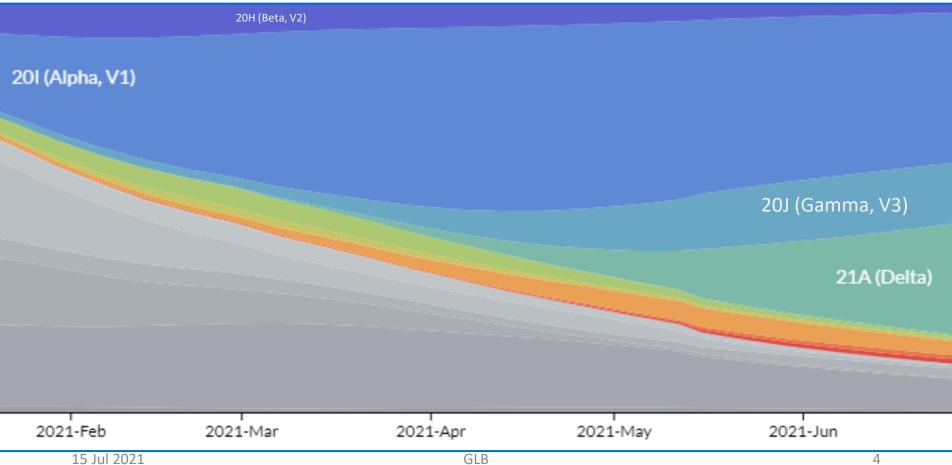


COVID Pediatric Update

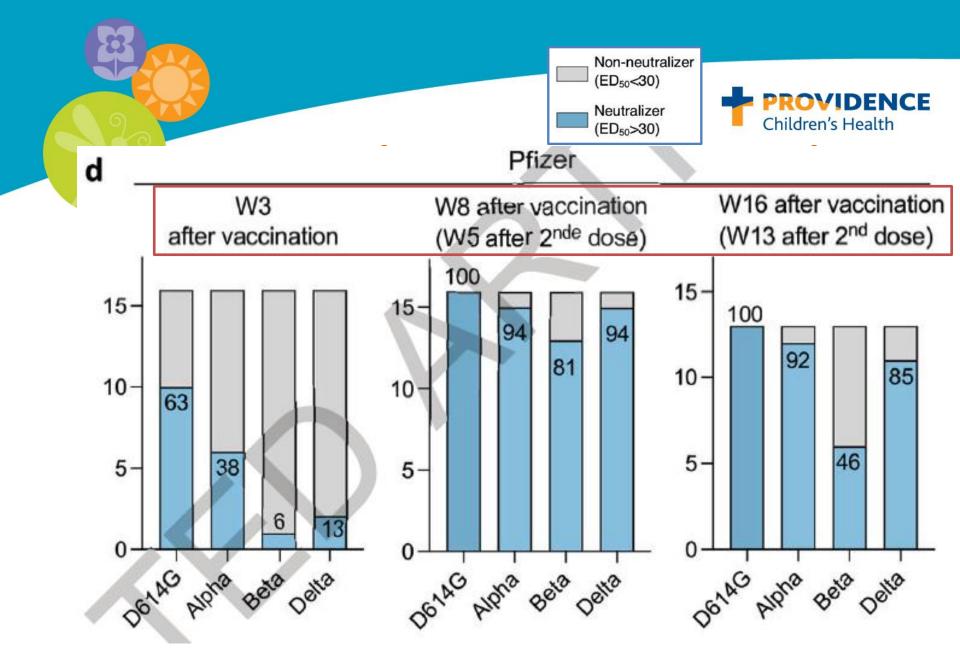
Pediatric Grand Rounds
July 15-23, 2021
Genevieve Buser, MDCM, MSHP
Pediatric Infectious Disease
Providence St Vincent

Conflicts of interest

- The Planning Committee and Faculty have no relevant financial relationships with commercial interests to disclose.
- The Speaker receives a grant from Gilead Foundation for hepatitis C research.


Vaccine & Variants

Nextstrain.org; covariants.org



Vaccines work, even against variants*

Efficacy = % ↓ disease in controlled trial

Effectiveness = % ↓ disease in real world

- mRNA vaccines, J&J
 - Vs. severe disease
 - Decreased vs Beta (B.1.351)
- Neutralization titers
 - Some lower v variants, but unclear if meaningful (Jongeneelen 2021)

Beta (B.1.351) might be harder to neutralize than Delta (B.1.617.2); BUT sera from 2-dose vaccinated persons neutralized all.

Vaccines work, even against variants*

Efficacy = % ↓ disease in controlled trial

- mRNA vaccines, J&J
 - Vs. severe disease
 - Decreased vs Beta (B.1.351)
- Neutralization titers
 - Some lower v variants, but unclear if meaningful (tongeneden 2021)

Effectiveness = % ↓ disease in real world

- Effective in HCW studies
- Un- or under-vaccinated persons are:
 - >90% of current COVID-19 cases
 - >95% of <u>current</u> hospitalized cases
 - >98% of <u>recent</u> deaths a/w COVID-19
- Vaccines do not have to have a high effectiveness to be useful
- Breakthrough cases
 - Under-vaccinated
 - Immunocompromised patients
 - Other comorbidities

Certain percentage of breakthrough expected

When 70% of your population is vaccinated & vaccine efficacy is 95%, 10% of new disease cases will have been vaccinated, but total case number decreases.

