Oregon Cyanobacteria Harmful Algae Bloom Surveillance (CHABS) Program

SAMPLING GUIDELINES
Cyanobacteria Blooms in Recreational Waters

Public Health Division
Center for Health Protection
Environmental Public Health Section

July 2021
These sampling guidelines represent a consensus view among experts and stakeholders involved in CyanoHABs issues either through public health protection, resource management, research, or environmental regulation.

The guidelines were reviewed and approved by laboratories that specialize in cyanobacteria analysis. In any case, contact the laboratory prior to sampling to confirm sample collection and preservation requirements.
Background

Cyanobacteria, also known as blue-green algae, are commonly found in many fresh and saltwater environments around the world. Some cyanobacteria species are referred to as toxigenic because they have the potential to produce toxins that can harm people, pets and wildlife.

The Oregon Health Authority, Public Health Division (OHA) is working to gain a better understanding of the occurrence of cyanobacteria blooms (cyanoHABs) in Oregon and their impact on human health. Funding for Oregon’s Harmful Algae Bloom Surveillance program was through a five-year federal grant from the U.S. Centers for Disease Control and Prevention (CDC). That grant ended in September of 2013, leaving the program without funding. OHA, however, continues to implement the highest priority activities, such as issuing and lifting advisories, and educating the public about cyanobacteria and cyanotoxins.

Part of the cooperative agreement with the CDC included building the capacity of water body management agencies to monitor water bodies in a scientifically sound manner with the goal of protecting public health. The OHA continues to rely on data from environmental samples collected by water body managers, and other agencies and groups, to inform advisory decisions. OHA works in partnership with management agencies when issuing and lifting public health advisories.

Purpose of this document

The purpose of this document is to provide guidance for managers who intend to monitor freshwater bodies when potentially harmful cyanobacteria blooms are detected. Topics covered include proper sample collection, cyanobacteria identification and enumeration, and cyanotoxin analysis with the objective of protecting public health, specifically with respect to general recreational uses. It is not intended to cover sample collection for environmental or ecological assessment, or for community water system protection.

Sampling guidance

Assessing the public health risk posed by toxic cyanobacteria or the potential for development of cyanobacteria blooms is complex, and bloom configuration and cyanotoxin production can change rapidly. When deciding to sample an affected water body, consider the following.

Visual Assessment: A Precursor to Sampling

Simple visual assessment is an important tool in recognizing cyanobacteria and cyanobacteria blooms. Visual assessment of bloom status such as areas of discoloration or surface scum collection should be used to guide sampling. Materials and equipment to help identify cyanobacteria (e.g., field guides and microscopes) provide an early warning mechanism to help address concerns about cyanoHABs.

Visual Assessment Steps:

- Determine if a bloom is present based on water color and level of cyanobacteria visible on the surface and/or suspended throughout the water column.
- Describe the location where concentrated cyanobacteria or floating mats are found (e.g., in and around swimming areas).
- Take photos (close-up and overview) of areas with concentrated cyanobacteria or floating mats.
- Record results of the visual assessment on a field data sheet (example in Appendix A).
- Contact the OHA if a bloom is present.

Sample collection

Monitoring focuses primarily on the protection of human health and secondarily on the health of pets and livestock. Visual observation of a cyanobacteria bloom triggers water sampling and helps to determine the best sample locations based on recreational activity.

Assessing potential recreational hazards can be complicated when numerous access points are present around the water body. Factors to consider when managing a bloom are:

- Cyanobacteria often accumulate along shorelines or structures such as docks and dams. They can be seen as scum or floating mats
- The characteristics of a cyanobacteria bloom can change rapidly due to wind and other environmental or physical factors (waves, currents, etc.)
- Cell densities (size of a bloom) can change quickly as cyanobacteria multiply

The general assumption is that scums or thick concentrations of cells in the water column present the greatest risk to recreators and are therefore the best places to sample.

Samples should represent the worst-case conditions in areas where people and animals are most likely to be exposed to affected water. The location and number of samples will depend upon recreational use and the funding available for sampling and analysis. If funding is limited, sampling should focus on near shore waters in areas where swimming and water play occurs. This is especially important because children and pets often found in these areas are the most vulnerable. If resources allow, sampling away from the shore may be desirable to assess risks to water skiers and other deep-water users.

Time of day when collecting samples is as important as where they are taken. Variations in environmental conditions throughout the day change how cyanobacteria react and where blooms may be seen. As temperatures rise, cyanobacteria move closer to the surface creating a scum or appearing as globs of cells in the water column. Wind and underlying currents can influence where blooms are seen and influence how well-mixed the water will be. Mixing causes cells and toxins to disperse, reducing their presence in the sample. Before sampling, think about the time of day when water is warm and calm and when peak recreational activity occurs before deciding when and where to sample.

