

based upon field conditions. With this knowledge, several exploratory techniques were applied to 

the data to determine a proper headway cutoff value. First, the top quartile of headways for each 

position was remove, the results of this are plotted in Figure 4.4 (this is from the same data used 

to develop Figure 4.3).  
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Figure 4.4: Headway data per vehicle position, top quartile of headway data removed from 

each vehicle position, for one detector 

While the means of the vehicle positions are lower, showing that some of the larger headways 

were removed, the resulting data still contains many headways that are not indicative of saturated 

flow, which could negatively impact the data analysis. Several other approaches were applied to 

limit the number of headways in the data that would represent non-saturated flow, including 

removing headways larger than twice or three times the median headway for each position, 

removing activations that are detected within the last 6.0 seconds before the yellow-phase 

interval, and removing the data from the entire green-phase interval if the first vehicle’s headway 

was greater than 8.0 seconds. In the end, it was determined that limiting the headways used in 

this work to 3.0 seconds, a common value used in setting gap timers within actuated control, 

would more effectively accomplish the desired outcome without the need to carry out 

complicated mathematical procedures. This approach has the added benefit of including 

activations later in the green interval as part of the data analysis, as saturated conditions can 

occur well into stale green. The activations remaining after filtering for Start-Up Lost Time and 

headways is referred to as filtered activation data. 

4.4 CALCULATING EQUIVALENT HOURLY VOLUME AND 

DENSITY FROM FILTERED DATA 

With data filtered to remove spurious data and approximate saturated flow, the next step is to 

calculate volume and density values for each cycle of data, which can then be plotted and used to 

approximate a Volume vs. Density relationship. For volume, Equivalent Hourly Volume (EHV) 

was used, a concept which uses volume (or counts) from a time period shorter than one hour that 

is then scaled to reflect an hourly volume. Equation 4-4 shows the calculation for EHV, using the 

number of activations during green as a surrogate for departure volume. It is recognized that 

several vehicles may arrive on red, and that these are not captured in departure volume. This, 
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along with the filtering techniques described earlier in this chapter, will likely result in volumes 

that are lower than actuality, however it is believed that the constant application of these methods 

across all data processed will limit any additional variability these lower volumes might 

introduce into the process. EHV was calculated for each cycle. 

𝑬𝑯𝑽 = 𝟑𝟔𝟎𝟎
(𝟑𝟔𝟎𝟎 × 𝟐𝟒 × 𝑪)(𝑨)⁄  

(4-4) 

where: 

EHV = Equivalent Hourly Volume 

C = Cycle Duration 

A = Number of Filtered Activations per Green Duration 

In determining density, occupancy on a per cycle basis was used. Equation 4-5 shows the 

calculation for density.  Occupancy was calculated using Equation 4-6. A density value was 

calculated for each cycle. 

𝑫 = 𝑶 × 𝟓𝟐𝟖𝟎
(𝑳𝑽𝒆𝒉 + 𝑳𝑫𝒆𝒕)⁄  

(4-5) 

where: 

D = Density 

O = Occupancy 

LVeh = Average Vehicle Length 

LDet = Detector Length 

𝑶𝒄𝒄𝒖𝒑𝒂𝒏𝒄𝒚 =
𝑭𝒊𝒍𝒕𝒆𝒓𝒆𝒅 𝑫𝒆𝒕𝒆𝒄𝒕𝒐𝒓 𝑶𝒏 𝑫𝒖𝒓𝒊𝒏𝒈 𝑮𝒓𝒆𝒆𝒏  𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏

𝑮𝒓𝒆𝒆𝒏 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏
 

(4-6) 

Application of Equation 4-6 required several assumptions / inputs. First, the Vehicle Length is 

assumed to be the design passenger vehicle length of 19 feet (American Association of State 

Highway and Transportation Officials 2011). Second, Detector Length is measured from the 

field (or approximated in the case of radar detection zones). Lastly, a constant vehicle length was 

presumed to present in the traffic stream. These assumptions are commonly used in the 

calculation of density from occupancy data.  
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4.5 APPROXIMATED VOLUME DENSITY RELATIONSHIP 

Once the processing and calculations described in Section 4.3 through 4.4 are completed for an 

entire week of data (Tuesday, Wednesday, and Thursday from 6:00 AM – 9:00 AM and 4:00 PM 

– 7:00 PM), each individual cycle’s EHV and density values are plotted and an empirical line of 

best fit is created by applying a quadratic best fit line to the plotted data, as shown in Figure 4.5. 

This amounts to one week of data, a quantity that will be used later in the algorithm description. 

The Coefficient of Determination (R2) for the fit of the line to the data is also shown, as well as a 

conceptual Volume vs. Density line derived from site information for that detector, to be 

described shortly (Site 245, Detector 1). 

 

Figure 4.5: Example empirical line and empirical data, and conceptual line 

It should be noted that for weeks of data with less than 50 data points, an empirical line was not 

developed as the number of points was insufficient to develop a relationship (this value was 

determined through visualization and judgment by the research team). Additionally, any 

empirical line with a R2 of less than 0.70 was not used for further analysis, as an R2 less than 

0.70 generally indicates a weak or moderate fit of the trendline to the underlying data. Four 

weeks of data were processed for each detector, resulting in a total of 100 weekly empirical lines 

developed across the data set for use in further analysis. 

Also shown in Figure 4.5 is a conceptual Volume vs. Density quadratic relationship for the 

detector from which this empirical data was collected. This relationship was developed for each 

detector using the Optimum Density (Equation 4-7) and Maximum Equivalent Hourly Volume 

(Equation 4-8), per Greenshield’s relationship (Equation 2-1). Maximum Volume was 
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approximated by using an average headway for the approach; Optimum Speed was approximated 

using the speed limit for the approach. 

𝑫𝑶 =
𝑽𝑴𝒂𝒙

𝑺𝑶
 

(4-7) 

where: 

DO = Optimum Density 

VMax = Maximum Volume 

SO = Optimum Speed (½ of Posted Speed Limit) 

𝑽𝑴𝒂𝒙 =
𝟑𝟔𝟎𝟎

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑯𝒆𝒂𝒅𝒘𝒂𝒚
 

(4-8) 

where: 

VMax = Maximum Volume 

While the Optimum Speed was determined to the ½ the posted speed limit, an approximation 

directly derived from Greenshield’s work, several sets of data for a detector were analyzed to 

determine the most effective method of calculating the average headway to be used for 

calculating Maximum Volume. Table 4.1 shows the average headway for a detector for various 

days and time periods of analysis (each day consists of six hours of peak period data, as has been 

used previously in this work). Given the relatively small spread in the average headway from the 

various windows of data analyzed, and the fact the event-based data is collected at a 0.1s 

resolution, it was determined that using the average headway for the first day of data would be 

sufficient and allow for data to be analyzed quickly. 

Table 4.1: Average Headways for Sensitivity Analysis 

Date Average Headway (seconds) 

Jan 12 2.11 

Jan 12-14 2.08 

Jan 19-21 2.08 

Feb 2-4 2.06 

Jan 12-14, Jan 19-21 2.08 

Jan 12-14, Jan 19-21, and Feb 2-4 2.07 
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4.5.1 Outlier Control Experimentation 

To improve the correlation between EHV and Density and reduce variability in the processed 

data, an experiment with outlier control was performed. The method used for this experiment 

was the interquartile range method, which removes data points located at the ends of the 

spectrum of plotted data. In this method, the interquartile range (IQR) (i.e., the 75th percentile – 

the 25th percentile of the data set) is calculated, and any point falling below the 25th percentile – 

1.5*IQR or above the 75th percentile + 1.5*IQR is removed as an outlier. Figure 4.6 and Figure 

4.7 illustrate the effects of this interquartile range outlier control, with the former figure showing 

all data points for one week of collected data, and the latter showing on those remaining after the 

outliers were removed. Note that the conceptual line is unchanged between the two plots. 

 

Figure 4.6: Example empirical line and empirical data without outlier removal 
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Figure 4.7: Example empirical line and empirical data with the outliers removed 

As shown in Figure 4.6 and Figure 4.7, removing the Volume and Density outliers through the 

Interquartile Range process changes the empirical line of best fit as well as the R2 value. The 

IQR method was applied to all processed empirical lines, with summary data shown in Table 4.2. 

Applying this method slightly reduced both the mean and standard deviation of the processed 

data. However, it was noted that the R2 value of the best fit line was generally reduced, and 

because of this, it was determined that the benefit of the higher R2 outweighed the reduced 

variability in the dataset. Because of this, the results of this outlier removal process were 

discarded, and not used in the overall analysis. 

Table 4.2: Mean and Standard Deviation of the Equivalent Hourly Volume and Density 

Empirical Data with Outlier Removal 

 No Outliers Removed 

EHV after 

EHV 

Outliers 

Removed 

Density after 

Density 

Outliers 

Removed 

Combined EHV and 

Density Outliers 

Removed 

 
EHV 

(veh/hr) 

Density 

(veh/ln-mi) 

EHV 

(veh/hr) 

Density 

(veh/ln-mi) 

EHV 

(veh/hr) 

Density 

(veh/ln-mi) 

Mean 260 6.82 248 5.99 238 5.99 

Standard 

Deviation 
212 7.05 197 5.53 184 5.53 

Sample Size 402 402 395 388 387 388 
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4.6 GREEN ACTIVATIONS 

The number of detector activations per green duration was also complied from the initial data 

processing. These data are derived after the raw data have been cleansed of redundancies, but do 

not incorporate the filtering process for approximating uninterrupted traffic flow. For simplicity's 

sake, we name the number of detector activation per green duration as green activation in this 

report. 

We used four weeks' data from 6 AM to 9 AM and from 4 PM to 7 PM on Tuesdays, 

Wednesdays, and Thursdays. The data of green duration and green activation were plotted for 

each selected detector (or detector group) at all six intersections listed in Chapter 3. The 

regression modeling was done for each detector (or detector group) to produce the relationship 

between the green activation and green duration.  

At the intersection of Mission Street and I-5 Southbound Off Ramp (as known as Site 245 in this 

report), detector 7 is an advance loop detector on the left-turn lane of the I-5 Southbound Off-

Ramp, as well as detector 8 on the other left-turn lane of the same off-ramp from the freeway. 

Figure 4.8 through Figure 4.14 show that the number of activations increase with the green 

duration for detector 7. For days from January 12 to 14 (Tuesday to Thursday), 2021, the R² is 

0.76. But when combining two weeks’ data (the week of January 12 and the week of January 

19), the R² is 0.39, which is not significant. When combing three weeks’ data, the R² is 0.28, 

which is not significant either.  

