333-061-0036 Sampling and Analytical Requirements

Table 14

A	В	С	Designation	Sample Location
Y	Y	Y	EP for wellfield	Most susceptible well Entry point
Y	Y	N	Wellfield	Entry point for most susceptible well
N	Y	Y	EP for wellfield	Entry point for wellfield
Y	N	Y	EP for wells (not a wellfield)	Entry point
N	N	Y	EP for wells (not a wellfield)	Entry point
Y	N	N	Separate (not a wellfield)	Each entry point separately
N	Y	N	Separate (not a wellfield)	Each entry point separately
N	N	N	Separate (not a wellfield)	Each entry point separately

Note: A: wells are within 2,500 feet of each other; B: wells are in the same and no other aquifer; C: wells have a common entry point to the distribution system and pump simultaneously.

Table 15				
Contaminant	Detection Limit (mg/l)			
Alachlor	0.0002			
Atrazine	0.0001			
Benzo(a) pyrene	0.00002			
Carbofuran	0.0009			
Chlordane	0.0002			
Dalapon	0.001			
Di(2-ethylhexyl) adipate	0.0006			
Di(2-ethylhexyl) phthalate	0.0006			
Dibromochloropropane (DBCP)	0.00002			
Dinoseb	0.0002			
Dioxin (2,3,7,8-TCDD)	0.000000005			
Diquat	0.0004			
Endothall	0.009			
Endrin	0.00001			
Ethylene Dibromide (EDB)	0.00001			
Glyphosate	0.006			

Heptachlor	0.00004
Heptachlor Epoxide	0.00002
Hexachlorobenzene	0.0001
Hexachlorocyclopentadiene	0.0001
Lindane(BHC-g)	0.00002
Methoxychlor	0.0001
Oxamyl (Vydate)	0.002
Picloram	0.0001
Polychlorinated Biphenyls (PCBs),	0.0001
as Decachlorobiphenyl	
Pentachlorophenol	0.00004
Simazine	0.00007
Toxaphene	0.001
2,4-D	0.0001
2,4,5-TP (Silvex)	0.0002

Table 16

Source	Population	Monitoring	Dis	tribution	system monite	oring location	ns
water type	and category	periods and	Total per	Near	Average	High	High
		frequency of	monitoring	entry	residence	TTHM	HAA5
		sampling	period	points	time	locations	locations
Surface	< 500	One (during	2	1		1	
water or	purchasing	peak					
GWUDI:	water systems	historical month) ¹					
	< 500 non-	One (during	2			1	1
	purchasing	peak					
	water systems	historical					
		month) ¹					
	500-3,300	four (every	2	1		1	
	purchasing	90 days)					
	water systems	C /	2				
	500-3,300	four (every	2			1	1
	non-	90 days)					
	purchasing						
	water systems 3,301-9,999	form (arramy	4		1	2	1
	3,301-9,999	four (every 90 days)	4		1	2	1
	10,000-	six (every 60	8	1	2	3	2
	49,999	days)					
	50,000-	six (every 60	16	3	4	5	4
	249,999	days)					
	250,000-	six (every 60	24	4	6	8	6
	999,999	days)					

	1,000,000- 4,999,999	six (every 60 days)	32	6	8	10	8
	≥5,000,000	six (every 60 days)	40	8	10	12	10
Ground- water:	< 500 purchasing water systems	one (during peak historical month) ¹	2	1		1	
	< 500 non- purchasing water systems	one (during peak historical month) ¹	2			1	1
	500-9,999	four (every 90 days)	2			1	1
	10,000- 99,999	four (every 90 days)	6	1	1	2	2
	100,000- 499,999	four (every 90 days)	8	1	1	3	3
	≥500,000	four (every 90 days)	12	2	2	4	4

¹ Peak historical month refers to the month with the highest TTHM or HAA5 levels, or the month of warmest water temperature.

Table 17

Source water	Population	Monitoring	Distribution sy	stem monitor	ring location
type	•	frequency 1	Total per	Highest	Highest
			monitoring	TTHM	HAA5
			period ²	locations	locations
Surface water	< 500	per year	2	1	1
systems or	500-3,300	per quarter	2	1	1
GWUDI	3,301-9,999	per quarter	2	1	1
	10,000-		4	2	2
	49,999	per quarter	4	2	2
	50,000-		0	4	4
	249,999	per quarter	8	4	4
	250,000-	man quantan	12	6	6
	999,999	per quarter	12	6	
	1,000,000-	per quarter	16	8	8
	4,999,999		16	8	
	≥5,000,000	per quarter	20	10	10
Groundwater	< 500	per year	2	1	1
	500-9,999	per year	2	1	1
	10,000-		4	2	2
	99,999	per quarter	4	2	2
	100,000-			2	2
	499,999	per quarter	6	3	3

≥500,000 per	quarter 8	4	4
--------------	-----------	---	---

All water systems must monitor during month of highest DBP concentrations.