Follow-up samples

Each bloom is unique, so the timing of follow-up sampling will vary according to the characteristics of the bloom and the affected water body. Considering the questions below may influence the decisions made about when to collect follow-up samples.
- Are you conducting Toxin-Based Monitoring: Option 2 (page 6)? If so, and toxin concentrations are below recreational use values (RUVs, sample every other week.

- Are there changes in the bloom’s appearance (e.g. size, location, density, color)? Conduct visual observations while the bloom is present. If toxins were below OHA RUVs and the blooms appearance changes drastically, follow-up sampling is recommended to determine if toxins have spiked.

- Has there been a report of an animal death or human illness? Such reports are an important indication that further evaluation, such as toxin analysis, should be done.

- Does the weather forecast call for rain? Periods of cool rainy weather may contribute to the collapse of the bloom or run-off may introduce nutrients that can lead to the resurgence of a bloom, especially if warm weather follows the rain.

- Is the wind or current strong enough to move the bloom from the initial sampling location? Shifts in wind direction can move a bloom from one location to another causing blooms to accumulate along shorelines, structures or in protected areas.

- Is the temperature rapidly falling? Cyanobacteria blooms generally do not thrive during the winter months due to low water temperatures. Some genera of cyanobacteria can sink into sediment and become dormant until weather conditions become optimal.

Standardized collection methods

Standardized collection methods ensure samples are representative of field conditions and minimize sample collection variability while meeting program goals and managing limited resources. They also represent a worse-case exposure scenario when people and animals recreate in an affected water body.

The extent of any recreational use advisory depends upon the characteristics of the water body being sampled and the level of monitoring being performed. Depending upon the size, geography, current, etc., OHA staff may determine that the advisory should apply to either the entire waterbody, or if selected areas of the water body can be singled out.

1. **Grab/single point sampling.** This is the most basic collection method used to characterize a bloom. Samples are taken at the point in the bloom that appears to be the densest or considered the worst case. If resources permit, additional grab samples can be taken in other areas to determine what portions of a water body are of concern. All results from samples taken at a given water body are considered in the public health advisory process.

2. **Composite sampling.** This method minimizes the most sample variability, because it employs a variety of techniques to combine samples taken at a particular point across time, at many depths in a single location, or at a given depth in multiple locations. Use the following guidelines when performing composite sampling:

 - Take three samples that reflect worse-case conditions (areas with the most scum or thickest cyanobacteria) and combine
• Do not combine samples taken from within the bloom with those taken outside the bloom (in a “clean” area). This will avoid dilution of the cells and toxins and the risk of a false negative during analysis.

• Do not combine samples from different blooms or different water bodies as they are likely to have significantly different species composition and toxin profiles.

Appendix B has a list of field equipment and step-by-step instructions for collecting the type of water samples outlined above.

Note: When determining worse-case scenarios, think of the risk of exposure to people and pets through recreational activities. Exposures increase depending upon the type of water activities enjoyed. For people, swimming, active water play, or waterskiing have the greatest potential risk. For animals, swimming, drinking the water, active water play, and eating or licking cells from rocks or their fur have the greatest risk.

Safety

Cyanobacteria can produce potent neurotoxins and hepatotoxins (liver toxins) so exercise care when collecting water samples. In addition, cyanobacteria produce lipopolysaccharides that can irritate the skin. Wear protective clothing such as hip waders and long rubber gloves.

Do not ingest surface water and avoid inhalation of aerosolized water (e.g., created by a boat motor). Always wash hands, other exposed skin (feet, legs, etc.), glasses, boots and gloves with soap and water after collecting samples. The overarching concern when sampling is personal safety. When selecting sampling locations, look for ease of access and make sure there are no physical barriers to safety.

Contact the laboratory you plan to have analyze the sample you collect and inquire about how to preserve the sample. They will either send you the materials to preserve the sample, or they can tell you where to obtain the Lugol’s solution. Lugol’s solution is used to preserve samples when cell enumeration and species identification is necessary or desired. When using/handling Lugol’s, wear protective gloves and eye protection. Add it to the sample(s) in a well-ventilated area such as outside or under a fume hood. Lugol’s is commonly used for short-term storage of cyanobacteria- from a few months to a year or more. Refer to the Material Safety Data Sheet (MSDS) for more information regarding the hazards of this chemical and how to protect yourself from exposure.

