Stakeholder Advisory Group Meeting 10

Agenda

1. Welcome \& Meeting Purpose
2. Schedule Overview: Recent Activities
3. Reminders:

Vision \& Ev aluation Criteria

Project Alternatives
Growth \& No Build Considerations
4. Motor Vehicle Assessment
5. Next Steps \& Adjourn

1. Welcome \& Meeting Purpose

Remember core project decisions \& review/discuss motor vehicle analysis
2. Schedule Overview

Corridor Vision
"OR 99W (South 3 ${ }^{\text {rd }}$ Street) contributes to the sense of place and community identity desired by residents, business and property owners, and visitors to the South Corvallis area. People of all ages and abilities find facilities and amenities along the corridor that safely support and comfortably encourage walking, biking, and the use of transit. A mix of business and civic uses attract and serve adjoining neighborhoods, as well as the broader community, and the corridor is easy to find and travel to by all modes from nearby destinations, including those north of the river. The size, mix, and speed of transportation facilities (such as sidewalks, bike lanes, motor vehicle travel lanes) are well-suited to the adjacent land uses and character of each corridor segment. Travel speeds are managed and crossing treatments are provided such that people driving contribute to the sense of vitality, while not detracting from the safety or comfort of people of all ages and abilities. Gateway features reinforce the entry to Corvallis for travelers to recognize the character of the area and adapt their behaviors and expectations accordingly."

3. Reminders

Evaluation Criteria and Performance Measures

- Criteria and meant to represent vital aspects of the corridor vision.
- Performance measures strive for equity in service to all modes and users.

Criteria	Measure(s)
Safety	Crash Reduction Factors (CRFs)
Convenience (Pedestrian and Bicycle) reachable within a 15-min walk or bike ride on Iow stress facilities	
Comfort (Pedestrian and	
Bicycle)	Pedestrian and bicycle LTS
Aesthetics	Qualitative assessment
Connectivity (Motorist)	Anticipat time BUD
Feasibility	Consistency with vision; expected to benefit transportation disadvantaged communities
Equity and Suitability	Mode split for trips 3 miles or less
Mode Split	

3. Reminders: Project Alternatives

- Segment 1: Western Boulevard to SE Crystal Lake Drive
- Segment 2, Alternative A: SE Crystal Lake Drive to SE Goodnight Avenue
- Segment 2, Alternative B: SE Crystal Lake Drive to SE Goodnight Avenue
- Segment 3: SE Goodnight Avenue to Southern Urban Growth Boundary

3. Reminders: Project Alternatives

- Segment 1: North of Interchange

- Identical treatments across alternatives
- Western Boulevard: add protected left-turns to reduce conflicts with pedestrians and through vehicles
- Two lanes southbound with a raised two-way shared use path
- Improved wayfinding for northbound existing trail
- Improve existing sidewalk condition and increase density of street trees adjacent to OR 99W northbound
\& ASSOCIATES

3. Reminders: Project Alternatives

3. Reminders: Project Alternatives

Segment 1: Interchange to Crystal Lake Drive

Identical treatments for both alternatives
Maintains the five-lane highway, adds separated bicycle and pedestrian facilities on the west side, and adds regular crossings

3. Reminders: Project Alternatives

Segment 2: Crystal Lake Drive to Goodnight Avenue

- Our alternatives transition from five-lanes to three-lanes at different locations:

Alternative A- transitions at Goodnight Avenue

- Alternative B- transitions at Cummings Avenue (north of the Mill Race)
- Alternative C- transitions at Prairie Avenue

3. Reminders:

Project Alternatives

Proposed Parallel Nełworks:

- Alternative A (Goodnight)no added parallel network
- Alternative B (Cummings)new parallel roadway from Avery Avenue to Goodnight Avenue
- Alternative C (Prairie) partial parallel network between Avery and Goodnight (with a break at the Mill Race)

3. Reminders: Project Alternatives

Segment 3: Goodnight Avenue to Southern Urban Growth Boundary

- Identical treatments for all alternatives
- Two to three-lane highway with parallel side streets and includes roundabouts at key intersections, consistent medians with street trees, separated walking and biking facilities, regular crossings