	Table 1	.8	
Source water type	Population size category	Monitoring Frequency ¹	Distribution system monitoring location total per monitoring period ²
Surface water systems	< 500	per year	2
or GWUDI:	500-3,300	per quarter	2
	3,301-9,999	per quarter	2
	10,000-49,999	per quarter	4
	50,000-249,999	per quarter	8
	250,000-999,999	per quarter	12
	1,000,000-4,999,999	per quarter	16
	≥5,000,000	per quarter	20
Groundwater:	< 500	per year	2
	500-9,999	per year	2
	10,000-99,999	per quarter	4
	100,000-499,999	per quarter	6
	≥500,000	per quarter	8

¹ All systems must monitor during month of highest DBP concentrations.

² Water systems on quarterly monitoring must collect dual sample sets every 90 days at each monitoring location, except for surface water or groundwater under the direct influence of surface water systems serving 500-3,300. Groundwater systems serving 500-9,999 on annual monitoring must collect dual sample sets at each monitoring location. All other water systems on annual monitoring, and systems using surface water or groundwater under the direct influence of surface water serving 500-3,300 are required to collect individual TTHM and HAA5 samples at the locations with the highest TTHM and HAA5 concentrations. Systems using surface water or groundwater under the direct influence of surface water serving 500-3,300 may collect one dual sample set per monitoring period if the highest TTHM and HAA5 concentrations occur at the same location. For systems serving fewer than 500 people, only one location with a dual sample set per monitoring period is needed if the highest TTHM and HAA5 concentrations occur at the same location, and month.

² Water systems on quarterly monitoring must collect dual sample sets every 90 days at each monitoring location, except for surface water or groundwater under the direct influence of surface water systems serving 500-3,300. Groundwater systems serving 500-9,999 on annual monitoring must collect dual sample sets at each monitoring location. All other water systems on annual monitoring, and systems using surface water or groundwater under the direct influence of surface water serving 500-3,300 are required to collect individual TTHM and HAA5 samples at

the locations with the highest TTHM and HAA5 concentrations. Systems using surface water or groundwater under the direct influence of surface water serving 500-3,300 may collect one dual sample set per monitoring period if the highest TTHM and HAA5 concentrations occur at the same location. For systems serving fewer than 500 people, only one location with a dual sample set per monitoring period is needed if the highest TTHM and HAA5 concentrations occur at the same location, and month.

Table 19

Source water type Population size Category Population size frequency Distribution system monitoring location monitoring period			
Surface water	< 500	nequency	Monitoring may not be reduced.
or GWUDI:	500-3,300	per year	One TTHM sample at the location and during the quarter with the highest TTHM single measurement, and one HAA5 sample at the location and during the quarter with the highest HAA5 single measurement; or one dual sample set per year if the highest TTHM and HAA5 measurements occurred at the same location and during the same quarter.
	2 dual sample sets, one at the location and during the quarter with the highest TTHM single measurement, one at the location and during the quarter with the highest HAA5 single measurement.		
	10,000-49,999	per quarter	2 dual sample sets, one each at the locations with the highest TTHM and highest HAA5 LRAAs.
	50,000-249,999	per quarter	4 dual sample sets at the locations with the two highest TTHM and two highest HAA5 LRAAs.
	250,000-999,999	per quarter	6 dual sample sets at the locations with the three highest TTHM and three highest HAA5 LRAAs.
	1,000,000- 4,999,999	per quarter	8 dual sample sets at the locations with the four highest TTHM and four highest HAA5 LRAAs.
≥5,000,000 per quarter		per quarter	10 dual sample sets—at the locations with the five highest TTHM and five highest HAA5 LRAAs.
Groundwater:	< 500	every third year	One TTHM sample at the location and during the quarter with the highest TTHM single measurement, and one HAA5 sample at the location and during the quarter with the highest HAA5 single measurement; or one dual sample set per year if the highest TTHM and HAA5 measurements occurred at the same location and during the same quarter.

