

TECHNICAL REPORT

American Academy
of Pediatrics

DEDICATED TO THE HEALTH OF ALL CHILDREN™

Pediatric Readiness in the Emergency Department: Technical Report

Katherine E. Remick, MD, FAAP, FACEP, FAEMS,¹ Ashley A. Foster, MD, FAAP, FACEP,² Aaron R. Jensen, MD, MEd, MS, FACS, FAAP,³ Regan F. Williams, MD, MS, FACS, FAAP,⁴ Elizabeth Stone, PhD, RN, CHSE, FAEN,⁵ Madeline Joseph, MD, FAAP, FACEP,⁶ Gregory P. Connors, MD, MPH, MBA, FAAP,⁷ Kathleen Brown, MD, FAAP, FACEP,⁸ Marianne Gausche-Hill, MD, FAAP, FACEP, FAEMS,^{9,10} AMERICAN ACADEMY OF PEDIATRICS; Committee on Pediatric Emergency Medicine, Section on Surgery; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS; Pediatric Emergency Medicine Committee; EMERGENCY NURSES ASSOCIATION; Pediatric Committee; AMERICAN COLLEGE OF SURGEONS; Committee on Trauma

This is a revision of the previous 2018 joint technical report titled "Pediatric Readiness in the Emergency Department." Children have unique physical and psychosocial needs that are heightened in the setting of serious or life-threatening emergencies. Most ill and injured children and those with mental health emergencies are brought to community hospital emergency departments (EDs) by virtue of proximity. Therefore, all EDs must have the appropriate resources (medications, equipment, policies, and education) and staff to provide effective emergency care for children. This technical report outlines the evidence and rationale supporting resources necessary for EDs to stand ready to care for children of all ages. Although resources within emergency and trauma care systems vary locally, regionally, and nationally, ED staff, administrators, and medical directors can ensure high-quality emergency care is available for all children. The updated recommendations in the accompanying policy statement of the same title are intended to serve as a resource for clinical and administrative leadership of EDs as they strive to improve their readiness for children of all ages.

abstract

¹Departments of Pediatrics and Surgery and Perioperative Medicine, Dell Medical School at the University of Texas at Austin, Austin, Texas;

²Department of Emergency Medicine, University of California San Francisco, and UCSF Benioff Children's Hospitals, San Francisco, California;

³Department of Surgery, Division of Pediatric Surgery, University of California San Francisco, and UCSF Benioff Children's Hospitals, San Francisco, California; ⁴Departments of Surgery and Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, Tennessee; ⁵School of Nursing, University of North Carolina at Chapel-Hill, Chapel-Hill, North Carolina;

⁶Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida; ⁷Departments of Pediatrics and Emergency Medicine, SUNY Upstate Medical University, Syracuse, New York; ⁸Departments of Pediatrics and Emergency Medicine, The George Washington University School of Medicine, and Children's National Medical Center, Washington, District of Columbia; ⁹Los Angeles County EMS Agency, Los Angeles, California; and ¹⁰Department of Emergency Medicine and Pediatrics, David Geffen School of Medicine at UCLA, Harbor-UCLA Medical Center, Department of Emergency Medicine, Los Angeles BioMedical Research Institute, Los Angeles, California

Address correspondence to Katherine Remick, MD, FAAP, FACEP, FAEMS. kate.remick@austin.utexas.edu

INTRODUCTION

This technical report describes the background leading to the development of the 2025 joint policy statement "Pediatric Readiness in the Emergency Department"¹ and provides details of the foundational infrastructure (ie, pediatric readiness) needed to ensure immediate high-quality care for critically ill or injured children presenting to the emergency department (ED). Pediatric readiness includes pediatric-specific

To cite: Remick KE, Foster AA, Jensen AR, et al; AMERICAN ACADEMY OF PEDIATRICS; Committee on Pediatric Emergency Medicine, Section on Surgery; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS; Pediatric Emergency Medicine Committee; EMERGENCY NURSES ASSOCIATION; Pediatric Committee; AMERICAN COLLEGE OF SURGEONS; Committee on Trauma. Pediatric Readiness in the Emergency Department: Technical Report. *Pediatrics*. 2026;157(2):e2025075319

equipment and supplies, policies and procedures, competencies for staff, patient safety protocols, continuous quality improvement (QI) efforts, and oversight of all administrative aspects of pediatric emergency care.^{1–8} The evidence described in this report further affirms that high levels of pediatric readiness are feasible for all EDs, regardless of annual pediatric patient volume or availability of inpatient and subspecialty resources. The ED is a central health care access or triage point for initial evaluation and disposition across the health care landscape.⁹ For this reason, optimizing emergency care services has great potential to improve patient-centered outcomes for children and families. Indeed, high levels of pediatric readiness are associated with improved survival for critically ill or injured children, making pediatric readiness a health care imperative.^{10–16} Adopting the recommendations in this report will facilitate the delivery of emergency care for children of all ages and, when appropriate, timely transfer to a facility with specialized pediatric services.

These recommendations are specifically designed for all EDs that provide care for children. In the United States, most children who seek emergency care (>80%) present to general EDs rather than specialized pediatric EDs.^{17–19} The intended users of these recommendations include all EDs that operate 24/7, including freestanding EDs and critical access hospital EDs. It is important to note that this report and the accompanying policy statement are not intended to address urgent care centers, as there are other recommendations available for those settings.²⁰

BACKGROUND

In 2024, the American Hospital Association estimated there were approximately 6120 hospitals in the United States, of which 5336 were acute care community hospitals and federal government hospitals.²¹ Among the 140 million ED visits in the United States in 2021, approximately 18% were for children younger than 15 years.²² This percentage represents a slight decrease from previous years (20%–25%), which may reflect improvements in children's health relative to adults or, alternatively, changes in health care usage attributable to the COVID-19 pandemic.^{23,24} Children have unique anatomic, physiologic, developmental, psychological, and medical needs that differ from adults.²⁵ These differences must be considered when developing emergency care pathways and protocols, training ED staff, stocking equipment, medications, and supplies and when implementing QI interventions. The critical importance of these recommendations cannot be overstated as pediatric readiness is now linked to a 4-fold reduction in mortality risk among critically ill children and an almost 2-fold reduction for injured children.^{10–12}

Improving Pediatric Readiness in US EDs

In 2006, the "Future of Emergency Care" series of the Institute of Medicine (IOM; now the National Academies of Sciences, Engineering, and Medicine) noted ongoing deficiencies in pediatric emergency care in both the prehospital and ED settings, including the availability of pediatric equipment, access to supplies and medications, training for staff, and policies and protocols incorporating the unique needs of children. Although there have been marked improvements in many areas of everyday pediatric readiness, persistent variability and the need for improvement remain across the continuum of care.^{17,18,26–29}

Variability in care has been noted across a spectrum of physical and behavioral health conditions, from pain assessment and management to cardiopulmonary resuscitation performance and sepsis recognition and treatment.^{30–41} Even the most foundational aspects of care are applied inconsistently across diverse presentations including vital signs acquisition and reassessment.⁴² Standardization and uniform adoption of evidence-based practices are necessary to promote the best possible outcomes for children.

One of the specific recommendations from the 2006 IOM report was that hospitals appoint both a nurse and physician pediatric emergency care coordinator (PECC). At that time, only 18% of EDs in the United States reported having a physician coordinator, and only 12% had a nurse PECC.⁴³ National assessments performed in 2013 and 2021 demonstrated that EDs that have staff assigned to the role of PECC have higher levels of pediatric readiness as measured by compliance with national guidelines.^{17,18} Although the 2013 assessment demonstrated an increase in the proportion of EDs with both nurse and physician PECCs (42%), there was a significant decrease noted in 2021 during the COVID-19 pandemic (29%).

The National Pediatric Readiness Project (NPRP), launched in 2012, is an ongoing QI initiative among the federal Health Resources and Services Administration (HRSA)/Emergency Medical Services for Children (EMSC) Program and the American Academy of Pediatrics, American College of Emergency Physicians, and Emergency Nurses Association to ensure pediatric readiness of EDs.^{44,45} The American College of Surgeons Committee on Trauma and the HRSA Pediatric Pandemic Network have joined this effort. Derived from the joint policy statement "Pediatric Readiness in the Emergency Department," the NPRP initiative now encompasses 6 pillars:

1. NPRP assessment: A comprehensive self-assessment of pediatric readiness components that provides a weighted pediatric readiness score (on a 100-point scale) based on responses.⁴⁶

2. NRP checklist and toolkit: A compilation of up-to-date, freely available online resources and educational materials to support the adoption of pediatric readiness.⁴⁷
3. NRP quality improvement collaboratives: National structured and time-bound shared learning networks to support ED-based teams and individual clinicians in implementing pediatric readiness improvement efforts.⁴⁸
4. NRP Quality Initiative (NPRQI): An open-access, self-driven QI data platform to help measure, benchmark, and improve pediatric clinical performance in EDs.⁴⁹
5. Pediatric Readiness ED recognition programs: State- and territory-based programs to identify and recognize EDs that demonstrate adherence to core components of pediatric readiness.^{50,51}
6. NRP data registry to promote research in pediatric readiness. The EMSC Data Center houses databases consisting of aggregate data from serial NRP assessment periods that researchers who wish to investigate aspects of pediatric readiness can request.⁵²