Toxin-Based Monitoring Program: Option 2

The Recreational Use Public Health Advisory Guidelines document explains that a monitoring program based on toxins rather than cell counts will likely result in fewer and shorter duration public health advisories but may have higher sampling costs. Toxin-based monitoring programs also provide the most accurate information in terms of protecting public health, because toxins pose actual risk rather than the potential risk posed by the presence of cyanobacteria cells.

If Option 2 is chosen, an advisory will not be issued unless toxin testing shows levels above the recreational use values shown in Table 1. In the interim, the public should be notified that a
bloom has been identified and toxin testing is underway or ongoing. The public should be advised to avoid water that is foamy, scummy, thick like paint, pea-green, blue-green or brownish red. Contact OHA for signage options or templates.

The recommended approach to maintaining a toxin-based monitoring program is as follows:

![Diagram showing decision tree for monitoring cyanotoxins]

Table 1. Recreational use values (RUVs) for cyanotoxins in Oregon's waters (µg/L)

<table>
<thead>
<tr>
<th>RUW:</th>
<th>Microcystin</th>
<th>Anatoxin-a</th>
<th>Saxitoxin</th>
<th>Cylindrospermopsin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>15*</td>
<td>8*</td>
<td>15</td>
</tr>
</tbody>
</table>

Oregon Public Health Division • CyanoHABs • Sampling Guidance • Updated July 2021 • 7
* The RUVs for anatoxin-a and saxitoxin have been updated from previous values based on research performed by the EPA for microcystin and cylindrospermopsin. Appendix B of OHA’s Recreational Use Public Health Advisory Guidelines discusses the rationale behind the change.

Sampling frequency for this option is every other week if toxin-producing species are present but the toxin levels are below guideline values. No recreational use advisory would be issued as long as toxin levels stay below the RUVs. When using Option 2, OHA requests that sampling results be available within 3 business days after the lab receives the sample. This helps us communicate with the public in a timely manner and demonstrates that action is being taken to protect the public’s health. Before hiring a lab to analyze a sample, we suggest contacting them to discuss turnaround time to ensure that this 3-day standard can be met. For OHA purposes, electronic versions with official results are acceptable.

If levels are found to be above guideline values, then an advisory is issued, advisory signage is posted, and sampling can be suspended until the bloom is gone. To lift the advisory, samples must show that toxin levels are below guideline values.

NOTE: OHA is interested in copies of all toxin and cell speciation data for tracking purposes, even if the levels found are below for issuing an advisory. Providing these results is not required for participation in OHA’s cyanoHABs program. However, it helps OHA build a statewide system for monitoring trends in cyanoHABs in Oregon waters. OHA takes no action on any data submitted unless results are above the recreational use values.

Laboratories

The number of laboratories available for species identification, cell counts, and toxin analysis is limited. Laboratories providing cyanobacteria and cyanotoxin analysis can be found on the CHABs website: https://www.oregon.gov/oha/PH/HEALTHYENVIRONMENTS/RECREATION/HARMFULALGAEBOOMS/Pages/resources_for_samplers.aspx.

The accepted method for determining cell counts is Standard Methods Section 10200E and F (also called “SM10200”). Although cell count data may be helpful for management purposes, cell counts are no longer used to issue advisories. Toxin analysis is the only way to accurately determine if a bloom present is harmful to people or animals. If toxin analysis cannot be performed every other week as described in Option 2, a water body manager may prefer to have OHA issue an advisory once a bloom is detected and lift it once the bloom is gone and toxin analysis determines that cyanotoxins are nondetect or below OHA’s recreational use values for the specific genera identified in the bloom. Toxin analysis is required to lift all recreational use health advisories for cyanoHABs.

Cyanotoxin tests currently available through commercial laboratories use a variety of comparable methods. Tests can be costly, depending on the information requested, and the method and equipment used. OHA recommends contacting a lab for current costs, and instructions on preserving and shipping the sample.
As a rule of thumb, the ELISA method is least expensive for determining levels of microcystin, saxitoxin, and cylindrospermopsin. ELISA methods are not currently available for anatoxin-a. Abraxis has introduced a micro-titer plate format (96T), receptor-binding assay (RBA) kit for Anatoxin-a which provides two protocols. The EZ protocol requires no sample preparation with a range of 5 to 500 ppb. If a lower limit of detection is necessary, an enhanced sensitivity (ES) SPE sample protocol is performed. RBA provides a real-time, economical, accurate and sensitive alternative for research and monitoring. Field ready test kits or dip stick tests for cyanotoxins are not used as a basis for lifting an advisory. However, they are useful for monitoring a bloom's status or determining whether toxin analysis should be completed.

When testing for cyanotoxins, ensure the lab uses a method with a detection level below the RUVs shown in Table 1 (page 8).