The detector 8 is on the adjacent left-turn lane of the same off-ramp. The regression modeling 

results of green activations and green durations for detector 8 are similar to the results of detector 

7. For simplicity, we do not show the figures for detector 8 here. 

 

Figure 4.8: Green activation and green duration for detector 7 for the week of January 12 
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Figure 4.9: Green activation and green duration for detector 7 for two weeks 

 

Figure 4.10: Green activation and green duration for detector 7 for three weeks 

Detector group 9-10 has two advance loop detectors 9 and 10, downstream of detectors 7 and 8 

on the same off-ramp. We have data for the detector group but not for detector 9 or 10 

separately. The following figures show that the number of activations increase with the green 

duration for the detector group, but the R² values are close to 0.2, which is not significant. 
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Figure 4.11: Green activation and green duration for detector Group 9-10 for the week of 

January 12 

 

Figure 4.12: Green activation and green duration for detector group 9-10 for two weeks  
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Figure 4.13: Green activation and green duration for detector group 9-10 for three weeks 

The regression modeling results for the other 42 detectors (or detector groups) show that the R2 

values are less than 0.4, which is not significant. In addition, some regression models’ 

coefficients for the variable of green duration are close to 0, which is not statistically significant. 

For simplicity, we do not present all the regression modeling results in this report but show the 

following figure as an example. Therefore, we have not found statistically significant 

relationships between the green activation and the green duration from the collected data for 

most of the detectors. 

 

Figure 4.14: Green activation and green duration for detector 1 for the week of January 12 

4.7 PREDICTED VOLUME/DENSITY RELATIONSHIP AND 

PERFORMANCE DATA SETS 

With the processes identified for generating conceptual and empirical Volume vs. Density 

relationships, the next step is to develop the modeling for predicted Volume vs. Density 
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relationships, a Predicted Performance Dataset (PPD), both necessary for the Initial Detector 

Health Assessment (Item 1 in Figure 4.1), and an Empirical Performance Dataset (EPD), 

necessary for both the Initial Health Assessment and Detector Health Assessment Over Time 

(Item 2 in Figure 4.1). The process used for modeling will be described first.  

4.7.1 Predicted Volume/Density Relationship Modeling 

In developing a model for predicting Volume vs. Density relationships for a specific site, the 

choice of an appropriate modeling technique was contingent on having sufficient data observed 

at each location, including that these data exhibit a downward parabolic shape when fit to a 

quadratic curve, additional site-level data available to explore how independent factors may 

contribute to observed volume-density curve variation is available, and using a model structure 

that accounts for the interdependence between observed a, b, and c terms in the quadratic 

formula in predicting empirical lines at each location. The form of a quadratic expression is 

shown in Equation 4-9. 

𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 

(4-9) 

An initial step in the modeling process was the construction of a data set with sufficient content 

at each detector across the four weeks of collected data. Accordingly, a potentially complete 

sample of 180 records (four weeks of empirical data collected at 45 detectors) was reduced to a 

sample of 106 records after removing records with empirical data fewer than ten points (74 

records). Of this remaining sample, five records were removed in which the a term exhibited a 

positive value, which would have produced an upward parabolic shape when plotted, resulting in 

a final sample of 101 records. 

Using this reduced sample, a next analytic step was to specify multiple regression models where 

observed values of a, b, and c were functions of various site characteristics that may account for 

variation in these outcome variables. Given the inter-relationship between the three outcome 

variables and a desire to model a single set of predictor variables, a multivariate multiple 

regression modeling structure was chosen. Specification of predictors in this simultaneous model 

of multiple outcomes was pursued with an iterative process that first assessed statistically 

significant intergroup (or model outcome) differences in the effects of independent predictors 

and then examined the explanatory power of any selected predictor variables. Regarding the 

former assessment, a multiple analysis of variance (MANOVA) was conducted to test 

differences in mean values of a, b, and c terms per location across several categorical site 

characteristics. Table 4.3 summarizes the results of this analysis in which significant variation 

was found for mean values of the a, b, or c terms in each of the tested categorical variables 

except for detector length. Of note, continuous measures of green activation and detector 

indication were examined as binary variables in the MANOVA, with low and high values based 

on relationship of locational measure with mean value of variables within the full final sample.  
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Table 4.3: Descriptive Statistics for Four-Week Sample of Detector Summary Data 

 a b c 

Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

Week 1 (n=25) -0.391 0.580 -2.876 -0.003 32.773 15.300 1.572 60.183 18.129 33.676 -43.426 151.920 

Week 2 (n=25) -0.290 0.280 -1.203 -0.003 31.249 14.761 1.838 60.204 24.368 33.496 -4.092 168.150 

Week 3 (n+26) -0.282 0.232 -0.964 -0.005 30.074 14.492 2.447 55.122 28.731 36.060 0.192 182.680 

Week 4 (n=25) -0.370 0.417 -1.838 -0.003 32.322 19.095 0.440 76.858 26.243 23.622 -2.049 110.320 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: Tech loop (n=21) 0.108 0.150 -0.581 -0.006 20.941 8.520 7.723 48.414 19.510 12.389 -0.568 47.687 

1: Tech Loop (n=80) -0.392 0.420 -2.876 -0.003 34.385 16.109 0.440 76.858 25.697 35.202 -43.426 182.680 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: Detect Advance (n=44) -0.157 0.300 -1.838 -0.003 21.384 9.031 0.440 48.414 18.654 22.296 -20.946 110.300 

1: Detect Advance (n=57) -0.468 0.410 -2.876 -0.003 39.467 15.430 1.572 76.858 28.855 37.235 -43.426 182.680 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: Main Street (n=29) -0.246 0.526 -2.876 -0.003 21.538 11.337 1.572 53.939 31.962 51.713 -43.426 182.680 

1: Main Street (n=72) -0.367 0.328 -1.838 -0.003 35.638 15.587 0.440 76.858 21.36 18.539 -4.092 110.320 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: Single Lane (n=16) -0.350 0.212 -0.821 -0.053 43.523 17.286 15.130 76.858 34.750 21.327 -20.946 77.010 

1: Single Lane (n=85) -0.329 0.423 -2.876 -0.003 29.343 14.545 0.440 60.204 22.465 33.228 -43.426 182.680 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: >10-ft Length (n=66) -0.358 0.421 -2.876 -0.003 31.313 15.011 1.572 60.204 24.173 34.942 -43.426 182.680 

1: > 10-ft Length (n=35) -0.284 0.344 -1.838 -0.003 32.111 17.403 0.440 76.858 24.859 25.569 -20.946 110.320 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: Thru Lane Only 

(n=34) 

-0.26 0.49 -2.88 0.00 21.40 11.38 0.44 53.94 29.67 48.83 -43.43 182.68 

1: Thru Lane Only 

(n=67) 

-0.37 0.34 -1.84 0.00 36.76 15.26 2.14 76.86 21.74 18.05 -4.09 110.32 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 
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 a b c 

Mean SD Min Max Mean SD Min Max Mean SD Min Max 

0: High Activation 

(n=61) ^ 

-0.232 0.440 -2.876 -0.003 22.304 10.298 0.440 53.939 25.475 38.839 -43.426 182.680 

1: High Activation 

(n=40) ^ 

-0.486 0.254 -1.203 -0.020 45.750 11.675 15.714 76.858 22.788 16.732 -4.092 50.243 

Study Sample (n=101)* -0.333 0.396 -2.876 -0.003 31.589 15.799 0.440 76.858 24.411 31.875 -43.426 182.680 

0: High Indication 

(n=56) ^ 

-0.431 0.324 -1.838 -0.053 39.609 13.711 15.130 76.858 19.696 18.306 -20.946 77.013 

1: High Indication 

(n=45) ^ 

-0.210 0.445 -2.876 -0.003 21.609 12.188 0.440 53.939 30.279 42.740 -43.426 182.680 

Notes: 

* Reduction of complete sample (n=180) after removing records with non-negative value for a 

(n=72) or less than 10 observations (n=74). 

^ High represents activation/indication level above the mean value for the study sample (x̄ 

activations = 304.927 and x̄ indications = 37.476). 

Cells in GREEN reflect a statistically significant difference in group means (p<0.05). 

Cells in BLUE reflect a marginally significant difference in group means (p<0.10). 
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Having established that significant mean differences across the outcomes existed for seven 

independent variables, a backwards elimination model specification process was undertaken to 

determine a consistent set of predictors in the multivariate multiple regression model used to 

create the predicted empirical line. The final model specification—shown in Table 4.4—was 

determined once the removal of a single predictor resulted in no improvement to the adjusted R2 

value of the reduced model and that the Type II MANOVA test statistic for each remaining 

predictor variable was marginally statistically significant (p<0.10). Looking at individual model 

performances, the overall fit for the model of the b term (R2=0.661) was higher than the 

specification for the a term (R2=0.172) and c term (R2=0.154). The presence of advanced 

detection technology and the continuous green activation metric were statistically significant in 

each specification, with these two variables being the lone significant predictors in the b term 

model. The former predictor as well as the presence of a loop detector were only marginally 

significant in the a term model, while the number of indications, presence of advanced detector 

technology, and site location within a single lane roadway were all statistically significant 

(p<0.05) in the c term model.  Equation 4-10, Equation 4-11 and Equation 4-12 present the 

results of the developed models for the a, b, and c coefficients, respectively, of the predicted 

curve. 

Table 4.4: Multivariate Multiple Regression Model Estimates 

Predictor 

Variable 

a b c 

Beta 

Std. 

Error 

p-

value Beta 

Std. 

Error 

p-

value Beta 

Std. 