Major Research Findings from the NRP Initiative Include

1. Approximately 70% of EDs see fewer than 10 children per day, yet more than 80% of children are seen in non-children's hospitals.¹⁷
2. Although more than 90% of children have access to an ED within 30 minutes of their home, 90% of those live closest to a non-pediatric-ready ED.⁵³
3. The median pediatric readiness score among all US EDs is 69.5 on a 100-point scale.¹⁷
4. The survival benefit of pediatric readiness is only achieved among EDs in the highest quartile of pediatric readiness (weighted pediatric readiness score greater than 88–93).^{10,11}
5. For EDs in the highest quartile of pediatric readiness, there is a 60% decrease in mortality risk for injured children and a 76% decrease in mortality for critically ill children.^{10,11}
6. High pediatric readiness is associated with as much as a 3-fold decrease in racial disparities in mortality.¹⁶
7. The median time to death among children who succumb to their illness or injury is 3 hours following arrival to the ED.¹⁴
8. The estimated cost for an ED to obtain and sustain pediatric readiness is \$4 to \$48 per pediatric patient visit.⁵⁴
9. The overall national cost to ensure pediatric readiness of all 5000 EDs in the United States is approximately \$200 million.⁵⁵
10. The greatest drivers of pediatric readiness are a) the presence of physician and nurse PECCs to oversee all administrative aspects of pediatric readiness; b) continuous pediatric QI efforts to track and increase

adherence to safe and evidence-based care processes; and c) staffing the ED to include board-certified emergency physicians, defined as board certified or board eligible in emergency medicine or pediatric emergency medicine.¹⁷

Pediatric Readiness and Pediatric Facility Recognition

The impact of facility recognition for specialty care has long been recognized, with superior outcomes seen for adult patients with ST-elevation myocardial infarction (STEMI), stroke, and trauma when treated at designated specialty centers.^{56–58} Better outcomes have been demonstrated for children treated at a designated pediatric trauma center.⁵⁹ The EMSC program has long promoted improved readiness and recognition of prepared EDs, with current EMSC performance measures addressing pediatric readiness for children requiring emergency medical care.⁶⁰ Performance measure EMSC 04 is: “Hospital Emergency Department Pediatric Readiness Recognition Program.”⁶¹ Currently, 19 states have implemented pediatric readiness recognition programs for emergency departments.^{50,51} Although most programs use criteria that are based on the 2018 joint policy statement, there is significant variability in program requirements, verification processes, and designation of “level” of pediatric readiness.⁶² Many states have described the process they used to establish and maintain a pediatric readiness recognition system.⁵⁰

Recognition and Verification Have Been Associated With Improved Readiness Scores

Remick et al described an association between higher hospital readiness scores and an on-site verification program in California.⁵¹ Nationally, hospitals achieving Pediatric Readiness Recognition by their respective states scored, on average, 22 points higher on the assessment than those that had not been recognized as pediatric-ready by their state.⁶² National uniform standards are associated with decreased variability in pediatric readiness, as evidenced by consistently high levels of pediatric readiness at American College of Surgeons Verified Level 1 Pediatric Trauma Centers (PTCs) compared with high variability in pediatric readiness at PTCs with state pediatric designation alone.⁶³ The American College of Surgeons has incorporated pediatric readiness requirements into verification standards.

Identifying pediatric ready-receiving centers for emergency medical services (EMS) transport to trauma centers can potentially decrease mortality nationally. Children presenting for emergency treatment of critical illness or injury at high-readiness centers have been shown to have improved mortality compared with children treated at low-readiness centers.^{11–13} Furthermore, mortality differences adjusted for transport time have been demonstrated for injured children treated at the highest-readiness centers compared with low-readiness centers, suggesting

that children are potentially best treated with EMS bypass of low-readiness centers with transport to a high-readiness center if the transport time is under 30 minutes.⁶⁴ Unfortunately, access to care at a trauma center with a high level of pediatric readiness is limited, with only 8.6% of US children having access within 30 minutes by ground and only 60.5% with access in under 60 minutes.⁶⁵ Optimizing pediatric readiness at high-level trauma centers within existing trauma systems could potentially increase timely access to high-quality pediatric emergency care to 81% of children nationally (93% if air transport resources are available).

Pediatric Readiness: Improving the Safety and Quality of Pediatric Emergency Care

Over the past 15 years, patient safety has become a key priority for health systems. In 2022, the American Academy of Pediatrics published the revised policy statement “Optimizing Pediatric Patient Safety in the Emergency Care Setting.”⁶⁶ This statement and other recent work have demonstrated the value of specific structural and process measures for improved patient safety and quality of care. For example, a weight-based, color-coded medication safety system can decrease dosing errors and improve the timeliness of dosing,^{67,68} and order sets, reminders, and clinical practice recommendations embedded within information systems increase adherence to best practices.^{69,70}

The information from the pediatric readiness assessment, research described earlier, and expert opinion from the coauthoring organizations informed this report.^{1,6-8} These recommendations are intended for all EDs regardless of high-level resources. Some hospitals with pediatric critical care capabilities may elevate regional pediatric readiness by sharing their expertise with other community EDs. Coordination of pediatric care within and across integrated health care systems is a strategy that may improve pediatric readiness locally, regionally, and nationally. This report is intended to serve as a resource for clinical and administrative leadership of EDs as they strive to improve their readiness for children of all ages.¹

I. ADMINISTRATION AND COORDINATION FOR THE CARE OF CHILDREN IN THE ED

A. Pediatric emergency care coordinator (PECC): Ideally, a physician coordinator identified by the ED medical director and a registered nurse coordinator identified by the ED nurse director. The presence of at least 1 PECC is central to the readiness of any ED that cares for children and is associated with pediatric survival.^{17,18,71}

1. The physician and nurse PECCs may be concurrently assigned other roles in the ED (eg, frontline staff designated by leadership) or may oversee more than 1 program in the ED (ie, medical or

nursing director, or as coordinator for trauma, stroke, or STEMI). Regardless of how the role is delineated, PECC roles should include administrative support and protected time for PECC activities.⁷² PECC roles may be shared through formal agreements with administrative entities, such as within hospital systems in which an alternate hospital is capable of providing definitive pediatric care.

2. Facilitate the following qualifications for physician and nurse PECCs:
 - a. The physician PECC is qualified by the facility to provide emergency care. Optimally, the physician PECC is a board-certified or board-eligible specialist in emergency medicine or pediatric emergency medicine. Otherwise, the physician PECC meets the qualifications for credentialing by the hospital as an emergency clinician specialist with training and experience in evaluating and managing the critically ill or injured child. The physician PECC is credentialed by the facility and has verified competency in the care of children, including resuscitation, per the hospital policy. For EDs with limited resources, this administrative role may be shared with a clinical nurse specialist, nurse practitioner, or physician assistant (ie, advanced practice clinician) who is credentialed to care for patients in the ED. Engaging with collaborative groups can provide resources, best practices, and opportunities for shared learning regarding optimization of pediatric emergency care.
 - b. The nurse PECC is a registered nurse who possesses special interest, knowledge, and skill in the emergency nursing care of children through clinical experience and demonstrated competence in critical thinking and clinical skills. Where available, a certified emergency nurse (CEN) or, preferably, a certified pediatric emergency nurse (CPEN) is desirable. Otherwise, the nurse coordinator has verified competency per hospital policy and may have other credentials such as certified pediatric nurse (CPN) or certified critical care registered nurse (CCRN).
3. The physician and nurse PECCs work collaboratively and are responsible for the following⁷³:
 - a. Promote adequate skill and knowledge of ED staff physicians, nurses, and other health care clinicians and staff (ie, physician assistants, advanced practice nurses, paramedics, and technicians) in the emergency care and resuscitation of infants and children. PECCs should have significant input into the methods for

- demonstrating competency in pediatric emergency care for their respective disciplines.
- b. Participate in developing the pediatric components of the QI plan and facilitating QI activities related to pediatric emergency care.
- c. Assist with the development and periodic review of ED policies, procedures, and standards for medications, equipment, and supplies to ensure adequate resources for children of all ages.
- d. Serve as liaison/coordinator in collaboration with appropriate in-hospital and out-of-hospital pediatric care committees in the community/region and EMS, trauma, and emergency preparedness coordinators (if they exist).
- e. Serve as liaison to definitive care hospitals, such as regional pediatric referral hospitals and trauma centers, EMS agencies, primary care clinicians, health insurers, and any other care resources needed to integrate services along the pediatric care continuum, such as pediatric injury prevention, chronic disease management, and community education programs.
- f. Facilitate pediatric emergency medical and nursing education for ED health care clinicians and staff, including identifying continuing pediatric emergency education resources.
- g. Facilitate inclusion of pediatric-specific elements in physician and nursing orientation in the ED.
- h. In coordination with the local credentialing processes, facilitate competency evaluations for staff that are pertinent to children of all ages. Simulation (ie, pediatric scenario-based mock codes) has been demonstrated to improve pediatric care in resuscitation and team settings.⁷⁴⁻⁷⁷
- i. Facilitate integration of pediatric needs in hospital disaster/emergency preparedness plans and promote inclusion of pediatric patients in disaster drills.⁷⁸⁻⁸⁰
- j. Collaborate with ED leadership to enable adequate staffing, medications, equipment, supplies, and other resources for children in the ED.
- k. Communicate with ED and hospital leadership on efforts to facilitate pediatric emergency care.

