

Plan Review for New and Existing Public Water Systems

Baxter Call, PE

1

Outline of Presentation

- Plan review (PR) process for a new Public Water System (PWS)
 - High level overview
 - · Identify, confirm and inform
 - PR Workflow
 - Setbacks and Waivers
 - When to activate PWS
- PR considerations for existing PWS
 - Triggers for new PR
 - · Adding disinfection to existing well source
 - Common elements in small groundwater PWS
- Questions at the end as time allows

PR Process for a New PWS

3

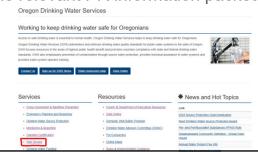
3

PR for a New PWS - Overview

- A new PWS is identified
- OHA Data Management, Compliance and Enforcement (DMCE) issues a PWS ID number
- County Health Department, Department of Agriculture, or OHA Drinking Water Services (DWS) fills out and sends inventory update to OHA DMCE.
- PWS contacts DWS engineer with questions
- PWS submits plans to OHA DWS

PR for a New PWS - Overview Cont'd

- Well evaluation by hydrogeologist; engineer reviews plans
- Additional information may be requested
- Optional: Construction standards waiver application
- OHA writes PWS a letter of approval (or not)
- PWS confirms project completion (written)
- OHA sends final approval (or not)

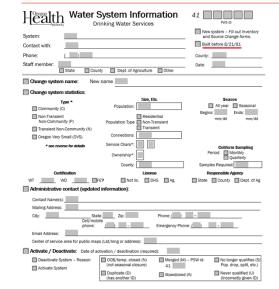

5

New PWS Identified – Confirm & Inform

- 1. Potential PWS is identified
- 2. Regulator confirms it is actually a PWS
 - Communicate with a responsible party, get their address/phone/email
 - Recent owner change? Is it an inactive PWS (i.e. already in SDWIS)?
 - Number of connections and users
 - Duration of use in calendar year
- 3. Regulator provides PWS with the relevant PR information packet(s):
 - Well
 - Distribution
 - Storage
 - Treatment

Located on OHA DWS webpage:

4. PWS initiates PR with fee


New PWS Identified - Workflow

- 5. Regulator/PR engineer fill out forms for Inventory Update Send to compliance.dw@odhsoha.oregon.gov
 - Water System Information
 - Entry Structure Form
 - Entry Structure Diagram (may not be possible until after site visit)
 - Source Information (not possible until source installed)

7

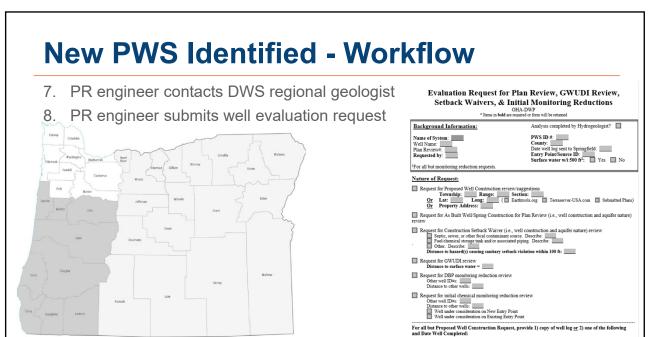
New PWS Identified - Workflow

I	Determining	System	Туре
		> 25 Vear	.

Pop/ Daily Use	Number of Connections	≥25 Same Daily Users	Round Residents	System Type
<10	<4	No	No	Not a System
10-24	4-14	-	-	Oregon Very Small
25+	-	No	No	Transient Non-Community
25+	-	Yes	No	Non-Transient Non-Community
25+	15÷	Yes	Yes	Community

New PWS Identified - Workflow 41 00000 Health Entry Structure Diagram OHA Drinking Water Program Health Entry ID Source ID System: Contact with: ■ New Source ■ Pre '81 ■ Plan Review ■ Needs Plan Approved Review Modify Source Abandon/Di Agency: Choose One Staff member: indwater Info e Type 🔲 Well 🗎 Spring , 0000000 Entry Points Treatment Changes Only Begins Ends w 4 h 2

9


New PWS Identified - Workflow

- 6. Forms for Inventory Update
 - Water System Information
 - Entry Structure Form
 - Entry Structure Diagram (may not be possible until after site visit)
 - Source Information (not possible until source installed)

Food for Thought:

Do you think it is the PR engineer's responsibility to fill out these forms each time? If so, why? Does first contact make more sense?

Presentation later this morning on Survey 123 – Does this change the workflow/responsibilities for the Inventory Update process?