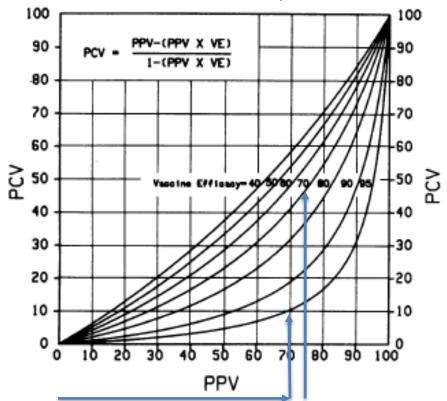
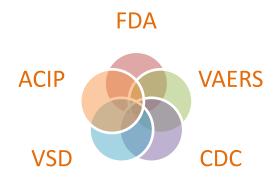


Fig. 1. The relationship between the percentage of cases vaccinated (PCV) and the percentage of the population vaccinated (PPV) for seven different percentage values of vaccine efficacy (VE).

Orenstein W, WHO Bull 1985


Pediatric vaccine studies

- Pfizer (mRNA)
 - Phase 1, 2/3: age 5-12y; 2-5y; 6m-2y: RECRUITING
 - Start Mar 2021, primary completion Mar 2022; study completion Sep 2023
 - Pregnant women: RECRUITING
- Moderna (mRNA)
 - Phase 2/3 age 12-18y, ENROLLMENT COMPLETE
 - Phase 2/3 age 6m-12y: RECRUITING
 - Start Mar 2021, completion June 2023
- Novavax (Nanoparticle + Spike Ag + saponin-based adjuvant)
 - Phase $3 \ge 18y$ with expansion to 12-17y: RECRUITING
 - Start Dec 2020, completion June 2023
- Overcoming2: vaccine effectiveness against COVID-19 or MIS-C

Vaccine adverse effects: closely monitored

Common

- Malaise, fever, chills, headache
 - More frequent mRNA, Moderna in trials
 - Self-limited 1-3 days
- Lack of side effects NOT associated w/protection

Most commonly reported adverse events to VAERS after Pfizer-BioNTech COVID-19 vaccination* (data thru Jun 11, 2021)

12-15 years old* (N= 2,540)

Adverse event‡	n (%)
Dizziness	618 (24.3)
Syncope	446 (17.6)
Nausea	308 (12.1)
Headache	281 (11.1)
Vomiting	221 (8.7)
Pallor	218 (8.6)
Loss of consciousness	217 (8.5)
Pyrexia (fever)	215 (8.5)
Hyperhidrosis	211 (8.3)
Fatigue	182 (7.2)

16-25 years old[†] (N= 12,759)
(for comparison)

Adverse event [‡]	n (%)
Dizziness	2,832 (22.2)
Headache	2,197 (17.2)
Nausea	1,955 (15.3)
Pyrexia (fever)	1,948 (15.3)
Fatigue	1,689 (13.2)
Chills	1,609 (12.6)
Pain	1,560 (12.2)
Syncope	1,257 (9.9)
Hyperhidrosis	946 (7.4)
Vomiting	918 (7.2)

- 12–15 years old: ~6.0 million doses administered (May 10 thru Jun 11, 2021)
- 16–25 years old: ~21.6 million doses administered (December 14, 2020, thru Jun 11, 2021)

GLB

^{*} Data as of June 14, 2021, for reports with vaccination date and receipt date May 10 through June 11, 2021

Data as of June 14, 2021, for reports with vaccination date and receipt date December 14, 2020, through June 11, 2021

Adverse events are not mutually exclusive

Vaccine adverse effects: closely monitored

ACIP VAERS
VSD CDC

Rare

- Anaphylaxis
 - Range: 3.7 (FDA) to 7.9 (panel) to 250 per million vaccinations (Blumenthal 2021)
- Vaccine-induced thrombocytopenic thrombosis
 - 9-12 per million Janssen COVID-19 doses in VAERS; NONE in VSD (~160K doses)
- Myocarditis or pericarditis
 - Highest expected among males aged 12–29 yrs (39-47 per million second mRNA doses); balance with COVID-19 cases and deaths prevented AND risk of myocarditis from primary infection or MIS-C (Gargano 2021)

- COVID-19 cardiac involvement
 - 1 case clinical myocarditis per 177 COVID-19 PCR+ college athletes (Daniels 2021)

- COVID-19 cardiac involvement
 - 1 case clinical myocarditis per 177 COVID-19 PCR+ college athletes (Daniels 2021)
- MIS-C
 - 1 case MIS-C per 3200 SARS-CoV-2 infections <21 y (316 per million) (Payne, 2021)

- COVID-19 cardiac involvement
 - 1 case clinical myocarditis per 177 COVID-19 PCR+ college athletes (Daniels 2021)
- MIS-C
 - 1 case MIS-C per 3200 SARS-CoV-2 infections <21 y (316 per million) (Payne, 2021)
- Thrombosis
 - 2–7% COVID-19 pediatric hospitalizations; 6.5–8% with MIS-C
 - CSVT w/i 2 weeks of COVID-19 (hospitalized): 1 per 25,640 (39 per million) SARS-CoV-2

- COVID-19 cardiac involvement
 - 1 case clinical myocarditis per 177 COVID-19 PCR+ college athletes (Daniels 2021)
- MIS-C
 - 1 case MIS-C per 3200 SARS-CoV-2 infections <21 y (316 per million) (Payne, 2021)
- Thrombosis
 - 2–7% COVID-19 pediatric hospitalizations; 6.5–8% with MIS-C
 - CSVT w/i 2 weeks of COVID-19 (hospitalized): 1 per 25,640 (39 per million) SARS-CoV-2
- Secondary infections from glucocorticoids
 - Unknown incidence: Aspergillus, mucormycosis, TB, etc