Error 

p-

value 

(intercept) 0.629 0.338 0.066 6.337 8.624 0.464 -10.341 27.478 0.707 

Tech Loop -0.267 0.136 0.052 3.773 3.472 0.280 9.171 11.062 0.409 

Detect Advance -0.180 0.100 0.074 6.754 2.542 0.009 21.385 8.098 0.010 

Single Lane -0.171 0.120 0.157 4.700 3.062 0.128 -29.725 9.758 0.003 

Activations -0.001 <0.001 0.022 0.064 0.007 <0.001 -0.047 0.024 0.051 

Indications -0.008 0.006 0.162 -0.136 0.145 0.348 1.458 0.461 0.002 

Model Summary 

Adjusted R2 
0.172 0.661 0.154 

 

𝒚̂𝒂 = 𝟎. 𝟔𝟐𝟗 − 𝟎. 𝟐𝟔𝟕 (𝒙𝒕𝒆𝒄𝒉𝒍𝒐𝒐𝒑
) − 𝟎. 𝟏𝟖𝟎(𝒙𝒅𝒆𝒕𝒆𝒄𝒕𝒂𝒅𝒗

) − 𝟎. 𝟏𝟕𝟏 (𝒙𝒍𝒂𝒏𝒆𝒔𝒊𝒏𝒈𝒍𝒆
)

− 𝟎. 𝟎𝟎𝟏(𝒙𝒘𝒌𝒂𝒄𝒕𝒉𝒐𝒖𝒓
) − 𝟎. 𝟎𝟎𝟖(𝒙𝒘𝒌_𝒈𝒓𝒏𝒉𝒓) 

(4-10) 

𝒚̂𝒃 = 𝟔. 𝟑𝟑𝟕 + 𝟑. 𝟕𝟕𝟑(𝒙𝒕𝒆𝒄𝒉_𝒍𝒐𝒐𝒑) + 𝟔. 𝟕𝟓𝟒(𝒙𝒅𝒆𝒕𝒆𝒄𝒕_𝒂𝒅𝒗) + 𝟒. 𝟕𝟎𝟎(𝒙𝒍𝒂𝒏𝒆_𝒔𝒊𝒏𝒈𝒍𝒆)

+ 𝟎. 𝟎𝟔𝟒(𝒙𝒘𝒌_𝒂𝒄𝒕𝒉𝒐𝒖𝒓) − 𝟎. 𝟏𝟑𝟔(𝒙𝒘𝒌_𝒈𝒓𝒏𝒉𝒓) 

(4-11) 
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𝒚̂𝒄 = −𝟏𝟎. 𝟑𝟒𝟏 + 𝟗. 𝟏𝟕𝟏(𝒙𝒕𝒆𝒄𝒉_𝒍𝒐𝒐𝒑) + 𝟐𝟏. 𝟑𝟖𝟓(𝒙𝒅𝒆𝒕𝒆𝒄𝒕_𝒂𝒅𝒗) − 𝟐𝟗. 𝟕𝟐𝟓(𝒙𝒍𝒂𝒏𝒆_𝒔𝒊𝒏𝒈𝒍𝒆)

− 𝟎. 𝟎𝟒𝟕(𝒙𝒘𝒌_𝒂𝒄𝒕𝒉𝒐𝒖𝒓) + 𝟏. 𝟒𝟓𝟖(𝒙𝒘𝒌_𝒈𝒓𝒏𝒉𝒓) 

(4-12) 

where: 

𝑦̂𝑎, 𝑦̂𝑏, 𝑦̂𝑐 equals the predicted values of a, b, and c 

𝑥𝑡𝑒𝑐ℎ_𝑙𝑜𝑜𝑝 equals the presence of a loop detector (binary) 

𝑥𝑑𝑒𝑡𝑒𝑐𝑡_𝑎𝑑𝑣 equals the presence of advanced detector technology (binary) 

𝑥𝑙𝑎𝑛𝑒_𝑠𝑖𝑛𝑔𝑙𝑒 equals site location within a single lane roadway (binary) 

𝑥𝑤𝑘_𝑎𝑐𝑡ℎ𝑜𝑢𝑟 equals the number of activations per hour (continuous) 

𝑥𝑤𝑘_𝑔𝑟𝑛ℎ𝑟 equals the number of indications per hour (continuous) 

Using this final multivariate multiple regression model specification, the final step was to predict 

the value of a, b, and c terms for each combination of detector location and week of empirical 

data, which would then be used to build the PPD for health comparison. Prediction of a 

maximum of four empirical lines per detector location was accomplished by inserting the 

observed value of each predictor variable in the final model specification for all records. While 

predictive estimates for a, b, and c terms using every week of recorded detector data helps to 

provide a more robust assessment of detector health, a location-level aggregation of these terms 

across the data collection period can also be useful in investigating the predictive model’s 

performance at sites with varying characteristics not isolated in the final specification. Figure 

4.15, Figure 4.16, and Figure 4.17 offer a comparison of the average predicted and observed 

values of a, b, and c, respectively, for locations in the data set over the four-week collection 

period. The line numbers on the y-axis correspond to specific detectors in the data analysis. 

Table 4.5 links each line number to a specific site and detector number. While the residual 

differences are generally fairly small, there are several coefficients that have larger differences, 

such as Lines 9 and 20 for the a coefficient, and Line 11 for the c coefficient.  
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Table 4.5: Line Numbers to Site and Detector Number(s) 

Line Number Site Number Site Name Detector Number(s) 

1 245 OR22 @ I-5SB 1 

2 245 OR22 @ I-5SB 2 

3 245 OR22 @ I-5SB 4-6 

4 245 OR22 @ I-5SB 7 

5 245 OR22 @ I-5SB 8 

6 245 OR22 @ I-5SB 9-10 

7 245 OR22 @ I-5SB 17-18 

8 502 OR34 @ I-5SB 2 

9 502 OR34 @ I-5SB 7 

11 502 OR34 @ I-5SB 9 

12 502 OR34 @ I-5SB 13 

13 502 OR34 @ I-5SB 14 

14 502 OR34 @ I-5SB 23 

15 502 OR34 @ I-5SB 25 

16 502 OR34 @ I-5SB 27 

17 502 OR34 @ I-5SB 28 

18 55 OR34 @ Peoria 3-4 

20 55 OR34 @ Peoria 16 

24 55 OR34 @ Peoria 24 

25 503 US20 @ 15th  1 

26 503 US20 @ 15th 2 

32 503 US20 @ 15th  15 

35 585 US26 @ Meinig 5-6 

37 2 US101 @ 22nd  3-4 

38 2 US101 @ 22nd 5-6 

41 2 US101 @ 22nd 18 

42 2 US101 @ 22nd  9 
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Figure 4.15: Comparison of mean observed and predicted values of a term over data 

collection period 

 

Figure 4.16: Comparison of mean observed and predicted values of b term over data 

collection period 
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Figure 4.17: Comparison of mean observed and predicted values of c term over data 

collection period 

4.7.2 Development of Empirical Performance Dataset (EPD) 

As was noted in Section 4.2 and illustrated in Figure 4.2, the concept of mathematical integration 

was used for comparing the various iterations of Volume vs. Density curves developed in this 

work. Then, the percent difference in the integral value between two curves was compared and 

used as a metric for analysis. Figure 4.18 illustrates all three curves, Conceptual, Empirical, and 

Predicted for a given site. 
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Figure 4.18: Empirical line, predicted line, and conceptual curve with integration bounds 

(25%, 50%, 75%, and 100% of the conceptual curve) 

In using the concept of percent difference described earlier, a decision needed to be made 

regarding integration bounds for these comparisons. Given the typical application of field data to 

an uninterrupted conceptual Volume vs. Density curve, initially integration bounds for these 

comparisons were 0 and the x-coordinate of the vertex of the conceptual curve (100% vertex as 

shown in Figure 4.18). However, given that the majority of the plotted empirical data points fell 

within 0 to 50% of the x-axis vertex range, comparative integrals were developed for four 

different sets of ranges, from 0% to 100% of the x-axis vertex coordinate, in 25% increments, to 

determine which set of bounds would be the most appropriate for this work. 

Prior to describing the results of this comparison, the specifics of the percent difference values 

calculated should be noted. For the EPD, percent difference calculations were made between 

consecutive weeks of data, using Equation 4-13.  

𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 = 𝟏𝟎𝟎 ×
(𝒘𝒆𝒆𝒌 𝒏 + 𝟏) − (𝒘𝒆𝒆𝒌 𝒏)

(𝒘𝒆𝒆𝒌 𝒏)
 

(4-13) 

where: 

week n = the integration value of the earlier week in the comparison 

week n+1 = the integration value of the latter week in the comparison 



 

67 

 

As four weeks of data was processed for each detector, a total of six percent differences were 

generated, as each week was treated as an individual data point, regardless of the temporal 

sequence of the data.  This resulted in 147 data points for the EPD. 

• Week 2 compared to Week 1 

• Week 3 compared to Week 1 

• Week 4 compared to Week 1 

• Week 3 compared to Week 2 

• Week 4 compared to Week 2 

• Week 4 compared to Week 3 

Figure 4.19 through Figure 4.22 summarize the distributions of the percent difference 

calculations conducted with the various integration bounds. The percent differences when 

integrated to 100% of the conceptual vertex were typically the highest, as can be seen in these 

figures and in Table 4.6, which summarizes the mean and standard deviations of each of the 

distributions. Both the mean and standard deviation continued decrease as the integration bounds 

were reduced, with the smallest values observed at the 25% threshold. 

 

Figure 4.19: Percent difference distribution for integrating the conceptual and empirical 

lines to 25% of the conceptual vertex 
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Figure 4.20: Percent difference distribution for integrating the conceptual and empirical 

lines to 50% of the conceptual vertex 

 

Figure 4.21: Percent difference distribution for integrating the conceptual and empirical 

lines to 75% of the conceptual vertex 
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Figure 4.22: Percent difference distribution for integrating the conceptual and empirical 

lines to 100% of the conceptual vertex 

Table 4.6: Mean and Standard Deviation of Integration Values at Different Integration 

Thresholds 

 25% 50% 75% 100% 

Mean 10.64 13.51 24.54 142.55 

Std Dev 16.69 24.81 36.36 386.77 

 

Figure 4.23 shows the cumulative percent differences for each integration threshold. A line is 

drawn at the 20% difference bin in Figure 4.23 to allow for a comparison between the four trace 

lines. This line illustrates that, at this point on the plot, roughly 80% of the data points in both the 

25% and 50% threshold have values of 20% percent difference or lower. At the 20% bin, only 

70% of the data is encompassed for the 75% threshold, and 65% for the 100% threshold. More 

data points below 20% are an indicator of less week-to-week variability in the processed data, 

something that is desirable in developing a dataset for performance comparisons. 
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Figure 4.23: Cumulative percent difference comparison of the integration thresholds 

Because of this, the desire to have roughly 80% of the percent difference values at or below 20% 

(black line shown in Figure 4.23), and the fact that the majority of data points developed to 

create the empirical lines were in this section of the plots, it was determined that using bounds of 

integration from 0 to 25% of the conceptual vertex would provide the most predictable 

performance assessment, as the mean and standard deviation of this distribution (red boxed data 

in Table 4.6) will be used and termed the Empirical Performance Dataset (EPD). 

4.7.3 Development of Predicted Performance Dataset (PPD) 

The final step in the development of data for detector health comparison is the creation of the 

Predicted Performance Dataset (PPD). To do that, a second percent difference calculation was 

made, this one between the conceptual line for each detector and each the predicted line for each 

week for that respective detector, as was calculated in Section 4.7.1 (this calculation was 

illustrated in figure 4.2). This was completed using the same process as described in Section 

4.7.2, using integrals carried out between the 0% and 25% range. The distribution of these 

percent differences between the conceptual and predicted lines is shown in figure 4.24 with the 

mean of this data as 2.8 percent difference and the standard deviation 5.5 percent difference. 

