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1.0 LARGE-SCALE HYDRODYNAMIC EXPERIMENTS OF 

TSUNAMI WAVE IMPACT ON COASTAL BRIDGES 

1.1 BACKGROUND   

In the last two decades humanity has witnessed large magnitude earthquakes with epicenters in 

the ocean (Indian Ocean 2004, Chile 2010 and Japan 2011), which generated tsunami waves of 

significant heights that caused unprecedented damage on coastal communities. Ports, buildings 

and infrastructure were severely damaged and bridges were washed away, cutting lifelines and 

hindering the efforts of rescue team to provide help to the people in need. In the 2004 Indian 

Ocean Tsunami 81 bridges located on the coast of Sumatra were washed away (Unjoh, 2007). In 

the 2011 Great East Japan Earthquake in Japan, many bridges were able to withstand the strong 

shaking, however approximately 252 bridges were washed away or moved by the tsunami 

(Maruyama et al., 2013a). The most severe and common type of failure in these bridges was the 

breaking of the connections between the superstructure and the substructure, which resulted in 

the unseating and wash out of the bridge deck by the tsunami waves. This damage pattern was 

observed for different types of bridges including (a) bridges with steel-girders and cross-frames 

(e.g Koizumi Bridge, Fig. 1.1), (b) bridges with pre-stressed (PC) girders and diaphragms (e.g. 

Utatsu Bridge, Fig. 1.2), (c) box-girder bridges (e.g. Tsuya Railway Bridge, Fig. 1.2), and (d) 

steel truss bridges (Fig. 1.1). Another common type of damage included the scour of piers and 

back-walls. These unforeseen events demonstrated the vulnerability of buildings and bridges to 

tsunami waves and highlighted the need to study and understand their effects on structures. 

Advancing this understanding is essential for developing recommendations and design guidelines 

for tsunami resilient structures. Therefore, the main objective of this research study and 

particular report is to advance the understanding of tsunami wave impact on bridges via large-

scale hydrodynamic experiments. 

  

Figure 1.1: Damaged bridges after the 2011 tsunami in Japan: (a) Koizumi bridge on the 

left (source: EERI Oct. 2011) and (b) Bridge in Rikuzentakata on the right (source: 

EERI Sept. 2011) 
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Figure 1.2: Damaged bridges after the 2011 tsunami in Japan: (a) Utatsu bridge on the left 

and (b) Tsuya railway bridge on the right (adapted from Yashinski. M 2012) 

1.2 LITERATURE REVIEW  

The extensive damage of bridges in recent tsunamis triggered the response of the society and 

research world in an attempt to improve the understanding of tsunami inundation of bridges. The 

academic community from around the world has responded to this need and several studies have 

been published in recent years. These studies included (i) on-site surveys and damage analysis 

(Kosa, 2012; Kawashima, 2012; Kasano et al., 2012; Kawashima and Buckle, 2013) (ii) small-

scale experiments in wave flumes (e.g. Hayashi, 2013; Lau et al., 2011; Maruyama et al., 2013; 

Seiffert et al., 2014) and (iii) numerical simulations (e.g. Hayatdavoodi et al., 2015; Bricker and 

Nakayama, 2014; Kataoka and Kaneko, 2013; Nakao et al., 2013; Yim et al., 2011; Azadbakht 

,2014; Istrati and Buckle, 2014).  

1.2.1 On-site surveys and experimental studies 

On-site investigations conducted by various research teams analyzed the failed bridges and 

revealed that the overflow can occur either in the form of transverse drag due to large horizontal 

wave forces or in the form of uplift and overturning due to the combination of large vertical and 

horizontal tsunami forces (Kawashima, 2012; Fu et al., 2013; Kawashima and Buckle, 2013). In 

addition, one of the studies (Kasano et al., 2012), which investigated the bridge performance in 

the Tohoku area after the 2011 tsunami, revealed that concrete bridges are less susceptible to 

tsunami inundation than steel bridges due to their increased weight and thus inertia. 