- COVID-19 cardiac involvement
 - 1 case clinical myocarditis per 177 COVID-19 PCR+ college athletes (Daniels 2021)
- MIS-C
 - 1 case MIS-C per 3200 SARS-CoV-2 infections <21 y (316 per million) (Payne, 2021)
- Thrombosis
 - 2–7% COVID-19 pediatric hospitalizations; 6.5–8% with MIS-C
 - CSVT w/i 2 weeks of COVID-19 (hospitalized): 1 per 25,640 (39 per million) SARS-CoV-2
- Secondary infections from glucocorticoids
 - Unknown incidence: Aspergillus, mucormycosis, TB, etc
- Long COVID: Sx >4 weeks after COVID-19 infection
 - Unknown incidence in children
 - N = 129 PCR+ surveyed:
 - 50% ≥1 symptom 120d later
 - 42% of these affected daily activities
 - 3 MISC, 2 myocarditis (Buonsenso, 2021, preprint)

Long COVID

Commonly reported symptoms include dyspnea, fatigue, post-exertional malaise, and brain fog

Common Post-COVID Symptoms

- Dyspnea or increased respiratory effort
- Fatigue
- Post-exertional malaise
- "Brain fog," cognitive impairment
- Cough
- Chest pain
- Headache
- Palpitations and/or tachycardia
- Arthralgia
- Myalgia
- Paresthesia

- Abdominal pain
- Diarrhea
- Insomnia and other sleep difficulties
- Fever
- Lightheadedness
- Impaired daily function and mobility
- Pain
- Rash (e.g., urticaria)
- Mood changes
- Anosmia or dysgeusia
- Menstrual cycle irregularities

17

Post-Vaccine

- Local and systemic symptoms of immune response
 - common, self-limited
- Myocarditis post-vaccine
 - 1 per 79,365 second dose (12.6 cases per million) among persons aged 12–39 yr (N=26 in 3.4 million doses)
 - Rapid recovery. No deaths, transplants, no multi-system involvement
- Vaccine-induced thrombocytopenic thrombosis
 - UK: 1 per 126,582 vaccinated (7.9 per million) (Astra-Zeneca)
 - US Females aged 18-49y: 1 per 142,857 vaccinated (7 per million) (J&J)
- Guillaume-Barré
 - Imbalance in mRNA vaccine studies, not borne out in post-EUA vaccination
 - J&J: 100 VAERS reports only; 12.5 million doses (1 per 125,000 doses)

https://www.cdc.gov/mis/cases/index.html. Accessed 9 Jul 2021

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/05-COVID-Wallace-508.pdf. Accessed 11 Jul 2021 https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf. Accessed 10 Jul 2021

15 Jul 2021 GLB 19

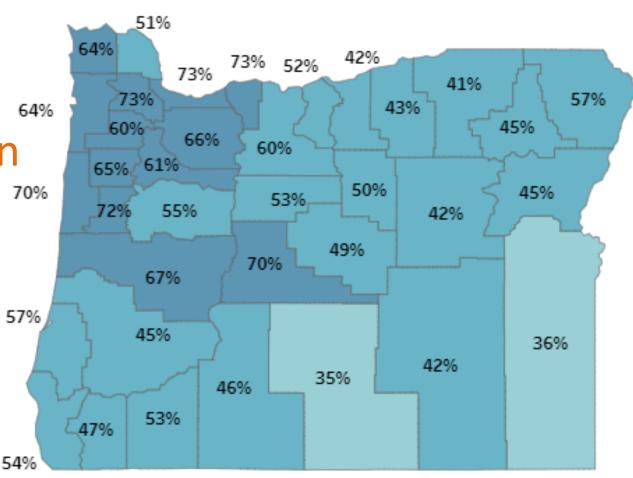
Benefit - Risk Stadium

COVID disease: 100,000 susceptible persons aged 12–29 years

1100 infections
56 hospitalizations
2 thrombotic events
1 death
6-25 cases myocarditis
<1 case MIS-C
doses of steroids, abx
long COVID

Post-vaccine: 100,000 vaccinated persons (2-dose) aged 12–29 years

77 infections*
<1 hospitalization
0 deaths
1 post-COVID myocarditis
0 MIS-C, long COVID?
4 post-vaccine myocarditis
<1 VITT, <1 GBS

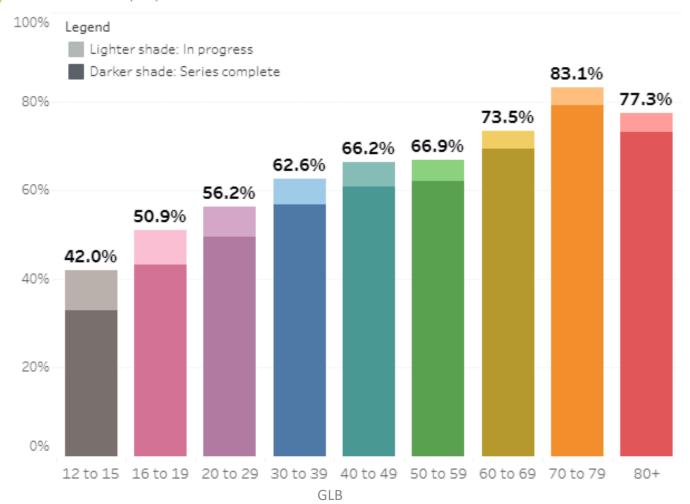

As of July 19, 2021: 3.4 million pediatric cases (age 0-17yrs); 491 deaths

PROVIDENCE

How is Oregon doing?

