EPA Analytical Methods for Cyanotoxins

Oregon HABs Workshop
August 23, 2018

William A. Adams, Ph.D.

Office of Ground Water and Drinking Water Standards and Risk Management Division
Technical Support Center
Cincinnati, OH
Overview

- Method development
- EPA methods used for cyanotoxin analysis
- Comparing techniques
General Method Development

Target analyte selection

Storage Stability Study
- Tracks target analyte concentrations in preserved tap water for 5 weeks

Instrument Optimization
- Based on scientific literature and preliminary experiments
- Instrument: Analytical column, eluent, temperature programs, flow, injection volume, assays
- Detectors: Target analyte MS tuning, detector settings, probes

System Background – Laboratory Reagent Blank (LRB)

Precision and Accuracy Measurements
- Accuracy: Low: 50–150% Mid/High: 70–130%
- Precision: Low: ≤30% Mid/High: ≤20%
- Analyzed in three matrixes

LCMRL Calculation – Lowest Concentration Minimum Reporting Level
- The lowest true concentration for which the future recovery is predicted to fall between 50% to 150% with 99% confidence

Multi-Laboratory Demonstration
- At least two outside laboratories

Submitted for EPA clearance
Microcystins DW Methods Overview

<table>
<thead>
<tr>
<th>Summary Options</th>
<th>ELISA-Field (Tube/Strips)</th>
<th>ELISA-Lab</th>
<th>LC-MS/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>“Total Microcystins and Nodularins”</td>
<td>“Total Microcystins and Nodularins” (EPA Method 546)</td>
<td>6 Specific Microcystin Congeners and Nodularin-R (EPA Method 544)</td>
</tr>
<tr>
<td>Approx. Limit of Quantification (LOQ)</td>
<td>~0.5 – 1 ug/L</td>
<td>~ 0.3 µg/L</td>
<td>~ 0.02 µg/L</td>
</tr>
<tr>
<td>Time to Result</td>
<td>10 – 60 minutes</td>
<td>1 – 4 hours</td>
<td>< one day</td>
</tr>
</tbody>
</table>
Cylindrospermopsin and Anatoxin-a DW Methods Overview

<table>
<thead>
<tr>
<th>Summary Options</th>
<th>ELISA-Lab</th>
<th>LC-MS/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Cylindrospermopsin and Anatoxin-a</td>
<td>Cylindrospermopsin and Anatoxin-a</td>
</tr>
<tr>
<td>Approx. Limit of Quantification (LOQ)</td>
<td>~ 0.3 and 1.0 µg/L</td>
<td>~ 0.06 and 0.02 µg/L</td>
</tr>
<tr>
<td>Time to Result</td>
<td>1 – 4 hours</td>
<td>< one day</td>
</tr>
</tbody>
</table>
LC-MS/MS

- EPA finished water methods
 - EPA Method 544 – six selected microcystins and nodularin-R
 - EPA Method 545 – cylindrospermopsin and anatoxin-a
LC-MS/MS

• EPA ambient water methods
 • Single Laboratory Validated Method for Determination of Cylindrospermopsin and Anatoxin-a in Ambient Water by Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) (Nov 2017, EPA 600-R-17-130)
 • Single Laboratory Validated Method Determination of Microcystins and Nodularin in Ambient Freshwaters by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) (Nov 2017, EPA 600-R-17-344)
 • thirteen selected microcystins and nodularin-R
LC-MS/MS EPA Method 544
(Selected Microcystins and Nodularin-R)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method Description</th>
<th>Parameter</th>
<th>Method Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting Limit</td>
<td>0.0029–0.022 µg/L (LCMRL)</td>
<td>Sample Preparation</td>
<td>Cell lysing, SPE, concentration</td>
</tr>
<tr>
<td>Sample Collection</td>
<td>500 mL in glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservation</td>
<td>Refrigerated samples, frozen extracts, Trizma buffer, ascorbic acid dechlorination, 2-chloroacetamide microbial inhibition, EDTA, 28-day extract and sample hold time</td>
<td>Quality Control</td>
<td>LRB, precision and accuracy demonstrations, MRL confirmation, QCS, calibration checks, surrogate standard, laboratory fortified blank, laboratory fortified sample matrix and duplicate, field duplicate</td>
</tr>
</tbody>
</table>

