Essentials of Surface Water Treatment (Part 2 of 2) Oregon Health Authority Drinking Water Services www.healthoregon.org/dws

Overview of Course:

Part 1:

✓ Background of Surface Water Treatment Rules

Health

- ✓ Filtration
- ✓ Disinfection
- ✓ Operations

Part 2:

2

- 1. Review of Part 1
- 2. Reporting Requirements
- 3. Emerging Issues
- 4. Resources for Operators

1

3

1998 IESWTR

Interim Enhanced Surface Water Treatment Rule

- <u>Addressed concerns about Cryptosporidium</u> required 2-log Crypto (99%) removal)
- Lowered turbidity standard for CF/DF systems: 95% of readings ≤ 0.3 NTU, all readings <1 NTU for systems with population ≥10,000 (later extended to all CF/DF systems under LT1)
- Required Individual Filter Effluent (IFE) turbidimeters

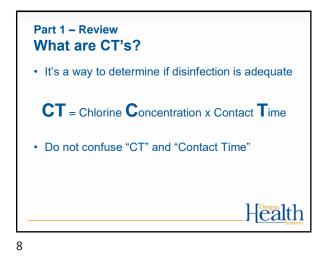
Health

Part 1 - Review 1989 SWTR Surface Water Treatment Rule Required filtration for most SW and GWUDI (Groundwater Under Direct Influence). - States were required to identify GWUDI sources. Required pathogen removal/inactivation: 3-log Giardia (99.9%) & 4-log virus (99.99%) Limited turbidity in filtered water (combined filter effluent): Slow sand/DE/membrane/cartridge/bag: 95% of turbidity readings ≤ 1 NTU; all < 5 NTU - CF/DF: 95% of turbidity readings ≤ 0.5 NTU; all < 5 NTU (replaced under LT1) Required detectable disinfectant residual. Did not address Cryptosporidium. Health

4

6

Background (continued) 2002 LT1 Long-Term 1 Enhanced SW Treatment Rule • Extended 0.3 NTU requirement to CF/DF systems with <a>(10,000 population. 2006 LT2 Long-Term 2 Enhanced SW Treatment Rule • Requires additional Crypto treatment for systems with ≥ 0.075 oocysts/L in their source water. • Very few systems are required to install additional treatment in Oregon.

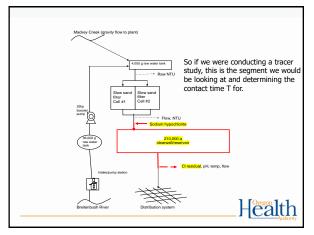

Part 1 – Review

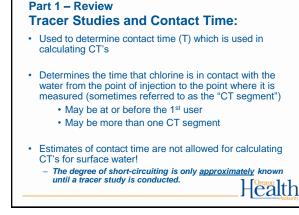
Disinfection Requirements for Surface Water

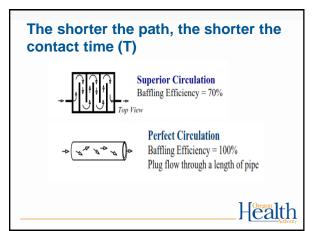
- Surface Water Treatment Rule (SWTR) requires 3-log reduction of *Giardia* using a combination of disinfection and filtration
- 2.0 to 2.5-log removal is achieved through filtration
- 0.5 to 1.0-log inactivation is achieved through disinfection
- Determines which column of EPA tables used to calculate CTs (0.5 or 1.0-log)

Health

7

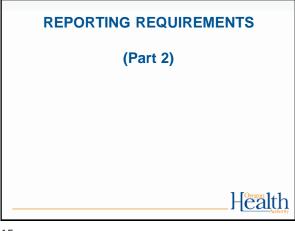



Part 1 – Review How do we calculate CT's? We use the EPA tables to determine the CTs needed to inactivate *Giardia* (CT_{required}) We need to know pH, temperature, and free chlorine residual at the first user in order to use the EPA tables.


- Then we compare that with the CTs achieved in our water system (CT_{actual})
- CT_{actual} must be equal to or greater than CT_{required}

Health

9



Part 1 – Review Tracer studies (continued):

- Must redo if peak hour demand flow increases more than 10% of the maximum flow used during the tracer study
- Community water systems with populations <10,000 and non-profit non-community systems can use the circuit rider to perform a tracer study
- Must submit a proposal to DWS for approval prior to conducting the tracer study (even if using the circuit rider).

Health

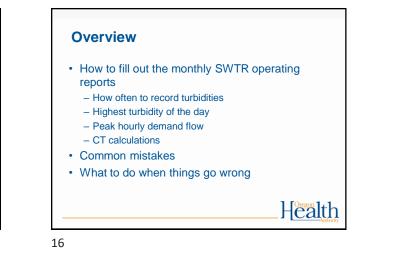
13

15

How to fill out the monthly SWTR reports

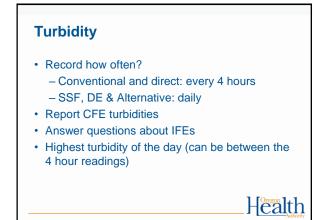
- There are 4 forms:
 - Conventional/Direct
 - Slow Sand / Membrane / DE / Unfiltered
 - Cartridge
 - UV (if used for Giardia credit)
- Must use correct form because each has questions that must be answered that are specific to the filtration type

Health


Part 1 – Review Operations & Maintenance Manual

Keep written procedures on:

- Instrument calibration methods and frequency
- · Data handling/reporting
- Chemical dosage determinations
- · Filter operation and cleaning
- CT determinations
- Responding to abnormal conditions (emergency response plan)