These values will also be used in detector health analysis and termed the Empirical Performance 

Dataset (EPD). 
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Figure 4.24: Percent difference between conceptual and predicted empirical line integrals 

for all detectors in predicted performance dataset 

4.8 PROCESSED DATA PERFORMANCE COMPARISONS 

To investigate whether or not the calculated means and standard deviations for the two 

performance datasets represent thresholds that differ from detectors that may not be performing 

properly, two different exercises were carried out.  

4.8.1 Comparison of EPD to Underperforming Detectors 

First, the same steps of data analysis and processing (as described in Section 4.7.2) were 

undertaken to determine the distribution of percent difference values from those detectors that 

did not pass the heuristic assessment, termed underperforming detectors. Figure 4.25 and Figure 

4.26 show the distribution and cumulative distribution for these detectors (11 detectors, resulting 

in 60 percent difference data points). In comparison to EPD, the mean percent difference of the 

0-25% integration bounds of the underperforming detectors is 42.2% (an increase of 31.6%), and 

the standard deviation is 117.9% (an increase of 101.2%). The increase in both of these values 

represents an increase in variability of the integral values from week to week of the 

underperforming detectors compared with those in the EPD, indicating that the use of percent 

difference values should be effective in identifying underperforming detectors. The 50% bound 

CDF line is shown for comparison, illustrating that the wider integration bounds greatly increase 

the percent difference variability in the underperforming detector data set. The same line is 

drawn on Figure 4.26 at the 20% bin. For the EPD, both of the 25% and 50% traces 

encompassed roughly 80% of the data points. For these underperforming detectors, roughly 70% 

of the data points are 20% difference or less with the 25% threshold, while roughly 45% of the 

data points are 20% or lower for the 50% threshold. 
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Figure 4.25: Percent difference distribution for integrating the conceptual and empirical 

lines to 25% of the conceptual vertex for underperforming detectors  

 

Figure 4.26: Cumulative percent difference comparison of the integration thresholds for 

underperforming detectors  
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4.8.2 Integral Value Changes For ‘Bad’ Detector Data 

Second, in an attempt to gain an understanding of the impact that degraded detector performance 

has on the difference in integral values, the calculated Volume and Density data points for four 

weeks of data for one detector were artificially increased and decreased by 10%, 20%, and 30% 

(a review of literature did not identify any works where improperly performing, but still 

functioning, detector data was logged or profiled in this manner). Figure 4.27, Figure 4.28, 

Figure 4.29, and Figure 4.30 show the impact of these increases on the location of the empirical 

line for an increase in Density, increase in Volume, decrease in Density, and decrease in 

Volume, respectively. 

 

Figure 4.27: Site 245 detector 1, 4 weeks of data, density increased 
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Figure 4.28: Site 245 detector 1, 4 weeks of data, volume increased 

 

Figure 4.29: Site 245 detector 1, 4 weeks of data density decreased 
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Figure 4.30: Site 245 detector 1, 4 weeks of data, volume decreased 

The adjusted lines illustrated in the above figures were compared to the detector’s conceptual 

line by integrating from 0 to 25% of the conceptual line’s vertex and calculating the percent 

difference between these lines. The integration bound is also shown in the figures. The results of 

these integration comparisons are shown in Table 4.7. 

Table 4.7: Site 245 Detector 1, 4 Weeks of Data: Integration Percent Differences from the 

Conceptual Integral 

% Difference from Conceptual Integral 

(Conceptual – x) / Conceptual 

Integral from 0 to 25% of Conceptual Vertex 

Empirical 2.2% 

Density 

Added 

10% Added 9.5% 

20% Added 15.8% 

30% Added 21.2% 

Volume 

Added 

10% Added 7.6% 

20% Added 17.4% 

30% Added 27.2% 

Density 

Removed 

10% Removed 6.5% 

20% Removed 17.0% 

30% Removed 29.7% 

Volume 

Removed 

10% Removed 12.0% 

20% Removed 21.7% 

30% Removed 31.5% 
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In the EPD, the mean and standard deviation of the percent differences between the empirical 

and conceptual lines is 10.64% and 16.69% respectively. Staying within 1.5 standard deviations 

from the mean, a comparative value from a statistical standpoint and a threshold used in the 

algorithms presented in successive sections (in a normal distribution, ~87% of the data fall with 

+/- 1.5 std deviations), would create a threshold of 35.68% percent difference between the 

conceptual and empirical lines. When 10%, 20%, and 30% was increased or decreased from the 

Density and Volume datasets, all of the percent differences between the conceptual and the 

empirical lines were still within that 35.68% threshold. This comparison may indicate that using 

1.5 standard deviations from the mean may not be sensitive enough to identify all detector 

malfunctions or poor data quality. 

4.9 GREEN ACTIVATION ANALYSIS 

As mentioned in Section 4.6, we did not find statistically significant regression models between 

the number of detector activations per green duration (green activations) and the green duration 

from the collected data for 43 detectors among all 45 detectors. Therefore, we could not use the 

regression models, rather we used the green activation to assess the detector health. We used four 

weeks’ data from 6 AM to 9 AM and from 4 PM to 7 PM on Tuesdays, Wednesdays, and 

Thursdays. R scripts were coded to produce the weekly mean and standard deviation of the green 

activation for each detector. We also compared the change of weekly mean to figure out how the 

green activation changed over the four weeks using the following equation. We also computed 

the sample size (number of green durations) for each week and each detector using Equation 4-

14. 

Current week’s change of mean of green activation = (current week’s mean - previous 

week’s mean) / current week’s mean  

(4-14) 

The weekly mean and standard deviation of green activation are listed in the following table. The 

sample size and change of weekly mean are shown in the following Figure. From the following 

table and figure, most of the weekly changes of mean of green activation are less than 15% when 

the sample size is more than 100. Therefore, signal timers may need to check whether there are 

detector issues: (1) when the sample size is less than 20; (2) when the sample size is more than 

100 and the weekly change of mean is more than 20%. 
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Figure 4.31: Sample size and change of weekly mean of green activation 
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Table 4.8: Weekly Mean and Standard Deviation of Green Activation 

Mean 

week1 

SD week1 Mean 

week2 

SD week2 Mean 

week3 

SD week3 Mean 

week4 

SD week4 Change of 

mean week2 

Change of 

mean week3 

Change of 

mean week4 

5.47 3.41 5.85 3.69 5.39 3.35 6.04 3.82 7.0% 7.9% 12.0% 

6.92 4.47 7.49 5.18 6.92 4.73 7.30 4.78 8.2% 7.6% 5.5% 

1.13 0.34 1.00 0.00 1.00 0.00 1.23 0.50 11.1% 0.0% 23.3% 

1.30 0.56 1.03 0.17 1.25 0.59 1.21 0.52 20.9% 21.5% 3.4% 

4.44 3.01 4.65 3.18 4.46 2.98 4.68 3.27 4.5% 4.1% 5.0% 

6.79 4.65 7.51 5.59 6.90 5.02 7.29 5.19 10.6% 8.1% 5.6% 

1.10 0.36 1.06 0.30 1.24 0.60 1.17 0.41 3.3% 16.0% 5.4% 

1.25 0.51 1.40 0.69 1.31 0.54 1.33 0.58 11.8% 6.1% 1.7% 

16.86 12.76 18.41 13.31 18.69 13.10 18.38 12.79 9.2% 1.5% 1.6% 

1.00 0.00 1.00 0.00 1.50 1.00 1.20 0.45 0.0% 50.0% 20.0% 

12.16 7.29 13.28 7.68 13.31 7.67 13.67 8.30 9.2% 0.2% 2.7% 

1.57 1.03 1.24 0.56 1.33 0.48 1.28 0.54 21.4% 7.9% 4.0% 

1.36 0.65 1.21 0.53 1.45 0.83 1.45 0.80 11.6% 20.1% 0.0% 

1.60 0.96 1.68 1.08 1.45 0.83 1.51 0.88 4.6% 13.3% 4.0% 

1.84 1.19 1.97 1.35 1.86 1.19 1.91 1.31 7.0% 5.4% 2.4% 

15.80 6.67 16.33 7.36 16.85 7.09 17.80 8.12 3.4% 3.2% 5.6% 

11.87 6.16 13.09 6.40 12.35 6.52 13.33 6.61 10.3% 5.6% 7.9% 

22.19 7.64 22.15 7.37 21.83 7.35 28.10 11.75 0.2% 1.5% 28.7% 

6.49 4.89 6.26 4.70 6.39 4.63 6.36 4.65 3.5% 2.1% 0.5% 

7.81 5.85 7.71 5.57 8.01 5.64 7.76 5.72 1.4% 4.0% 3.1% 

10.23 6.60 10.25 6.67 10.30 6.68 10.07 6.36 0.2% 0.4% 2.2% 

20.86 6.85 21.30 7.17 21.88 6.64 23.97 9.32 2.1% 2.7% 9.6% 

5.85 4.22 6.27 4.18 6.21 4.07 5.98 3.97 7.1% 0.9% 3.8% 

2.45 1.60 2.67 1.83 2.57 1.77 2.53 1.78 9.1% 4.0% 1.6% 

1.68 1.08 1.76 1.15 1.69 1.13 1.57 0.93 4.7% 3.8% 7.1% 

2.82 2.22 2.66 2.11 3.02 2.50 2.89 2.40 5.6% 13.2% 4.2% 

4.96 4.33 5.30 4.29 5.22 4.26 5.19 4.52 6.9% 1.5% 0.6% 

7.59 5.07 8.14 4.91 7.89 4.84 7.63 4.87 7.2% 3.1% 3.3% 
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Mean 

week1 

SD week1 Mean 

week2 

SD week2 Mean 

week3 

SD week3 Mean 

week4 

SD week4 Change of 

mean week2 

Change of 

mean week3 

Change of 

mean week4 

3.44 2.48 4.20 2.85 3.97 2.95 3.89 2.83 21.8% 5.5% 1.8% 

2.60 1.63 2.76 1.69 2.77 1.71 2.73 1.79 6.1% 0.4% 1.2% 

5.92 3.74 6.30 3.66 6.18 3.83 6.20 3.80 6.4% 1.8% 0.3% 

4.45 2.65 4.68 2.57 4.55 2.50 4.89 3.10 5.1% 2.7% 7.3% 

18.12 9.22 18.37 9.58 17.92 8.79 18.18 10.13 1.4% 2.5% 1.5% 

16.63 8.42 16.40 7.83 16.52 7.75 16.66 9.10 1.3% 0.7% 0.8% 

1.12 0.33 1.15 0.36 1.12 0.33 1.26 0.57 2.4% 2.2% 12.4% 

1.32 0.58 1.35 0.60 1.38 0.56 1.49 0.74 2.3% 1.5% 8.4% 

1.84 1.22 1.95 1.32 1.78 1.17 1.85 1.29 5.5% 8.6% 4.1% 

1.69 0.99 1.88 1.12 1.79 1.18 1.87 1.28 11.6% 5.2% 4.9% 

12.65 7.52 13.23 7.01 12.97 6.79 13.14 7.78 4.6% 2.0% 1.3% 

1.99 1.20 1.72 1.11 1.76 1.08 1.93 1.24 13.3% 2.3% 9.8% 

1.74 1.08 1.82 1.24 1.71 1.15 1.70 1.11 5.0% 6.4% 0.7% 

2.17 1.47 2.35 1.72 2.14 1.54 2.10 1.53 8.4% 8.8% 1.8% 
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4.10 ALGORITHM FOR DETECTOR INITIAL HEALTH ASSESSMENT 

Figure 4.1 described an overview of the detector health comparison processes developed for this 

work. The detailed algorithm for Detector Initial Health Assessment is shown in Figure 4.32. 