II. COMPETENCIES FOR PHYSICIANS, ADVANCED PRACTICE PROVIDERS, NURSES, AND OTHER ED HEALTH CARE CLINICIANS

- A. Physicians, physician assistants, nurse practitioners, nurses, and other ED health care clinicians, based

on their level of training and scope of practice, maintain the necessary skill, knowledge, and training in the emergency evaluation and treatment of children of all ages. Continuing education may be used to fulfill certain pediatric competencies, but interval updates of skills and procedures is strongly encouraged to maintain pediatric competencies. Training and board certification in emergency medicine or pediatric emergency medicine is considered optimal for physicians and nursing staff with ongoing participation in maintenance of certification. Staffing that includes board-certified emergency physicians has been associated with higher pediatric readiness and, as such, ensures the initial training in pediatric resuscitation which includes mastery of cognitive and procedural skills as well as a continuing certification that reinforces best practice emergency care for pediatric patients in emergency settings.¹⁷ Similar training and ongoing requirements for certification in emergency and pediatric emergency medicine are available for nursing staff and should be encouraged.⁸¹ There are more than 40 000 board-certified emergency physicians and fewer than 3000 pediatric emergency physicians in the United States. Ultimately, staffing for the over 5000 EDs to care for children should be developed on the basis of local resources, but it would ideally include a board-certified emergency medicine or pediatric emergency medicine physician.⁸²⁻⁸⁴

- B. Baseline and periodic competency evaluations completed for all ED clinical staff, including physicians, physician assistants, nurse practitioners, nurses, and other health care clinicians are age-specific and optimally include neonates, infants, children, adolescents, and children with special health care needs. Competencies are determined by each institution's hospital policy and medical staff privileges as a part of the local credentialing process for all licensed ED staff.⁸⁵ Competencies refer to both knowledge and skills retention.
- C. Demonstration and maintenance of pediatric clinical competencies may differ for physicians and nursing staff and can be achieved through maintenance or continuing certification; continuing education, including participation in local educational programs, professional organization conferences, or national pediatric emergency care courses; or through scheduled mock codes or patient simulation, team training exercises, or experiences in other clinical settings, such as the operating room (ie, airway management). Evaluation of such competencies may be achieved through direct observation, chart reviews, written knowledge tests, and/or by documentation of board certification for physicians, nurse practitioners,

physician assistants, and nursing staff. Demonstration of competency for emergency physicians is achieved by documentation of initial certification in emergency medicine or pediatric emergency medicine and ongoing participation in continuing certification. Ongoing education in pediatric emergency care is recommended for all emergency clinicians. At minimum, clinicians should demonstrate and maintain competency of practice in the:

1. Recognition and care of acutely ill or injured children and children with complex medical histories and/or those with technological dependency.
2. Performance of procedures commonly encountered in the ED.
3. Provision of patient triage, resuscitation, and stabilization, aligning care provided with severity of illness or injury.
4. ED management and supervision of ED personnel.
- D. Potential areas for pediatric competency and professional performance evaluations may include but are not limited to⁸⁶:
 1. Assessment and treatment
 - a. Triage
 - b. Illness and injury assessment and management
 - c. Pain assessment and treatment, including non-pharmacologic pain management (eg, distraction techniques and comfort holds)
 - d. Assessment and management of mental and behavioral health emergencies in children
 - e. Recognition of toxicodromes and common poisonings
 2. Medication administration and delivery
 3. Device/equipment safety (eg, low-volume infusion pumps)
 4. Procedures
 - a. Airway management
 - b. Vascular access
 - c. Sedation and analgesia
 - d. Hemorrhage control (tourniquets and packing)
 5. Resuscitation
 - a. Critical care monitoring
 - b. Neonatal resuscitation
 - c. Pediatric resuscitation
 6. Trauma resuscitation and stabilization⁸⁷
 - a. Burn management
 - b. Traumatic brain injury
 - c. Fracture management
 - d. Hemorrhage control and resuscitation
 - e. Recognition and reporting of nonaccidental trauma
 7. Disaster drills that include triage of pediatric victims, tracking and identification of unaccompanied children, family reunification, and determination of pediatric surge capacity⁸⁸

8. Patient- and family-centered care, including cultural competency
9. Team training and effective communication
 - a. Transitions of care/handoffs⁸⁹
 - b. Closed loop communication

III. QUALITY IMPROVEMENT/PERFORMANCE IMPROVEMENT IN THE ED

Quality is best ensured by evaluating each of the 6 domains addressed by the IOM report⁹⁰: safe, equitable, patient centered, timely, efficient, and effective. Performance improvement (PI) processes are essential to evaluating the quality of care, and measurement is integral to PI activities. Pediatric-specific metrics should be carefully identified to assess the quality of care throughout each phase of health care delivery across the emergency care continuum. A pediatric patient care review process is integrated into the QI and/or PI plan of the ED according to the following recommendations:

- A. The potential framework for QI efforts may focus on the effectiveness of structural elements, processes, and clinical outcomes relative to pediatric emergency care. Minimum components of the QI/PI process should include collecting and analyzing data to discover variances from local, regional, or national norms; defining an improvement plan; and evaluating the success of the QI/PI plan with measures that are outcome based. High-level quality improvement efforts facilitate education and training, targeted system change implementation, and system performance measurement over time until steady, high-level performance is achieved. Simulation across the continuum of pediatric emergency care should be considered to improve outcomes and mortality.⁹¹
- B. The QI/PI plan of the ED shall include pediatric-specific indicators. As shown in Table 1, pediatric emergency care metrics have been identified and should be strongly considered for inclusion in the overall QI plan.^{49,92-94} In addition, performance bundles may be used to assess the quality of care provided for specific clinical conditions (eg, pediatric septic shock, pediatric asthma, pediatric closed-head injury).⁹⁵⁻⁹⁹
- C. Process components integrate prehospital, ED, trauma, inpatient pediatrics, pediatric critical care, and hospital-wide QI or PI activities and may interface with regional, state, or national QI collaboratives, including injury prevention efforts.¹⁰⁰⁻¹⁰⁴
- D. Mechanisms are in place to monitor professional performance, credentialing, continuing education, and clinical competencies including integration of findings from QI audits and case reviews for pediatric emergency care.

TABLE 1. Examples of Pediatric Emergency Care Performance Improvement Activities and Resources
Clinical Emergency Department Registry (CEDR) https://www.acep.org/cedr/
EMS for Children Innovation and Improvement Center https://emscimprovement.center
Emergency Nurses Association https://www.ena.org/#practice-resources
Education in Quality Improvement for Pediatric Practice (EQIPP) https://eqipp.aap.org/
The National Pediatric Readiness Assessment, https://www.pedsready.org
The National Pediatric Readiness Quality Initiative, www.NPRQI.org
Pedialink, The AAP Online Learning Center https://pedialink.aap.org/visitor
Pediatric Readiness Toolkit, https://emscimprovement.center/domains/pediatric-readiness-project/
Pediatric Trauma Society https://pediatrictraumasociety.org/
The Pediatric Interfacility Transfer Guide, https://emscimprovement.center/education-and-resources/interfacility-transfer/
Pediatric TQIP https://www.facs.org/quality-programs/trauma/quality/trauma-quality-improvement-program/pediatric-tqip/
Pediatric Emergency Care Applied Research Network (PECARN) guidelines: https://pecarn.org

Numerous resources are available to assist ED staff implementing QI/PI activities (see Table 1).

IV. POLICIES, PROCEDURES, AND PROTOCOLS FOR THE ED

A. Policies, procedures, and protocols allow for the preparation and standardization of emergency care for children. ED policies, procedures, and protocols should be age specific and include neonates, infants, children, adolescents, and children with special health care needs, and they may need to be periodically updated.¹⁰⁵ Additionally, ED staff should be educated accordingly and monitored for compliance.