Some of the experimental studies investigated tsunami loads on flat slabs (Seiffert et al., 2014), 

decks with girders (Lau et al., 2011; Araki et al,. 2011; Maruyama et al., 2013; Rahman et al., 

2014; Hayatdavoodi et al., Part II, 2014) and box-shaped decks (Hayashi, 2013). Others 

examined the use of perforations in the girders and parapets as means for reducing the horizontal 

tsunami load, and revealed a reduction of the horizontal load approximately equal to the 

reduction of the projected area (Lukkunaprasit, 2008). Some of the studies simulated the tsunami 

waves via unbroken solitary waves, while others via turbulent bores. In most of these 

experiments, the researchers constructed their bridge models from acrylic, wood or steel, they 

either supported the deck rigidly from top/bottom of the deck or allowed the deck to move freely 

on the supports, and measured both pressures and forces. Furthermore, they were all small-scale 

experiments with scale factors ranging from 1:100 to 1:35.  
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In a more recent study (Hoshikuma et al., 2013) the investigators conducted experiments to study 

the tsunami effects on bridges at a scale of 1:20. They examined several different cross-sections, 

including flat slabs and decks with two or four girders, in an attempt to give insight into the 

forces that various types of bridges have to withstand. In this experiment the bore was created 

via opening of a gate and release of water (dam-break approach), specimens were made of 

acrylic or wood and they were connected rigidly to a pier at the middle of the superstructure. 

These experiments demonstrated that the offshore bearings were uplifted while the onshore were 

compressed meaning that there exists significant overturning moment. In addition, trapped air 

between girders and a rotating flow in the chambers was observed during the inundation of the 

bridge. 

The largest-scale experiment to date was conducted by Bradner et al., 2011, where they 

examined the performance of a 1:5 scaled pre-stressed bridge with six girders under the impact 

of hurricane waves. The study found a nonlinear dependence of both regular and random wave 

forces on the wave height and water depth, with the former ones being also dependent on the 

wave period. Momentum flux was also identified as a promising parameter for the development 

of analytical predictive model of hurricane wave forces. This study was unique because it 

examined for the first time both a rigid and a flexible substructure, so that the effect of dynamic 

wave-structure interaction could be studied. Interestingly, the study revealed that the bridge with 

a flexible substructure had to withstand larger horizontal forces than the rigid substructure, for all 

the tested wave heights (Higgins, 2013).  

Another interesting observation made by previous researchers (e.g. Douglass et al., 2004; Lau et 

al., 2011) included the existence of an impulsive load (called ñimpactò, or ñslammingò in the 

literature) at the time of the initial impact of the wave on the bridge, followed by a slowly-

varying force (also called ñquasi-staticò) of smaller amplitude and longer duration. Douglass et 

al., 2004 developed empirical equations for predicting the horizontal and vertical varying forces 

based on a hydrostatic reference force. The study focused on the varying loads since the impact 

load has a short duration compared to the response of the structure and it is often not considered 

important by structural engineers. However, they suggested appropriate coefficients for 

calculating both the varying and the impact loads of hurricane wave. For the varying loads the 

suggested coefficients were equal to 1 in both directions, while for the impact loads they were 3 

in the vertical and 6 in the horizontal direction, which indicated how much larger the impact 

loads could be.  

Similarly, Lau et al., 2011 developed an empirical method for predicting the loads applied on the 

bridge by turbulent bores, using again a reference force as was done by Douglass et al., 2004. 

However, for the case of bores these researchers proposed the calculation of impulsive forces 

only in the horizontal direction and not in the vertical one. The recommended coefficients for the 

slowly-varying and impulsive loads were 1 and 1.5 respectively, meaning that the latter loads 

could be 2.5 times larger than the former ones. It must be noted that in the aforementioned 

approaches the impulsive coefficients had to be added to the coefficients of the varying loads in 

order to calculate the impact/impulsive forces. Despite the fact that these impact loads have been 

observed in previous studies, their effect on structures has not been thoroughly studied or 

understood. Interestingly, in offshore engineering the horizontal wave slamming force has been 

identified to be affected by the dynamic characteristics of the deck of offshore platforms (Bea et 

al., 2001). 
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While the majority of the aforementioned studies focused on the quantification of the tsunami-

induced horizontal and vertical forces, some recent studies revealed the application of significant 

overturning moment on bridge decks. Istrati et al, 2018, showed that this moment is generated by 

the large slamming loads on the offshore girder and below the offshore overhang, and increases 

significantly the uplift forces in the offshore connections. Given the observed significance of the 

tsunami-induced moments some studies (Cai et al., 2018; Xiang et al., 2020), developed 

simplified predictive equations, which can estimate both the forces and the overturning moment 

applied on coastal bridges subjected to unbroken solitary waves.  