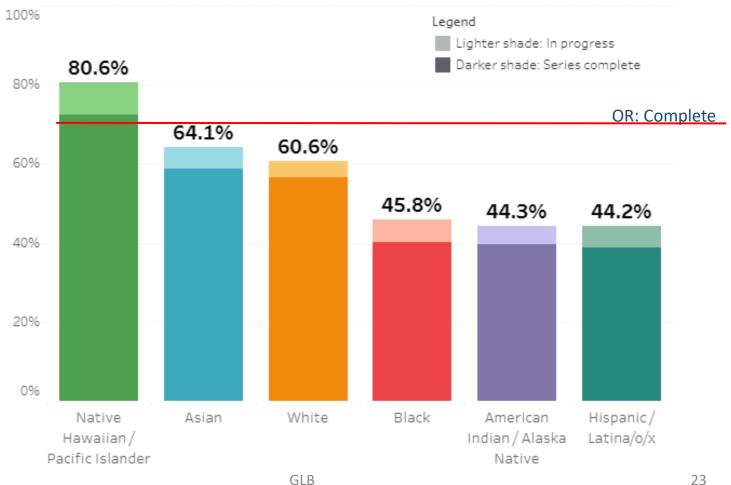
- As of 7 Jul 2021
- 66.6% ≥1 dose
- 61.3% completed
- Variability by county

Legend: % Population Vaccinated



Current vaccination rates by age

Labeled with % people vaccinated with at least one dose



Current vaccination rates by rarest race and ethnicity

Labeled with % people vaccinated with at least one dose

Opportunity for variants

Red cluster dots: Counties with lower vaccination coverage than expected

Let's talk about confidence

- Most people are confident about vaccines
 - Local successes: Native Hawaiian/ Pacific Islander and Asian communities in Oregon by established outreach and grass-roots
- Natural disease vs vaccine side effects
- More pharmacies, physician offices
- Motivational interviewing, keep door open
- CATCH UP on OTHER DELAYED VACCINATIONS!!!

Case

Summer: Fever, sore throat, rash

- 17y male
- Day 5 of fatigue, Day 3 neck pain, headache, sore throat, fever 102°F

GLB

Came to ED for dehydration:

BP 96/56

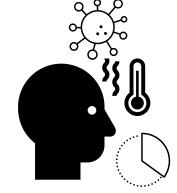
Pulse 93

Temp 37.1°C

Resp 16

SpO2 100%

- Dry mucous membranes
- 1 L NS x 2, labs
- Conjunctivitis and rash noted on admit



Rash on Day 3 of illness

COVID DISEASE 4 MONTHS AGO

Differential Pre-COVID

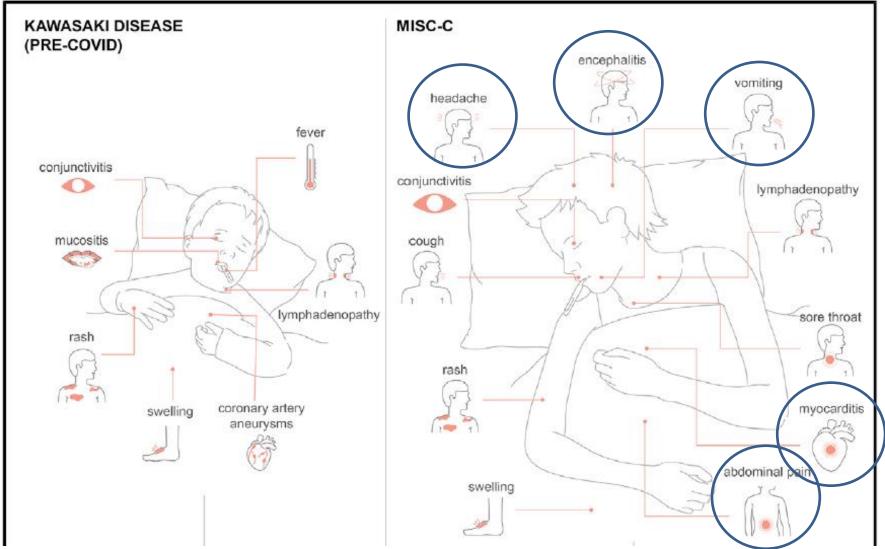
- Toxic shock syndrome: streptococcal, staphylococcal
- Infection with rash: meningococcal, CMV/EBV, enterovirus, Mycoplasma, HIV
- Drug hypersensitivity reaction (Steven Johnson Syndrome/Toxic Epidermal Necrolysis/Drug Reaction with Eosinophilia and Skin Syndrome)
- Septic thrombophlebitis or Lemierre's syndrome (Fusobacterium necrophorum)
- Kawasaki Disease (mucocutaneous lymph node vasculitis)
- Auto-immune vasculitis, systemic Juvenile Rheumatoid Arthritis, Hemophagocytic
- Vectorborne: RMSF, leptospirosis, ehrlichia/anaplamosis, Lyme disease
- Malignancy with secondary opportunistic infection

Labs, pertinent: fever + rash + neck pain

- Blood culture x 2
- Heme
- Organ systems
- Inflammatory markers
- Coagulation
- Infection
- Imaging
- Antibiotics, coverage toxic shock
- Fluids

Laboratory

- WBC 5.3, 88% neutrophils, 10-20% bands
- Hgb 14.3
- Platelets 46
- Na 140, Cr 1.07
- ALT 112, AST 83, Albumin 3.2
- CRP 12.4
- ESR 37
- D-dimer 3.8, INR 1.5, fibrinogen 475
- Blood culture no growth 24h; throat cx negative for GAS
- CT scan: small fluid collection skull base to C5 (2.7x0.9cm) retropharyngeal space, no extension to mediastinum. No septic thrombosis.
- Ceftriaxone + clindamycin