500-9,999	per year	One TTHM sample at the location and during the quarter with the highest TTHM single measurement, and one HAA5 sample at the location and during the quarter with the highest HAA5 single measurement; or one dual sample set per year if the highest TTHM and HAA5 measurements occurred at the same location and during the same quarter. 2 dual sample sets: one at the location and during the quarter with the highest TTHM single
		measurement, one at the location and during the quarter with the highest HAA5 single measurement.
100,000-499,999	per quarter	2 dual sample sets; at the locations with the highest TTHM and highest HAA5 LRAAs.
≥500,000	per quarter	4 dual sample sets at the locations with the two highest TTHM and two highest HAA5 LRAAs.

¹ Systems on quarterly monitoring must take dual sample sets every 90 days.

Table 20	
Population Served:	Samples Per Week:
500 or less	1
501 to 3,300	2
3,301 to 10,000	3
10,001 to 25,000	4
More than 25,000.	5

Table 21

CT V	CT Values (CT99.9) for 99.9 Percent Inactivation of Giardia Lamblia Cysts								
	by Free Chlorine at 0.5 °C(33°F) or Lower ¹)								
Free residua	l (mg/l)		pΗ	I					
	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0		
≤0.4	137	163	195	237	277	329	390		
0.6	141	168	200	239	286	342	407		
0.8	145	172	205	246	295	354	422		
1.0	148	176	210	253	304	365	437		
1.2	152	180	215	259	313	376	451		
1.4	155	184	221	266	321	387	464		
1.6	157	189	226	273	329	397	477		
1.8	162	193	231	279	338	407	489		
2.0	165	197	236	286	345	417	500		

Page 6 of 13

2.2	169	201	242	297	353	426	511
2.4	172	205	247	298	361	435	522
2.6	175	209	252	304	368	444	533
2.8	178	213	257	310	375	452	543
3.0	181	217	261	316	382	460	552

 $^{^{1}}$ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} values at the lower temperature and at the higher pH.

Table 22

	Om ** 1	(CM) D	1 aute				
	CT Values (blia Cysts	
		by Fre	e Chlorine	at 5.0 °C(4)	1°F)¹		
Free residu	al (mg/l)		p.	H			
	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	97	117	139	166	198	236	279
0.6	100	120	143	171	204	244	291
0.8	103	122	146	175	210	252	301
1.0	105	125	149	179	216	260	312
1.2	107	127	152	183	221	267	320
1.4	109	130	155	187	227	274	329
1.6	111	132	158	192	232	281	337
1.8	114	135	162	196	238	287	345
2.0	116	138	165	200	243	294	353
2.2	118	140	169	204	248	300	361
2.4	120	143	172	209	253	306	368
2.6	122	149	175	213	258	312	375
2.8	124	148	178	217	263	318	382
3.0	126	151	182	221	268	324	389

¹ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 23

CT V	alues (CT9	_{9.9}) for 99.9	Percent In	activation (of Giardia .	Lamblia Cy	ysts				
	by Free Chlorine at 10.0 °C(50°F) ¹										
Free residua	Free residual (mg/l) pH										
	≤6.0	≤6.0 6.5 7.0 7.5 8.0 8.5 ≤9.0									
≤0.4	73	88	104	125	149	177	209				
0.6	75	90	107	128	153	183	218				

0.8	78	92	110	131	158	189	226
1.0	79	94	112	134	162	195	234
1.2	80	95	114	137	166	200	240
1.4	82	98	116	140	170	206	247
1.6	83	99	119	144	174	211	253
1.8	86	101	122	147	179	215	259
2.0	87	104	124	150	182	221	265
2.2	89	105	127	153	186	225	271
2.4	90	107	129	157	190	230	276
2.6	92	110	131	160	194	234	281
2.8	93	111	134	163	197	239	287
3.0	95	113	137	166	201	243	292

 $^{^{1}}$ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 24

CT V	alues (CT ₉	_{9.9}) for 99.9	Percent In		of Giardia	Lamblia Cy	rsts
		by Free	Chlorine a	t 15.0 °C(5	9°F) ¹		
Free residua	l (mg/l)		p	H			
	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	49	59	70	83	99	118	140
0.6	50	60	72	86	102	122	146
0.8	52	61	73	88	105	126	151
1.0	53	63	75	90	108	130	156
1.2	54	64	76	92	111	134	160
1.4	55	65	78	94	114	137	165
1.6	56	66	79	96	116	141	169
1.8	57	68	81	98	119	144	173
2.0	58	69	83	100	122	147	177
2.2	59	70	85	102	124	150	181
2.4	60	72	86	105	127	153	184
2.6	61	73	88	107	129	156	188
2.8	62	74	89	109	132	159	191
3.0	63	76	91	111	134	162	195

¹ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at lower temperature, and at the higher pH.