1.2.2 Numerical and analytical studies 

Apart from the experimental studies, several numerical analyses have been conducted to study 

the tsunami effects on bridges. Some of these studies conducted Computational Fluid Dynamics 

analyses using FLOW 3D (Lau et al., 2011), OPENFOAM (Hayatdavoodi et al., 2014; Bricker et 

al., 2012), and CADMAS-SURF (Kataoka et al., 2013). In the first two cases, the researchers 

tried to match the CFD analyses with their experimental results. In the latter case, the researchers 

took the tsunami effects (stresses, forces, moments) directly from the CFD analyses, which 

considers the structure as a rigid boundary and calculates the forces from integration of 

pressures, and compared their results with the bridge capacity, in an attempt to explain the 

failure/survival of certain bridges during the 2011 Japan Tsunami. Another research group (Yim 

et al, 2011) conducted numerical studies with a FEM-based multi-physics software program 

called LS-DYNA and calculated the tsunami loads for a bridge made of a rigid material. The 

advantage of using multi-physics software like LS-DYNA, compared to pure CFD software, is 

that it can solve the fluid flow around the structure as well as the equilibrium of the structure and 

its response, while the disadvantage is generally the associated high computational cost. In order 

to avoid this cost the investigators modeled the structure with a rigid material and pinned 

supports, and calculated the total applied tsunami loads without considering the bridge flexibility 

and dynamics.  

Murakami et al., 2012 calculated the pressures from the CFD software CADMASSURF/3D and 

then re-applied these pressures as external loads on a flexible bridge model, sitting on bearings 

represented by elasto-plastic springs. This is a more realistic approach because it includes the 

flexibility of the deck and the connections when it applies the external tsunami load, however, it 

still neglects the bridge dynamic characteristics when calculating the tsunami loads using CFD 

software. Istrati and Buckle, 2014 conducted advanced fluid-structure interaction (FSI) analyses 

in LS-DYNA using an equivalent 2D bridge model with flexible deck and flexible connections, 

which showed that the dynamic characteristics of the bridge can affect both the external tsunami 

load applied on the bridge, as well as the forces in the connections. In addition, the study showed 

the existence of a rotational mode during the impact of tsunami waves, which put the offshore 

bearings in tension and the onshore ones in compression, increasing consequently the demand on 

the offshore connections. These analyses revealed the significance of bridge dynamics and FSI, 

however, due to the simplified 2D bridge model, it was noted that further 3D FSI analyses should 

be conducted and the numerical results should be validated against experimental data.  

More recently Motley et al., 2015, developed 2D and 3D CFD numerical models of a 1:20 scale 

bridge model in OpenFOAM to examine the effect of the bridge skewness. Several skew angles 

between 0 and 40 degrees were examined. The study simulated the bridge as a rigid boundary 
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and calculated the applied load from integration of pressures. It revealed that the skew bridge is 

subjected to pitching and spinning moments and that there exists a force normal to the abutments 

that could lead to unseating, however the vertical forces were not dependent on the skew angle. 

Another recent study (Wei and Darlymple, 2016), simulated the same 1:20 scale straight bridge 

as Motley et al., 2015), using the weakly compressible Smoothed Particle Hydrodynamics (SPH) 

method in GPUSPH. The study focused on comparison of the numerical model with the 

experimental results obtained by Hoshikuma et al., 2013, and on further numerical analyses for 

studying the possibility of mitigating the tsunami effects bridges via the use of an offshore 

breakwater or the existence of another bridge on the seaward side of the main bridge. Recently, 

Zhu et al., 2018, implement the particle finite element method (PFEM) in OpenSees to simulate 

tsunami impact on bridge deck and validated the methodology using again the experiments 

conducted by Hoshikuma et al., 2013. 