- Pediatric triage for illness and injury, including children with medical complexity.¹⁰⁶
- Pediatric patient assessment and reassessment, including a complete set of vital signs and frequency of reassessment.²⁵
- Documentation of a full set of pediatric vital signs, including weight in kilograms, and the following: temperature, respiratory rate, pulse oximetry, heart rate, blood pressure, pain score, and mental status. Core temperature and manual blood pressure confirmation should be considered when indicated. End-tidal CO₂ monitoring is available for children of all ages based on severity of illness and/or need for sedation (eg, requiring advanced airway placement, monitoring for respiratory failure, or sedation). Identification and notification of the responsible clinician of abnormal vital signs, adjusted for age. Metric units are preferred for all patient measurements (eg, height, length, head circumference), when clinically indicated by the treating clinician.
- Pediatric sedation and analgesia (including non-pharmacologic interventions for comfort) for procedures, including medical imaging.¹⁰⁷⁻¹¹¹

- Pediatric transfusion protocol.¹¹²⁻¹¹⁵
- Assent and consent of minors (including when a caregiver is unavailable) and confidentiality protections per state laws.^{116,117}
- Management of caregivers who exhibit verbal or physical abuse.¹¹⁸⁻¹²⁰
- Assuming temporary protective custody of a child.
- Pediatric social issues including food insecurity and home safety.^{121,122}
- Pediatric behavioral health and substance use disorders.¹²³
- Approach and management of a child with agitation.¹²⁴⁻¹²⁷
- Appropriate use of deescalation, pharmacologic management, and physical restraint of a child with agitation.¹²⁴⁻¹²⁷
- Trauma-informed care.^{128,129}
- Suicide screening and management.¹³⁰
- Child maltreatment assessment and mandated reporting (physical and sexual abuse, sexual assault, human trafficking, and neglect).^{131,132}
- Reduced-dose radiation and appropriateness of contrast for pediatric imaging.¹³³⁻¹³⁵
- Death of a child in the ED.^{136,137}
- Family-centered care including¹³⁸⁻¹⁴¹:
 - Involving families and guardians in patient care decision making, interfacility transfer decisions, when needed, and in medication safety processes
 - Family and guardian presence during all aspects of emergency care, including resuscitation and transport
 - Education of the patient, family, and caregivers and guardians
 - Discharge planning and education
 - Bereavement counseling

19. Communication with patient's medical home or primary health care provider at the time of the ED visit (this can help ensure that a judicious and appropriate approach to examination, testing, imaging, and treatment is coordinated and follow-up is arranged in the most cost-effective and up-to-date manner)¹⁴² A process for managing the safe discharge of patients who lack a medical home or regular primary care provider and may benefit from a community referral and/or consultation with a case manager and/or social worker.¹⁴³⁻¹⁴⁶

20. Do-not-resuscitate orders.¹⁴⁷

21. Consultation and/or transfer to a pediatric center for children with medical complexity (including developmental disabilities, chronic care needs, and technology dependency) when needed.^{148,149}

22. Immunization assessment and management.^{150,151}

23. All-hazard disaster preparedness plan that addresses the following pediatric issues⁸⁰:

- Availability of medications, vaccines (eg, tetanus and rabies), equipment, supplies, and appropriately trained providers for children in disasters
- Pediatric surge capacity for both injured and uninjured children
- Decontamination, isolation, and quarantine of families and children of all ages
- Minimization of parent-child separation and improved methods for reuniting separated children with their families
- Access to specific medical and behavioral health therapies, as well as social services, for children in the event of a disaster
- Disaster drills that include a pediatric mass casualty incident at least once every 2 years and that all drills include pediatric patients
- The care of children with special health care needs, including children with disabilities and technology dependency

24. Pediatric telehealth/telemedicine for subspecialty consultation.¹⁵²⁻¹⁵⁴

25. Human trafficking screening and management.^{155,156}

B. Best practices to standardize care include use of evidence-based clinical pathways, order sets, or decision support that are available to clinicians in real-time.^{98,111,157-167} When possible, integration of clinical pathways into the electronic medical record system can facilitate use by the ED care team. These may be systematically derived, consensus-driven, or locally developed on the basis of available evidence. Collaboration with regional pediatric centers and trauma centers may facilitate the use of standard, evidence-based guidelines. Additionally, some children's hospitals and academic centers have developed and studied clinical pathways, which are now available for public use. Examples of clinical pathways for the most common pediatric conditions seen in the ED are displayed in Table 2. The use of evidence-based pathways in the ED can improve patient-centered outcomes and mitigate disparities in care by providing a uniform approach to emergency care for all children.¹⁶⁸ Special attention is warranted to eliminate any race-based medicine in any of the pathways used in the ED to foster optimal emergency care for all children.¹⁶⁹

C. Written pediatric interfacility transfer procedures and/or agreements that include the following pediatric components^{148,149}:

- Defined process for initiation of transfer, including the roles and responsibilities of the referring facility and referral center (including responsibilities for requesting transfer, method of transport and communication).
- Transport plan to deliver children safely (including the use of child passenger restraint devices) and in a timely manner to the appropriate facility capable of providing definitive care.
- Process for selecting the appropriate care facility for pediatric specialty services not available at the hospital; these specialty services may include:
 - Medical and surgical specialty care
 - Critical care
 - Reimplantation (replacement of severed digits or limbs)
 - Trauma and burn care
 - Behavioral health emergencies
 - Obstetric and perinatal emergencies
 - Child maltreatment (physical and sexual abuse and neglect)
 - Rehabilitation for recovery from critical medical or traumatic conditions
 - Orthopedic emergencies
 - Neurosurgical emergencies
- Process for selecting the appropriately staffed transport service to match the patient's acuity level (ie, level of care required, and equipment needed for transport) and appropriate for children with special health care needs.
- Process for patient transfer (including obtaining informed consent).⁶⁴
- Plan for transfer of critical patient information (ie, medical record, imaging, copy of signed transport consent) as well as personal belongings and

TABLE 2. Sample Evidence-Based Clinical Pathways for Common Pediatric Conditions

Most Common Conditions ²³	Citations	Use of Evidence-Based Pathways Improve Care	Open-Access Pathway Examples
Respiratory			
Asthma	Kaiser SV et al, 2020 ⁹⁸	Summary: 83 EDs (37 in children's hospitals, 46 in community hospitals) were recruited, and 61 (73%) completed the study. Pathway implementation was associated with significantly increased odds of systemic corticosteroid administration within 60 min of arrival (aOR, 1.26; 95% CI, 1.02–1.55), increased odds of severity assessment at triage (aOR, 1.88; 95% CI, 1.22–2.90), and decreased rate of change in odds of hospital admission/transfer (aOR, 0.97; 95% CI, 0.95–0.99). Pathway implementation was not associated with chest radiograph use or ED length of stay.	VIP Pathways for Improving Asthma Care (PIPA): Clinical Pathway for Pediatric Asthma in the Emergency Department Setting
Injury and Poisoning			
Minor head trauma	Corwin DJ et al, 2021, ¹⁵⁷ and Nigrovic LE, Kuppermann N, 2019 ¹⁵⁸	Summary: Head CT rates in patients with minor head trauma consistently decreased each year after guideline implementation. Children who received head CT did not have prolonged lengths of stay compared with those who did not. A minority of patients who received a CT and were discharged met low-risk criteria by standardized guidelines.	Corwin DJ et al, 2021, ¹⁵⁷ and Nigrovic LE, Kuppermann N, 2019 ¹⁵⁸
Nervous System Disorders			
Status epilepticus	Shorvon S et al, 2008 ¹⁵⁹	Summary: Consensus recommendation that all hospital units have a written management pathway with a clear, structured timeframe for management of status epilepticus.	Emergency Medical Services for Children Pediatric Education and Advocacy Kit (PEAK): Status Epilepticus Algorithm
Digestive Disorders			
Gastroenteritis	Rutman L et al, 2017 ¹⁶⁰	Summary: There was a decrease in patients receiving IV fluids after initiation of the pathway and later with the addition of ondansetron to the pathway from 48% to 26%. The mean ED length of stay for discharged patients with acute gastroenteritis decreased from 247 to 172 min. These improvements were sustained over time.	Rutman et al ¹⁶⁰
Infectious and Parasitic Diseases			
Infant fever	Murray AL et al, 2017 ¹⁶¹	Summary: The mean time to urine collection and time to the first antibiotic administration were reduced after pathway implementation (23-min reduction to urine collection vs 36-min reduction to the first antibiotic administration). There was improvement in the proportion of infants who received the pathway-specific antibiotics based on age (OR, 7.2; 95% CI, 4.4, 11.9) and the proportion of infants who were administered acyclovir based on pathway guidelines (OR, 8.8; 95% CI, 2.9–30.0).	American Academy of Pediatrics Clinical Practice Guideline: Evaluation and Management of Well-Appearing Febrile Infants 8 to 60 Days Old. DOI: https://doi.org/10.1542/peds.2021-052228
Mental and Behavioral Health Conditions			
Pediatric agitation	Hoffmann JA et al, 2023 ¹⁶²	Summary: Among ED visits with medication given for severe agitation, standardized medication choices (olanzapine or droperidol) increased from 8% to 88%. Mean minutes in physical restraints decreased from 173 to 71.	Supplementary material

Abbreviations: aOR, adjusted odds ratio; CT, computed tomography; IV, intravenous; OR, odds ratio.

provision of directions and referral institution information to family.