3. Reminders: Growth \& No-Build Considerations

Fułure Corvallis
 Considerations

- Alternatives are compared to no-build scenarios
- Anticipated to see quite a bit of development in south Corvallis between 2020 and 2040:
- Corvallis's population to grow by $17 \%(62,900$ to 73,700$)$ and employment to grow $42 \%(32,900$ to 46,700$)$
- South Corvallis's population to grow by $35 \%(8,700$ to 11,700$)$ and employment by $85 \%(2,500$ to 4,600$)$

D Daily traffic volumes grow too

- Marys River crossings grow from 36,900 to 51,800 (40\% increase)
- Local traffic is 42% of daily river crossings
- Through traffic is 58% of daily river crossings
- Some parallel network to 99W in the TSP, but othenwise reliant on the highway for all new local trips (trips within Corvallis), especially on the west side
\& ASSOCIATES

4. Motor Vehicle Analysis

5. Next Steps

- Alternatives evaluation
- Preferred alternative development

Questions/Comments?

James Feldmann

Oregon Department of Transportation
Agency Project Manager
james.feldmann@odot.oregon.gov

Camilla Dartnell, PE
Kittelson and Associates, Inc.
Senior Engineer/Planner
cdartnell@kittelson.com
\& ASSOCIATES

OR 99W South Corvallis Facility Plan

Motor Vehicle Alternatives Analysis Summary

SAG Meeting \#10
October 26, 2022

Analysis Updates:

Model/Network Refinement

Van Buren Bridge Project
Avery/Crystal Lake Intersection Improvements
Updating the Build Alternatives
A, B \& C

Build Alternatives:

Where does the three-lane cross section begin?

Alternative A

South of Goodnight Ave

Alternative B

SB = south of Cummings Ave $\mathrm{NB}=$ Bridgeway Ave

Alternative C
South of Prairie Dr

Alt A: Goodnight

Build Alternatives:

What are the differences in the local network?

Alternative A

Extends Alexander Ave

Alternative B

Includes new roadway(s) from Avery Ave to Goodnight Ave

Alternative C

Includes partial connection(s) from Avery Ave to Goodnight Ave. Adds and E/W route extending Prairie Ave and Powell Ave.

Segment 1: Western to Avery Ave / Crystal Lake Dr

Existing Signal
Modified Existing Signal
New Signal
(t) Existing Pedestrian Crossing
(t. Modified Pedestrian Crossing
(New Pedestrian Crossing

Multi-Use Path
[New Roundabout Meter
(8)

New Roundabout
ew Signal
— OR 99W modified to 3 lanes
New Left Turn Restrictions

Segment 1: Western to Avery Ave / Crystal Lake Dr

Existing Signal
Modified Existing Signal
New Signal
*) Existing Pedestrian Crossing
(1. Modified Pedestrian Crossing
(1) New Pedestrian Crossing

- Multi-Use Path
\square New or realigned roadway
OR 99W modified to 3 lanes
(:) New Roundabout Meter
(8) New Roundabout
(8) New Left Turn Restrictions

Segment 2: Avery Ave / Crystal Lake Dr to Goodnight Ave

Segment 2: Avery Ave / Crystal Lake Dr to Goodnight Ave

Segment 3: Goodnight Ave to Airport Rd

Segment 3: Goodnight Ave to Airport Rd

Analysis Results Summary:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB\&SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild	N/A	-2\%	-3\%	-4\%	-4\%

Analysis Results:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgewav)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB\&SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild ${ }^{2}$	N/A	-2\%	-3\%	-4\%	-4\%

Summary of v/c Results:

$\mathrm{v} / \mathrm{c}<0.70$
($\mathrm{V} / \mathrm{c} 0.70$ to 0.85$\mathrm{v} / \mathrm{c} 0.86$ to 1.00
$v / c>1.00(0.90$ for $R / A)$