Apart from the experimental and numerical studies conducted so far, analytical studies are also 

available in the literature. Hayatdavoodi and Ertekin, 2015 (a&b), and Lo et al., 2014, calculated 

analytically the wave forces on a submerged horizontal plate for waves in shallow water. The 

former authors used the theory of directed fluid-sheets and solved the Level I GreenïNaghdi 

equations, while the latter ones used the linear shallow-water wave theory. Both studies 

compared the analytical solutions with experimental data and good results were obtained.  

1.2.3 Studies focusing on the role of air  

Another topic that has also attracted the attention of the researchers worldwide is the trapped air 

between the girders of a bridge. McPherson, 2008, studied experimentally the hurricane induced 

wave forces on a 1:20 scale bridge model and observed that during the inundation of the bridge 

water could not fill completely the chambers between the girders due to the presence of trapped 

air. He developed predictive force equations where he considered additional hydrostatic force-

buoyancy, assuming that 50% of the volume between girders were filled with air. Some studies 

(e.g. Azadbakht, M., 2014), investigated numerically via 2D analyses the impact of hurricane 

waves on bridges, while others (Hayatdavoodi et al., 2014; Seiffert et al., 2015) investigated 

experimentally (1:35 scale) the impact of solitary waves on coastal bridge and all studies 

observed that the air-entrapment occurring between the girders can significantly alter the water 

flow field during the wave inundation causing a significant increase in the uplift. If the air is 

allowed to escape, either through the ends of the bridge or through holes in the deck then the 

uplift forces can be reduced significantly (Haytdavoodi et al., 2014). This seems to be in 

agreement with another numerical study (Bozognia et al., 2011), where it was shown that the air-

vents could reduce significantly both the impulsive and the quasi-static forces, with a larger 

reduction of the quasi-static forces that could be up to 70%, depending on the ratio s/H, where H 

is the wave amplitude and s is the distance of the bottom of the girder to the still water surface.  

According to Bricker and Nakayama, 2014, who conducted a numerical study of the tsunami 

forces induced on the Utatsu Bridge in Japan, the trapped air between the girders increased the 

buoyancy of the bridge deck to such a degree that if the air would have been removed then the 

bridge might not have failed. Moreover, an experimental study (Cuomo et al., 2009) of a bridge 

at 1:8 scale, revealed that the holes in the bridge deck reduces the wave pressures on the deck 

slab but increases the ones on the longitudinal beams. It was noted that the trapped air is 

compressed under the impulsive wave loads which acts as a cushioning effect and results both in 
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the reduction of the max impulsive load and in the increase of the load duration. Despite this 

reduction, this case might be more severe for the structure due to the longer duration. Last but 

not least, Xu et al., 2016, conducted 2D numerical work to study the effect of air venting holes in 

the bridge deck and concluded that such a countermeasure can reduce significantly the uplift 

force introduced by solitary waves, but it can also increase the horizontal force. 

1.3 OBJECTIVES OF RESEARCH STUDY  

As discussed in the previous section most of the experiments of tsunami effects on bridges to 

date have been conducted at a small-to-medium scale using very stiff bridge models that could 

not account for the actual bridge properties and dynamic characteristics (material, flexibility, 

inertia). In addition, small-scale experiments might be associated with significant scale effects 

since the atmospheric pressure cannot be scaled in the experiments (Martinelli et al., 2010). 