Table 25

CT Values (CT_{99.9}) for 99.9 Percent Inactivation of Giardia Lamblia Cysts

		by Fre	e Chlorine	at 20 °C(68	8°F)1		
Free residua	l (mg/l)	·	p]	H	,		
	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	36	44	52	62	74	89	105
0.6	38	45	54	64	77	92	109
0.8	39	46	55	66	79	95	113
1.0	39	47	56	67	81	98	117
1.2	40	48	57	69	83	100	120
1.4	41	49	58	70	85	103	123
1.6	42	50	59	72	87	105	126
1.8	43	51	61	74	89	108	129
2.0	44	52	62	75	91	110	132
2.2	44	53	63	77	93	113	135
2.4	45	54	65	78	95	115	138
2.6	46	55	66	80	97	117	141
2.8	47	56	67	81	99	118	143
3.0	47	57	68	83	101	122	146

 $^{^{1}}$ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 26

CT V	alues (CT ₉			activation of		Lamblia Cy	/sts
	b	y Free Chlo	orine at 25	°C(77°F) ¹ a	nd Higher		
Free residua	l (mg/l)		p	H			
	≤6.0	6.5	7.0	7.5	8.0	8.5	≤9.0
≤0.4	24	29	35	48	50	59	70
0.6	25	30	36	43	51	61	73
0.8	26	31	37	44	53	63	75
1.0	26	31	37	45	54	65	78
1.2	27	32	38	46	55	67	80
1.4	27	33	39	47	57	69	82
1.6	28	33	40	48	58	70	84
1.8	29	34	41	49	60	72	86
2.0	29	35	41	50	61	74	88
2.2	30	35	42	51	62	75	90
2.4	30	36	43	52	63	77	92
2.6	31	37	44	53	65	78	94
2.8	31	37	45	54	66	80	96
3.0	32	38	46	55	67	81	97

¹ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the indicated pH values may be determined by linear interpolation. CT values between

the indicated temperatures of different tables may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature, and at the higher pH.

Table 27

-CT Values (CT _{99.9}) Percent Inactivation of Giardia Lamblia Cysts								
by Chlorine Dioxide and Ozone ¹								
Temperature								
	<1°C	5 °C	10 °C	15 °C	20 °C	>25 °C		
Chlorine dioxide 63 26 23 19 15 11								
Ozone	2.9	1.9	1.4	0.95	0.72	0.48		

¹ These CT values achieve greater than 99.99 percent inactivation of viruses. CT values between the indicated temperatures may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature for determining CT_{99.9} values between indicated temperatures.

Table 28

		1 40	10 20								
CT	CT Values (CT _{99.9}) for 99.9 Percent Inactivation of Giardia Lamblia Cysts										
	by Chloramines ¹										
	Temperature										
<1°C	<1°C 5 °C 10 °C 15 °C 20 °C >25 °C										
3,800	3,800 2,200 1,850 1,500 1,100 750										

¹ These values are for pH values of 6 to 9. These CT values may be assumed to achieve greater than 99.99 percent inactivation of viruses only if chlorine is added and mixed in the water prior to the addition of ammonia. If this condition is not met, the system must demonstrate, based on demonstration studies or other information, as approved by the Authority, that the system is achieving at least 99.99 percent inactivation of viruses. CT values between the indicated temperatures may be determined by linear interpolation. If no interpolation is used, use the CT_{99.9} value at the lower temperature for determining CT_{99.9} values between indicated temperatures.

Table 29								
Population	Samples per day							
1 to 500	1							
501 to 1,000	2							
1,001 to 2,500	3							
2,501 to 3,300	4							

Table 30

CT Values (mg-min/L) for Cryptosporidium Inactivation by Chlorine Dioxide*

				VI I							
Log		Water Temperature, Deg. C									
Credit	≤0.5	1	2	3	5	7	10	15	20	25	30
0.25	159	153	140	128	107	90	69	45	29	19	12
0.5	319	305	279	256	214	180	138	89	58	38	24
1.0	637	610	558	511	429	360	277	179	116	75	49
1.5	956	915	838	767	643	539	415	268	174	113	73
2.0	1275	1220	1117	1023	858	719	553	357	232	150	98
2.5	1594	1525	1396	1278	1072	899	691	447	289	188	122
3.0	1912	1830	1675	1534	1286	1079	830	536	347	226	147

*Systems may use this equation to determine log credit between the indicated values: Log credit = (0.001506 x (1.09116)) (temp) x CT.