It's important to identify the dominant genera of cyanobacteria in a bloom to determine what toxins to have analyzed. Consult Table 2 to determine the associated toxins.

Table 2. Toxigenic cyanobacteria (data derived from evidence of toxin production presented in Sivonen and Jones, 1999; Carey et al., 2007; Funari and Testai, 2008 and Voloshko, 2008)¹

<table>
<thead>
<tr>
<th>Hepatotoxins</th>
<th>Neurtoxins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcystin</td>
<td>Nodularin</td>
</tr>
<tr>
<td>Anabaenopsis</td>
<td>+</td>
</tr>
<tr>
<td>Aphanizomenon</td>
<td>+</td>
</tr>
<tr>
<td>Arthrospira</td>
<td>+</td>
</tr>
<tr>
<td>Cyanobium</td>
<td>+</td>
</tr>
<tr>
<td>Cylindrospermopsis</td>
<td>+</td>
</tr>
<tr>
<td>Dolichospermum (formerly Anabaena)</td>
<td>+</td>
</tr>
<tr>
<td>Gloeotrichia</td>
<td>+</td>
</tr>
<tr>
<td>Hapalosiphon</td>
<td>+</td>
</tr>
<tr>
<td>Limnothrix</td>
<td>+</td>
</tr>
<tr>
<td>Lyngba</td>
<td></td>
</tr>
<tr>
<td>Microcystis</td>
<td>+</td>
</tr>
<tr>
<td>Nodularia</td>
<td>+</td>
</tr>
<tr>
<td>Nostoc</td>
<td>+</td>
</tr>
<tr>
<td>Oscillatoria</td>
<td>+</td>
</tr>
<tr>
<td>Phormidium</td>
<td>+</td>
</tr>
<tr>
<td>Planktothrix</td>
<td>+</td>
</tr>
<tr>
<td>Raphidiopsis</td>
<td></td>
</tr>
<tr>
<td>Schizothrix</td>
<td></td>
</tr>
<tr>
<td>Synechocystis</td>
<td>+</td>
</tr>
<tr>
<td>Umezakia</td>
<td></td>
</tr>
<tr>
<td>Woronichinia</td>
<td>+</td>
</tr>
</tbody>
</table>
1 Taxonomy for many types of cyanobacteria is currently being revised. This guidance reflects taxonomy as of January 2017.

Table 2 is at the genus level, not the species level. Not all species of a given genus produce all toxins listed for that genus. Once the species involved in a specific bloom have been identified, it is recommended that waterbody managers contact OHA to determine exactly which toxins could be involved.

For the purpose of public health advisories, and until research has been completed to determine otherwise, Aphanizomenon flos-aquae (AFA) is excluded from calculation of combined cell counts of toxigenic species. Refer to Recreational Use Public Health Advisory Guidelines for more information.

Shipment of samples

Collection volume, storing methods, holding times and shipping guidance is provided in Appendix B. However, OHA recommends that you contact the lab performing the sample analysis prior to sample collection to discuss these details. The lab can give you details of what they will need and, in many cases, will provide the materials for preserving, packing and shipping the sample.

Whenever possible, samples should be shipped the same day as collected. Ship samples in a cooler or a cardboard box lined with plastic bags (to prevent leakage) and newspaper or other material for insulation.

For toxin samples, include ice bags, ice packs, or other cooling products (e.g., blue ice) to ensure the samples stay cold. If shipping more than one sample, you may package them in the same cooler to save on shipping costs.

If timeliness of shipping in your area is an issue, you may need to freeze the sample solid before packing on ice.

Program contact information

Email: habhealth@state.or.us
Phone: (971) 673-0440
Website: www.healthoregon.org/hab
Appendix A: Field assessment sheet

Please gather the following information for each location assessed, if applicable.

General Information

Assessment date (mm/dd/yyyy) ___/___/_______ Time ______________ AM / PM(circle one)
Name of waterbody ___________________________ County _______________
Assessment location description/number ___
Assessment Location Latitude______________________ Longitude ____________________

Visual Assessment

Water clarity *(circle all that apply)*: Clear Cloudy Hazy Opaque Don’t know
Water color *(circle all that apply)*: Green Blue-green Brown Rust Milky White
Red Pink Clear Don’t know
Visible bloom *(circle one)*: Yes No Don’t know Visible scum *(circle one)*: Yes No Don’t know
Reason for assessment: Monitoring/Sampling Fish kill Health event response Other ______________

Recreational Area Assessments

Total number of people in the recreational area _____ Of those, number of people in the water _____
Total number of boats in use ____________________ Number of people waterskiing/boarding _____
Total number of dogs in the recreational area______ Of those, number of dogs in the water _______

