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10 LARGECALEEYDRODYNABMKERI MENTS OF
TSUNAMI WAVE ONVMPQACASTAL BRI DGES

1.1 BACKGROUND

In the last two decades humanity has witnessed large magnitude earthquakes with epicenters in
the ocean (Indian Ocean 2004, Chile 2010 and Japan 2011), which gensuatami waves of
significant heights that caused unprecedented damage on coastal communities. Ports, buildings
and infrastructure were severely damaged and bridges were washed away, cutting lifelines and
hindering the efforts of rescue team to provigélio the people in need. In the 2004 Indian

Ocean Tsunami 81 bridges located on the coaStuofatra were washed away (Unj@B07). In

the 2011 Great East Japan Earthquake in Japan, many bridges were able to withstand the strong
shaking, however apprarately 252 bridges were washed away or moved by the tsunami
(Maruyama et aJ 2013a). The most severe and common type of failure in these bridges was the
breaking of the connections between the superstructure and the substructure, which resulted in
the ungating and wash out of the bridge deck by the tsunami waves. This damage pattern was
observed for different types of bridges including (a) bridges with-giesdrs and crosBames

(e.g Koizumi Bridge, Fig. 1), (b) bridges with prstressed (PC) girdeland diaphragms (e.g.

Utatsu Bridge, Fig. 2), (c) boxgirder bridges (e.g. Tsuya Railway Bridge, Fi®)1and (d)

steel truss bridges (Fig.1). Another common type of damage included the scour of piers and
backwalls. These unforeseen events dematst the vulnerability of buildings and bridges to
tsunami waves and highlighted the need to study and understand their effects on structures.
Advancing this understanding is essential for developing recommendations and design guidelines
for tsunamiresilient structures. Therefore, the main objective of this research study and
particular report is to advance the understanding of tsunami wave impact on bridges via large
scale hydrodynamiexperiments.
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Figure 1.1: Damaged bridges after the 2011 tsunamniJapan: (a) Koizumi bridge on the
left (source: EERI Oct. 2011) and (b) Bridge in Rikuzentakata on the right (source:
EERI Sept. 2011)
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Figure 1.2: Damaged bridges after the 2011 tsunami in Japan: (a) Utatsu bridge on the left
and (b) Tsuya railway bridge on the right (adapted from Yashinski. M 2012)

1.2 LITERATURE REVIEW

The extensive damage of bridges in recent tsunamis triggered the response of the society and
research world in an attempt to improve the understanding of tsunami inundation of brigges. T
academic community from around the world has responded to this need and several studies have
been published in recent years. These studies includedgijeosurveys and damage analysis

(Kosg 2012 Kawashima2012 Kasano et al 2012;Kawashima an@uckle 2013) (ii) smaH

scale experiments in wave flumes (e.g. Hayadbil 3 Lau et al, 2011, Maruyama et al 2013

Seiffert et al, 2014) and (iii) numerical simulations (e.g. Hayatdavoodi.ef@ll5 Bricker and
Nakayama2014 Kataoka and Kanek@013 Nakao et al 2013 Yim et al, 2011; Azadbakht

,2014; Istrati and Bucklg2014).

1.2.1 On-site surveys and experimental studies

Onsite investigations conducted by various research teams analyzed the failed bridges and
revealed that the overflow can ocaither in the form of transverse drag due to large horizontal
wave forces or in the form of uplift and overturning due to the combination of large vertical and
horizontal tsunami forces (KawashinZ912 Fu et al, 2013 Kawashima and Buck]013). In
addition, one of the studiekk@sano et al 2012), which investigated th®idgeperformance in

the Tohoku area after the 2011 tsunami, revealed that concrete bridges are less susceptible to
tsunami inundation than steel bridges due to their increasedhtvaid thus inertia.

Some of the experimental studies investigated tsunami loads on flat slabs (Seiffe0dt43)

decks with girders (Lau et.aR011; Araki et gl 2011 Maruyama et al 2013; Rahman et.al

2014 Hayatdavoodi et glPart Il, 2014 and boxshaped decks (Hayashi, 2013). Others

examined the use of perforations in the girders and parapets as means for reducing the horizontal
tsunami load, and revealed a reduction of the horizontal load approximately equal to the
reduction of the projed area (Lukkunapras2008). Some of the studies simulated the tsunami
waves via unbroken solitary waves, while others via turbulent bores. In most of these
experiments, the researchers constructed their bridge models from acrylic, wood or steel, they
either supported the deck rigidly from top/bottom of the deck or allowed the deck to move freely
on the supports, and measured both pressures and forces. Furthermore, they weresallemall
experiments with scale factors ranging from 1:100 to 1:35.