Health

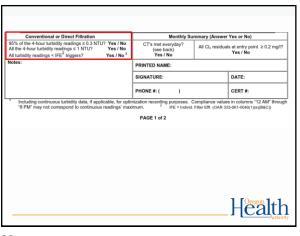
14

- Turbidity
- Peak Hourly Flow
- CT calculations
- Log inactivation requirement (0.5 or 1.0-log, CF/DF only)

OHA -	Drinking	Water Prog	ıram – Turb	idity Monit	oring Repo	ort Form	County:
System Name			Convent ID #:	ional or Dir	wTP-:		h/Year:
DAY	12 AM [NTU]	4 AM [NTU]	8 AM [NTU]	NOON [NTU]	4 PM [NTU]	8 PM [NTU]	Highest Reading of the Day ¹ [NTU]
1					1		
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
18							

21

Peak hourly flow


- Report the Peak Hourly Flow

 greatest volume of water passing through the system during any one hour in a consecutive 24 hr period
- Not the same as Peak Instantaneous Flow
- Report <u>demand</u> flow: flow leaving the clearwell, not plant flow (in most cases)

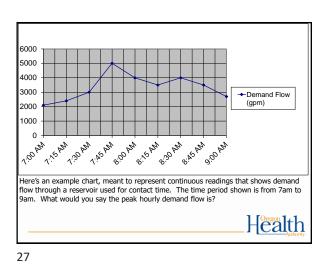
ystem Name:			ID #:		WTP-:	Monti	n/Year:
DAY	12 AM [NTU]	4 AM [NTU]	8 AM [NTU]	NOON [NTU]	4 PM [NTU]	8 PM [NTU]	Highest Reading of the Day ¹ [NTU]
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							

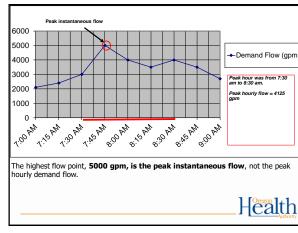
20

22

Method for determining peak hourly demand flow

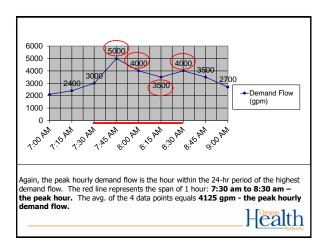
On a daily basis, use the best available operational data to identify the hour within the 24 hr period that had the highest demand flow

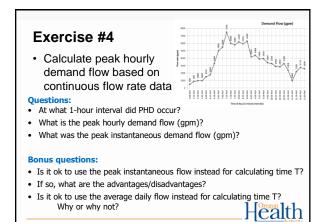

- For the hour of highest demand flow:
 - Calculate the average flow rate within the one hour period (i.e., add the flow rates and divide by the number of data points).
 - Use as many data points as possible, preferably no less than four data points taken at 15 minute intervals

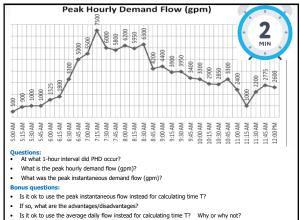

Method for determining peak hourly demand flow (continued)

- For systems that only have a flow totalizer, spot check throughout the day to determine the time of peak demand
- Once that time has been identified (e.g., 8am or 9pm for residential; mid-day for industrial), then record how much water is used during that hour each day and divide by 60 minutes to get a peak hour demand

Health

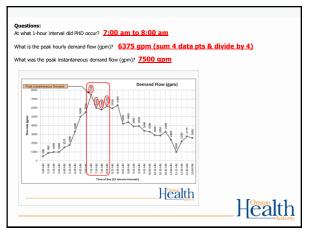

25

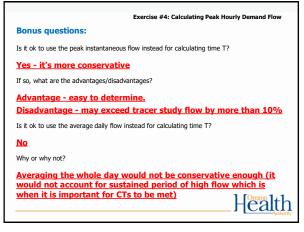


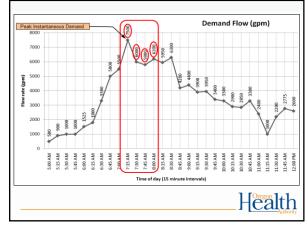


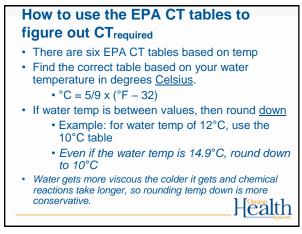
System Name:			ID	#:	WTP-:	Month/Y	ear: I	.og Requirement Circle One): 0.5 / 1.0
Date / Time	Minimum Cl ₂ Residual at 1 st User (C) ³	Contact Time (T)	Actual CT	Temp	рН	Required CT	CT Met?	Peak Hourly Demand Flow
	[ppm or mg/L]	[minutes]	схт	[° C]		Use tables	Yes / No	[GPM]
1/	Ì							
2/								
3/								
4/								
5/								
6/								
7/								
8/								
9/								
10 /								
11/								
12 /								
13 /								
14 /								
15 /								