11

New PWS Identified - Workflow

- 9. PR engineer writes initial letter within 30 days
 - · Site Plan Approval,
 - · Site Plan Evaluation,
 - · Conditional Approval, or
 - · Preliminary Approval

	Plan Review Records										
Plan ID	Project Name	Date All Received	Request for Additional Info	Site Plan Evaluation/ Approval	Conditional Approval	Preliminary Approval	Date Abandoned	Final Approval	Plan Not Approved	Waivers	Reviewer
108-2017	Master Plan	08/31/2017						10/06/2017			JM
159-2015	Clearwell maintenance	10/01/2015			10/02/2015		03/12/2021				JM
36-2014	Raw Water Transmission Main	02/18/2014				02/18/2014		12/10/2015			JM
58-2013	Siletz River Intake	04/23/2013				02/11/2014		09/14/2016			JM
17-2013	Tracer Study	01/28/2013				02/08/2013		07/26/2013			DH
93-2010	old Master Plan	06/09/2010						07/15/2010			FK
194-2003	Old Master Plan	02/01/2006						06/08/2007			TC
170-2003	Willow Creek Storage-Waterline	08/15/2003			08/15/2003			05/23/2006			TC
268-1999	WTP Improvements	09/24/1999			10/06/1999	06/05/2000		07/13/2001			MW
211-1997	Toledo Industrial Park	09/10/1997				10/02/1997		10/29/1997			MG
35-1997	Toledo Industrial Park	02/21/1997			03/31/1997			10/22/1997			MG
78-2013	Phase 1 - Skyline Drive 1.9 MG Water Storage Tank					07/26/2013		07/01/2024 (PDF)			JM
206-1997	Wright Creek waterline ext				10/02/1997		06/20/2000				MG

County Well ID: Well Tag: L Start Card:

Date Well Completed:

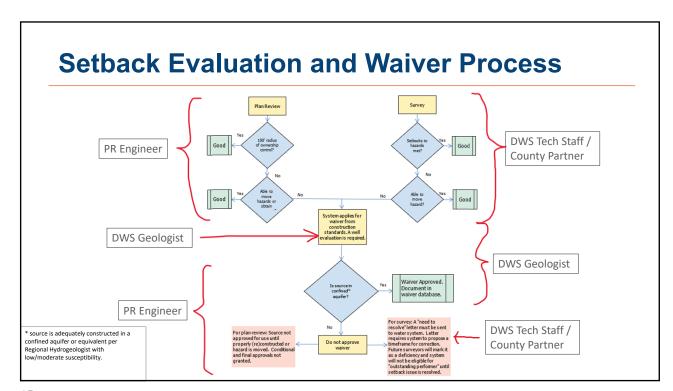
- 10. PR engineer responsible for following up with PWS, consultant, well driller.
- 11. PR engineer writes final letter
 - Final approval (or not)

New wells and DWS/Oregon Water Resources Department (OWRD)

Hazard	OWRD Setback (OAR 690-210-0030)	DWS Setbacks (OAR 333-061-0050(2))
Septic Tank	50 ft	50 ft
Septic drainline or sewage sludge disposal	100 ft	100 ft
Closed sewage or storm drain system	50 ft	100 ft – pressure sewer 50 ft – gravity sewer
Confined animal feeding/holding; or animal waste holding	50 ft	100 ft
Commercial fuel storage tank	50 ft	100 ft
Residential fuel storage	25 ft	100 ft
Hazardous waste storage, disposal, or treatment facility	500 ft	100 ft

13

New Wells that Violate Setbacks


- 1. PR engineer communicates with PWS
 - a) Encourage PWS to meet requirements → Site Plan Approval Letter

- 2. When requirements cannot be met → Site Plan Not Approved Letter
 - a. PWS applies for construction standards waiver (available on DWS website)
 - b. Source evaluation for sensitivity by DWS hydrogeologist
 - Adequate construction in confined aquifer → PR Coordinator review → PR manager review → Waiver Approval
 - b. Highly sensitive source → "Unapproved"

15

New PWS Identified - When to Activate?

Food for Thought:

What constitutes an "active" system?

- · When construction is complete?
- When PR final approval has been issued?
- Once the PWS is delivering water to customers?