In a more recent studyHpshikuma et al 2013) the investigatonducted experiments to study

the tsunami effects on bridges at a scale of 1:20. They examined several differeséctioss,
including flat slabs and decks with two or four girders, im#iempt to give insight into the

forces that various types of bridges have to withstand. In this experiment the bore was created
via opening of a gate and release of water (Bagak approach), specimens were made of

acrylic or wood and they were connectegdly to a pier at the middle of the superstructure.

These experiments demonstrated that the offshore bearings were uplifted while the onshore were
compressed meaning that there exists significant overturning moment. In addition, trapped air
between giers and a rotating flow in the chambers was observed during the inundation of the
bridge.

The largesiscale experiment to date was conducte@tadner et al., 201 Wwhere they

examined the performance of a 1.5 scaledgpressed bridge with six girdemsder the impact

of hurricane waves. The study found a nonlinear dependence of both regular and random wave
forces on the wave height and water depth, with the former ones being also dependent on the
wave period. Momentum flux was also identified as a jgog parameter for the development

of analytical predictive model of hurricane wave forces. This study was unique because it
examined for the first time both a rigid and a flexible substructure, so that the effect of dynamic
wave structure interaction cadai be studied. Interestingly, the study revealed that the bridge with

a flexible substructure had to withstand larger horizontal forces than the rigid substructure, for all
the tested wave heights (Higgir2013).

Another interesting observation made lvg\pous researchers (e.g. Douglass ¢804 Lau et

al,2011) included the existence of an i mpul sive
literature) at the time of the initial impact of the wave on the bridge, followed by a slowly
varyingfore ( al so esalalteidc ofquafsismal | er amplitude an

al., 2004developed empirical equations for predicting the horizontal and vertical varying forces
based on a hydrostatic reference force. The study focused on the Vaagiagince the impact

load has a short duration compared to the response of the structure and it is often not considered
important by structural engineers. However, they suggested appropriate coefficients for
calculating both the varying and the impacids of hurricane wave. For the varying loads the
suggested coefficients were equal to 1 in both directions, while for the impact loads they were 3
in the vertical and 6 in the horizontal direction, which indicated how much larger the impact

loads could be.

Similarly, Lau et al 2011developed an empirical method for predicting the loads applied on the
bridge by turbulent bores, using again a reference force as was done by Douglag®@4 al
However, for the case of bores these researchers proposeddination of impulsive forces

only in the horizontal direction and not in the vertical one. The recommended coefficients for the
slowly-varying and impulsive loads were 1 and 1.5 respectively, meaning that the latter loads
could be 2.5 times larger théme former ones. It must be noted that in the aforementioned
approaches the impulsive coefficients had to be added to the coefficients of the varying loads in
order to calculate the impact/impulsive forces. Despite the fact that these impact loadshave be
observed in previous studies, their effect on structures has not been thoroughly studied or
understood. Interestingly, in offshore engineering the horizontal wave slamming force has been
identified to be affected by the dynamic characteristics of tbk deoffshore platforms (Bea et

al., 2001).



While the majority of the aforementioned studies focused on the quantification of the tsunami
induced horizontal and vertical forces, some recent studies revealed the application of significant
overturning mometnon bridge decks. Istrati et, @018 showed that this moment is generated by

the large slamming loads on the offshore girder and below the offshore overhang, and increases
significantly the uplift forces in the offshore connectio@s/en the observedgnificance of the
tsunamiinducedmoments some studies (Cai et al., 2088ng et al, 2020, developed

simplified predictive equations, which can estimate both the forces am/éngirning moment

applied on coastal bridges subjected to unbroken solitaves.

1.2.2 Numerical and analytical studies

Apart from the experimental studies, several numerical analyses have been conducted to study
the tsunami effects on bridgedome of these studiesnducted Computational Fluid Dynamics
analyses using FLOW 3Q.au et al., 2011)OPENFOAM(Hayatdavoodi et gl2014;Bricker et

al., 2012) and CADMASSURF(Kataoka et a) 2013) In the first two cases, the researchers

tried to match the CFD analyses with their experimental results. In the latter case, the researcher
took the tsunami effects (stresses, forces, moments) directly from the CFD analyses, which
considers the structure as a rigid boundary and calculates the forces from integration of
pressures, and compared their results with the bridge capacity, irepttd explain the
failure/survival of certain bridges during the 2011 Japan Tsunami. Another research group (Yim
et al, 2011) conducted numerical studies with a Higded multphysics software program

called LSDYNA and calculated the tsunami loads &obridge made of a rigid material. The
advantage of using muphysics software like L®YNA, compared to pure CFD software, is

that it can solve the fluid flow around the structure as well as the equilibrium of the structure and
its response, while thasadvantage is generally the associated high computational cost. In order
to avoid this costhe investigatorsnodeled the structure with a rigid material and pinned

supports, and calculated the total applied tsunami loads without considering the lidmkt yl

and dynamics.