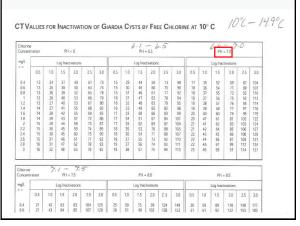
26



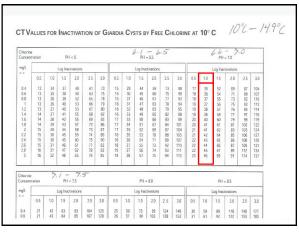


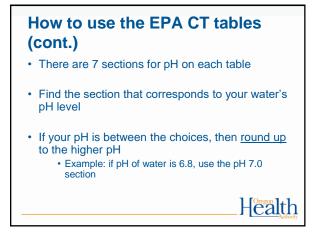


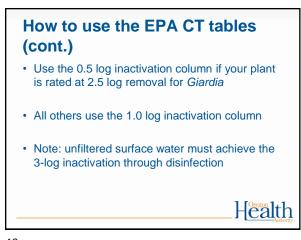


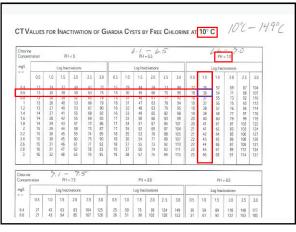


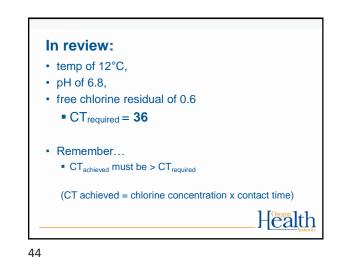
· Example of calculate a running hourly average by averaging the previous 4 data points every 15 minutes.

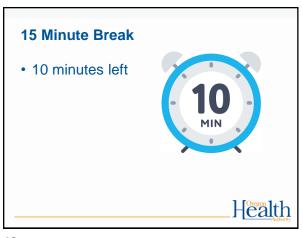

Time (min)	Demand Flow (gpm)	Running Hourly Average Flow (gpm)
5:00 AM	500 -	
5:15 AM	900 -	
5:30 AM	1000	
5:45 AM	1000 🗕	850.0
6:00 AM	1525	1,106.3
6:15 AM	1800	1,331.3
6:30 AM	3300	1,906.3
6:45 AM	5000	2,906.3
7:00 AM	5500	3,900.0
7:15 AM	7500 -	5,325.0
7:30 AM	6000	6,000.0
7:45 AM	5800	6,200.0
8:00 AM	6200 -	6,375.0 <= Peak Hour Demand
		Health

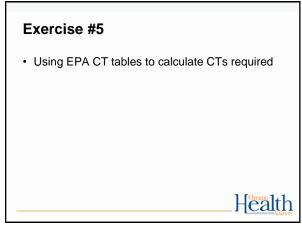

Chlorin Concen			PH < 6					6.1-6.5 PH=65			6-6-7.0 PH-70							
mg/L		-	Log Ine	sivations					Log Ins:	tivations				Log Inactivations				
<.	0.5	1.0	1.5	2.0	25	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
8.4 8.6 8.8 1 1.2 1.4 1.6 1.8 2 2.4 2.6 2.8 3 2 Norine		24 25 26 27 28 29 29 30 31 31 32	37 38 39 40 41 42 43 44 45 45 46 47 48		61 63 66 67 88 89 72 73 74 75 77 78 19	73 75 78 80 82 83 86 87 89 90 92 93 95	15 15 16 16 17 17 17 18 18 18 18 19 19	29 30 31 32 33 34 35 35 36 37 37 38	44 45 46 47 48 49 50 51 52 53 54 55 56 57	59 60 61 63 65 66 67 69 70 71 73 74 75	73 75 77 82 83 84 87 88 89 92 93 94	88 90 92 94 95 98 99 101 104 105 107 110 111 113	17 18 19 19 20 20 21 21 22 22 22 23	35 36 37 37 38 39 40 41 41 41 42 43 44 45 46	52 54 55 56 57 58 60 61 62 54 65 66 67 69	69 71 73 75 76 77 79 81 83 85 86 87 89 91	87 89 92 93 95 97 99 102 103 106 108 109 112 114	104 107 110 112 114 116 119 122 124 127 129 131 134 137
Concent mail	ration	-		< 7.5 thations		_		_	PH =				-		PH -	= 8.5		_
< =	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0
0.4	21 21	42 43	63 64	83 85	104 107	125 128	25 26	50 51	75 M	99 102	124 128	149 153	30 31	59 61	89 92	118 122	148 153	177 183

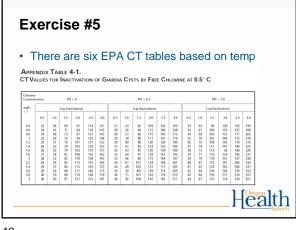

39

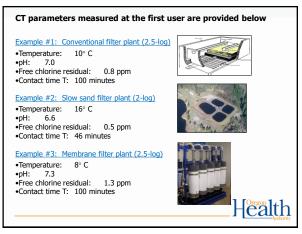


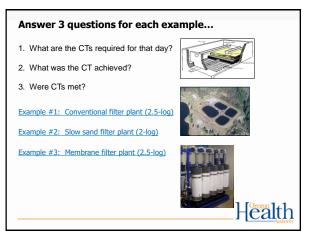

38

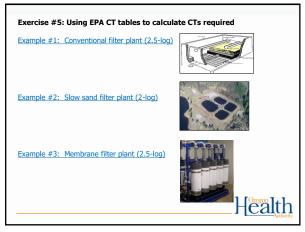


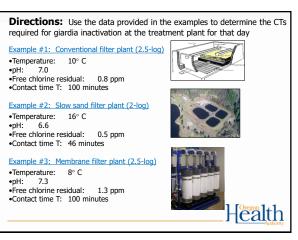

- Match your free chlorine residual on the far left column
- If in between, then round up
 - Rounding chlorine residual up is more conservative because as chlorine residual increases at a given pH, more CT is required
- The point where it intersects with the log inactivation column is the CT_{required} Example: free chlorine residual is 0.6 ppm