7. Process for return transfer of the pediatric patient to the referring facility as appropriate.
8. Integration with telehealth/telecommunications processes and mobile integrated health/community paramedicine as appropriate.^{152,153}

V. PEDIATRIC PATIENT AND MEDICATION SAFETY IN THE ED

The delivery of pediatric care should reflect an awareness of unique pediatric patient safety concerns and should include the following policies or practices⁶⁶:

- A. Weigh all children in kilograms and record the weight in a prominent place on the medical record, preferably with the vital signs.¹⁷⁰
 1. For children who require resuscitation or emergency stabilization, a standard method for estimating weight in kilograms (eg, length-based tape) should be used.
- B. A full set of vital signs, including blood pressure, heart rate, respiratory rate, temperature, oxygen saturation, and pain score should be documented and reassessed as patient status requires.
- C. Processes for safe medication (including blood products) prescribing, delivery, and disposal should be established and should include the following:
 1. Use precalculated dosing guidelines for children of all ages and ensure they are easily accessible at the point of care.
 2. Consider adding a pharmacist with pediatric competency to the ED team, especially in large EDs, during times of higher volume.
 3. Identify the administration phase as a high-risk practice (eg, the simple misplacement of a decimal point can result in a 10-fold medication error).
 4. Promote distraction-free zones for medication preparation.
 5. Implement systems to decrease the cognitive load with pediatric dosing during resuscitation, which can lead to medication errors, (eg, precalculated dosing guidelines, computerized physician order entry, and clinical decision support with pediatric-specific kilogram-only dosing rules, including upper dosing limits, within emergency department information systems).
 6. Implement and utilize computerized physician order entry to create allergy alerts for all prescribed medications.
 7. Practice vigilance for all administered or prescribed medications and consider developing standardized order sets, particularly for high-risk medications, such as opioids and antibiotics.
8. Implement an independent 2-clinician cross-check process for high-alert medications such as pain and resuscitation medications.
9. Create a standard formulary for pediatric high-risk and commonly used medications.
10. Standardize concentrations of high-risk medications.
11. Reduce the number of available concentrations to the smallest possible number.
12. Encourage open communication and review of near misses among the ED team to support a “just culture” with no individual blame for errors, which can mitigate clinicians’ reluctance to report.
13. Ensure that caregivers are well instructed on medication administration, particularly for pain and antipyretic medications, before the patient is discharged from the ED.
14. Health literacy-informed communication strategies should be used with all families in a “universal precautions approach,” because all parents likely benefit from clear communication (use of plain language, teach-back, etc). Redesigning the process of clinician medication counseling from a health literacy perspective has decreased dosing error rates. Clinicians may be trained to deliver simple, brief interventions associated with improved dosing safety.¹⁷¹
- D. Pediatric emergency services are culturally and linguistically appropriate, and the ED provides a safe environment for children and support patient- and family-centered care.¹⁷²⁻¹⁷⁴
 1. Enhance family-centered care by actively engaging patients and families in safety at all points of care and addressing issues of ethnic culture, language, and literacy.
 2. Direct families to appropriate resources and review patients’ rights and responsibilities from the safety perspective.
 3. Include shared decision making.
 4. Utilize trained language interpreter services rather than bilingual relatives.
- E. Patient-identification policies are consistent with The Joint Commission’s national patient safety goals.¹⁷⁵
- F. Policies exist for the timely tracking, reporting, and evaluation of patient safety events and the disclosure of medical errors or unanticipated outcomes. Education and training in disclosure is available to care clinicians who are assigned this responsibility.

VI. SUPPORT SERVICES FOR THE ED

- A. Imaging and laboratory testing policies, informed by research and expert opinion, should be developed

and regularly reexamined and updated. Examples include the “Choosing Wisely” principles of applying evidence-based medicine criteria to obtaining radiographs for children with bronchiolitis, croup, asthma, first-time wheezing, or constipation and limiting testing of children with a viral illness, children with uncomplicated seizures, or children with mental or behavioral health symptoms who require psychiatric inpatient admission (“medical clearance”).¹⁷⁶

B. The radiology department should have the skills and capability to provide imaging studies of children and have the equipment and personnel necessary to do so as well as guidelines to reduce radiation exposure that are age and size specific.¹⁷⁷⁻¹⁷⁹

1. The radiology capability of hospitals may vary from one institution to another; however, every ED should promote on-site radiology capabilities to meet the needs of children in the community.
2. Medical imaging protocols that address age- or weight-appropriate dose reductions for children receiving studies that impart ionizing radiation, consistent with ALARA (as low as reasonably achievable) principles, especially when obtaining computed tomography scans or performing interventional procedures.¹⁵⁷⁻¹⁵⁹
3. A process should be established for referring children to appropriate facilities for radiologic procedures that exceed the hospital’s capability.
4. A process should be in place for the timely review and interpretation reporting by a qualified radiologist for medical imaging studies in children.
5. When an injured patient is transferred to a pediatric facility, imaging should be deferred to the receiving facility unless results will significantly alter management prior to or during the transfer process. Specifics should be discussed with the receiving facility.
6. When a patient is transferred from one facility to another following imaging, all efforts are made to transfer completed images to avoid unnecessary radiation exposure. Technology (eg, cloud sharing with Health Insurance Portability and Accountability [HIPAA] protection) may facilitate digital image sharing between facilities.

C. The laboratory has the skills, personnel, and capability to perform laboratory tests for children of all ages, including obtaining samples, and the availability of micro technique for small or limited sample size.

1. The clinical laboratory capability must meet the needs of the children in the community it serves.
2. There should be a clear understanding of what the laboratory capability is for any given community, and definitive plans for referring children to the appropriate facility for laboratory studies should be in place.

3. Protocols should be developed for the screening and administration of blood and blood products for ill or injured children.

D. Personnel capable of providing supportive, family-centered, trauma-informed care should be available. Personnel may include specially trained social workers, nurses, chaplains, mental health professionals, or child life specialists.¹³⁸

VII. EQUIPMENT, SUPPLIES, AND MEDICATIONS

Pediatric equipment, supplies, and medications are easily accessible, labeled, and logically organized (eg, kilogram weight, weight-based color coding, etc).

- A. Medication chart, color-based coding, medical software, or other systems are readily available to ED staff to ensure proper sizing of resuscitation equipment and proper dosing of medications based on patient weight in kilograms.
- B. Resuscitation equipment and supplies are located in the ED; trays and other items may be housed in other departments (such as the newborn nursery or central supply) with a process to ensure immediate accessibility to ED staff. A mobile or portable appropriately stocked pediatric crash cart should be available in the ED at all times.
- C. ED staff are appropriately educated as to the location of all items.
- D. Each ED has a daily method to verify the proper location and function of equipment and expiration of medications and supplies.

The accompanying 2025 joint policy statement “Pediatric Readiness in the Emergency Department” includes an ED checklist that provides further details regarding pediatric-specific medications, equipment, and supplies necessary for the care of children in the ED.¹

SUMMARY

The 2006 IOM report, “Emergency Care for Children: Growing Pains,” used the word “uneven” to describe the status of pediatric emergency care in the United States at the time.²⁶ Although much progress has been made in the level of pediatric readiness across communities,^{17,18} there remains a significant opportunity for further advancement nationwide. An important first step in ensuring readiness is the identification of both a physician and a nurse PECC for pediatric emergency care.

All EDs must be continually prepared to receive, accurately assess, and at a minimum, stabilize and safely transfer acutely ill or injured children. This readiness is

necessary even for hospitals located in communities with readily accessible pediatric tertiary care centers and regionalized systems for pediatric trauma and critical care. The vast majority of children requiring emergency services in the United States receive this care in a non-children's hospital ED, with 70% of EDs providing care for fewer than 10 children per day.¹⁷ This relatively infrequent exposure of hospital-based emergency care professionals to seriously ill or injured children represents a substantial barrier to the maintenance of essential skills and clinical competency. Recognition of the unique needs of the ill and/or injured children served by an emergency care facility, including children with special health care needs; the commitment to better meet those needs through adoption of these recommendations; and the ongoing commitment to evaluate care quality and safety and maintain pediatric competencies should provide a strong foundation for pediatric emergency care.

Resources to assist with implementation of all aspects of this document can be found at www.pediatricreadiness.org.

LEAD AUTHORS

Katherine Remick, MD, FAAP, FACEP, FAEMS

Ashley A. Foster, MD, FAAP, FACEP

Aaron R. Jensen, MD, MEd, MS, FACS, FAAP

Regan F. Williams, MD, MS, FACS, FAAP

Elizabeth Stone, PhD, RN, CHSE, FAEN

Madeline Joseph, MD, FAAP, FACEP

Gregory Conners, MD, MPH, FAAP

Kathleen Brown, MD, FAAP, FACEP

Marianne Gausche-Hill, MD, FAAP, FACEP, FAEMS

AAP COMMITTEE ON PEDIATRIC EMERGENCY MEDICINE, 2024–2025

Toni K. Gross MD, MPH, FAAP, FAEMS, Chairperson

Kerry S. Caperell, MD FAAP

Jennifer A. Hoffmann, MD, MS, FAAP

Jennifer E. McCain, MD, FAAP

Sylvia Owusu-Ansah, MD, MPH, FAAP

Christian D. Pulcini, MD, MEd, MPH, FAAP

Mohsen Saidinejad, MD, MS, MBA, FAAP

David Schnadower, MD, MPH, FAAP

Caleb E. Ward, MB BChir, MPH, FAAP

Muhammad Waseem, MD, FAAP

FORMER COMMITTEE ON PEDIATRIC EMERGENCY MEDICINE MEMBER, 2024

Gregory Conners, MD, MPH, MBA, FAAP, Chairperson

LIAISONS

Christopher S. Amato, MD, FAAP, FACEP – *American College of Emergency Physicians*

Sam Shahid, MBBS, MPH – *American College of Emergency Physicians*

Mary E. Fallat, MD, FAAP, FACS – *American College of Surgeons/AAP Section on Surgery*

Cynthiana Lightfoot – *AAP Family Partnerships Network*

Charles G. Macias, MD, MPH, FAAP – *EMSC Innovation and Improvement Center*

Elizabeth L. Stone, RN, PhD, CEN – *Emergency Nurses Association*

Tabitha A. Cheng, MD – *National Association of EMS Physicians*

Katherine E. Remick, MD, FAAP, FACEP, FAEMS – *National Association of Emergency Medical Technicians*