The process for each step is discussed in the successive text. Pseudocode for all algorithms is 

listed in Appendix A. 

 

Figure 4.32: Initial health assessment flowchart 
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1. Input: Initial Week of Processed Raw Data. One week of filtered data (Section 4.3 

through 4.3.3) is used in the algorithm for the Initial Health Assessment.  

Input: Site Characteristics. The site characteristics include the movement’s speed 

limit, which is used in the process of calculating the conceptual line, as well as 

aspects of the detector’s location used to model the predicted line (Section 4.7.1).  

2. Process: Calculate Volume vs Density. The raw data are processed and the volume 

versus density relationships in the empirical data are calculated (Section 4.4).  

3. Process: Calculate Conceptual Line. The conceptual line is calculated (Section 4.5) 

4. Process: Calculate Data for Predicted Line Calculation. Calculate the average number 

of activations during green per hour, and average number of green indications per 

hour, both averaged across the week of data. 

5. Process: Calculate Predicted Line from Site Characteristics. The process for 

determining the predicted line is described in Section 4.7.1. Site characteristics, 

activation data, and existing output models are used to calculate the predicted line.  

6. Output: Percent Difference between Conceptual and Predicted Lines. The determined 

Conceptual and Predicted lines are compared by finding the percent differences 

between their integrals.  

7. Compare to PPD. The percent difference between the conceptual and predicted lines’ 

integrals is compared to the mean and standard deviation in the PPD.  

8. (Routine 1) Processes: Check if Volume vs Density for that week is viable. Create an 

empirical line of best fit to the initial week of volume vs density data.  

9. (Routine 1) Output: There are multiple checks for this data and its empirical line. The 

data set for the initial week must have 50 or more data points; the Coefficient of 

Determination (R2) for the empirical line fit to the data set must be greater than or 

equal to 0.70; the empirical line must be concave down; and the empirical line must 

have a positive integral when integrated from 0 to 25% of the Conceptual line’s 

vertex. These checks determine if the initial week of empirical data is viable for 

assessing the detector’s health. 

10. Decision: Determine if viable. The checks described above determine if the initial 

week of data is viable for this assessment. If it is not viable, the following week of 

data should be instead analyzed, and steps 1-9 repeated with the new week of data. If 

the initial week of data is viable, then the empirical line’s integral from 0 to 25% of 

the conceptual line’s vertex should be stored. 

11. Input: The next week of processed raw data is now used in the algorithm for the 

initial health assessment. 

12. Process: The volume vs density data should be analyzed for this next week. 
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13. (Routine 1)  Determine if the volume vs density for that week is viable, 

similarly to how it was determined for the initial week, creating an empirical line and 

integrating it as part of the process. The same bounds are used for integration as were 

for the first week of data.  

14. Process: If this data is viable, the integral is stored, and the process moves onto the 

next week of processed data. This algorithm continues until there are 4 weeks of 

viable data.  

15. Calculation: Percent difference values are calculated from the 4 weeks of empirical 

line integrals. The mean of these percent differences are calculated. 

16. Compare to EPD. The mean of the percent differences between the empirical lines 

over multiple weeks is compared is compared to the mean and standard deviation in 

the EPD.  

17. Output: The percent differences calculated above must be within 1.5 standard 

deviations of the respective performance datasets (noted in steps 7 and 15).  If one or 

both are outside this value, it is an indicator of possible poor detector health. 

Note that if the detector passes both tests of detector health, the first four weeks of viable data 

are then used within the detector’s health assessment over time. 

4.11 ALGORITHM FOR HEALTH ASSESSMENT OVER TIME 

The algorithm for assessing detector health over time uses control charts and the sliding window 

technique to compare the detector’s functionality EPD. Control charts are an analysis tool used 

to detect variations in a dataset over time, detecting causes of shifts in the control state of a 

process (Montgomery & Runger 2018). It is understood that over time, there will be some 

acceptable level of variation in a dataset, however the goal of a control chart is to identify when 

variation is outside of an acceptable level. Typically, a control chart has three lines on it, one to 

show the mean of the dataset, and two that identify +/- 1.5 standard deviations of the sample 

from the mean. Points that fall outside the +/- 1.5 standard deviation lines identify excessive 

variation. Figure 4.33 illustrates this by using data from the 0-25% integration percent difference 

dataset. The values from the EPD are used in this figure, with the mean of 10.64% shown as the 

thick solid line, and the upper bound of 35.64 (mean + 1.5*16.69) is shown by the thin dashed 

line (the lower bound is below zero). 
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Figure 4.33: Control chart plotting the average integral percent differences from the 

sliding window technique 

The sliding window method is derived from a technique used for evaluating safety (i.e., network 

screening to identify potential safety hot spots) on roadway segments incrementally (Herbel, 

Laing, and McGovern 2010). For example, in a hypothetical roadway safety analysis, five 0.1-

mile length segments (segments 1-5) would be evaluated for a specific performance metric. 

Then, the next analysis would ‘slide’ down the facility, comprising of segments 2-6 for the 

second 0.5-mile-long segment. This same technique can be used to evaluate detector health over 

time, but instead of sliding the window over different segments of roadway, the window slides 

over different weeks of data. With this method, the mean of the percent differences is calculated 

for over four weeks of simultaneous data (as shown in Section 4.7.2). The weeks included in the 

calculation are then incremented by one week and calculated for the next four weeks of 

simultaneous viable data. That next window includes three of the four previous weeks of data, 

plus one new one incrementally. A point plotted outside of the upper control bound is an 

indicator that a detector may not be performing properly. 

Figure 4.34 illustrates the algorithm for assessing detector health over time, with descriptive text 

following the figure. 
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Figure 4.34: Health assessment over time flowchart 

1. Stored Data: Four weeks of percent difference data are stored from the Initial 

Detector Health Assessment. 

2. Decision: If four weeks from the initial health assessment can be considered viable, 

plot the percent difference mean on the control chart. If not, data are continually 

collected and processed until four weeks of viable data has been stored and the 

resulting percent difference calculation plotted on the control chart. 

3. Input: The next week of processed raw data is now used in the algorithm for the 

health assessment over time. 

4. Process: The volume vs density data should be analyzed for this next week. (Routine 

1) Determine if the volume vs density for that week is viable, using the same process 
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as described in the initial health assessment, creating an empirical line and integrating 

it as part of the process.  

5. Decision: If this data is viable, the integral is stored. If the data is not viable, the next 

week of data is used in this analysis instead. 

6. Calculation: After this next week of data is processed for its integral, this integral and 

the integral from the prior three weeks of data are used to calculate a set of percent 

differences (the oldest week is dropped from the calculation, per the sliding window 

technique). The mean of the percent differences between these four weeks’ integrals 

is calculated. 

7. Process: The mean of the percent differences between these integrals is plotted on the 

control chart. If it is outside the bounds of the control chart, it may be an indicator of 

poor detector health. It is suggested that the mean and standard deviation of the EPD 

be used for the control chart. 

8. Process: This process of analyzing the next week of data and comparing the results to 

the prior three weeks of data is continued until there are 12 plot points on the control 

chart.  

9. Output: This control chart provides an assessment of the detector’s health over time. 

It is suggested that the mean and standard deviation of those 12 weeks of data is used 

for the new control chart bounds, which allows the analysis to slowly adjust over 

time, and be based upon the data from the specific detector, as opposed to the entire 

EPD. 

4.12 ALGORITHM USING GREEN ACTIVATIONS 

From the analysis in Section 4.6, we propose the following algorithm to monitor detectors’ 

health weekly using the detector activation per green duration (green activation). The algorithm 

could be run once per week to get warnings of potential detector issues. 

Algorithm: 

For the current week and each detector  

• Calculate the green activation and duration. 

• Calculate the sample size of green duration; calculate the mean m and standard 

deviation d of green activation. 

• Calculate the current week’s change of mean of green activation = (current week’s 

mean - previous week’s mean) / current week’s mean.  

• If the sample size is less than 20, produce a warning message that the detector may 

have potential issues. 
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• If the sample size is more than 100 and the current week’s change of mean of green 

activation is more than 20%, produce a warning message that the detector may have 

potential issues. 

• If the current week’s mean of green activation is more than the previous week’s green 

activation m + 1.5*d, or less than the last week’s green activation m – 1.5*d, produce 

a warning message that the detector may have potential issues. 

4.13 CLOSING THOUGHTS 

The data driven algorithms presented in this chapter reflect a robust set of processes that can be 

implemented to assess the health of varied types of vehicle traffic detectors, both immediately 

upon integration into agency workflows, and over time. It should be noted that the selection of 

the value of 1.5 standard deviations from the mean was done so in line with customary control 

chart theory; ODOT staff may choose to adjust this selection based upon a desire to either have 

the algorithm function in a more aggressive manner (reduce the value) or conservative manner 

(increase the value). Additionally, while the algorithm developed in this work checks values with 

the PPD and EPD, it is recommended that as the algorithm is deployed across the system, 

datasets be collected and segregated for various types and locations of detectors (technology, 

location, length, etc.), and those datasets then be used for tracking health.  
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5.0 SYSTEM DESIGN AND IMPLEMENTATION PLAN 

This chapter presents the design for a software system that would provide key information about 

the health of traffic detectors to ODOT staff along with an implementation plan outlining a 

process for deploying the system. The system presented makes use of the novel algorithm for 

evaluating traffic signal detector health developed within this project to discover traffic detectors 

with degraded and declining performance and will be referred to as “the algorithm” within this 

chapter. The research team held two Zoom meetings with the SPR 837 TAC to request input on 

this task deliverable and solicit feedback on a draft version. Additionally, the team software 

engineer worked directly with one member of the TAC in development of this final version. 