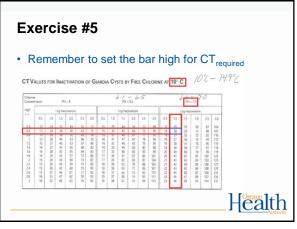


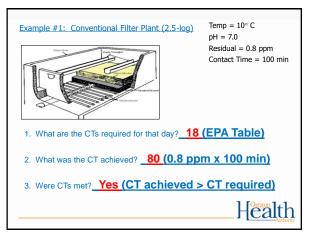


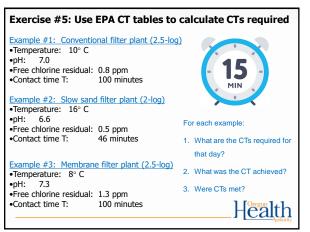

15 Minute Break

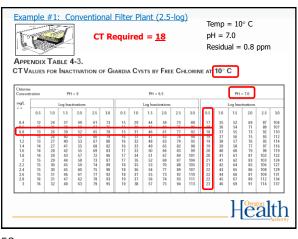


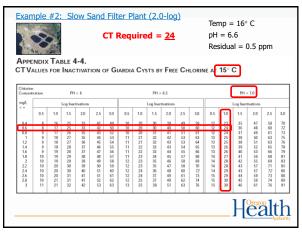


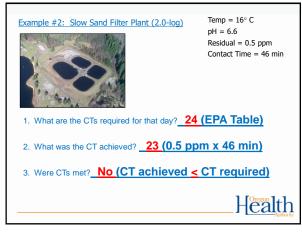


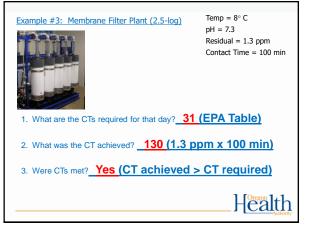


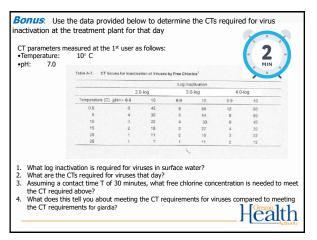


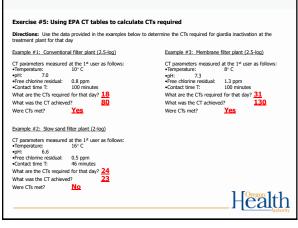


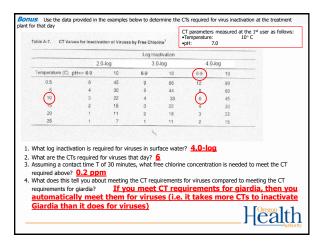


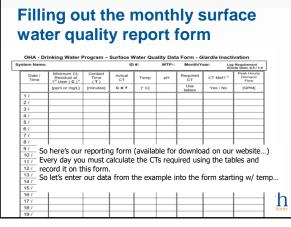

Exercise #5: Use EPA CT tables	to calculate CTs required
Example #1: Conventional filter plant (2.) •Temperature: 10° C •pH: 7.0 •Free chlorine residual: 0.8 ppm •Contact time T: 100 minutes	5-log) Minutes Left
Example #2: Slow sand filter plant (2-log •Temperature: 16° C •pH: 6.6 •Free chlorine residual: 0.5 ppm •Contact time T: 46 minutes) For each example: 1. What are the CTs required for
Example #3: Membrane filter plant (2.5-1 •Temperature: 8° C •PH: 7.3 •Free chlorine residual: 1.3 ppm •Contact time T: 100 minutes	that day? 2. What was the CT achieved? 3. Were CTs met? Herealth



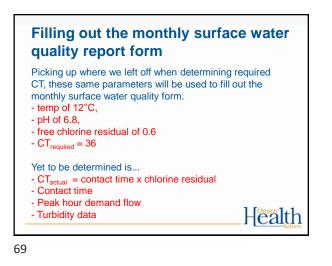






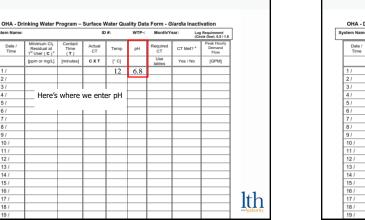


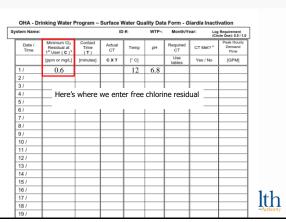
ľ						СТ	Req	uire	ed =	<u>31</u>			рH	- 7.	8° C 3 I = 1		m	
				ON C	DF GIARDIA CYSTS BY FREE C					CHLORINE AT 5.0° C								
mg/L			Log Inac	tivations					Log Ina	tivations					Log Inec	tivations		
0.4 0.6 0.8 1 1.2 1.4 1.8 2.2 2.4 2.4 2.6	0.5 28 29 29 30 31 31 31 32 33 33 34 35 36	1.0 55 57 58 60 61 62 64 65 67 68 70 71 72	1.5 83 86 88 90 92 94 96 98 100 102 105 107 109	2.0 111 114 117 122 125 128 131 133 136 139 142 145 147	2.5 138 143 146 149 153 156 160 163 167 170 174 178 181 181	3.0 166 171 175 179 183 187 192 196 200 204 209 213 217 221	0.5 33 34 35 36 37 38 39 40 41 41 42 43 44 45	1.0 66 68 70 72 74 76 77 79 81 83 84 86 88 88	1.5 99 102 105 108 111 114 116 119 122 124 127 129 132 134	2.0 132 136 140 144 147 151 155 159 162 165 169 172 175 179	2.5 165 170 175 180 184 189 193 198 203 207 211 215 219 223	3.0 198 204 210 216 221 227 232 238 243 248 253 258 263 268	0.5 39 41 42 43 45 46 47 48 49 50 51 52 53 54	1.0 79 81 84 87 89 91 94 96 98 100 102 104 106 108	1.5 118 122 126 130 134 137 141 144 147 150 153 156 159 162	2.0 157 163 168 173 178 183 187 191 196 200 204 208 212 216	2.5 197 203 210 217 223 228 234 239 245 250 255 260 265 270	3. 23 24 25 26 26 26 27 28 29 30 30 30 30 31 31 31 32