Cynthia J. Wright-Johnson, MSN, RN – *National Association of State EMS Officials*

STAFF

Sue Tellez

AAP SECTION ON SURGERY EXECUTIVE COMMITTEE, 2024–2025

Marybeth Browne, MD, MS, FAAP, Chairperson

Elizabeth Beierle, MD, FAAP

Barbara Anne Gaines, MD, FAAP

Saleem Islam, MD, MPH, FAAP, Immediate Past Chair

Marc P. Michalsky, MD, MBA, FAAP

Mehul V. Raval, MD, MS, FAAP

Danielle Saunders Walsh, MD, FAAP

LIAISONS

Mary E. Fallat, MD, FAAP, FACS – *American College of Surgeons/AAP Section on Surgery*

STAFF

Vivian Thorne

ACEP PEDIATRIC EMERGENCY MEDICINE COMMITTEE, 2024–2025

Madeline Joseph, MD, FACEP, Chair

Kiyetta Alade, MD

Christopher Amato, MD, FACEP

Jahn T. Avarello, MD, FACEP

Steven Baldwin, MD

Isabel A. Barata, MD, FACEP, FAAP

Lee S. Benjamin, MD, FACEP

Kathleen Berg, MD

Kathleen Brown, MD, FACEP

Jeffrey Bullard-Berent, MD, FACEP

Ann Marie Dietrich, MD, FACEP

Phillip Friesen, DO

Michael Gerardi, MD, FACEP, FAAP

Alan Heins, MD, FACEP

Doug K. Holtzman, MD, FACEP

Jeffrey Homme, MD, FACEP
Timothy Horeczko, MD, MSCR
Paul Ishimine, MD, FACEP
Samuel Lam, MD, RDMS
Katharine Long
Kurtis Mayz, JD, MD, MBA
Sanjay Mehta, MD, Med, FACEP
Larry Mellick, MD
Aderonke Ojo, MD, MBBS
Audrey Z. Paul, MD, PhD
Denis R. Pauze, MD, FACEP
Nadia M. Pearson, DO
Debra Perina, MD, FACEP
Emory Petrack, MD
David Rayburn, MD, MPH
Emily Rose, MD
W. Scott Russell, MD, FACEP
Timothy Ruttan, MD, FACEP
Mohsen Saidinejad, MD, MBA, FACEP
Brian Sanders, MD
Joelle Simpson, MD, MPH
Patrick Solari, MD
Michael Stoner, MD
Jonathan H. Valente, MD, FACEP
Jessica Wall, MD
Dina Wallin, MD
Muhammad Waseem, MD, MS, FACEP
Paula J. Whiteman, MD, FACEP
Dale Woolridge, MD, PhD, FACEP

FORMER ACEP PEDIATRIC EMERGENCY MEDICINE COMMITTEE MEMBERS, 2024

Joseph Arms, MD
Richard M. Cantor, MD, FACEP
Ariel Cohen, MD
Carrie DeMoor, MD
James M. Dy, MD
Paul J. Eakin, MD
Sean Fox, MD
Marianne Gausche-Hill, MD, FACEP, FAAP
Timothy Givens, MD
Charles J. Graham, MD, FACEP
Robert J. Hoffman, MD, FACEP
Mark Hostetler, MD, FACEP
Hasmig Jinivizian, MD
David Markenson, MD, MBA, FACEP
Joshua Rocker, MD, FACEP
Brett Rosen, MD
Gerald R. Schwartz, MD, FACEP
Harold A. Sloas, DO
Annalise Sorrentino, MD, FACEP

Orel Swenson, MD
Michael Witt, MD, MPH, FACEP

STAFF

Loren Rives, MNA
Dan Sullivan
Stephanie Wauson

EMERGENCY NURSES ASSOCIATION PEDIATRIC COMMITTEE, 2024–2025

Julie Cohen, MSN, RN, CEN, CPEN
Lisa Hill, DNP, RN, TCRN, EMT-P I/C
Kimberly MacKeil-White, DNP, RN, CPEN, NPD-BC
Courtney Williams Simmons, MSN, RN, CPEN, TCRN, NPD-BC, CEN, ENA Senior Nursing Content Specialist

BOARD LIAISONS

Maureen Curtis-Cooper, BSN, RN, 2016 Board Liaison
Kathleen Carlson, MSN, RN, 2017 Board Liaison

STAFF

Marlene Bokholdt, MSN, RN

AMERICAN COLLEGE OF SURGEONS COMMITTEE ON TRAUMA, 2024–2025

Jeffrey D. Kerby, MD, PhD, FACS, Chair
Warren Dorlac, MD, FACS, Vice Chair
Lillian Kao, MD, FACS, Chair, Quality Pillar
John Sutyak, MD, FACS, Chair, ATLS Working Group
Brendan Campbell, MD, FACS, Chair, Injury Prevention
John Armstrong, MD, FACS, Chair, Advocacy Pillar
Stephen Barnes, MD, FACS, Chair, Membership
Kristan Staudenmayer, MD, FACS, Chair, Trauma Systems
Scott Sagraves, MD, FACS, Chair, Verification Review Committee
Nirav Patel, MD, FACS, Chair, Global Working Group

ABBREVIATIONS

ED: emergency department
EMS: emergency medical services
EMSC: Emergency Medical Services for Children (program)
IOM: Institute of Medicine
NPRP: National Pediatric Readiness Project
PECC: pediatric emergency care coordinator
PI: performance improvement
QI: quality improvement

All authors contributed substantially to the conception and design; review and interpretation of relevant literature; drafting and revisions; and final approval of the published version.

All authors have filed conflict of interest statements with the American Academy of Pediatrics.

Any conflicts have been resolved through a process approved by the Board of Directors. Author disclosures are provided at the end of this article. The American Academy of Pediatrics has neither solicited nor accepted any commercial involvement in the development of the content of this publication.

Technical reports from the American Academy of Pediatrics benefit from expertise and resources of liaisons and internal (AAP) and external reviewers. However, technical reports from the American Academy of Pediatrics may not reflect the views of the liaisons or the organizations or government agencies that they represent.

This document is copyrighted and is property of the American Academy of Pediatrics and its Board of Directors.

The guidance in this report does not indicate an exclusive course of treatment or serve as a standard of medical care. Variations, taking into account individual circumstances, may be appropriate.

All policy statements, clinical reports, and technical reports from the American Academy of Pediatrics automatically expire 5 years after publication unless reaffirmed, revised, or retired at or before that time.

FINANCIAL/CONFLICT OF INTEREST DISCLOSURE: Dr Remick had disclosures related to: EMS for Children Innovation and Improvement Center.

Dr Williams had disclosures related to: Edwards Lifesciences Corporation; Hologic Sales and Service; PolyMedics Innovations Inc.

Disclosures are reviewed and mitigated through a conflict-of-interest process that consists of reviewing pertinent information which is then used to decide what action is required to maintain content integrity. Disclosures may include salary, wages or other remuneration of any kind (including but not limited to consulting or advising fees, speaking fees, research funding, ownership interests, honoraria, participation in pension or benefit plans or programs or other perquisites, and reimbursement for travel, lodging, and meals) given for services rendered or other activities for which remuneration is received or expected, whether that compensation or other remuneration is paid directly to the individual or to the individual's employer or another third party. A disclosure does not necessarily imply a real or perceived conflict of interest.

Members of the Committee on Pediatric Emergency Medicine and the executive committees of the Section on Surgery assisted in the development of this technical report. AAP requires committee members to mitigate any perceived or actual conflict of interest which may include recusal from participating in policy development.

FUNDING: No external funding.

<https://doi.org/10.1542/peds.2025-075319>

COMPANION PAPER: A companion to this article can be found online at www.pediatrics.org/cgi/doi/10.1542/peds.2025-075318.

Copyright © 2026 by the American Academy of Pediatrics

REFERENCES

1. Remick KE, Foster AA, Jensen AR, et al; American Academy of Pediatrics, Committee on Pediatric Emergency Medicine and Section on Surgery. American College of Emergency Physicians, Pediatric Emergency Medicine Committee; Emergency Nurses Association, Pediatric Committee. Pediatric readiness in the emergency department: Policy statement. *Pediatrics*. 2026;157(2):e2025075318
2. American Academy of Pediatrics, Committee on Pediatric Emergency Medicine and American College of Emergency Physicians, and Pediatric Committee. Care of children in the emergency department: guidelines for preparedness. *Pediatrics*. 2001;107(4):777–781. PubMed doi: 10.1542/peds.107.4.777
3. Gausche-Hill M, Wiebe RA; American College of Emergency Physicians. Guidelines for preparedness of emergency departments that care for children: a call to action. *Ann Emerg Med*. 2001;37(4):389–391. PubMed doi: 10.1067/mem.2001.114069
4. American Academy of PediatricsCommittee on Pediatric Emergency MedicineAmerican College of Emergency PhysiciansPediatric CommitteeEmergency Nurses Association
- Pediatric Committee. Joint policy statement—guidelines for care of children in the emergency department. *Pediatrics*. 2009;124(4):1233–1243. PubMed doi: 10.1542/peds.2009-1807
5. American Academy of Pediatrics Committee on Pediatric Emergency MedicineAmerican College of Emergency Physicians Pediatric CommitteeEmergency Nurses Association Pediatric Committee. Joint policy statement—guidelines for care of children in the emergency department. *Ann Emerg Med*. 2009;54(4):543–552. PubMed doi: 10.1016/j.annemergmed.2009.08.010
6. Remick K, Gausche-Hill M, Joseph MM, Brown K, Snow SK, Wright JL; AMERICAN ACADEMY OF PEDIATRICS Committee on Pediatric Emergency Medicine and Section on Surgery; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS Pediatric Emergency Medicine Committee; EMERGENCY NURSES ASSOCIATION Pediatric Committee. Pediatric Readiness in the Emergency Department [reaffirmed January 2024]. *Pediatrics*. 2018;142(5):e20182459. PubMed doi: 10.1542/peds.2018-2459
7. Remick K, Gausche-Hill M, Joseph MM, et al; AMERICAN ACADEMY OF PEDIATRICS, Committee on Pediatric Emergency Medicine, Section on Surgery; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS, Pediatric Emergency Medicine Committee; EMERGENCY NURSES