Table 31 CT Values (mg-min/L) for *Cryptosporidium* Inactivation by Ozone*

Log		Water Temperature, Deg. C									
Credit	≤0.5	1	2	3	5	7	10	15	20	25	30
0.25	6.0	5.8	5.2	4.8	4.0	3.3	2.5	1.6	1.0	0.6	0.39
0.5	12	12	10	9.5	7.9	6.5	4.9	3.1	2.0	1.2	0.78
1.0	24	23	21	19	16	13	9.9	6.2	3.9	2.5	1.6
1.5	36	35	31	29	24	20	15	9.3	5.9	3.7	2.4
2.0	48	46	42	38	32	26	20	12	7.8	4.9	3.1
2.5	60	58	52	48	40	33	25	16	9.8	6.2	3.9
3.0	72	69	63	57	47	39	30	19	12	7.4	4.7

*Systems may use this equation to determine log credit between the indicated values: Log credit = $(0.0397 \text{ x } (1.09757)(^{\text{temp}}) \text{ x CT}.$

Table 32
UV Dose Table for *Cryptosporidium*, *Giardia lamblia*, and Virus Inactivation Credit

e i Bose Tuble for Cryptosportationi, Giarata tambita, and i has machination create			
Log Credit	Cryptosporidium	Giardia Lamblia	Virus
	UV dose (mJ/cm ²)	UV dose (mJ/cm ²)	UV dose (mJ/cm ²)
0.5	1.6	1.5	39
1.0	2.5	2.1	58
1.5	3.9	3.0	79
2.0	5.8	5.2	100
2.5	8.5	7.7	121
3.0	12	11	143
3.5	15	15	163

4.0	22	22	186

Table 33 Total Coliform Monitoring Frequency at Public Water Systems Serving More Than 1,000 People			
Population served	Minimum number of routine samples per month	Population served	Minimum number of routine samples per month
1,001 to 2,500	2	70,001 to 83,000	80
2,501 to 3,300	3	83,001 to 96,000	90
3,301 to 4,100	4	96,001 to 130,000	100
4,101 to 4,900	5	130,001 to 220,000	120
4,901 to 5,800	6	220,001 to 320,000	150
5,801 to 6,700	7	320,001 to 450,000	180
6,701 to 7,600	8	450,001 to 600,000	210
7,601 to 8,500	9	600,001 to 780,000	240
8,501 to 12,900	10	780,001 to 970,000	270
12,901 to 17,200	15	970,001 to 1,230,000	300
17,201 to 21,500	20	1,230,001 to 1,520,000	330
21,501 to 25,000	25	1,520,001 to 1,850,000	360
25,001 to 33,000	30	1,850,001 to 2,270,000	390
33,001 to 41,000	40	2,270,001 to 3,020,000	420
41,001 to 50,000	50	3,020,001 to 3,960,000	450
50,001 to 59,000	60	3,960,001 or more	480
59,001 to 70,000	70		

Table 34		
Number of People Served	Number of Standard Monitoring	Number of Reduced Monitoring •
by the Water System	Sites	Sites
>100,000	100	<u>50</u>
10,001 to 100,000	60	<u>30</u>
3,301 to 10,000	40	<u>20</u>
501 to 3,300	20	<u>10</u>
101 to 500	10	<u>5</u>
≤100	5	<u>5</u>
Number of People Served	Number of Reduced Monitoring	
by the Water System	Sites	
>100,000	50	
10,001 to 100,000	30	
3,301 to 10,000	20	

Formatted Table

Page **12** of **13**

501 to 3,300	10	
101 to 500	5	
<u>≤100</u>	5	

Table 35		
Number of people served by the water system	Number of sample locations	
>100,000	25	
10,001-100,000	10	
3,301 to 10,000	3	
501 to 3,300	2	
101 to 500	1	
<100	1	

Table 36		
Number of People Served by the Water System	Reduced Number of Sample Sites	
>100,000	10	
10,001-100,000	7	
3,301 to 10,000	3	
501 to 3,300	2	
101 to 500	1	
<100	1	

Table 37				
CT Values for	CT Values for 4-log Inactivation of Viruses (mg/L-minutes) 1,2			
Temperature in °C	pH = 6-9	pH = 10		
0.5	12	90		
5	8	60		
10	6	45		
15	4	30		
20	3	22		
25	2	15		

^{1 -} Adapted from Table E-7, Appendix E, Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources, 1990.
2 - Basis for values given in Appendix F, Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources, 1990.