Murakami et al 2012calculated the pressures from the CFD software CADMASSURF/3D and
then reapplied these pressures as external loads on a flexible bridge model, sitting on bearings
represented by elasfastic springs. This i@ more realistic approach because it includes the
flexibility of the deck and the connections when it applies the external tsunami load, however, it
still neglects the bridge dynamic characteristics when calculating the tsunami loads using CFD
software. strati and Buckle2014conducted advanced flugtructure interaction (FSI) analyses

in LS-DYNA using an equivalent 2D bridge model with flexible deck and flexible connections,
which showed that the dynamic characteristics of the bridge can affect eakiénnal tsunami

load applied on the bridge, as well as the forces in the connections. In addition, the study showed
the existence of a rotational mode during the impact of tsunami waves, which put the offshore
bearings in tension and the onshore one®mpression, increasing consequently the demand on
the offshore connections. These analyses revealed the significance of bridge dynamics and FSI,
however, due to the simplified 2D bridge model, it was noted that further 3D FSI analyses should
be conductednd the numerical results should be validated against experimental data.

More recently Motley et 312015 developed 2D and 3D CFD numerical models of a 1:20 scale
bridge model in OpenFOAM to examine the effect of the bridge skewness. Several skewv angle
between 0 and 40 degrees were examined. The study simulated the bridge as a rigid boundary
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and calculated the applied load from integration of pressures. It revealed that the skew bridge is
subjected to pitching and spinning moments and that there axtse normal to the abutments
that could lead to unseating, however the vertical forces were notddgpiem the skew angle.
Anotherrecent studyWei and Darlymfe, 2016), simulated the same 1:20 scale straight bridge
as Motley et a) 2015), using tb weakly compressible Smoothed Particle Hydrodynamics (SPH)
method in GPUSPH. The study focused on comparison of the numerical model with the
experimental results obtained by Hoshikuma et2&l13,and on further numerical analyses for
studying the possility of mitigating the tsunami effects bridges via the use of an offshore
breakwater or the existence of another bridge on the seaward side of the mairReadly,

Zhu et al, 2018,implement the particle finite element method (PFEM) in OpenSesmtdate
tsunami impact on bridge deck and validated the methodology using again the experiments
conducted by Hoshikuma et,a2013

Apart from the experimental and numerical studies conducted so far, analytical studies are also
available in the litertauire. Hayatdavoodi and ErtekiB015(a&b), and Lo et al 2014 calculated
analytically the wave forces on a submerged horizontal plate for waves in shallow water. The
former authors used the theory of directed fisitbets and solved the Level | Gredaghd

equations, while the latter ones used the linear shailater wave theory. Both studies

compared the analytical solutions with experimental dadieg@od results were obtained.

1.2.3 Studies focusing on the role of air

Another topic that has also attracteé attention of the researchers worldwide is the trapped air
between the girders of a bridge. McPhers2008,studied experimentally the hurricane induced
wave forces on a 1:20 scale bridge model and observed that during the inundation of the bridge
wate could not fill completely the chambers between the girders due to the presence of trapped
air. He developed predictive force equations where he considered additional hydrostatic force
buoyancy, assuming that 50% of the volume between girdersfileatenith air. Some studies

(e.g. Azadbakht, M., 2@, investigated numerically via 2D analyses the impact of hurricane
waves on bridgeshile others layatdavoodi et gl2014 Seiffert et al, 2015) investigated
experimentally (1:35 scale) the impact ofitswl waves on coastal bridge and all studies

observed that the agntrapment occurring between the girders can significantly alter the water
flow field during the wave inundation causing a significant increase in the uplift. If the air is
allowed to esqae, either through the ends of the bridge or through holes in the deck then the
uplift forces can be reduced significantly (Haytdavoetdal.,2014). This seems to be in

agreement witlainothemumerical studyBozognia et aJ 2011), where it was shownahthe air

vents could reduce significantly both the impulsive and the etiasc forces, with a larger

reduction of the quastatic forces that could be up to 70%, depending on the ratio s/H, where H
is the wave amplitude and s is the distance of tttin of the girder to the still water surface.