ASSOCIATION, Pediatric Committee; Pediatric Readiness in the Emergency Department; POLICY STATEMENT; Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of All Children. Pediatric Readiness in the Emergency Department. *Ann Emerg Med.* 2018;72(6):e123–e136. PubMed doi: 10.1016/j.annemergmed.2018.08.431

8. Remick K, Gausche-Hill M, Joseph MM, et al; AMERICAN ACADEMY OF PEDIATRICS, Committee on Pediatric Emergency Medicine, Section on Surgery; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS, Pediatric Emergency Medicine Committee; EMERGENCY NURSES ASSOCIATION, Pediatric Committee; Pediatric Readiness in the Emergency Department; POLICY STATEMENT; Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of All Children. Pediatric Readiness in the Emergency Department. *J Emerg Nurs.* 2019;45(1):e3–e18. PubMed doi: 10.1016/j.jen.2018.10.003

9. Ong Eng Hock M, Ornato JP, Cosby C, Franck T. Should the Emergency Department be society's health safety net? *J Public Health Policy.* 2005;26(3):269–281. PubMed doi: 10.1057/palgrave.jphp.3200028

10. Newgard CD, Lin A, Malveau S, et al; Pediatric Readiness Study Group. Emergency department pediatric readiness and short-term and long-term mortality among children receiving emergency care. *JAMA Netw Open.* 2023;6(1):e2250941. PubMed doi: 10.1001/jamanetworkopen.2022.50941

11. Melhado C, Remick K, Miskovic A, et al. The association between pediatric readiness and mortality for injured children treated at US trauma centers. *Ann Surg.* 2024;280(6):e26–e33. PubMed doi: 10.1097/SLA.0000000000006126

12. Ames SG, Davis BS, Marin JR, et al. Emergency department pediatric readiness and mortality in critically ill children. *Pediatrics.* 2019;144(3):e20190568. PubMed doi: 10.1542/peds.2019-0568

13. Newgard CD, Lin A, Olson LM, et al; Pediatric Readiness Study Group. Evaluation of emergency department pediatric readiness and outcomes among US trauma centers. *JAMA Pediatr.* 2021;175(9):947–956. PubMed doi: 10.1001/jamapediatrics.2021.1319

14. Newgard CD, Lin A, Goldhaber-Fiebert JD, et al; Pediatric Readiness Study Group. Association of emergency department pediatric readiness with mortality to 1 year among injured children treated at trauma centers. *JAMA Surg.* 2022;157(4):e217419–e217419. PubMed doi: 10.1001/jamasurg.2021.7419

15. Newgard CD, Rakshe S, Salvi A, et al. Changes in emergency department pediatric readiness and mortality. *JAMA Netw Open.* 2024;7(7):e2422107. PubMed doi: 10.1001/jamanetworkopen.2024.22107

16. Jenkins PC, Lin A, Ames SG, et al; Pediatric Readiness Study Group. Emergency department pediatric readiness and disparities in mortality based on race and ethnicity. *JAMA Netw Open.* 2023;6(9):e2332160. PubMed doi: 10.1001/jamanetworkopen.2023.32160

17. Remick KE, Hewes HA, Ely M, et al. National assessment of pediatric readiness of US emergency departments during the COVID-19 pandemic. *JAMA Netw Open.* 2023;6(7):e2321707. PubMed doi: 10.1001/jamanetworkopen.2023.21707

18. Gausche-Hill M, Ely M, Schmuhl P, et al. A national assessment of pediatric readiness of emergency departments. *JAMA Pediatr.* 2015;169(6):527–534. PubMed doi: 10.1001/jamapediatrics.2015.138

19. Whitfill T, Auerbach M, Scherzer DJ, Shi J, Xiang H, Stanley RM. Emergency care for children in the United States: epidemiology and trends over time. *J Emerg Med.* 2018;55(3):423–434. PubMed doi: 10.1016/j.jemermed.2018.04.019

20. Shoo JE, Ackerman AD, Chun TH, et al; Committee on Pediatric Emergency Medicine. Pediatric care recommendations for free-standing urgent care facilities. *Pediatrics.* 2014;133(5):950–953. PubMed doi: 10.1542/peds.2014-0569

21. American Hospital Association. Fast Facts on U.S. Hospitals, 2024. Accessed September 12, 2024. <https://www.aha.org/system/files/media/file/2024/01/fast-facts-on-us-hospitals-2024-20240112.pdf>

22. Centers for Disease Control and Prevention. National Center for Health Statistics. National Hospital Ambulatory Medical Care Survey: 2021 Emergency Department Summary Tables. Accessed September 12, 2024. https://www.cdc.gov/nchs/data/nhamcs/web_tables/2021-nhamcs-ed-web-tables-508.pdf

23. McDermott KW, Stocks C, Freeman WJ. Overview of pediatric emergency department visits, 2015. In: *Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]*. August 7, 2018. Agency for Healthcare Research and Quality Statistical Brief #242. Accessed February 18, 2025. <https://www.ncbi.nlm.nih.gov/books/NBK526418/>

24. Pines JM, Zocchi MS, Black BS, et al; US Acute Care Solutions Research Group. Characterizing pediatric emergency department visits during the COVID-19 pandemic. *Am J Emerg Med.* 2021;41:201–204. PubMed doi: 10.1016/j.ajem.2020.11.037

25. Fuchs S, Terry M, Adelgais K, et al. Definitions and assessment approaches for emergency medical services for children. *Pediatrics.* 2016;138(6):e20161073. PubMed doi: 10.1542/peds.2016-1073

26. Institute of Medicine, Committee on the Future of Emergency Care in the US Health System. *Emergency Care for Children: Growing Pains*. National Academies Press; 2006.

27. Alessandrini EA, Wright JL. The continuing evolution of pediatric emergency care. *JAMA Pediatr.* 2015;169(6):523–524. PubMed doi: 10.1001/jamapediatrics.2015.0357

28. Sacchetti A. Is it still an emergency department if it can't treat children? *Ann Emerg Med.* 2016;67(3):329–331. PubMed doi: 10.1016/j.annemergmed.2015.10.015

29. Ross SW, Campion E, Jensen AR, et al. Prehospital and emergency department pediatric readiness for injured children: A statement from the American College of Surgeons Committee on Trauma Emergency Medical Services Committee. *J Trauma Acute Care Surg.* 2023;95(2):e6–e10. PubMed doi: 10.1097/TA.0000000000003997

30. Vogel AM, Zhang J, Mauldin PD, et al. Variability in the evaluation of pediatric blunt abdominal trauma. *Pediatr Surg Int.* 2019;35(4):479–485. PubMed doi: 10.1007/s00383-018-4417-z

31. Marin JR, Weaver MD, Barnato AE, Yabes JG, Yealy DM, Roberts MS. Variation in emergency department head computed tomography

use for pediatric head trauma. *Acad Emerg Med.* 2014;21(9):987–995. PubMed doi: 10.1111/acem.12458

32. Chamberlain JM, Teach SJ, Hayes KL, Badolato G, Goyal MK. Practice pattern variation in the care of children with acute asthma. *Acad Emerg Med.* 2016;23(2):166–170. PubMed doi: 10.1111/acem.12857

33. Michelson KA, Bachur RG, Rangel SJ, Monuteaux MC, Mahajan P, Finkelstein JA. Emergency department volume and delayed diagnosis of pediatric appendicitis: a retrospective cohort study. *Ann Surg.* 2023;278(6):833–838. PubMed doi: 10.1097/SLA.0000000000005972

34. Hampers LC, Trainor JL, Listernick R, et al. Setting-based practice variation in the management of simple febrile seizure. *Acad Emerg Med.* 2000;7(1):21–27. PubMed doi: 10.1111/j.1553-2712.2000.tb01886.x

35. França UL, McManus ML. Assessment of acute hospital use and transfers for management of pediatric seizures. *JAMA Netw Open.* 2020;3(4):e203148–e203148. PubMed doi: 10.1001/jamanetworkopen.2020.3148

36. Mansbach JM, Emond JA, Camargo CA Jr. Bronchiolitis in US emergency departments 1992 to 2000: epidemiology and practice variation. *Pediatr Emerg Care.* 2005;21(4):242–247. PubMed doi: 10.1097/01.pec.0000161469.19841.86