Filling out the monthly surface water quality report form

Health

Picking up where we left off when determining required CT, these same parameters will be used to fill out the monthly surface water quality form.


- temp of 12°C, - pH of 6.8,
- free chlorine residual of 0.6
- CT_{required} = 36


68

System Name:			10	#:	WTP-:	Month/Y	ear: Log (Cir	Requirement cle One): 0.5 / 1.0	
Date / Time	Minimum Cl ₂ Residual at 1 st User (C) ³	Contact Time (T)	Actual CT	Temp	рН	Required CT	CT Met? ³	Peak Hourly Demand Flow	,
	[ppm or mg/L]	[minutes]	схт	[, c]		Use tables	Yes / No	[GPM]	
1/			ĺ	12					
2/									
3/				ľ					
4/	Here's	where	we ent	er temp	5 🗌				
5/									
6/			1						
7/									
8/									
9/									
10 /									
11/									
12 /									
13/									
14 /									
15 /									
16 /									1.1
17 /									Ith
18 /									Author
19/									/ 100000

70

System Na

1/

3/

4/ 5/

6/

8/

9/ 10/ 11/

12 / 13 /

14 /

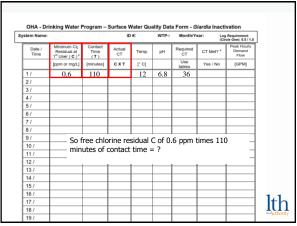
15 /

16 / 17 /

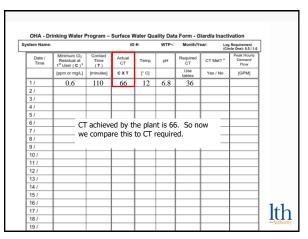
18 / 19

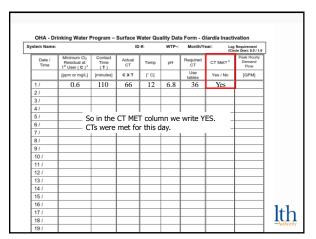
Date / Time

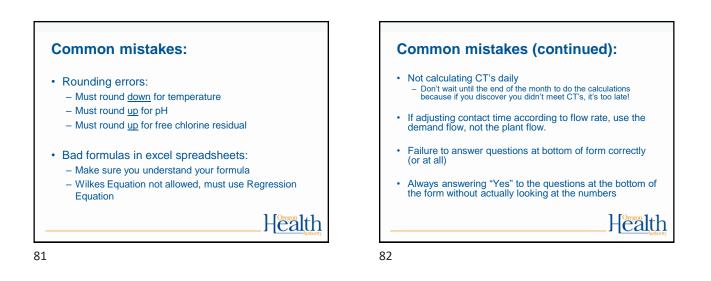
stern Narne:			ID	#:	WTP-:	Month/Ye	ear: Log	Requirement cle One): 0.5 / 1.0]
Date / Time	Minimum Cl ₂ Residual at 1 st User (C) ³	Contact Time (T)	Actual CT	Temp	рН	Required CT	CT Met? *	Peak Hourly Demand Flow	,
	[ppm or mg/L]	[minutes]	схт	[. c]		Use tables	Yes / No	[GPM]	
1/	0.6			12	6.8	36			
2/									
3/									
4/									
5/							ired 36,		
6/		which w	e foun	d from	the El	PA table	s		
7/									
8/		L 1				. I			
9/									
10/									
11/									
12/									
13/									
14 /									
14 / 15 /									
									1.
15 /									11
15 / 16 /									It


OHA - Drinking Water Program - Surface Water Quality Data Form - Giardia Inactivation Log Requirement (Circle One): 0.5 / ID #: WTP-M System Date / Time Minimum Cl₂ Residual at 1st User (C) Temp Time (T) Actual CT pН equir CT CT Met? Deman Flow схт [" C] Yes / No [GPM] mg/L] 0.6 12 6.8 36 2/ 3/ 4 5/ 6/ 8/ 9/ 10/ 11/ 12/ 13/ 14/ 15/ 16/ 17/ 18/ OK. We now we need to calculate the actual CTs achieved and compare it to the CTs required of 36 to determine if CTs were met for the day. lth 19