	Intersection	$\begin{gathered} \text { CLEAN No- } \\ \text { Build } \\ \hline \end{gathered}$	ENHANCED No-Build	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
듣	Western \& $4^{\text {th }}$	Signal	Signal	Signal	Signal	Signal
	Western \& 3 ${ }^{\text {rd }}$	Signal	Signal	Signal	Signal	Signal
	B Ave \& $4^{\text {th }}$ St	TWSC	TWSC	TWSC	TWSC	TWSC
	B Ave \& $3^{\text {rd }}$ St	TWSC	TWSC	TWSC	TWSC	TWSC
	$15^{\text {th }}$ St/OR34	Signal	Signal	Signal	Signal	Signal
	$\begin{aligned} & \text { EB OR34/US20 } \\ & \text { Off-Ramp } \end{aligned}$	N/A	N/A	Roundabout	Roundabout	Roundabout
	WB OR34 Off- Ramp	N/A	N/A	Signal	Signal	Signal
	Twin Oaks/ Chapman PI	TWSC	TWSC	RIRO	RIRO	RIRO
	Avery/Crystal Lake	Signal	Signal	Signal	Signal	Signal
	Alexander Ave	Signal	Signal	Signal	Signal	Signal
	Viewmont Ave	TWSC	TWSC	RIRO+LI	RIRO+LI	RIRO+LI
	Tunison Ave	TWSC	TWSC	RIRO+LI	RIRO+LI	RIRO+LI
	Richland Ave	TWSC	TWSC	TWSC	TWSC	TWSC
	Prairie/Powell ${ }^{1}$	N/A	N/A	N/A	N/A	N/A
	Park Ave	TWSC	TWSC	TWSC	TWSC	TWSC
	Wake Robin Ave	TWSC	TWSC	TWSC	TWSC	TWSC
	Goodnight Ave	Roundabout	Roundabout	Roundabout	Roundabout	Roundabout
M$\stackrel{y}{0}$$\sum_{00}$00	Rivergreen Ave	Roundabout	Roundabout	Roundabout	Roundabout	Roundabout
	Kiger Island Dr	TWSC	TWSC	TWSC	TWSC	TWSC
	Airport Ave	TWSC	TWSC	TWSC	TWSC	TWSC

Analysis Results:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB\&SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild ${ }^{2}$	N/A	-2\%	-3\%	-4\%	-4\%

Analysis Results:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB\&SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild ${ }^{2}$	N/A	-2\%	-3\%	-4\%	-4\%

~ Demand that exceeds the capacity of the system and users make choices to avoid congestion ~

No-Build: Clean

No-Build: Enhanced

Existing Street	Planned Street	Volume Threshold Range
-	$\cdots \cdots \cdot$	$>5,000$
-	$\cdots \cdots \cdot$	2,500 to 5,000
-	$\cdots \cdots \cdot$	600 to 2,500
-	$\cdots \cdots$	600 to 1,250
-	$\cdots \cdots$	$<1,000$

Analysis Results:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB \& SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild ${ }^{2}$	N/A	-2\%	-3\%	-4\%	-4\%

Analysis Results:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB \& SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild ${ }^{2}$	N/A	-2\%	-3\%	-4\%	-4\%

Analysis Results:

Comparison Criteria:	No-Build (Clean)	No-Build (Enhanced)	Alternative A (Goodnight)	Alternative B (Bridgeway)	Alternative C (Prairie/Powell)
Intersections exceeding capacity	10	11	3	2	1
Average NB\&SB Travel Speed (Percent change from the Clean No-Build)	N/A	-3\%	-5\%	-17\%	-12\%
Average NB\&SB Travel Time (Percent change from the Clean No-Build)	N/A	17\%	12\%	33\%	25\%
Diverted Demand (Total volume diverted)	3,700	2,700	1,400	9,300	7,800
Peak Spreading (Average estimated hours of congestion)	2+	5	6	8	8
Modal Split (\% Auto Trips)	80\%	79\%	79\%	79\%	79\%
Daily On-Road VMT per Capita Relative to Clean NoBuild	N/A	-2\%	-3\%	-4\%	-4\%

Key Takeaways:

Adding pedestrian enhancements and reducing the vehicle lanes on OR99W causes increased congestion. The excess demand is choosing other routes and other times to travel but this ultimately impacts local roadways. Not enough trips are served by changing the mode of travel to discount the excess demand.

Tradeoffs:

- Pedestrian and bicycle safety and comfort improvements verses congestion
- More robust local street network versus a more congested OR 99w

Questions/Discussion