\(^1\)EPA Method 544: *Determination of microcystins and nodularin in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)*; EPA Document No. 600-R-14-474; U.S. Environmental Protection Agency, ORD/NERL: Cincinnati, OH, 2015.
LC-MS/MS EPA Method 545
(Cylindrospermopsin and Anatoxin-a)\(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method Description</th>
<th>Parameter</th>
<th>Method Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting Limit</td>
<td>0.063 and 0.018 µg/L (LCMRL)</td>
<td>Sample Preparation</td>
<td>Cell lysing, filtration</td>
</tr>
<tr>
<td>Sample Collection</td>
<td>At least 10 mL in glass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservation</td>
<td>Refrigerated, ascorbic acid dechlorination, sodium bisulfate microbial inhibition, 28-day hold time</td>
<td>Quality Control</td>
<td>LRB, precision and accuracy demonstrations, MRL confirmation, QCS, calibration checks, internal standards, laboratory fortified sample matrix and duplicate, field duplicate</td>
</tr>
</tbody>
</table>

\(^1\)EPA Method 545: Determination of cylindrospermopsin and anatoxin-a in drinking water by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS); EPA Document No. 815-R-15-009; U.S. Environmental Protection Agency, OW/OGWDW/SRMD/TSC: Cincinnati, OH, 2015.
LC-MS/MS Chromatograms

EPA Method 544

- Nodularin
- MC-RR
- MC-YR
- MC-LA
- MC-LR
- MC-LY
- MC-LF
- C$_2$D$_5$-MC-LR (SUR)

EPA Method 545

- L-phenylalanine-d_5
- Uracil-d_4
- CYN
- ANA
Enzyme-Linked Immunosorbent Assay (ELISA)

• ELISA is commonly used to detect cyanotoxins
 • Separate assays are used to detect individual or groups of cyanotoxins
• Adda-ELISA results quantify “total microcystins and nodularins”
 • Based on the Adda portion of the molecules
• Calibration curve based on four-parameter logistic function (sigmoidal curve)
Adda-ELISA EPA Method 546
(Total Microcystins and Nodularins)\(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method Description</th>
<th>Parameter</th>
<th>Method Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting Limit</td>
<td>0.26 µg/L (MC-LR, LCMRL)</td>
<td>Sample Preparation</td>
<td>Cell lysing, filtration</td>
</tr>
<tr>
<td>Sample Collection</td>
<td><100 mL in glass or PTEG</td>
<td></td>
<td>LRB, precision and accuracy demonstrations, MRL confirmation, QCS, calibration verification, laboratory fortified sample matrix and duplicate</td>
</tr>
<tr>
<td>Preservation</td>
<td>Refrigerated then frozen, sodium thiosulfate dechlorination, 14-day hold time</td>
<td>Quality Control</td>
<td></td>
</tr>
</tbody>
</table>

ELISA Calibration Curve

- 80% response
- 60% response
- 50% response
- 40% response
- 20% response

Abs vs. conc MC (ng/mL)
Microcystin Analytical Comparisons

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| EPA Method 544 -or- Other Microcystin LC-MS/MS Analyses | • Sensitive
• Speciates microcystins | • Standards not available for all microcystin congeners (limited target analyte list)
• Instrument limitations considering number of congeners |
| EPA Method 546 ADDA-ELISA | • Cost effective
• Provides “total” concentration (single number)
• Faster turnaround for results | • Does not speciate microcystins
• Non-typical calibration
• Technique is important |
Method 544 and Method 546 Results

• Method results may differ from each other
 • M544 was developed and validated to detect only six microcystin congeners and nodularin-R
 • M546 was developed and validated to detect the Adda portion of microcystins and nodularins with varying degrees of assay recognition (cross-reactivities) using MC-LR as the calibration standard

• It is important to understand what is being measured by each technique for proper application
Conclusions

• EPA cyanotoxin methods underwent rigorous method development processes

• Several methods are available for the analysis of various cyanotoxins

• EPA Methods meet typical DW method validation and performance acceptance criteria

• Results are dependent on the analysis being used
Questions?

ada.ms.william@epa.gov

Disclaimer: Mention of trade names or commercial products does not constitute endorsement or recommendation for use.