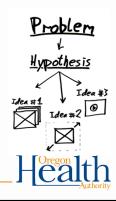
Study Design and Analytic Epidemiology for Outbreak Investigations

Rosalie Trevejo, DVM, MPVM, PhD
Oregon Public Health Division
Acute and Communicable Disease Prevention

1


Objectives

- Define analytic epidemiology
- Describe types of studies to investigate outbreaks
- Discuss control group selection
- Prepare 2 x 2 table
- Calculate and interpret measures of association

Health

Analytic Epidemiology

- Differs from descriptive epi (person, place, time)
- · Develop then test hypothesis
- Examine exposures and outcomes
- Use comparison group (controls)

ರ

Exposure and Outcome

- Exposure= potential risk factor
 - > Ate specific food item
 - > Worked with a chemical
 - ➤ Had a certain behavior (e.g., smoking)
- Outcome= Disease
 - ➤ Cancer
 - > Diarrhea
 - ➤ Injury

Health Authority

Common Types of Studies

- Cohort
- Case-Control
- Case-case
- These are observational studies, as compared with experimental studies

Health

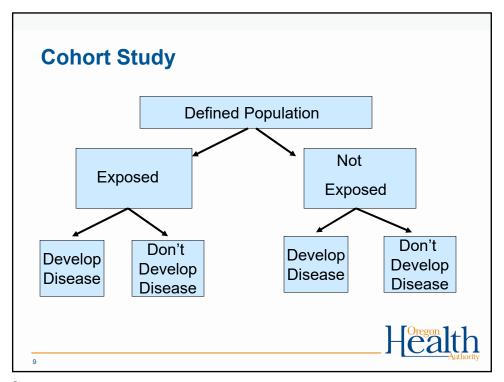
_

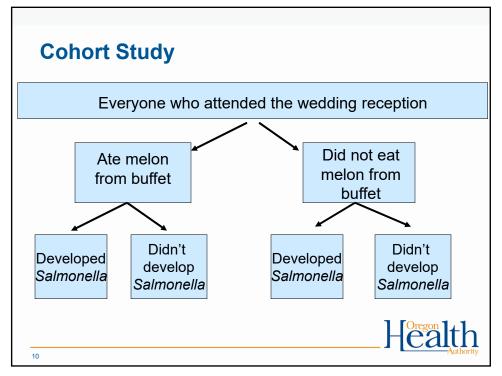
Cohort Design

- Start with defined group, classified by exposure status
 - ➤ Exposed group
 - ➤ Non-exposed group
- Assess who developed disease

Cohort Studies examples

- Nurse's Health Study- 1970's
 120,000 female nurses risk factors for cancer and cardiovascular disease
- Outbreak following a wedding reception
- Illness in a school classroom
- Outbreak after church potluck


7


Why use a cohort?

- Known denominator: # at risk of disease
- Compare exposed and unexposed groups
- · However, not always possible to define cohort

Case-Control Design

- · Classify people by outcome
 - ➤ Cases- have disease
 - > Controls- do not have disease
- Assess past exposure

11

Case-control study examples

- Smoking and lung cancer, 1950s
- Salmonella outbreak associated with nationally distributed product

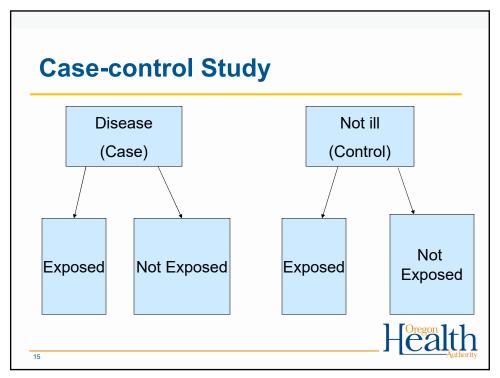
Restaurant outbreak of norovirus

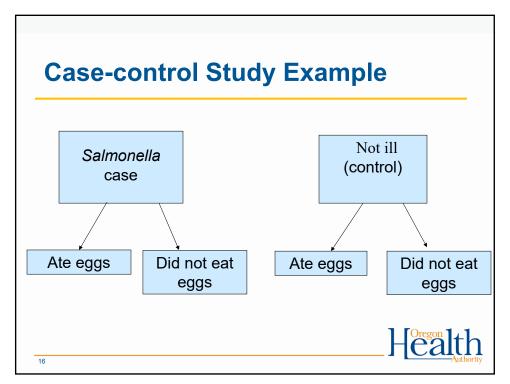
1

Selecting Controls

- · Do not have the disease, but at risk of disease
- · Must have had potential for exposure
- Should be representative of cases
- Key: If they developed the disease, could they be identified as case?