Especially in the case that trapped air is compressed in a chamber significant distortion of the 

scale can occur (Takahashi et al., 1985). These facts coupled with the fact that (a) most 

numerical studies to date have focused on identifying the maximum total applied tsunami forces 

via CFD analyses neglecting the response of the bridge, (b) most of the numerical investigations 

and available predictive equations of the total tsunami load have not been validated or were 

validated with small-scale experiments, (c) no guidance exists on estimating the individual 

connections forces, and (d) the effect of the short-duration slamming/impact force on bridges has 

not been yet thoroughly studied and understood, suggest the need for advanced large-scale 

hydrodynamic experiments. The main objectives of this project are to:  

1. Understand the tsunami inundation mechanism of coastal bridges  

2. Identify the difference in the bridge response when subjected to unbroken solitary 

waves and more realistic turbulent bores, and the relationship between the forces and 

the various hydrodynamic parameters 

3. Investigate not only the total waves forces but also the distribution of these forces in 

the bearings, shear keys and bent cap-to-column connections in order to determine the 

max force that each connection has to withstand 

4. Shed light on the physics of the dynamic wave-structure interaction and the role of 

the dynamic characteristics of the bridge, including the flexibility of the 

superstructure, substructure and connections, as well as the inertia. 

5. Gain an insight into the role of air-entrapment and nonlinear wave-air interaction, 

which was seen in previous studies to occur when bridges with diaphragms were 

impacted by waves. 

6. Determine the variation of tsunami forces for different types of bridges including I-

girder and box-girder bridges, and examine which types are more susceptible to 

tsunami failure 

7. Investigate possible mitigation strategies, such as air-vents in the deck, and provide 

recommendations for measures to increase the tsunami resilience of coastal bridges,  
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8. Develop a high quality database that can be used for the: 

¶ Evaluation of the accuracy of existing simplified predictive tsunami load 

equations  

¶ Validation of both computational fluid dynamics (CFD) and advanced fluid-

structure interaction (FSI) analyses, which will simulate not only the applied 

tsunami loading but also the response of the bridge during tsunami inundation  

¶ Development of recommendations and design guidelines for establishing tsunami-

resilient bridges. 

This report is organized in several chapters, with each chapter focusing on one or more of the 

aforementioned objectives. In particular, Chapter 1 presents a literature review on the tsunami 

inundation of coastal bridges, identified research needs and objectives of this particular study. 

Moreover the chapter describes the large-scale hydrodynamic experiments of tsunami impact on 

bridges, which were conducted in the O.H. Hinsdale Wave Research Laboratory, including the 

design and construction of the bridge specimens, the determination of the flume bathymetry and 

testing program, and the instrumentation of both the flume and the bridge model. 

Chapter 2 presents results from the hydrodynamic experiments of the I-girder bridge with cross-

frames and steel bearings, focusing on the determination of the inundation mechanism, the 

horizontal and vertical forces introduced in the connections, the difference between the effects 

associated with unbroken solitary waves and bores, the role of the slamming component of the 

force, and the quality of the experimental data.  

Chapter 3 focuses on the role of the dynamic fluid-structure interaction by presenting and 

comparing experimental results for several configurations with different flexibilities in the 

connections and the substructure. Detailed comparison of the applied tsunami load as well as the 

bridge response in terms of connection and inertia forces, moments, accelerations and 

displacements is included for the various bridge configurations. 

Chapter 4 presents the tsunami effects on an I-girder bridge with diaphragms. Comparison of the 

wave effects on this type of bridge with the ones of a similar bridge with cross-frames is also 

included in order to determine the role of air-entrapment for both solitary waves and bores. 

Chapter 5 continues the investigation of the variation of tsunami forces relative to the bridge type 

by presenting the tsunami impact forces on a box-girder specimen and then comparing them with 

the respective forces witnessed by I-girder bridges. Chapter 6 examines the efficiency of air-

vents in the deck as a retrofitting measure against tsunamis for two bridge types and several 

wave heights. The effect of the number of air-vents is also examined. 