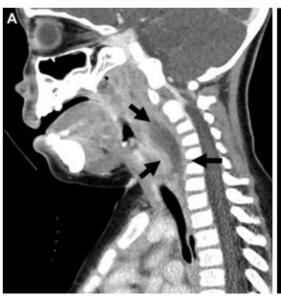

Post-COVID:

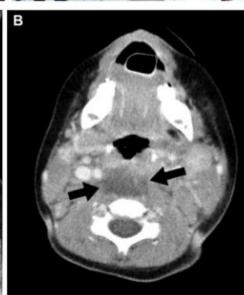
Multi-system inflammatory syndrome

- Inflammation: elevated CRP, ESR, D-dimer, hepatitis, retropharyngeal edema
- CNS: Headache
- Skin: Rash
- Cardiac:
 - Troponin 260→ peak 294 (<=45 ng/L)
 - Echo normal function, no coronary artery anomalies, no effusion
- Gastroenteritis:
 - Started having more abdominal pain and diarrhea
- Treatment for inflammatory syndrome:
 - IVIG 100g
 - methylprednisolone 1mg/kg BID x 4 days + 2.5wk taper
 - ceftriaxone + clindamycin x 48h; amp-sulbactam x 72h
 - ASA 81mg daily
 - Famotidine

Spectrum of MIS-C

Febrile Inflammatory Syndrome	Kawasaki Disease- like	inflammatory Syndrome
Fever without a source No cardiac involvement	Rash (variable) Lymphadenopathy Oral mucosal changes Non-exudative b/l conjunctivitis Hand/feet swelling/erythema Elevated ESR, CRP Neutrophilia Thrombocytosis Coronary artery dilation	N/V/severe abdominal pain Encephalopathy Respiratory distress Myalgia Coagulopathy Lymphopenia Thrombocytopenia Elevated Troponin, BNP, ferritin Myocarditis, myocardial dysfunction Shock
	Severity	


15 Jul 2021 GLB 37


Retropharyngeal inflammation in Kawasaki

- Hypodense lesion of posterior pharyngeal space
- Delays KD diagnosis until other stigmata & no improvement on abx
- Improves with IVIG, steroids
- Do get coronary artery dilation

When to consider MIS-C?

- Fever ≥ 38.0° C for ≥ 3 days AND ≥ 2 organ system involvement (cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic or neurological consistent with MIS-C); OR
- Fever ≥ 38.0° C for < 3 days AND evidence of myocardial dysfunction, hypotension, vasopressor support; OR
- Fever ≥ 5 days without an identified source
- Complete or incomplete Kawasaki disease or Toxic Shock Syndrome

Neutrophilia

Lymphopenia (<1000)

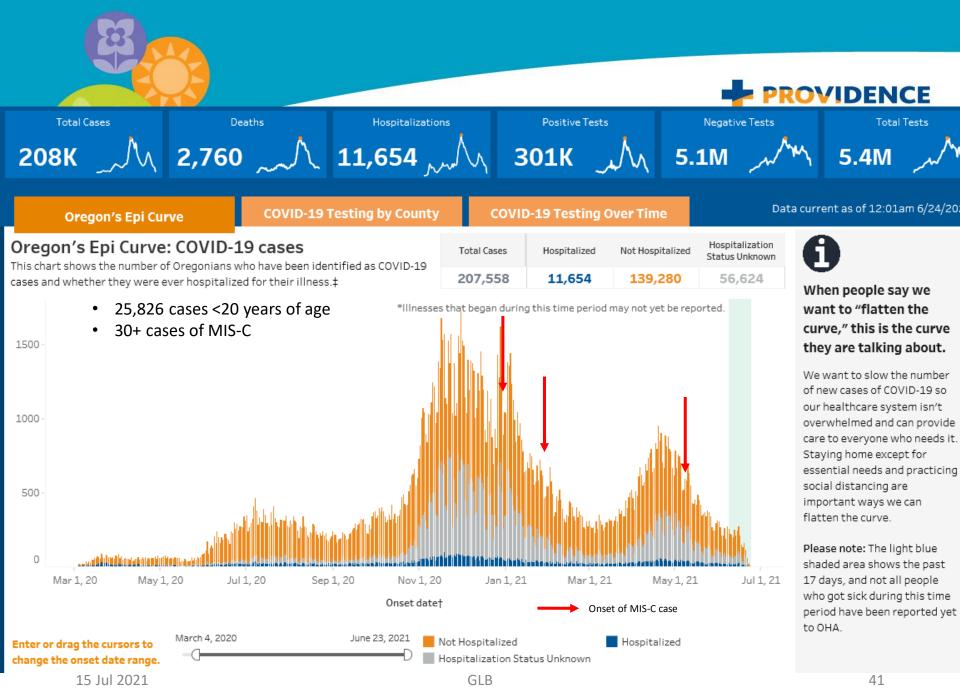
Thrombocytopenia (<150)

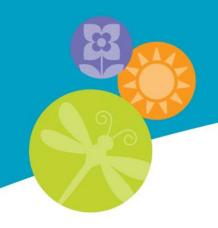
Hyponatremia

Hypoalbuminemia

个个个CRP, 个个个 procalcitonin

个troponin, BNP, D-dimer


Evaluation: sepsis PLUS


Tier 1

- CBC + diff, CMP, ESR, CRP, Urinalysis
 + micro (culture if indicated), blood
 cultures
- CXR
- Respiratory PCR panel with SARS CoV-2, SARS CoV-2 antibodies
- PLUS any other specific labs based on clinical picture or concern: i.e., CXR (if respiratory symptoms present), etc.