13


Health Authority


13

Potential control groups

- Others who ate at same restaurant
- Neighborhood residents
- Family members
- Friends
- Coworkers
- Random digit dialing
- Classmates
- Medical clinic patients

Advantages & Disadvantages

	Cohort	Case-control
Advantages	Can evaluate rare exposures Can calculate risk	Quick Smaller size Cost effective Can evaluate rare disease
Disadvantages	Inefficient if incubation is long Potential expense Loss to follow up	Recall bias Selection bias

17

Measures of Association

- Quantifies magnitude of association between exposure and disease
 - ➤ Cohort study: relative risk (RR)
 - ➤ Case-control study: odds ratio (OR)

18

2 X 2 table

	Diseased	Not diseased	Row total
Exposed	а	b	a+b
Not exposed	С	d	c+d
Column total	a+c	b+d	a+b+c+d= Grand total

Health Authority

19

Cohort Study: Relative Risk (RR)

- Risk of disease in exposed ÷ risk of disease in unexposed
- RR= a/(a+b) ÷ c/(c+d)

Disease
Yes No
a b
C d

How to interpret If RR = 1?

Health Authority

20

Calculate RR for Cohort Study

- Salmonella Enteritidis outbreak among group of coworkers that had catered lunch with taco bar
- 40 workers ate fresh salsa; 30 developed Salmonella Enteritidis and 10 did not
- Another 40 workers did not eat fresh salsa;
 2 developed Salmonella Enteritidis and 38 did not

21

Health Authority

21

Relative Risk 2 X 2 table

	Salmonella Enteritidis	No Salmonella Enteritidis	Total
Salsa	а	b	a+b
No salsa	С	d	c+d

Complete with your table group.

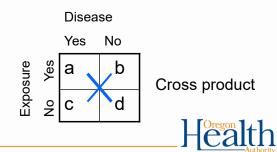
Health Authority

22

Relative Risk conclusion:

Those who ate salsa had higher risk (15X) of developing *Salmonella* Enteritidis than those who didn't eat salsa

24


24

Case-Control Study: Odds Ratio (OR)

- Compare odds of exposure for cases and controls
- Odds Ratio (OR) =

➤ a/c ÷ b/d

> ad/bc

Case-Control Study: Calculate OR

- Cases: 40 restaurant patrons with Salmonella Enteritidis; 30 ate eggs and 10 did not
- Controls: 40 restaurant patrons without Salmonella Enteritidis; 2 ate eggs and 38 did not

Why might a case-control study be good option for restaurant outbreak?

26

Odds Ratio 2 X 2 Table

	Salmonella Enteritidis	No Salmonella Enteritidis
Eggs	а	b
No eggs	С	d
Total	a+c	b+d

Take a moment to enter numbers into 2X2 table.

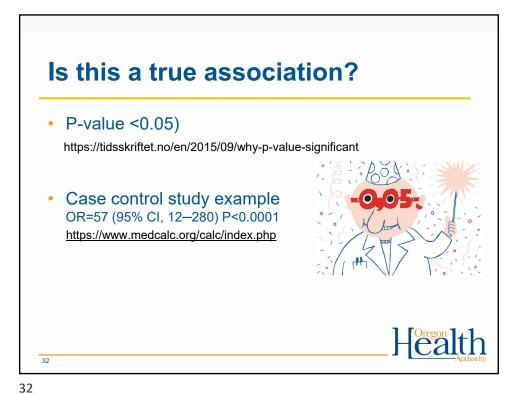
Health Authority

27

Odds ratio 2X2 table results

- Odds Ratio (OR) = (a*d)/(b*c)
- OR=
- Conclusion:
 Cases were ____ times
 more likely than controls to
 have eaten eggs

Complete with your table group.


29

29

Case-case study example: Shotgun

- Compare exposures between 2 groups of cases
- Cluster of STEC 4 cases: compare exposure frequencies with background exposure frequencies in Shotgun database
- Shotgun database provides background exposure frequencies from previously interviewed cases (Salmonella and STEC)

Exposure Code	YES	%	Backgrnd	Binomial	
331 CarrotsLoose	2/4	50	18%	0.1547	
336 PepperBell	2/4	50	26%	0.2813	
338 PepperRed	2/4	50	16%	0.1180	
339 PepperYellow	2/4	50	9%	0.0456	11.1
				_неа	alth

Study Design and Analytic Epidemiology

Exercise

- Handout: CD 303 Exercises (pages 6-8)
- Work in group to complete questions
- Complete each question before proceeding to next question
- Review questions together at end

.