According to Bricker and Nakayama, 20i#ho conducted a numerical study of the tsunami

forces induced on the Utatsu Bridge in Japan, the trapped air between the girders increased the
buoyancy of the bridgdeck to such a degree that if the air would have been removed then the
bridge might not have failed. Moreover, an experimental stGdpmo et al 2009) of a bridge

at 1:8 scale, revealed that the holes in the bridge deck reduces the wave pressurdsoin the

slab but increases the ones on the longitudinal beams. It was noted that the trapped air is
compressed under the impulsive wave loads which acts as a cushioning effect and results both in
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the reduction of the max impulsive load and in the increaieedbad duration. Despite this
reduction, this case might be more severe for the structure due to the longer duration. Last but
not least, Xu et 8l2016,conducted 2D numerical work to study the effect of air venting holes in
the bridge deck and concled that such a countermeasure can reduce significantly the uplift
force introduced by solitary waves, but it can also increaskeateontal force.

1.3 OBJECTIVES OF RESEARCH STUDY

As discussed in the previous section most of the experiments of tsunasts efiebridges to

date have been conducted at a sitmathedium scale using very stiff bridge models that could
not account for the actual bridge properties and dynamic characteristics (material, flexibility,
inertia). In addition, smalcale experimentsight be associated with significant scale effects
since the atmospheric pressure cannot be scaled in the experiments (MartineR0&0
Especially in the case that trapped air is compressed in a chamber significant distortion of the
scale can ocayTakahashi et g11985). These facts coupled with the fact that (a) most
numerical studies to date have focused on identifying the maximum total applied tsunami forces
via CFD analyses neglecting the response of the bridge, (b) most of the numeesagdations

and available predictive equations of the total tsunami load have not been validated or were
validated with smalkcale experiments, (c) no guidance exists on estimating the individual
connections forces, and (d) the effect of the staratian slamming/impact force on bridges has
not been yet thoroughly studied and understood, suggest the need for advaneschlarge
hydrodynamic experiment$he main objectives of this project are to:

1. Understand the tsunami inundation mechanism of coastglds

2. ldentify the difference in the bridge response when subjected to unbroken solitary
waves and more realistic turbulent bores, and the relationship between the forces and
the various hydrodynamic parameters

3. Investigate not only the total waves fordes also the distribution of these forces in
the bearings, shear keys and benttwapolumn connections in order to determine the
max force that each connection has to withstand

4. Shed light on the physics of the dynamic watricture interaction and thele of
the dynamic characteristics of the bridge, including the flexibility of the
superstructure, substructure and connections, as well as the inertia.

5. Gain an insight into the role of aantrapment and nonlinear waae interaction,
which was seen iprevious studies to occur when bridges with diaphragms were
impacted by waves.

6. Determine the variation of tsunami forces for different types of bridges including |
girder and bosgirder bridges, and examine which types are more susceptible to
tsunami failue

7. Investigate possible mitigation strategies, such ageats in the deck, and provide
recommendations for measures to increase the tsunami resilience of coastal bridges,



8. Develop a high quality database that can be used for the:

1 Evaluation of the accacy of existing simplified predictive tsunami load
equations

1 Validation of both computational fluid dynamics (CFD) and advanced-fluid
structure interaction (FSI) analyses, which will simulate not only the applied
tsunami loading but also the responseheflbridge during tsunami inundation

1 Development of recommendations and design guidelines for establishing tsunami
resilient bridges.

This report is organized in several chapters, with each chapter focusing on one or more of the
aforementioned objectivem particular, Chapter 1 presents a literature review on the tsunami
inundation of coastal bridges, identified research needs and objectives of this particular study.
Moreover the chapter describes the lasgale hydrodynamic experiments of tsunami imauct
bridges, which were conducted in the O.H. Hinsdale Wave Research Laboratory, including the
design and construction of the bridge specimens, the determination of the flume bathymetry and
testing program, and the instrumentation of both the flume arfatitige model.

Chapter 2 presents results from the hydrodynamic experiments egifaet bridge with cross
frames and steel bearings, focusing on the determination of the inundation mechanism, the
horizontal and vertical forces introduced in the conpest the difference between the effects
associated with unbroken solitary waves and bores, the role of the slamming component of the
force, and the quiy of the experimental data.