Tier 2

- Procalcitonin, LDH, ferritin
- Troponin, BNP, lactic acid
- D-dimer, INR/PT/PTT, fibrinogen
- Rapid strep, ASO
- EKG & STAT Echocardiogram to assess for myocardial dysfunction
- Quantitative immunoglobulins (IgG, IgA, IgM) prior to IVIG
- Specimen storage, red and lavender tube (freeze) prior to IVIG
- IGRA testing for tuberculosis exposure prior to steroids
- Other tests, as indicated by history / exam

MIS-C Kids Are:

- Older
- Male
- Obesity
- BNH
- More abdominal and neurologic complaints
- More toxic appearing

..than KD

MIS-C Kids Have:

- Lower WBC
- Lower Lymphs
- Lower PLT
- Higher CRP
- Lower ESR
- Higher ferritin
- Lower albumin
- More shock
- More myocardial dysfunction
- More arrhythmias
- Fewer coronary aneurysms
- Slower recovery ...than KD

Clinical course, N=539

Clinical

- Pericardial effusion 25%
- Ejection fraction <45% 16%
- Coronary artery aneurysm 13.4% (93% mild)
- Arrhythmia 8%
- Fatal 1.9%
 - vs 1.5% COVID-19

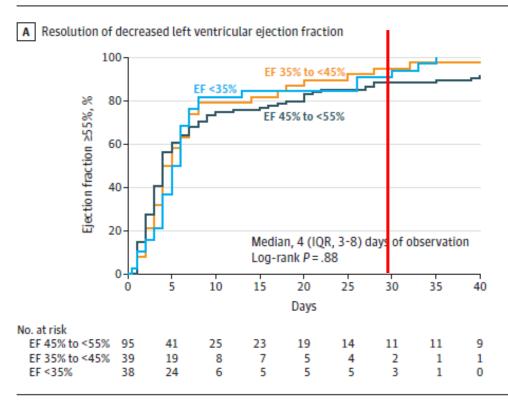
Treatment

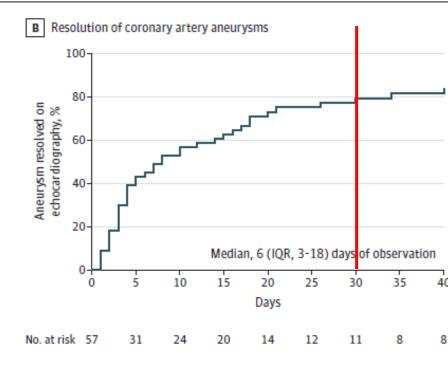
- IVIG 77%
- Systemic steroids 70%
- Immune modulatory therapy 24%*
- Vent 18%
- ECMO 3.3%

Therapy Pearls

- Avoid excess fluid resuscitation
- Halt inflammatory cascade: IVIG + steroids > either alone?

GLB


- IVIG
- Steroids
- Targeted cytokine antagonism: anakinra (IL-1 receptor antagonist)
- Cardiac & shock support
- Anti-thrombotic
- Gastric protection
- Parenteral nutrition



Resolution of left ventricular function

GLB

Figure 4. Cardiovascular Outcomes of Patients With MIS-Ca

Why?

- Is MIS-C more diffuse inflammatory process than Kawasaki Disease
 - KD auto-antibodies more specific to vascular proteins (EDIL3)
 - Myocarditis & severe abdominal pain rare in KD; common in MIS-C
- Related to age-differences in immune system?
- Related to prior viral experience?
- Super-antigen polyclonal T-cell expansion?

GLB

Cytokine profiles MIS-C v. KD v. Adult COVID

Figure 2. MIS-C Hyperinflammation Differs from Severe Acute COVID-19 Hyperinflammation

(A) Principal components 1 and 2 show variation in cytokine profiles among adult COVID-19 patients with severe disease treated in intensive care units (ICU) or not, and children with MIS-C or Kawasaki disease. n = 97 samples included, and 112 unique proteins included in the analysis.

(B) Top 20 proteins mostly contributing to the PCs 1–2.

See also Table S1.

Conclusions

- Benefit of efficacious vaccines outweighs rare side effects
- Prevention of COVID prevents sequelae of COVID infection
- Keep a broad differential in febrile child with rash
- Reach out if questions: we are learning together
- IDSA Real-time Learning Network:
- https://www.idsociety.org/covid-19-real-time-learning-network/

- Blumenthal KG et al. Acute allergic reactions to mRNA COVID-19 vaccines. JAMA 2021;325:1562-1565. doi:10.1001/jama.2021.3976.
- Buonsenso D et al. Preliminary evidence on long COVID in children. MedRxIV 2021, preprint only; https://doi.org/10.1101/2021.01.23.21250375.
- Center for Disease Control and Prevention (2020 May 14). Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with Coronavirus Disease 2019 (COVID-19). CDC Health Alert Network, CDCHAN-00432. https://emergency.cdc.gov/han/2020/han00432.asp
- Cheung EW, Zachariah P, Gorelik M, et al. (published online ahead of print, 2020 Jun 8). Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020;e2010374. doi:10.1001/jama.2020.10374.
- CHOP algorithm https://www.chop.edu/clinical-pathway/multisystem-inflammatory-syndrome-mis-c-clinical-pathway. Accessed 8 Feb 2021.