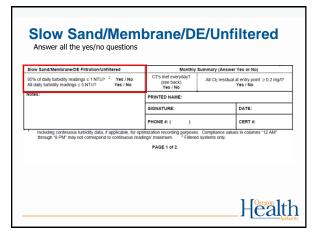
74



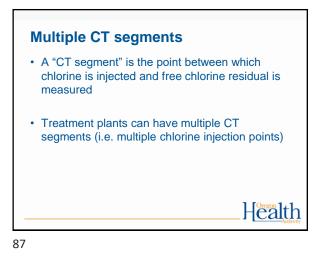

75

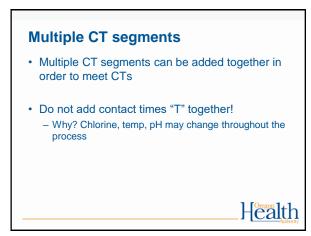


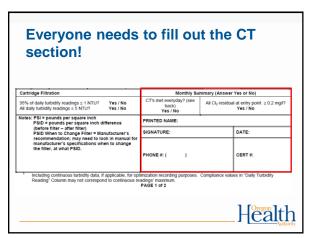
System Name			10	#:	WTP-:	Month/Y	ear: Lo (Ci	Requirement rcle One): 0.5 / 1.0	
Date / Time	Minimum Cl ₂ Residual at 1 st User (C) ³	Contact Time (T)	Actual CT	Temp	рН	Required CT	CT Met? *	Peak Hourly Demand Flow	
	[ppm or mg/L]	[minutes]	схт	[, c]		Use tables	Yes / No	[GPM]	
1/	0.6	110		12	6.8	36	1		
2/									
3/									
4/		1				T (
5/	Here's w	nere we	e enter	contac	t time	I from	our trace	er study	
6/	I								
7/									
8/									
9/									
97									
10 /									
10 /									
10 / 11 /									
10 / 11 / 12 /									
10 / 11 / 12 / 13 /									
10 / 11 / 12 / 13 / 14 /									

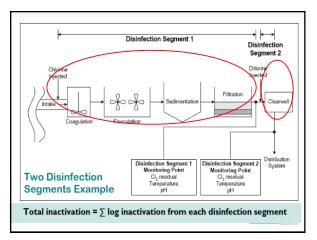


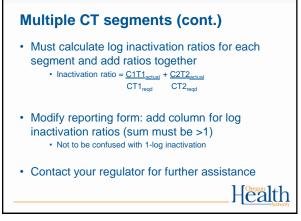
stem Name:			ID)#:	WTP-:	Month/Y	ear: Log	Requirement cle One): 0.5 / 1.0]
Date / Time	Minimum Cl ₂ Residual at 1 st User (C)*	Contact Time (T)	Actual CT	Temp	рН	Required CT	CT Met? *	Peak Hourly Demand Flow	1
	[ppm or mg/L]	[minutes]	схт	[. c]		Use tables	Yes / No	[GPM]	
1/	0.6	110	66	12	6.8	36			
2/									
3/				1					
4/									
5/									
6/				l I					
7/	In orde						be		
8/	greater	than CT	require	ed, whi	ch it is	5.			
9/									
10 /									
11/									
12 /									
13 /									
14 /									
15 /									
16 /									1.
17 /									– It
18/									10
107									




Conventional or Direct Filtration	Monthly Su	mmary (Answer	Yes or No)
5% of the 4-hour turbidity readings ≤ 0.3 NTU? Yes / No III the 4-hour turbidity readings ≤ 1 NTU? Yes / No III turbidity readings < IFE ² triggers? Yes / No ²	CT's met everyday? (see back) Yes / No	All Cl ₂ residual	Is at entry point ≥ 0.2 mg/l? Yes / No
otes:	PRINTED NAME:		
	SIGNATURE:		DATE:
	PHONE #: ()		CERT #:
"8 PM" may not correspond to continuous readings' ma	pAGE 1 of 2	Filter Effl. (OAR 33	3-061-0040(1)(e)(B&C))






Cartridge Filtration	Monthly Summary (Answer Yes or No)				
95% of daily turbidity readings ≤ 1 NTU? Yes / No All daily turbidity readings ≤ 5 NTU? Yes / No		CT's met everyday? (see back) Yes / No	All Cl ₂ residua	al at entry point ≥ 0.2 mg/l Yes / No	
Notes: PSI = pounds per square inch PSID = pounds per square inch differen	PRINTED NAME:				
(before filter – after filter) PSID When to Change Filter = Manufacturer's recommendation: may need to look in manual for		SIGNATURE:		DATE:	
manufacturer's specifications when to a the filter, at what PSID.	•	PHONE #: ()		CERT #:	
 Including continuous turbidity data, if applic Reading[®] Column may not correspond to co 	able, for op ontinuous re	timization recording purposes. adings' maximum. PAGE 1 of 2	Compliance valu	es in "Daily Turbidity	

What to do when things go wrong:

Such as:

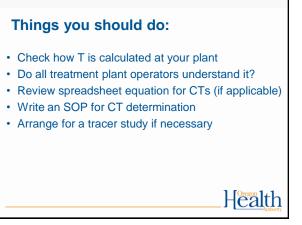
- Treatment interruptions
- CTs not met
- Turbidity exceeds regulatory limits

What to do:

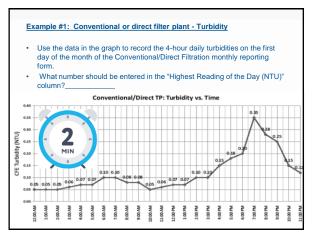
 Call your regulatory contact at the drinking water program

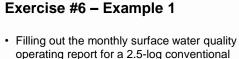
Health

91

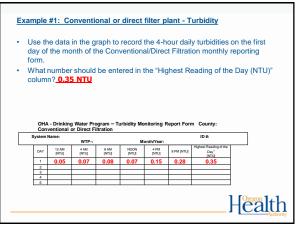


- In order to verify adequate disinfection is taking place, we need to calculate CT achieved (CT_{actual})
- EPA reviewed many disinfection studies in order to create CT Tables that specify minimum CT requirements needed to achieve specific log reduction levels for *Giardia* (CT_{required})
- CT_{actual} must be equal to or greater than CT_{required}