Chapter 3 focuses on the role of the dynamic f&trdicture interactioby presenting and

comparing experimental results for several configurations with different flexibilities in the
connections and the substructure. Detailed comparison of the applied tsunami load as well as the
bridge response in terms of connection andtimdéorces, moments, accelerations and

displacements is included for the various bridge configurations.

Chapter 4 presents the tsunami effects ongirder bridge with diaphragms. Comparison of the
wave effects on this type of bridge with the ones sif@ilar bridge with cros§rames is also
included in order to determine the role ofaitrapment for both solitary waves and bores.
Chapter 5 continues the investigation lué t/ariation of tsunami forces relative to the bridge type
by presenting the teiami impactorces on a boxirder specimerand then comparing them with
the respective forces witnessed hyider bridgesChapteré examines the efficiency of air

vents in the deck as a retrofitting measure against tsunamis for two bridge typeseaad sev
wave heights. The effect of the number ofwants is also examined.

1.4 DESIGN OF LARGE-SCALE HYDRODYNAMIC EXPERI MENTS

As was stated in the first section of the chapter, the likelihood of significantestades in
smallscale experiments has beenhtighted in previous studies. This likelihood emanates from
(a) the difficulty of properly scaling the stiffness of the structure and (b) the inability to scale the
atmospheric pressure (Martinelli et,@&010), as well as from (c) the distortion of tleals when



the air is compressed by a wave (Takahashi gt@85). Therefore, in an attempt to advance the
stateof-the-art it was deemed critical to conduct the hydrodynamic experiments at the largest
possible scale. Other major reasons for conductimgekscale experiments, in addition to
minimizing the scaleffects, was the fact that they will allow (i) the construction of the bridge
with the same material as the prototype ones (reinforced concrete and structural steel), (ii) the
use of design metho@sd components as used in current practice (e.g. shear studs, deck
reinforcement, shear keys, crdssmes, bearings, bent caps), and (c)sihaulation of the

flexibility of the superstcture, substructure and connections in the mossibly realistiovay.

1.4.1 Bridge specimen

For the hydraulic experiments conducted in this study a composite bridge model with four |
girders was designed and constructed at a 1:5 scale. -pienie dimensions of the bridge deck

are 3.45m length and 1.94m widffhese dimensits were intentionally chosen to be equal to

the ones of the bridge usedanother studyBradner et al., 20)1so that comparisons between

the two experiments can be conducted. That study focused on the effects of hurricane waves on
coastal bridges antlwas unique because (a) it was the first study conducted at such a large scale
and (b) it considered the dynamic flestfucture interaction via the simulation of the

substructure flexibility using equivalent horizontal springs. Interestingly, the afotemed

study revealed that the horizontal flexibility increased both the horizontal and vertical forces that
the bridge hd to withstand (Higgins et ak013).

Given the inplane dimensions the bridge and all the components were designed assuming that
the structure was located on the West Coast of the US in a Seismic Zone 3 and a site class B.
This was done because there is a likelihood of tsunamis inundating the west coast if a large
magnitude earthquake occurs along the Cascadia subduction zoneprglithaary phase of

the design of the bridge specimen it was decided to use a composite steel bridge instead of an RC
bridge with concrete girders in order to avoid possible cracking of the girders during the shipping
of the bridge from Reno to Corvallisioreover, the steel components (girders, cfaanes,

gusset plates) could be more easily modified than the concrete ones during the experiments in
order to examine different configurations (e.g. adding/rengpdiaphagms, adding a soffit

slab).

The pototype bridge was analyzed following the AASHTO LIRBridge Design Specifications,

2012 and the resultant forces and moments were scaled down to a 1:5 scale and were used for
the design of the model bridge specimen. All the load combinations and regpiisespecified

in AASHTO were considered in order to design a realistic bridge in accordance with the current
practice. Loads considered included dead, live, wind, fatigue and earthquake among others. For
the seismic design, response spectra for seveied oin the west coast (e.g. San Francisco,

Seattle, Anchorage) were generated using the USGS website. The chosen response spectra had
As=0.45¢g, 8s=1.0g and §1=0.33g. Limit states for strength, constructability, service, fatigue

and fracture were consickl.

As shown in Fidgl-3 thebridge has fousteel girdersvhich areconnected with.-shapecross
frames at the end supports and at third poifite. steel girders were W8x13, and were readily
available in the US marke&ingle angles were used at theenmediate crosBames to satisfy
slenderness ratios and prevent local buckling and lateral torsional buckling during the
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construction process. At the supports double angles were used asamessin order to resist
the large forces during the extremeent. The detailing of the crefames is showm Figure 3
2. The details of all the bridge components are shown in Appendix B.