 Consiglio CR, Cotugno N, Sardh F, et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 2020; https://
- Daniels CJ et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol.
- Published online May 27, 2021.
- Fang LC, Shyur SD, Peng CC et al. Unusual manifestations of Kawasaki disease with retropharyngeal edema and shock syndrome in a Taiwanese child. J Micro Immuno Infect 2014;47(2):152-157.
- Feldstein LR, et al. (2020 June 29) Multisystem inflammatory syndrome in U.S. children and adolescents. NEngl J Med. doi: 10.1056/NEIMoa2021680.
- Feldstein LR et al. (2021 Feb 24) Characteristics and Outcomes of US Children and Adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C) compared with severe acute COVID-19. JAMA 2021;
- Freedman S, Glaser E, Godfred-Cato S, Gorman R, Lodha R, Mofenson L, Murthy S, Rojo P, Semple C, Sigfrid L, Whittaker E. (2020 May 15). Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19: Scientific Brief. World Health Organization.
- Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices United States, June 2021. MMWR Morb Mortal Wkly Rep. ePub: 6 July 2021. DOI: 10.1558/j.mmwr.mm/02/e2/external 1001
- Gray KJ, Bordt EA, Atveo C, et al. Coronavirus disease 2019 vaccine response in pregnant and lactating women; a cohort study. Am J Obstet Gynecol 2021;XX:x.exex.ex.
- Henderson LA, Canna SW, Friedman KG, Gorelik M, Lapidus SK, Bassiri H, Behrens EM, Ferris A, Kernan KF, Schulert G, Seo PF, Son MB, Tremoulet AH, Yeung RSM, Mudano AS, Turner AS, Karp DR, and Mehta JJ. (2020), American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated WithSARS—CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 1.
 Arthritis Rheumatol, 72: 1791-1805. https://doi.org/10.1002/art.41454
- Jiang L, Tang K, Levin M et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Inf Dis 17 Aug 2020; https://doi.org/10.1016/S1478-3099120130651-4
 - Jongeneelen M eta I. Ad26.COV2.S elicited neutralizing activity against Delta and other SARS-CoV-2 variants of concern. https://doi.org/10.1101/2021.07.01.450707
- Legacy, Portland algorithm (personal communication) 12 June 2020; updated 14 Jan 2021.
 - Ludvigsson JF. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatr. 2021;110:914–921. https://doi.org/10.1111/j.
- McArdle AJ et al. Treatment of multisystem inflammatory syndrome in children. NEJM 2021;385:11-22. DOI: 10.1056/NEJMoa2102968
- National Institutes of Health (NIH). (2020 June 11). COVID-19 Treatment Guidelines: Special Considerations in Children. NIH COVID-19 Treatment Guidelines. https://
- Nakra NA, Blumberg DA, Herrera-Guerra A, Lakshminruhsimha S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of clinical presentation, hypothetical pathogenesis and proposed management. Children 2020;7:69.
- Ouldali N, Toubiana J, Antona D, et al. Association of Intravenous Immunoglobulins Plus Methylprednisolone vs Immunoglobulins Alone With Course of Fever in Multisystem Inflammatory Syndrome in Children. JAMA. Published online February 01, 2021. doi:10.1001/jama.2021.0694.
- Pardi N et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release 2015;217:345-351. doi: 10.1016/j.jconrel.2015.08.007
- Patel A, Agarwal R, Rudramurthy SM, Shevkani M, Xess I, Sharma R, et al.; MucoCovi Network. Multicenter epidemiologic study of coronavirus disease—associated mucormycosis, India. Emerg Infect Dis. 2021 Sep. https://doi.org/10.3201/eid2709.210934
- Pilishvili T et al. Interim estimates of vaccine effectiveness of Pfizer-BioNTech and Moderna COVID-19 vaccines among healthcare personnel 33 U.S. sites, January–March 2021. MMWR May 21, 2021;70(20):753–758.
- Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature https://doi.org/10.1038/s41586-021-03777-9 (2021)
- Sadarangani M et al. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nature Reviews 2021. https://doi.org/10.1038/s41577-021-00578-7.
 - Seattle Children's algorithm. Seattle Children's Hospital, Kazmier, K., Albert, J., de la Morena, M., Eckart, C., Fenstermacher, S., Hartford, E., Hayward, K., Kemna, M., Matthews, D., Nickless, J., Netman, S., Portman, M., Sushan, D., Valdivia, H., Vora, S., Waghmare, A., Migita, D., 2020 December. COVID-19 Pathway. Available from: https://www.seattlechildrens.org/pdf/covid-19-pathway.pdf . Accessed 14 Jan 2021
- Son MBF et al. Multisystem Inflammatory Syndrome in Children—Initial Therapy and Outcomes, NEJM 2021;385;23-24, DOI: 10.1056/NEJMos210260

When to Refer

- Unclear infectious disease presentation or treatment
- Except pediatric HIV infection

Questions?

- Phone number: 503-216-6050
- Fax: 971-282-0102
- Epic code for internal referrals: REF76B
- Include: Relevant history and clinical question

Extra

Pregnancy and vaccination

- Observational study: Dec 17, 2020–Mar 2, 2021
- Vaccinated women had much higher titers than natural infection
- Breastmilk:
 - Boost in IgG, not IgA or IgM in <u>vaccinated</u>; elevated IgA after <u>natural infection</u>.
- Cord blood:
 - Spike- and RBD-specific IgG detectable 10 of 10 samples; more later from 2nd dose
- Prospective studies
 - OHSU study enrolling: <a href="https://news.ohsu.edu/2021/04/15/ohsu-studies-impacts-of-covid-19-infection-vaccination-on-immune-system-during-pregnancy-lactation-on-immune-system-durin
 - MOMI-VAX (NIAIS/NIH) enrolling: https://idcrc.org/concept/studies.html