Timing and Communication:

- 1. DWS Tech Staff or PR engineer fills out new PWS capacity assessment form
- 2. Regulator initiates chemical and bacteriological sampling schedules
 - PR engineer generally includes chemical sampling requirements in final approval letter
- 3. Regulator conducts water system survey within first year of operation

PR Considerations for existing PWS

17

17

Existing PWS – Triggers for PR

Proactive

- PWS contacts regulator or DWS about new project
- PWS applies for DWSRF funding for infrastructure improvements

Reactive

- Regulator discovers major modification during water system survey
- Regulator/DMCE notices chlorine residual reported on routine coliform sample results

Prescriptive

- DWS requires treatment addition
 - GW 4.0-log disinfection
 - GWUDI determination
 - · Untreated surface water source discovered
 - Corrosion control

Adding Disinfection to Existing Well

1. PR engineer notifies DWS geologist with disinfection narrative

a. Formal well evaluation may be needed

Sources
Facility ID Facility Name - Well Logs Activity Status Availability Source Type
EP-A EP FOR WELL A GW
SRC-AA WELL (09/01/92) - LINC1746 A Permanent GW

- 2. DWS geologist reviews available information and makes recommendation
 - A well that is inadequately constructed must be upgraded to meet construction standards before disinfection may be installed when E. Coli has been confirmed
 - b. Monthly assessment monitoring may be required
- 3. PR engineer communicates testing requirements in PR approval letter
- 4. DWS geologist updates groundwater source database and requests sample schedule once treatment has been installed

Other considerations:

- New or increased disinfection byproduct (DBP) sampling
- Chlorine residual monitoring
- Two 6-month demonstration rounds of lead and copper (L&C) sampling

19

Common Elements in Small Groundwater PWS

Old Wells

- Original construction pre-1981 may not require PR
- PWS modification to pre-1981 well may require PR
 - Deepening
 - · Extending casing above ground
- PWS correcting significant deficiencies noted during WSS does require PR, if correction can be considered a "major modification"
 - Major modification examples:
 - · Replacing casing seal
 - · Raising wellhead to protect from flooding
 - Not considered major modifications:
 - No raw water sample tap
 - · No screen on existing well vent

Common Elements in Small Groundwater PWS

Waterlines

All water systems have them, but they do not necessarily require PR.

- OAR 333-061-0050(8)(c) In community PWS, distribution mains located in public roadways or easements, and from the distribution main to the property line or service meter are subject to PR.
- OAR 333-061-0050(8)(d) In all PWS where the system facilities and the premises being served are both on the same parcel(s) of property, requirements relating to pipe materials and pipe installation shall comply with the State Plumbing Code.

21

Common Elements in Small Groundwater PWS

UV Disinfection

- OAR 333-061-0050(5)(I) At non-Community water systems using only groundwater and having minimal distribution systems, water suppliers may use UV as the only disinfectant when total coliforms but no E. Coli have been detected in the source water.
 - UV reactor must meet NSF Standard 55 Class A
 - · Still need to go through PR
- PWS adding UV "for kicks" does not need PR
- PWS seeking disinfection credit for pathogen inactivation (i.e. E. Coli confirmed) are required to select a UV reactor that has gone through validation testing and is capable of achieving specific UV dose.

			Log ₁₀ In			
Manufacturer	Model		Crypto.	Giardia	Virus	Max. Flow (gpm)
Neotech	D438		3.5	3.5	0	435
	UVSwiftSC™ D12		3.5+	3.5+	4.0+	3,000
Tesian	UVSwiftSC™ B03		3.5 3.5 *	3.5 3.5 *	0	132
Trojan	UVSwift™ 2L12	UVSwift™ 2L12			0	4,500
	UVSwift™ 4L12		3.5 *	3.5 *	0	4,500
	Pro50/SV50/Sterilight50		3.5	3.5	0	70
Viqua	Pro50/SV50/Sterilight5	3.0	3.0	0	80	
	Pro24-186		5.5+	5.5+	4.0	24
Calgon	Sentinel 24" 9-lamp		4.0	4.0	0	19,600
Berson/Nuvonics	Amaline 100b		3.5+	3.5+	0	890
Berson/Nuvonics	Amaline 300b		3.5+	3.5+	0	2,660
atg	UV SP-25-6		3.0	3.0	0	495
	Spektron 250e		4.0	4.0	0	7,300
81//00		^ ^	3.0	0	387	
Table 32				3.0	0	1,760
e for Cryptosporidium, Giardia lamblia, and Virus Inactiv			Virus	4.0	0	4,650
Cryptosporidi	um Giardia Lamblia					

Log Credit	Cryptosporidium	Giardia Lamblia	Virus	4
	UV dose (mJ/cm ²)	UV dose (mJ/cm ²)	UV dose (mJ/cm ²)	
0.5	1.6	1.5	39	
1.0	2.5	2.1	58	
1.5	3.9	3.0	79	
2.0	5.8	5.2	100	
2.5	8.5	7.7	121	
3.0	12	11	143	
3.5	15	15	163	
4.0	22	22	186	

Thank you!

Baxter Call, PE
Regional Engineer – Region 2
Oregon Health Authority – Drinking Water Services

23