5.1 SYSTEM DESIGN 

This design is not intended to be a detailed prescription which ought to be built exactly as 

specified and should not be viewed as such. It is practically impossible create such prescriptive 

designs which actually meet the needs of the system’s users without extensive work to determine 

all their requirements for the system. Instead, this design should be viewed as part of the raw 

materials from which the ultimately produced software will be derived. Thus, alterations by 

ODOT or future implementers of the system should be expected and welcomed in so far as they 

improve the fit of the system to ODOT’s needs. 

What follows is a high-level description of the system which details the overall “shape” of the 

system along with its key components and the relationships between them. This description 

remains purposefully agnostic concerning the particular tools, technologies, and data formats 

which may be used in the implementation of the system. Suggestions for and discussion of these 

implementation details, can be found in the implementation plan. 

5.1.1 High Level Description 

The system centrally consists of a server which is capable of executing the algorithm for a given 

traffic detector and reporting the results of the algorithm’s execution. The server supports two 

modes of interaction: in the first, the server automatically runs the algorithm periodically for all 

known traffic detectors and makes the results available via a web dashboard which can be 

accessed directly by the users; in the second, a user first parameterizes a report request via a web 

form which is then submitted to the server and processed accordingly, yielding a report 

according to the specified parameters. These modes of interaction are shown in Figure 5.1. 
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Figure 5.1: An overview of the detector health assessment system 

To execute the algorithm for a given detector and therefore to provide both of these modes of 

interaction, the server must access certain data related to the detector to be assessed. Namely, it 

must obtain actuation data for the detector and also data which describes various aspects of the 

detector itself and the circumstances of its deployment which are referred to collectively as “site 

characteristics”. These two data types are depicted in Figure 5.1 as housed in two distinct 

databases, but this is done solely to support easy visualization of the two types of data necessary 

for the algorithm’s execution. In fact, the two types of data could be stored in a single database 

or across several databases with little real impact on the system’s design or implementation. 

5.1.2 Data Description 

As stated above, the algorithm for assessing traffic detector health requires two types of data 

related to the detector to be assessed, as shown in Figure 5.1. The first type of data is the detector 

data itself which consists of activations per hour and green indications per hour. These numbers 

are not directly available for access in a datastore, but the raw actuation and green indication data 

are. As such, for a given time window the system can query the database(s) for the individual 

activation and green indication records occurring within the time window of interest and then 

perform some simple arithmetic to arrive at the hourly rates. 

The second type of data needed by the algorithm is a specific set of attributes related to the 

detector and its deployment, namely: 

• Whether the detector is a loop or radar detector 

• Whether the detector is a single or multi-lane detector 

• The speed limit at the detector’s location 
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• The detector’s distance from stop bar 

This data is not presently available in a database system, and as such it must be collected and 

stored as a prerequisite to implementing the system. Suggestions for collecting and storing this 

data, and what other characteristics may be desirable to catalogue, are given in the 

implementation plan. 

5.1.3 Interface Descriptions 

This system provides two modes of interactions via two distinct interfaces, as shown in Figure 

5.1. The first interface is the detector health summary dashboard which is automatically 

populated by the server using the latest data from all of the detectors known to the system. This 

dashboard would be similarly constructed to the department’s existing detector health assessment 

dashboard, showing a list of all detectors ranked by their current health status and providing 

access to a per detector detailed view when a particular detector is selected. 

The second interface is the report request interface which consists of a web form for 

parameterizing a detector health report. This form would allow the user to select, at minimum, 

which detectors should be assessed for the report and what time window should be used for the 

assessment. If desirable, the system could also be made to allow the user to select detectors based 

on combinations of their site characteristics too, e.g., a report “for all loop detectors deployed 

where the speed limit is less than 45mph”. In any case, the resulting report could take the form of 

a web page returned to the user or in a downloadable file such as a PDF. 

The primary purpose of the dashboard interface is to facilitate assessment of the current “state of 

the state” with regard to detector health, while the report request interface allows the user to 

investigate possible trends across site characteristics or to investigate the historical health status 

of certain detectors. The report request interface also allows for a detector health assessment to 

be easily disseminated as a static document as well. 

5.1.4 Deployment Considerations 

Where and how this system is deployed may have an effect on the overall design of the system as 

well. For example, if the system is to be deployed in such a way that it would only be accessible 

via a secured department intranet or Virtual Private Network (VPN), then regulating access to 

the system and tracking its usage may not be necessary. However, if the system were to be 

accessible via the public internet, then a login subsystem may need to be added to facilitate both 

access management and user tracking. The overall security needs of the system would need to be 

increased in this case. There is no way that all such design modifications dependent on the 

system’s deployment can be predicted or exhaustively described and, as such, it is highly 

recommended that at the time the system is implemented these items are discussed between 

ODOT and the future implementers of the system. 

5.2 IMPLEMENTATION PLAN 

The main suggestion which forms the backbone of this implementation plan is to grow this 

system incrementally. It is recommended that ODOT begin by building a minimum viable 
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product (MVP) which is a technique for developing a product to be sufficient for early adopters, 

and the final features are designed after considering the initial users’ feedback. (Ries 2009) In 

this case, the “early adopters” would actually be a select group of ODOT employees. This MVP 

will constitute the “seed” of the system which may be iteratively improved to arrive at the final 

system. Finally, suggestions are provided for the gathering and cataloguing of the detector site 

characteristics. 

5.2.1 The MVP Prototype System 

The MVP system centrally consists of a program which will read in data and relevant site 

characteristics for a single traffic detector from data files, execute the algorithm to evaluate the 

health of a detector, and then output the results of the algorithm. There is no configuration to be 

performed for this system since there is only one detector to be evaluated and there is no 

interaction with the databases since the detector data and site characteristics are located in static 

files. Figure 5.2 shows a summary view of the system. 

 

Figure 5.2: The MVP prototype system 

Since the scope of this system is intentionally limited, it is suggested that it be built in-house 

using whatever programming language and tools the implementers desire. This will eliminate the 

overhead of interaction with external personnel and any learning curve associated with 

unfamiliar technologies. However, some consideration should be given to the available level of 

support for mathematical processing within the implementation tools selected since the algorithm 

requires some calculus. The Python and R programming languages should have sufficient 

support for this, via scientific computing libraries for Python and natively for R, but these are far 

from the only viable choices. 

This system will allow a basic level of interaction with the algorithm and the opportunity to fine 

tune it, allow for ad hoc assessment of individual detectors if desired, but most importantly, 
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provide a reference implementation of the algorithm which could be used by other implementers 

in the future even if they are not utilizing the same technologies in their work. 

5.2.2 Iterative Improvement 

While the MVP provides distinct advantages for starting system implementation off well, it is 

not the complete system described in the system design. Nonetheless, it provides a good starting 

point for iteratively adding features in the next phase of development. Whether that development 

continues with the same implementers who built the MVP or not, prior to further build out, the 

choice of technologies to be used should be revisited. 

At this stage, it is recommended to make use of stable, mainstream technologies to ensure the 

long-term viability of the system. Python is an extremely mature language with an impressive 

ecosystem of libraries and frameworks which will facilitate implementing the system. In 

particular, the NumPy library is suggested for the math involved in the algorithm and the Flask 

web server framework for the server itself. 

At this stage, ODOT will need to confer internally or with the implementers to come up with a 

prioritized list of features which are desired to be implemented. Specific consideration should be 

paid to whether the dashboard interaction or the report generation interaction should be 

prioritized first. As the databases with which the system must interface come online, both of 

these features will become more useful, but there is no need to wait for a complete database to be 

in place before implementation as whatever data is available at the moment can be used, even 

data in static files. 

5.2.3 Cataloguing Site Characteristics 

In closing this chapter, it is deemed important to present a few words about the cataloging of site 

characteristics, as without data, even a well-engineered implementation of the system will not be 

very useful. As such, the cataloguing of site characteristics for all detectors of interest must be a 

high priority alongside the implementation of the system. 

A simple table in an SQL database should be sufficient for recording detector site characteristics 

in the most basic way. Sufficient fields within the table for the necessary site characteristics and 

an ID field which can be used to correlate site characteristics with detector data is all that is 

required as shown in Table 5.1. 

Table 5.1: Example Relevant Site Characteristics in an SQL Database 

Detector ID Detector Type Speed Limit Stop Bar Distance Lanes 

348 loop 55 20 2 

972 radar 40 10 1 

 

Since the primary function of the “Detector ID” field is to correlate the site characteristics with 

the activation data for that detector, it is suggested that it be the same as the ID of detectors in the 

existing activation database, or, if changed, thought be given to the choice of ID such that is 
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complementary with other ODOT databases, if present. It would also be helpful if the detectors 

were associated with a human readable name if the ID column is numeric as depicted here. 

Of course, this is only the data strictly necessary for the algorithm to function, but additional site 

characteristics such as which lane the detector is in, the type of road the detector is deployed on, 

etc. may be added to this table as well and may be of interest for future exploration of trends in 

detector health degradation. Additionally, more complex arrangements of the data are possible 

such as having tables which describe roads and intersections independently of the detector table 

and linking them together via foreign keys or bridge tables, but it is not clear that such an 

arrangement would have any clear advantages over the simple one presented at this time. 

Getting the site characteristic data into the database could be accomplished via the system itself 

via additional functionality. A feature could be added which would allow a user to interact with a 

web form which would allow them to select a detector and then view or edit its site 

characteristics, filling in some or all of them, and then save the form. Such a feature would only 

be worth implementing if it seems likely that detectors will be described by department staff over 

a longer period of time while the system is live, rather than by some third-party all at once, 

perhaps in a spreadsheet which is then loaded directly into the database. 
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6.0 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

In this work, event-based detector data were processed for variety of detectors at select 

signalized intersections in Oregon to first identify which detectors were performing sufficiently 

to be used in an algorithm, and then for development of the algorithm. A total of 79 detection 

zones underwent the initial comparative analysis (70 inductive loop and 9 radar). Of the 

inductive loop detection zones, 39 passed the analysis, while 6 of the radar zones passed the 

analysis, for a total of 45 valid detection zones. The subset of detection zones that passed the 

comparative analysis include stop line, advanced, single lane, multiple lane, short, and long 

detection zones over a variety of lane usages and provided a robust basis for development of a 

detector health monitoring algorithm.  