1.4 DESIGN OF LARGE-SCALE HYDRODYNAMIC EXPERI MENTS 

As was stated in the first section of the chapter, the likelihood of significant scale-effects in 

small-scale experiments has been highlighted in previous studies. This likelihood emanates from 

(a) the difficulty of properly scaling the stiffness of the structure and (b) the inability to scale the 

atmospheric pressure (Martinelli et al., 2010), as well as from (c) the distortion of the scale when 
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the air is compressed by a wave (Takahashi et al., 1985). Therefore, in an attempt to advance the 

state-of-the-art it was deemed critical to conduct the hydrodynamic experiments at the largest 

possible scale. Other major reasons for conducting large-scale experiments, in addition to 

minimizing the scale-effects, was the fact that they will allow (i) the construction of the bridge 

with the same material as the prototype ones (reinforced concrete and structural steel), (ii) the 

use of design methods and components as used in current practice (e.g. shear studs, deck 

reinforcement, shear keys, cross-frames, bearings, bent caps), and (c) the simulation of the 

flexibility of the superstructure, substructure and connections in the most possibly realistic way. 

1.4.1 Bridge specimen 

For the hydraulic experiments conducted in this study a composite bridge model with four I-

girders was designed and constructed at a 1:5 scale. The in-plane dimensions of the bridge deck 

are 3.45m length and 1.94m width. These dimensions were intentionally chosen to be equal to 

the ones of the bridge used in another study (Bradner et al., 2011), so that comparisons between 

the two experiments can be conducted. That study focused on the effects of hurricane waves on 

coastal bridges and it was unique because (a) it was the first study conducted at such a large scale 

and (b) it considered the dynamic fluid-structure interaction via the simulation of the 

substructure flexibility using equivalent horizontal springs. Interestingly, the aforementioned 

study revealed that the horizontal flexibility increased both the horizontal and vertical forces that 

the bridge had to withstand (Higgins et al., 2013)). 

Given the in-plane dimensions the bridge and all the components were designed assuming that 

the structure was located on the West Coast of the US in a Seismic Zone 3 and a site class B. 

This was done because there is a likelihood of tsunamis inundating the west coast if a large 

magnitude earthquake occurs along the Cascadia subduction zone. In the preliminary phase of 

the design of the bridge specimen it was decided to use a composite steel bridge instead of an RC 

bridge with concrete girders in order to avoid possible cracking of the girders during the shipping 

of the bridge from Reno to Corvallis. Moreover, the steel components (girders, cross-frames, 

gusset plates) could be more easily modified than the concrete ones during the experiments in 

order to examine different configurations (e.g. adding/removing diaphragms, adding a soffit 

slab). 

The prototype bridge was analyzed following the AASHTO LRFD Bridge Design Specifications, 

2012, and the resultant forces and moments were scaled down to a 1:5 scale and were used for 

the design of the model bridge specimen. All the load combinations and requirements specified 

in AASHTO were considered in order to design a realistic bridge in accordance with the current 

practice. Loads considered included dead, live, wind, fatigue and earthquake among others. For 

the seismic design, response spectra for several cities on the west coast (e.g. San Francisco, 

Seattle, Anchorage) were generated using the USGS website. The chosen response spectra had 

As=0.45g, SDS=1.0g and SD1=0.33g. Limit states for strength, constructability, service, fatigue 

and fracture were considered.  

 As shown in Fig.1-3 the bridge has four steel girders which are connected with L-shape cross-

frames at the end supports and at third points. The steel girders were W8x13, and were readily 

available in the US market. Single angles were used at the intermediate cross-frames to satisfy 

slenderness ratios and prevent local buckling and lateral torsional buckling during the 
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construction process. At the supports double angles were used as cross-frames in order to resist 

the large forces during the extreme event. The detailing of the cross-frames is shown in Figure 3-

2. The details of all the bridge components are shown in Appendix B. 

For the shear connectors both the strength and the fatigue limit state were considered. Two shear 

connectors with 0.95cm diameter each and a pitch of 5.1cm were welded on the flange of each 

girder, in order to achieve the composite behavior with the deck. The pitch of the shear 

connectors was kept constant along the whole length of the girders, as shown in Figure 1.3. The 

deck was constructed with concrete and was reinforced with a steel wire with #3 rebar spaced at 

0.10m in both directions. The reinforcement was placed at the mid-height of the concrete slab. 