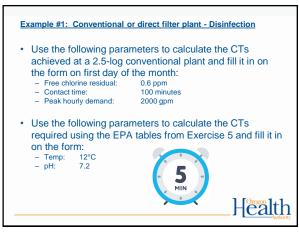

Health

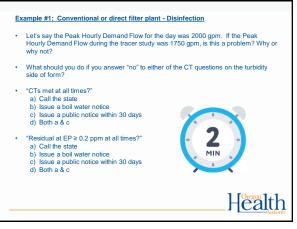

Health

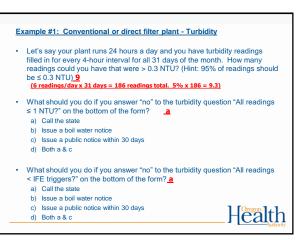
92

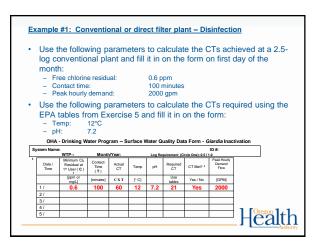


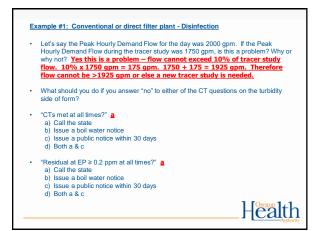
93

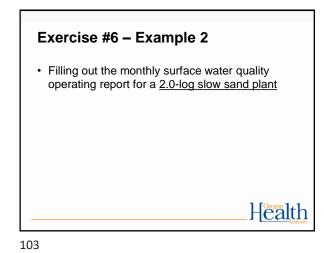

filtration plant

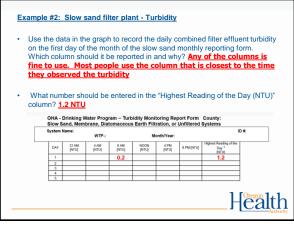


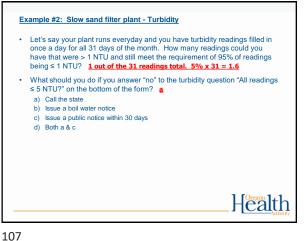


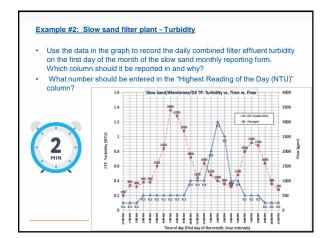


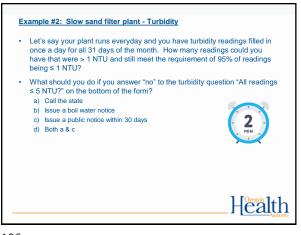


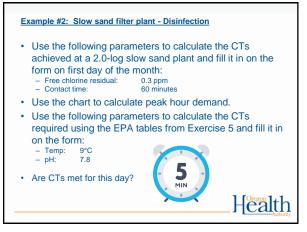


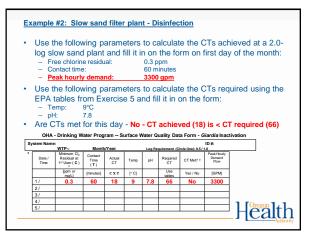


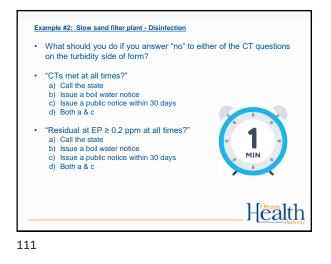


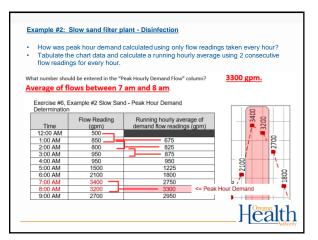


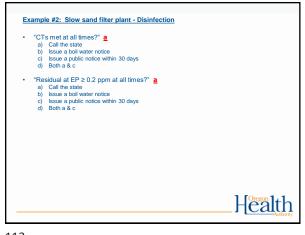


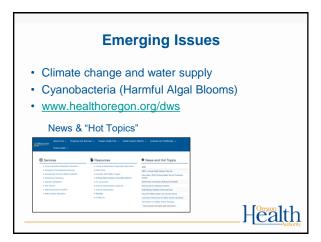












Climate Change and Water Supply

- · Earlier and heavier snowpack runoff
- Increasing variability of storm frequency and intensity
- Weather extremes already evident
- Increased variability in water quality; can affect both surface and groundwater systems.
- Changes in rainfall patterns affect all systems
- Rising sea levels could lead to salt water intrusion or flooding

Health

115

117

RESOURCES FOR OPERATORS

Cyanobacteria

· Produce toxins that can be harmful

· Occur in warm, slow moving water

Increasing in frequency and duration

- happening more or better reporting?