Other Observations and Comments *(e.g., sketch bloom location in respect to recreational areas)*

Sample Collector Information

Name ___________________________ Position ___________________________
Phone Number __________________ Agency/Organization ______________________
Appendix B: Step-by-step sample collection instructions

(Contact the laboratory prior to sampling to confirm collection and preservation requirements)

Sampling Equipment Checklist (confirm with laboratory)

☐ Field Assessment Sheet	☐ Cooler or insulated shipping box
☐ Arm-length Disposable Waterproof Gloves	☐ Ice Pack(s)
☐ Hip Waders	☐ GPS Unit (recommended)
☐ Eye Protection/Safety Glasses	☐ 500 mL HDPE Plastic Sample Bottles
☐ Waterproof Permanent Marker/Pen	☐ Lugol’s Preservative Solution
☐ 4 liter stainless steel bucket (if composite sampling)	☐ Long-handled Stainless-Steel Stirring Spoon (if composite sampling)

Sampling Instructions

Sample Event Preparation

1. Prepare Field Assessment Sheets (Appendix A). Use one sheet per sample location to describe ambient conditions. This will help to interpret results, as well as provide sample collection contact information. Use pencil or waterproof permanent marker or pen when completing the sheet.
2. Label each bottle with the sample location and either “Cell & Species” or “Toxins” as needed. Use pencil or waterproof permanent marker or pen when completing the labels.

Collecting Samples: Wear disposable gloves and any other necessary personal protective equipment.

1. Select a sampling area that represents a distinct cyanoHAB and/or distinct risk of exposure (for example, a swim beach). Within that sampling area, select the location (or three locations if composite sampling) with the highest concentration of cyanobacteria.
2. If taking the sample from the shoreline, wade, or boat slowly to the sampling location. If wading or boating, approach on the downwind side and avoid agitating the water or sediment.
3. Disturb the water at the sample location for approximately ten seconds to simulate conditions created by a swimmer or wader coming into contact with the cyanobacteria.
4. Remove the cap from the sample bottle, tilt the bottle approximately 45 degrees and allow the bottle to fill as you submerge it 3 to 6 inches below the surface.
5. Replace the cap and remove any cyanobacteria adhered to the outside of the bottle. Turn the bottle end-over-end three or four times to mix.
6. If creating a composite sample:
 a. Because cyanotoxins are organic compounds, sampling equipment used to collect and combine samples should be made of fluorocarbon polymers (such as Teflon®); metals (such as stainless steel); or glass.
 b. Rinse the bucket with fresh water or with lake water relatively free from cyanobacteria.
c. Pour the three sample bottles representing each sample, into the bucket. (*Remember, these are samples taken at a particular point across time, at many depths in a single location, or at a given depth in multiple locations*).

d. Use a long-handed stainless-steel stirring spoon to thoroughly mix the three samples. Do not stir vigorously as this type of mixing may rupture (lyse) the cyanobacteria cells. If lysing occurs, cell enumeration becomes very difficult to perform with accuracy. This is less of an issue for toxin samples since cyanobacteria cells in the sample will be lysed at a later stage of processing.

e. Pour into a rinsed sampling bottle. Replace the cap and remove any cyanobacteria adhered to the outside of the bottle. Turn the bottle end-over-end three or four times to mix.

Sample preservation – (confirm with laboratory)

1. Cell Enumeration & Species Identification Samples: Work with *preservatives in well ventilated areas like outside or under a fume hood. Wear gloves and safety glasses.*

 a. Remove the cap and pour off enough of the sample to leave one-inch air space for mixing the Lugol's solution.

 b. Using a pipette, calibrated dropper or medicine cup, measure the correct amount of preservative and add to the sample bottle. Usually 5 mL Lugol’s solution (or another preserving agent recommended by the lab).

 c. Close the cap tightly and turn the bottle end-over-end three or four times to mix.

Shipping Instructions

Place sample bottle(s) on ice in a cooler or insulated well packed box as soon as possible and arrange overnight shipping of the samples to the laboratory. If samples cannot be received by the lab overnight, refrigerate the sample until shipping can be arranged.

Samples must arrive at the lab cold. Ensure enough ice or cooler bags are included so that the temperature of the samples is not compromised. If shipping must occur close to the weekend or in a location where shipping can be delayed, freeze the sample and then ensure enough ice or cooler bags are included. If the sample is over temperature, the sample can still be analyzed but the results will not be as accurate.

Never overnight a sample or ship from a location where the package could be delayed on a Friday. Samples that may sit on a receiving dock will more than likely be over time and temperature specifications.