The thickness of the slab is 5.1 cm, the haunch is 1.0 cm and height of the steel girders is 

21.3cm. For the design of the slab and its reinforcement, service limit states, strength limit states 

and extreme events (including vehicular collision) were taken into account. In addition to the 

limit states specified by AASHTO, the RC bridge deck was also checked against the live load 

that the bridge would have to withstand during the preparation of the experiments to ensure that 

it will not fail when several students were standing on the bridge. 

Two different bearing types were designed and used for connecting the superstructure to the 

substructure, including steel bearings as well as plain elastomeric bearing pads. The elastomeric 

bearings were designed per Method A of AASHTO, 2012, to allow for thermal expansion. The 

bearing dimensions were 6.5 cm diameter and 1.27 cm height, and were manufactured by 

Scougal Rubber Corporation, who conducted material testing to meet all the AASHTO 

Specifications. Shear keys were also designed to take the lateral earthquake load and transfer it to 

the bent caps. The shear keys consisted of steel angles L6 x 6 x (1/2) with two stiffeners 0.95cm 

thick each. Table 1-1 shows a summary of the main characteristics of the bridge model.  

The bridge specimen was designed by UNR and was constructed by Reno Iron Works (RIW). 

Figure 1.3 shows the steel components of the bridge during their assembly at the facilities of 

RIW. The stiffeners were welded to each I-girder, while the single-angle intermediate cross-

frames were welded to gusset plates, and once both components were ready then the gusset 

plates were bolted to the stiffeners of the girders forming the frame of the bridge. Following the 

completion of the assembly of the steel members, the bridge frame was moved in the yard and 

formwork was attached, as shown in Figure 1.4. The steel wire was installed at the mid-height of 

the deck before the concrete pouring. 

Since the experimental setup was very complex and consisted of a large number of connecting 

elements and bolted connections with regular sized holes (only 1/8 in larger than the bolt sizes) it 

was critical for the success of the project to ensure that everything will fit together. Therefore, 

the two red HSS7x5 bent caps that were initially designed and constructed by Bradner et al 

(2010) were shipped from OSU to UNR. In order to accommodate the new bridge type the bent 

caps had to be modified by welding two steel plates on top of the bent caps. These plates were 

machined to a very tight tolerance in order to meet the flatness requirements set by the load cells 

manufacturer, which were attached between the girders and the bent caps. Additional connecting 

plates between the bent caps and the load cells as well as between the load cells and the bearings 

were also designed and constructed, as shown in Figure 1.4. Once the fitting process and the 

instrumentation of the bridge was successfully completed in the Large-Scale Structure 
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Laboratory at UNR ïas shown in Figures 1.5 and 1.6 - all the components were disconnected and 

shipped separately to Oregon State University. 

Table 1.1: Summary of Bridge Characteristics 

Bridge characteristics 

Bridge Type I-girder Composite Bridge  

Deck Type Reinforced Concrete 

Deck Dimensions 3.45m x 1.95m x 0.05m 

Deck Reinforcement 
Steel wire with #3 rebar spaced at 0.10m in both 

directions 

  

Girders W8x13, height=0.21m 

Girder Stiffeners Welded steel plates, 0.635cm thick 

Cross-frames Steel angles L1x1x1/8 

Shear keys 
Steel angles L6x6x(1/2) with two stiffeners 0.95cm 

thick each 

  

Shear Studs 2 at 5.1cm with D=0.95cm 

Steel bearings  HSS 8x2x(5/16) 

Elastomeric bearing pads Circular with D=6.5cm, H=1.27cm 

Bent caps HSS 7x5, L=2.5m 

Weight of bridge deck 12.62kN 
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Figure 1.3: Finalized rebar layout of the deck (top) and framing plan with girders and 

cross-frames (bottom), adapted from Reno Iron Works (Appendix C) 
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Figure 1.4: Bridge steel components during the assembly (left) and before the concrete 

pouring (right)  

  

   

Figure 1.5: Four steel bearings connected to the bent cap (top-left), shear-key in contact 

with th e top plate of the elastomeric bearings (top-right), and details of the connections 

between the girders, steel bearings, load cells and bent cap (bottom), during the pre-

test assembly in the Large-Scale Structures Laboratory at the University of Nevada, 

Reno 
















































































































































































































































































































































