After cleansing the data and prepping it for analysis as well as selecting peak periods for data 

aggregation, empirical lines of best fit for the relationship of EHV and Density were developed 

for each week, with these relationships then being used to build two datasets for algorithm 

development as well as for initial health assessments and health assessments over time. For the 

former, a predicted empirical Volume vs. Density curve compared to a conceptual Volume vs. 

Density curve along with week-to-week percent differences between empirical curves are 

compared to datasets developed in this work to provide an assessment of initial health. For the 

latter, week-to-week percent differences are also compared to data developed in this work using 

the sliding window and control chart techniques. A value more than 1.5 standard deviations from 

the mean of the dataset was proposed as a starting point for health assessment, but this may be 

adjusted as desired by ODOT staff, as this value may not be sensitive enough to identify 

underperforming detectors, as noted in Section 4.8.2. 

Moving forward, as noted in the paragraph above, it would be advisable to investigate different 

bounds for control chart limits (presumably statistically based). Because existing literature 

provided no guidance for applying this method to detector data, commonly used bounds were 

applied, which may not be the most suitable for vehicle detector health monitoring. Additionally, 

as this algorithm is implemented, it is advised to develop percent difference datasets for detectors 

of various technologies and configurations so that comparisons can be made between field 

detectors and datasets developed from detectors with similar characteristics. This can be done by 

segregating percent difference data from various detectors as additional sites are brought online. 

This should allow for tighter control limits for determining sensor health, as variation in the 

comparative data set would be limited by the homogenous categorization of detectors.  

There are several limitations of this work that should be noted. First, the developed algorithm 

and datasets are modeled from a finite number of detectors. As such, the datasets developed for 

health assessment are based upon this set of analyzed detectors, which may not be a universally 

representative sample of detectors across the ODOT system. Second, due to time constraints, the 

algorithm developed in this work was not subjected to long term testing and validation. Based 

upon comparisons between the healthy and unhealthy detector datasets in this work, the methods 

proposed will identify a variety of unhealthy detector operations, however the thresholds chosen 

can be tightened up with further testing, as noted above. Both of these items can be addressed 
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after deployment of the algorithm on the ODOT system, as the detector set will be much more 

diverse, and additional data could then be used to further tune the detector health thresholds. 
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PSEUDOCODE 

This pseudocode describes how to process the raw data outputs from a signalized intersection. 

This section does not contain any new information but is meant to assist in programming 

development. 

INITIAL PROCESSING 

This section describes the initial filtering, and the process for collecting the number of vehicle 

indications per green interval, and green interval duration information.  

From the raw data, filter the data to get the corresponding site number, the corresponding 

MaxTime number data, the corresponding§ intersection phase number data, and the timeframes 

and date(s) that are being analyzed. Only detector and its corresponding phase should be 

analyzed at once. 

The timeframes and dates used for analysis are the morning and evening peak hours 

(6:00 – 9:00; 16:00 – 19:00) on Tuesdays, Wednesdays, and Thursdays. A detector’s 

combined data analysis for a Tuesday, Wednesday, and Thursday during those hours 

is considered one week of data analysis for that detector. 

Organize the isolated data chronologically. 

For the Parameters of each event, identify repeating 1’s and 8’s. Remove the cycle this occurs 

during, and the chronologically adjacent cycles. Remove the 81 and 82 indications that occur 

during those cycles as well. 

From the intersection outputs, parameter 1 represents the Green Start indication for 

the corresponding phase; parameter 8 represents the Yellow Start indication. It is 

necessary to remove any repeats in these indications (two 1’s in a row, or two 8’s in a 

row) because they introduce misrepresentations of the cycle duration and the Green 

Interval duration.  

For the Parameters of each event, identify repeating 82’s and 81’s. Remove the 82’s and 81’s 

that are chronologically adjacent to the repeat as well.  

From the intersection outputs, parameter 82 represents the Vehicle Detector On 

indication for the corresponding detector. It is necessary to remove any repeats in 

these indications (two 82’s in a row, or two 81’s in a row) because they lead to 

misrepresentation of number of Vehicle Detector indications, Detector On durations, 

and because the cause of these repeats in each instance is indeterminable from the 

data.  

Identify the number of Vehicle Detector On indications that occur chronologically during each 

Green Interval, and during each Not-Green Interval (i.e. the Yellow/Red Interval). 
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For each separate Green Interval – chronologically between the Green Start Time (1) 

and the following Yellow Start Time (8) – count the number of Vehicle Detector On 

(82) indications. Do the same for the Not-Green Interval – chronologically between 

the Yellow Start Time (8) and the following Green Start Time (1).  

The purpose of this is to find the number of times the Vehicle Detector indicated a 

vehicle during the Green Interval. Finding the number of activations during the Green 

Interval only is so that this information could be used to evaluate the detector’s 

health; the Green Interval has a more consistent flow that could be better analyzed 

using existing traffic theory than the Not-Green interval has. The activations found 

during the Not-Green Interval is necessary so that this activations information is 

available for entire cycles in addition to just the Green Intervals. 

Identify the duration of each Cycle, each Green Interval, and each Not-Green Interval. 

The duration of each cycle would be found through the Green Start (1) times. The 

duration of each Green Interval would be from a Green Start (1) time to the following 

Yellow Start (8) time. The duration of each Not-Green Interval would be from a 

Yellow Start (8) time to the following Green Start (1) time. 

Organize the Number of Activations that occurred during a Green Interval and the corresponding 

Green Interval Duration into a dataset that lists the number of activations during each green 

interval. 

REDUCTION FOR EQUIVALENT HOURLY VOLUME AND DENSITY 

This section describes the process for appropriately filtering the data to better estimate 

continuous saturated traffic flow for later analysis and reducing the data to EHV and Density for 

each cycle. Approximating uninterrupted saturated traffic flow is necessary for analyzing the 

data using existing traffic theory. This section uses the Detector On (82) indications to represent 

vehicles and uses only activations which occurred during a green interval. 

Using the data from the previous section’s process, identify the initial four vehicles (Vehicle 

Detector On indications) of each green interval. Exclude those vehicles from the following data 

analysis process.  

Toward the goal of approximating uninterrupted saturated traffic flow, the first four 

vehicles indicated during each Green Interval should be disregarded from the EHV 

and Density estimates, because the first four vehicle’s headways are large than the 

headways in traffic free flow due to the start-up lost time. These larger headways are 

not reflective of a detector’s health but are instead detrimental to an analysis that uses 

EHV and Density. 

Determine the headways for each vehicle that occurs during a Green Interval. 

Headways can be found by using the Vehicle Detector On (82) indication time and the previous 

vehicle Detector On (82) indication time. 
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Exclude each vehicle that has a headway above 3.0 seconds from the following data analysis 

process. 

Toward the goal of approximating uninterrupted saturated traffic flow, it is necessary 

to remove any vehicles with headways greater than 3.0 seconds from the data analysis 

process.  

After these two exclusions (vehicles in positions 1 through 4 per green interval, and vehicles 

with headways larger than 3.0 seconds), this data is referred to as Filtered Activations.’  

Determine each of these vehicles’ Detector On Duration. 

Detector On Duration is the interval that the detector remained on for each vehicle. 

This can be found using the Vehicle Detector On (82) indication’s chronologically 

adjacent Vehicle Detector Off (81) indication. Detector On Duration is used to find 

Occupancy and Density. 

For each cycle, sum the Detector On Durations for all vehicles within that cycle’s Green Interval. 

For each cycle, sum the number of Vehicle Detector On indications during that cycle’s Green 

Interval. 

For each cycle, use the Green Start (1) time and the following Green Start Time (1) to determine 

that cycle’s total duration. 

DETERMINE LOCATION OF THE EMPIRICAL LINE 

Using this information, find the Occupancy for each cycle. 

For each cycle Occupancy can be found using the equation shown below: 

𝑶𝒄𝒄𝒖𝒑𝒂𝒏𝒄𝒚 =
𝑭𝒊𝒍𝒕𝒆𝒓𝒆𝒅 𝑫𝒆𝒕𝒆𝒄𝒕𝒐𝒓 𝑶𝒏 𝑫𝒖𝒓𝒊𝒏𝒈 𝑮𝒓𝒆𝒆𝒏  𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏

𝑮𝒓𝒆𝒆𝒏 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏
 

(A-1) 

Use the detector location’s known Speed Limit and the detector’s length, as well as an average 

vehicle length of 19.0 ft, to find the EHV for each cycle, using the equation A-2 shown below: 

𝑬𝑯𝑽 = 𝟑𝟔𝟎𝟎
(𝟑𝟔𝟎𝟎 × 𝟐𝟒 × 𝑪)(𝑨)⁄  

(A-2) 

where:  

EHV = Equivalent Hourly Volume 

C = Cycle Duration 
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A = Number of Activations per Green Duration 

Density should be found for each cycle, using the equation shown below: 

𝑫 = 𝑶 × 𝟓𝟐𝟖𝟎
(𝑳𝑽𝒆𝒉 + 𝑳𝑫𝒆𝒕)⁄  

(A-3) 

where:  

D = Density 

O = Occupancy 

LVeh = Average Vehicle Length 

LDet = Detector Length 

Organize the EHV and Density information on a graph Equivalent Hourly Volume vs Density, 

where each point represents one cycle, and fit a quadratic line to the data (LINEST in Excel). 

Each graph should represent data from one week of analysis (6:00 – 9:00 and 16:00 – 19:00, 

Tuesday through Thursday). Using the quadratic equation best fit line, determine the Coefficient 

of Determination (R2) for that day of data. 

DETERMINE ORIGINAL PERFORMANCE OF DETECTOR 

Calculate Conceptual Volume vs. Density Curve and Use the Model to Predict 

the Location of the Empirical Curve 

Collect EHV versus Density data during the peak hours (6:00 – 9:00) of Tuesday, Wednesday, 

and Thursday for multiple weeks. Calculate the quadratic equation for each week. 

Collect the Average Headway for each detector. Use filtered data from the first day of data 

collection during the peak hour.  

Using that Average Headway (seconds) and the Speed Limit (mph) of that detector’s lane, 

calculate the Maximum Volume and Optimum Density using the following equations. Optimum 

Speed is based off of the posted speed limit. 

𝑺𝑶 =
𝟏

𝟐
 𝑺𝒑𝒆𝒆𝒅 𝑳𝒊𝒎𝒊𝒕 

(A-4) 

𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑽𝒐𝒍𝒖𝒎𝒆 = 𝑽𝑴𝑨𝑿 = 𝟑𝟔𝟎𝟎
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑯𝒆𝒂𝒅𝒘𝒂𝒚⁄  

(A-5) 
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𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐷𝑂 =
𝑉𝑀𝐴𝑋

𝑆𝑂
⁄  

(A-6) 

Use the Maximum Volume and Optimum Density to create a quadratic equation with the vertex 

as (Optimum Density, Maximum Volume) = (x, y) and the intercept at (0,0). This is the 

conceptual Volume versus Density line for all days analyzed for the detector. 