· Resources for operators on-line at:

- more people, more nutrients, warmer water

www.healthoregon.org/dwcyanotoxins

Health

118

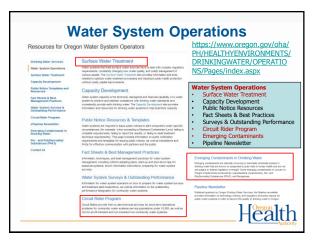
Tools & Resources (continued)

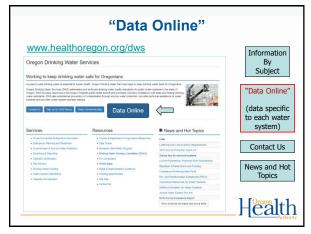
- US Environmental Protection Agency (USEPA) Rules http://water.epa.gov/lawsregs/rulesregs/sdwa/current
- regulations.cfm
 AWWA http://www.pnws-awwa.org/
 (American Water Works Association)
- OAWU <u>http://www.oawu.net/</u> (Oregon Association of Water Utilities)
- Oregon Drinking Water Services Circuit Rider Program <u>http://public.health.oregon.gov/HealthyEnvironments</u>

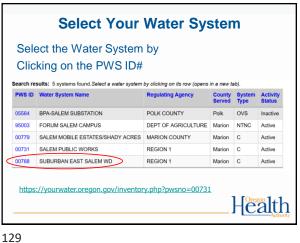
/DrinkingWater/Operations/Pages/circuitrider.aspx

 ORWARN <u>http://www.orwarn.org/</u> (Oregon Water/Wastewater Agency Response Network)

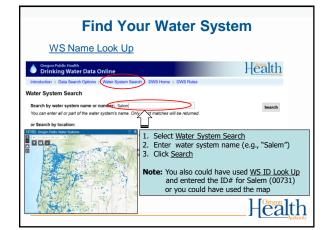
121

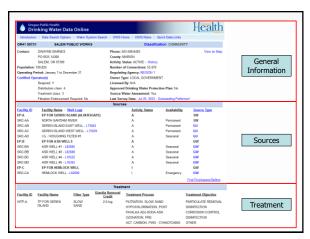

123

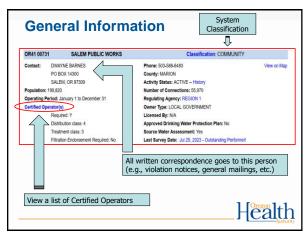


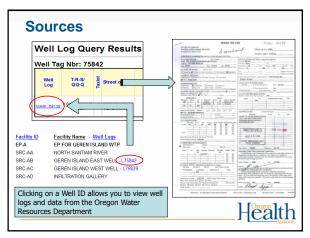

122

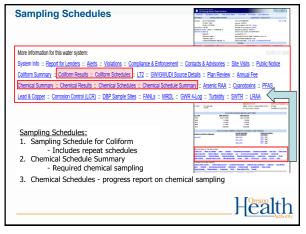
Health

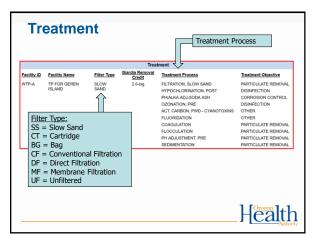


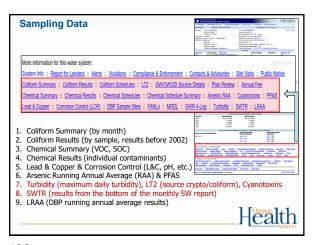


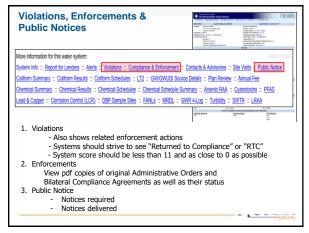


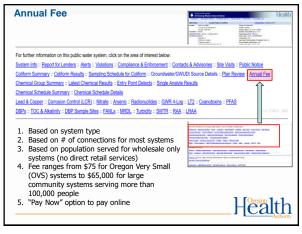


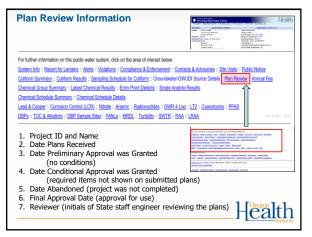




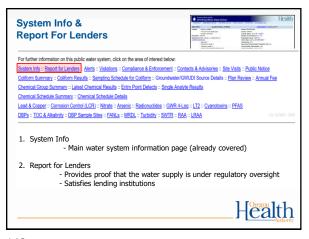


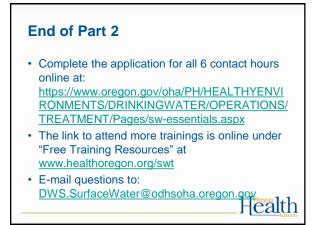






iolation	Histor	у	PWS ID:	. <u>00731</u>	SAL	EM PUBLIC WORKS		OR41	er ner, ni
Group Abb	reviatio	layed for the las ns: CCR = Cons ates return to con	umer Confid		port				
Hide Auto-R	TC S	ow Determination	Dates					Go to pub	ic notice
Violation Number	Auto- RTC?	Monitoring Peri Begin En		Facility ID	Analyte Group	Violation Type - Analyte C Show analytes for all violation		Enforcement Action - Date Show history	Point
902792450	Y	Jul 01, 2023 Ju	05, 2023		CCR	CCR Late/Norveporting - 1		Returned To Compliance - Jul 05, 2023	1
SYSTEM SC .eam about						Number of years	the old	Unaddressed Points lest violation has been unaddressed (n) System Score Points under formal enforcement Points RTCrd	0 0 0





QUESTIONS?

- E-mail questions to: <u>DWS.SurfaceWater@odhsoha.oregon.gov</u>
- Call your technical services contact at the State.
- State Drinking Water Services – General Info: (971) 673-0405

Health

145

 Thank you!

 • Please provide any feedback you have in the chat for this training.