Benefit - risk discussion

COVID disease

- COVID-19 cardiac involvement
 - 1 case clinical myocarditis per 177 COVID-19 PCR+ college athletes;
 - 1 per 43 with any evidence of myocarditis (2.3% of 1,597) (Daniels, 2021)
 - N=37: 9 clinical myocarditis, 8 probable subclinical myocarditis; 20 possible
- MIS-C U.S.
 - 1 case MIS-C per 3200 SARS-CoV-2 infections <21 y (316 per million) (Payne, 2021)
 - N=4,196: 60% male; 62% Hisp/BlackNH; 9y (IQR 5–13y)
 - 37 deaths
 - High-dose steroids, IVIG, immune modulators (anakinra), immune suppression, long-term follow-up with cardiology, stress test, neurologic? Long-term?
- Thrombosis
 - 2–7% with COVID-19; 6.5–8% with MIS-C
 - CSVT w/i 2 weeks of COVID-19 (hospitalized): 1 per 25,640 (39 per million)
- Secondary infections from glucocorticoids:
 - Unknown incidence: Aspergillus, mucormycosis, TB, etc
- Long COVID: Sx >4 weeks after COVID-19 infection
 - Unknown incidence in children
 - N = 129 PCR+ surveyed: 50% ≥1 symptom 120d later; 42% of these affected daily activities; 3 MISC, 2 myocarditis (Buonsenso, 2021, preprint)
 - Fatigue, muscle/joint pain, headache, insomnia, respiratory problems, palpitations

Post-vaccine

- Local and systemic symptoms of immune response: self-limited
- Myocarditis post-vaccine
 - 1 per 79,365 second dose (12.6 cases per million) among persons aged 12–39 yr (N=26 in 3.4 million doses)
 - Rapid recovery. No deaths, transplants, no multi-system involvement
- Vaccine-induced thrombocytopenic thrombosis
 - UK: 1 per 126,582 vaccinated (7.9 per million) (Astra-Zeneca)
 - US Females aged 18-49y: 1 per 142,857 vaccinated (7 per million) (J&J)
- Guillaume-Barré
 - Imbalance in mRNA vaccine studies, not borne out in post-EUA vaccination
 - J&J: 100 VAERS reports only; 12.5 million doses (1 per 125,000 doses)

https://www.cdc.gov/mis/cases/index.html. Accessed 9 Jul 2021

https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/05-COVID-Wallace-508.pdf. Accessed 11 Jul 2021 https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf. Accessed 10 Jul 2021 https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-04-23/06-COVID-Oliver-508.pdf. Accessed 14 Jul 2021

Benefit-Harm analysis mRNA vaccine & myocarditis*

TABLE 2. Individual-level estimated number of COVID-19 cases and COVID-19—associated hospitalizations, intensive care unit admissions, and deaths prevented after use of 2-dose mRNA COVID-19 vaccine for 120 days and number of myocarditis cases expected per million second mRNA vaccine doses administered, by sex and age group* — United States, 2021

	No. per million vaccine doses administered in each age group (yrs) [†]				
	12-29	12-17	18-24	25-29	≥30
Male					
Benefit					
COVID-19 cases prevented [§]	11,000	5,700	12,100	15,200	15,300
Hospitalizations prevented	560	215	530	936	4,598
ICU admissions prevented	138	71	127	215	1,242
Deaths prevented	6	2	3	13	700
Harms					
Myocarditis cases expected¶	39-47	56-69	45-56	15-18	3-4
Female					
Benefit					
COVID-19 cases prevented [§]	12,500	8,500	14,300	14,700	14,900
Hospitalizations prevented	922	183	1,127	1,459	3,484
ICU admissions prevented	73	38	93	87	707
Deaths prevented	6	1	13	4	347
Harm					
Myocarditis cases expected¶	4-5	8-10	4-5	2	1

Abbreviations: ICU = intensive care unit; VAERS = Vaccine Adverse Event Reporting System.

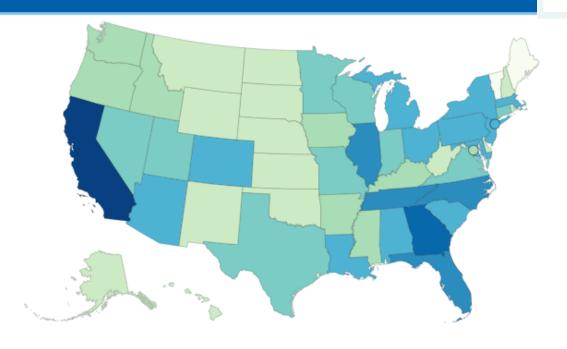
^{*} This analysis evaluated direct benefits and harms, per million second doses of mRNA COVID-19 vaccine given in each age group, over 120 days. The numbers of events per million persons aged 12-29 years are the averages of numbers per million persons aged 12-17 years, 18-24 years, and 25-29 years.

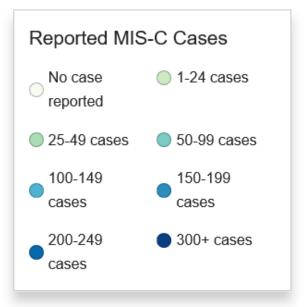
[†] Receipt of 2 doses of mRNA COVID-19 vaccine, compared with no vaccination.

[§] Case numbers have been rounded to the nearest hundred.

Ranges calculated as ±10% of crude VAERS reporting rates. Estimates include cases of myocarditis, pericarditis, and myopericarditis.

^{*}myocarditis = myocarditis, pericarditis, myopericarditis GLB




Epidemiology of MIS-C

Reported MIS-C Case Ranges by Jurisdiction, on or before June 2, 2021*

TOTAL MIS-C PATIENTS MEETING CASE **DEFINITION*** 4018

TOTAL MIS-C DEATHS MEETING CASE **DEFINITION** 36

Territories

https://www.cdc.gov/mis-c/cases/index.html