Using the equations below calculate the coefficients of the predicted line. Activations per hour is 

all activations during green, averaged across the week. Green indications per hour is averaged 

across the week. Other variables come from site data. 

𝒚̂𝒂 = 𝟎. 𝟔𝟐𝟗 − 𝟎. 𝟐𝟔𝟕 (𝒙𝒕𝒆𝒄𝒉𝒍𝒐𝒐𝒑
) − 𝟎. 𝟏𝟖𝟎(𝒙𝒅𝒆𝒕𝒆𝒄𝒕𝒂𝒅𝒗

) − 𝟎. 𝟏𝟕𝟏 (𝒙𝒍𝒂𝒏𝒆𝒔𝒊𝒏𝒈𝒍𝒆
)

− 𝟎. 𝟎𝟎𝟏(𝒙𝒘𝒌𝒂𝒄𝒕𝒉𝒐𝒖𝒓
) − 𝟎. 𝟎𝟎𝟖(𝒙𝒘𝒌_𝒈𝒓𝒏𝒉𝒓) 

(A-6) 

𝒚̂𝒃 = 𝟔. 𝟑𝟑𝟕 + 𝟑. 𝟕𝟕𝟑(𝒙𝒕𝒆𝒄𝒉_𝒍𝒐𝒐𝒑) + 𝟔. 𝟕𝟓𝟒(𝒙𝒅𝒆𝒕𝒆𝒄𝒕_𝒂𝒅𝒗) + 𝟒. 𝟕𝟎𝟎(𝒙𝒍𝒂𝒏𝒆_𝒔𝒊𝒏𝒈𝒍𝒆)

+ 𝟎. 𝟎𝟔𝟒(𝒙𝒘𝒌_𝒂𝒄𝒕𝒉𝒐𝒖𝒓) − 𝟎. 𝟏𝟑𝟔(𝒙𝒘𝒌_𝒈𝒓𝒏𝒉𝒓) 

(A-7) 

𝒚̂𝒄 = −𝟏𝟎. 𝟑𝟒𝟏 + 𝟗. 𝟏𝟕𝟏(𝒙𝒕𝒆𝒄𝒉_𝒍𝒐𝒐𝒑) + 𝟐𝟏. 𝟑𝟖𝟓(𝒙𝒅𝒆𝒕𝒆𝒄𝒕_𝒂𝒅𝒗) − 𝟐𝟗. 𝟕𝟐𝟓(𝒙𝒍𝒂𝒏𝒆_𝒔𝒊𝒏𝒈𝒍𝒆)

− 𝟎. 𝟎𝟒𝟕(𝒙𝒘𝒌_𝒂𝒄𝒕𝒉𝒐𝒖𝒓) + 𝟏. 𝟒𝟓𝟖(𝒙𝒘𝒌_𝒈𝒓𝒏𝒉𝒓) 

(A-8) 

where: 

𝑦̂𝑎, 𝑦̂𝑏, 𝑦̂𝑐 equals the predicted values of a, b, and c 

𝑥𝑡𝑒𝑐ℎ_𝑙𝑜𝑜𝑝 equals the presence of a loop detector (binary) 

𝑥𝑑𝑒𝑡𝑒𝑐𝑡_𝑎𝑑𝑣 equals the presence of advanced detector technology (binary) 

𝑥𝑙𝑎𝑛𝑒_𝑠𝑖𝑛𝑔𝑙𝑒 equals site location within a single lane roadway (binary) 

𝑥𝑤𝑘_𝑎𝑐𝑡ℎ𝑜𝑢𝑟 equals the number of activations per hour (continuous) 

𝑥𝑤𝑘_𝑔𝑟𝑛ℎ𝑟 equals the number of indications per hour (continuous) 

Check if the Dataset is Viable for that Week 

Verify that  

• The Coefficient of Determination R2 is equal to or greater than 0.70, 
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•  The total number of data points for that week is at least 50 data points, 

• The Empirical Equivalent Hourly Volume vs Density relationship curve is concave 

up, or the a value of the quadratic equation is negative, and 

• The Empirical Equivalent Hourly Volume vs Density relationship curve results in a 

positive value when integrated from 0 to 25% of the conceptual vertex 

If any of the above are not true, use data from a successive week.  Repeat all processes above. 

COMPARE INTEGRALS TO DETERMINE DETECTOR HEALTH 

Determine Initial Detector Performance 

The Conceptual Line is compared to the Predicted Line for that detector as a metric for initial 

detector health. 

The conceptual line and predicted lines are integrated to 25% of the conceptual line’s 

vertex. 

The integration value for the conceptual line is compared to the predicted line through 

the percent difference. This percent difference is used as a metric for initial detector 

health. 

The percent difference of the Conceptual Line and the Predicted Line integration values is 

compared to the PPD. An initial detector performance assessment is provided based on whether 

the percent difference is within 1.5 standard deviations of the mean of what is provided in the 

PPD. 

Next, the first four viable weeks of Empirical data are compared to each other to determine 

initial detector health.  

The EHV versus Density quadratic line for the first four viable weeks of detector data 

are each integrated to 25% of the conceptual line’s vertex. 

The percent differences are found comparing each of the four empirical lines’ 

integration values, so that there should be six data points of percent difference 

information. 

The mean is found of these percent difference values. This mean is used as a metric 

for initial detector health. 

The mean of these percent differences is compared to the EPD. An initial detector performance 

assessment is provided based on whether the mean is within 1.5 standard deviations of the mean 

of what is provided in the EPD. 

Calculate Empirical Lines Over Time / Determine Detector Performance 

Over Time 
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Four weeks of viable data and the integral values when integrated from 0 to 25% of the 

conceptual vertex are stored from the initial health assessment. The percent differences 

comparing each of these four weeks of integral values are also stored. If four weeks of viable 

data cannot be obtained from the initial health assessment, data is continually collected and 

processed until four weeks of viable data has been stored and plotted on the control chart. These 

need not be temporally successive weeks. 

The mean of these percent differences is plotted on the control chart, with the mean and standard 

deviation of the EPD used in the creation of the control chart bounds. 

The next week of raw data is processed and analyzed for its empirical curve. 

Determine if the volume versus density for that week is viable. 

Verify that  

• The Coefficient of Determination R2 is equal to or greater than 0.70, 

•  The total number of data points for that week is at least 50 data points, 

• The Empirical Equivalent Hourly Volume vs Density relationship curve is concave 

up, or the a value of the quadratic equation is negative, and 

• The Empirical Equivalent Hourly Volume vs Density relationship curve results in a 

positive value when integrated from 0 to 25% of the conceptual vertex 

If any of the above are not true, use data from a successive week. Process and determine if the 

following week of data is valid. 

If the data is viable, develop an empirical curve for the data, and calculate the integral of that line 

from 0 to 25% of the conceptual line’s vertex. Then, calculate the percent differences between 

this integral and the previous three weeks, and average the result. 

Plot the mean of these percent differences on the control chart. A point outside of the control 

chart bounds (based upon the EPD) indicates a possible detector health issue. 

Continue to compare four weeks of sequential viable data at a time until twelve data points of 

means are plotted on the control chart. 

The mean and standard deviation of those 12 weeks of data is used for the new control chart 

bounds, which allows the analysis to slowly adjust over time 

COMPARE ACTIVATIONS DURING GREEN 

The following are the R scripts to compare the activations during green. The script “Main.R” 

processes the data for each detector. The script “Main.R” sources the script “Code.R” for each 

detector to calculate the mean, standard deviation, and sample size and output the results. 
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Main.R 

 

#install.packages("tidyverse") 

library(tidyverse); library(readxl) 

setwd("c:/WORK/R") 

w1 <- file("Output1.txt","w") 

w2 <- file("Output2.txt","w") 

cat("mean sd week1m week1sd week2m week2sd week3m week3sd week4m week4sd 

week2mChange week3mChange week4mChange\n", file=w1) 

cat("SampleSize   WeeklyChange\n", file=w2) 

for (i in 1:8) { 

d <- read_xlsx("Site2_GreenDuration_vs_GreenActivations_Data.xlsx", sheet=i) 

source("code.R") 

} 

for (i in 1:7) { 

  d <- read_xlsx("Site55_GreenDuration_vs_GreenActivations_Data.xlsx", sheet=i) 

  source("code.R") 

} 

for (i in 1:7) { 

  d <- read_xlsx("Site245_GreenDuration_vs_GreenActivations_Data.xlsx", sheet=i) 

  source("code.R") 

} 

for (i in 1:10) { 

  d <- read_xlsx("Site502_GreenDuration_vs_GreenActivations_Data.xlsx", sheet=i) 

  source("code.R") 

} 

for (i in 1:8) { 

  d <- read_xlsx("Site503_GreenDuration_vs_GreenActivations_Data.xlsx", sheet=i) 

  source("code.R") 

} 

for (i in 1:2) { 

  d <- read_xlsx("Site585_GreenDuration_vs_GreenActivations_Data.xlsx", sheet=i) 

  source("code.R") 

} 

 

close(w1);close(w2) 

 

 

Code.R 

 

d <- d[d$Activations!=0,]; d <- d[!is.na(d$Activations),]  

d1 <- d[d$Week==1,]; d2 <- d[d$Week==2,] 

d3 <- d[d$Week==3,]; d4 <- d[d$Week==4,] 

m <- mean(d$Activations); sd <- sd(d$Activations) 

m1 <-mean(d1$Activations); sd1 <- sd(d1$Activations) 

m2 <-mean(d2$Activations); sd2 <- sd(d2$Activations) 
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m3 <-mean(d3$Activations); sd3 <- sd(d3$Activations) 

m4 <-mean(d4$Activations); sd4 <- sd(d4$Activations) 

c1 <- abs(m2-m1)/m1; c2 <- abs(m3-m2)/m2; 

c3 <- abs(m4-m3)/m3;  

s1 <- nrow(d1); s2 <- nrow(d2); s3 <- nrow(d3) 

cat(m,sd,m1,sd1,m2,sd2,m3,sd3,m4,sd4,c1,c2,c3,"\n",file=w1,sep=" ") 

cat(s1,c1,"\n",file=w2,sep=" ") 

cat(s2,c2,"\n",file=w2,sep=" ") 

cat(s3,c3,"\n",file=w2,sep=" ") 

 