For the shear connectors both the strength and the fatigue limit state were considerdearwo s
connectorwith 0.95cm diametereach and a pitch of 5.1cm wexelded on the flange of each

girder, in order to achieve theomposite behavior with the deck. The pitch of the shear
connectors was kept constant along the whole length of the girders, as sltogurenl3. The
deckwas constructed with concrete amdsreinforced witha steel wire with #3 rebar spaced at
0.10m in both directiond he reinforcement was placed at the +h&lght of the concrete slab.

The thickness of the slab is 5.1 cm, the haunch is 1.0 cm and hetbbtstéel girders is

21.3cm.For the design of the slab and its reinforcement, service limit states, strength limit states
and extreme events (including vehicular collision) were taken into account. In addition to the
limit states specified by AASHTO, thHeC bridge deck was also checked against the live load

that the bridge would have to withstand during the preparation of the experiments to ensure that
it will not fail when several students were standing on the bridge.

Two different bearingypeswere degned and used for connecting the superstructure to the
substructure, including steel bearings as well as plain elastomeric bearinglp@adtastomeric

bearings were designed per Method A of AN, 2012 to allow for thermal expansion. The

bearing dimesions were 6.5 cm diameter and 1.27 cm height, and were manufactured by

Scougal Rubber Corporation, who conducted material testing to meet all the AASHTO
Specifications. Shear keys were also designed to take the lateral earthquake load and transfer it to
the bent caps. The shear keys consisted of steel angle6 x§1/2) with two stiffeners 0.95cm

thick each. Tablé-1 shows a summary of the main chaeaistics of the bridge model.

The bridge specimen was designed by UNR and was constructed by Rekidolks (RIW).

Figure 13 shows the steel components of the bridge during their assembly at the facilities of
RIW. The stiffeners were welded to eaegirider, while the singlangle intermediate cross

frames were welded to gusset plates, and once botharmnts were ready then the gusset

plates were bolted to the stiffeners of the girders forming the frame of the bralpaving the
completion of the assembly of the steel members, the bridge frame was moved in the yard and
formwork was attached, as shown Figure 14. The steel wire was installed at the rhigight of

the deck before the concrete pouring.

Since the experimental setup was very complex and consisted of a large number of connecting
elements and bolted connections with regular sized hotdyg 168 in larger than the bolt sizes) it

was critical for the success of the project to ensure that everything will fit together. Therefore,

the two red HSS7x5 bent caps that were initially designed and constructed by Bradner et al
(2010) were shipped fro OSU to UNR. In order to accommodate the new bridge type the bent
caps had to be modified by welding two steel plates on top of the bent caps. These plates were
machined to a very tight tolerance in order to meet the flatness requirements set by ¢kédoad
manufacturer, which were attached between the girders and the bent caps. Additional connecting
plates between the bent caps and the load cells as well as between the load cells and the bearings
were also designed and constructed, as showigure 14. Once the fitting process and the
instrumentation of the bridge was successfully completed in the {Sugle Structure



Laboratory at UNR as shown in Figures3 and 16 - all the components were disconnected and
shipped separaly to Oregon State Unavsity.

Table 1.1: Summary of Bridge Characteristics

Bridge characteristics

Bridge Type

I-girder Composite Bridge

Deck Type

Reinforced Concrete

Deck Dimensions

3.45m x 1.95m x 0.05m

Deck Reinforcement

Steel wire with #3 rebar spaced at 0.10m in both
directions

Girders W8x13, height=0.21m
Girder Stiffeners Welded steel plates, 0.635cm thick
Crossframes Steel angles L1x1x1/8
Shear keys St_eel angles L6x6x(1/2) with two stiffeners 0.95cn
thick each
Shear Studs 2 at 5.1cm with D=0.95cm

Steel barings

HSS 8x2x(5/16)

Elastomeric bearing pads

Circular with D=6.5cm, H=1.27cm

Bent caps

HSS 7x5, L=2.5m

Weight of bridge deck

12.62kN
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Figure 1.4: Bridge steel components during the assembly (left) and before the concrete
pouring (right)

Figure 1.5: Four steel bearings connected to the bent cap (tdpft), shearkey in contact
with th e top plate of the elastomeric bearings (topight), and details of the connections
between the girders, steel bearings, load cells and bent cap (bottoriring the pre-
testassembly in the LargeScale Structures Laboratory at the University of Nevada,
Reno
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