37. Weant KA, Gregory H. Optimizing status epilepticus management in the emergency department: it's about time. *Adv Emerg Nurs J.* 2023;45(1):11–22. PubMed doi: 10.1097/TME.0000000000000440

38. Thompson GC, Macias CG. Recognition and management of sepsis in children: practice patterns in the emergency department. *J Emerg Med.* 2015;49(4):391–399. PubMed doi: 10.1016/j.jemermed.2015.03.012

39. Kessler DO, Walsh B, Whitfill T, et al; INSPIRE ImPACTS investigators. Disparities in adherence to pediatric sepsis guidelines across a spectrum of emergency departments: a multicenter, cross-sectional observational in situ simulation study. *J Emerg Med.* 2016;50(3):403–15.e1, 3. PubMed doi: 10.1016/j.jemermed.2015.08.004

40. Auerbach M, Whitfill T, Gawel M, et al. Differences in the quality of pediatric resuscitative care across a spectrum of emergency departments. *JAMA Pediatr.* 2016;170(10):987–994. PubMed doi: 10.1001/jamapediatrics.2016.1550

41. Todd KH, Ducharme J, Choiniere M, et al; PEMI Study Group. Pain in the emergency department: results of the pain and emergency medicine initiative (PEMI) multicenter study. *J Pain.* 2007;8(6):460–466. PubMed doi: 10.1016/j.jpain.2006.12.005

42. Ramgopal S, Martin-Gill C, Michelson KA. Pediatric vital signs documentation in a nationally representative US emergency department sample. *Hosp Pediatr.* 2024;14(7):532–540. PubMed doi: 10.1542/hpeds.2023-007645

43. Gausche-Hill M, Schmitz C, Lewis RJ. Pediatric preparedness of US emergency departments: a 2003 survey. *Pediatrics.* 2007;120(6):1229–1237. PubMed doi: 10.1542/peds.2006-3780

44. Emergency Medical Services for Children Innovation and Improvement Center. The National Pediatric Readiness Project. Accessed September 12, 2024. <https://emscimprovementcenter/domains/pediatric-readiness-project/>

45. Desai S, Remick KE. Overcoming vulnerabilities in our emergency care system through pediatric readiness. *Pediatr Clin North Am.* 2024;71(3):371–381. PubMed doi: 10.1016/j.pcl.2024.01.011

46. Emergency Medical Services for Children Data Center. The National Pediatric Readiness Assessment. Accessed September 12, 2024. <https://www.pedsready.org/>

47. Emergency Medical Services for Children Innovation and Improvement Center. Pediatric Readiness Project Toolkit. Accessed September 12, 2024. <https://emscimprovementcenter/domains/pediatric-readiness-project/readiness-toolkit/>

48. Emergency Medical Services for Children Innovation and Improvement Center Quality Improvement Collaboratives. Accessed September 12, 2024. <https://emscimprovementcenter/collaboratives/all/>

49. Emergency Medical Services for Children. National Pediatric Readiness Quality Initiative. Accessed September 12, 2024. www.nprqi.org

50. Emergency Medical Services for Children Innovation and Improvement Center. Pediatric Readiness Recognition Programs. Accessed September 12, 2024. <https://emscimprovementcenter/domains/recognition-programs/>

51. Remick K, Kaji AH, Olson L, et al. Pediatric readiness and facility verification. *Ann Emerg Med.* 2016;67(3):320–328.e1. PubMed doi: 10.1016/j.annemergmed.2015.07.500

52. Emergency Medical Services for Children Data Center. NPPR Research Opportunities Request Process. Accessed September 12, 2024. <https://emscdatacenter.org/sp/data-center/nppr-research-opportunities-request-process/>

53. Ray KN, Olson LM, Edgerton EA, et al. Access to high pediatric-readiness emergency care in the United States. *J Pediatr.* 2018;194:225–232.e1. PubMed doi: 10.1016/j.jpeds.2017.10.074

54. Remick KE, Gausche-Hill M, Lin A, et al; Pediatric Readiness Study Group. The hospital costs of high emergency department pediatric readiness. *J Am Coll Emerg Physicians Open.* 2024;5(3):e13179. PubMed doi: 10.1002/emp2.13179

55. Newgard CD, Smith M, Lin A, et al; Pediatric Readiness Study Group. The cost of emergency care for children across differing levels of emergency department pediatric readiness. *Health Aff Sch.* 2023;1(1):qxad015. PubMed doi: 10.1093/haschl/qxad015

56. Jacobs AK, Ali MJ, Best PJ, et al. Systems of care for ST-segment-elevation myocardial infarction: a policy statement from the American Heart Association. *Circulation.* 2021;144(20):e310–e327. PubMed doi: 10.1161/CIR.0000000000001025

57. Higashida R, Alberts MJ, Alexander DN, et al; American Heart Association Advocacy Coordinating Committee. Interactions within stroke systems of care: a policy statement from the American Heart Association/American Stroke Association. *Stroke.* 2013;44(10):2961–2984. PubMed doi: 10.1161/STR.0b013e3182a6d2b2

58. MacKenzie EJ, Rivara FP, Jurkovich GJ, et al. A national evaluation of the effect of trauma-center care on mortality. *N Engl J Med.* 2006;354(4):366–378. PubMed doi: 10.1056/NEJMsa052049

59. Sathya C, Alali AS, Wales PW, et al. Mortality among injured children treated at different trauma center types. *JAMA Surg.* 2015; 150(9):874–881. PubMed doi: 10.1001/jamasurg.2015.1121

60. US Department of Health and Human Services, Health Resources and Services Administration, EMS for Children Program Performance Measures. Accessed September 12, 2024. Available at: <https://emscimprovement.center/emsc/performance-measures/>.

61. HRSA Maternal and Child Health. Emergency Medical Services for Children Performance Measures: 2023 Implementation Manual for State Partnership Grantees. April 1, 2023. Accessed September 12, 2024. https://media.emscimprovement.center/form-uploads/upload/State%20Partnership%202023%20Manual_1690764606969_bloof7kb8.pdf

62. Whitfill TM, Remick KE, Olson LM, et al. Statewide pediatric facility recognition programs and their association with pediatric readiness in emergency departments in the United States. *J Pediatr.* 2020;188:210–216.e2. PubMed doi: 10.1016/j.jpeds.2019.10.017

63. Melhado CG, Remick K, Miskovic A, et al. Emergency department pediatric readiness of United States trauma centers in 2021: Trauma center facility characteristics and opportunities for improvement. *J Trauma Acute Care Surg.* 2025;98(1):69–77. PubMed doi: 10.1097/TA.0000000000004387

64. Glass NE, Salvi A, Wei R, et al. Association of transport time, proximity, and emergency department pediatric readiness with pediatric survival at US trauma centers. *JAMA Surg.* 2023;158(10): 1078–1087. PubMed doi: 10.1001/jamasurg.2023.3344

65. Melhado CG, Hancock C, Wang H, et al. Pediatric readiness and trauma center access for children: a cross-sectional geospatial accessibility analysis. *JAMA Pediatr.* Published online February 3, 2025. doi: 10.1001/jamapediatrics.2024.6058

66. Joseph MM, Mahajan P, Snow SK, Ku BC, Saidinejad M; COMMITTEE ON PEDIATRIC EMERGENCY MEDICINE, the AMERICAN COLLEGE OF EMERGENCY PHYSICIANS PEDIATRIC EMERGENCY MEDICINE COMMITTEE, and the EMERGENCY NURSES ASSOCIATION PEDIATRIC COMMITTEE. Optimizing pediatric patient safety in the emergency care setting. *Pediatrics.* 2022;150(5):e2022059674. PubMed doi: 10.1542/peds.2022-059674

67. Stevens AD, Hernandez C, Jones S, et al. Color-coded prefilled medication syringes decrease time to delivery and dosing errors in simulated prehospital pediatric resuscitations: A randomized crossover trial. *Resuscitation.* 2015;96:85–91. PubMed doi: 10.1016/j.resuscitation.2015.07.035

68. Feleke R, Kalynych CJ, Lundblom B, Wears R, Luten R, Kling D. Color coded medication safety system reduces community pediatric emergency nursing medication errors. *J Patient Saf.* 2009;5(2): 79–85. PubMed doi: 10.1097/PTS.0b013e3181a647ab

69. Cabana MD, Rand CS, Powe NR, et al. Why don't physicians follow clinical practice guidelines? A framework for improvement. *JAMA.* 1999;282(15):1458–1465. PubMed doi: 10.1001/jama.282.15.1458

70. Gandhi TK, Sequist TD, Poon EG, et al. Primary care clinician attitudes towards electronic clinical reminders and clinical practice guidelines. *AMIA Annu Symp Proc.* 2003;2003:848. PubMed

71. Remick K, Smith M, Newgard CD, et al. Impact of individual components of emergency department pediatric readiness on pediatric mortality in US trauma centers. *J Trauma Acute Care Surg.* 2023;94(3):417–424. PubMed doi: 10.1097/TA.00000000000003779

72. Foster AA, Li J, Wilkinson MH, et al. Pediatric emergency care coordinator workforce: A survey study. *J Am Coll Emerg Physicians Open.* 2023;4(4):e13006. PubMed doi: 10.1002/emp2.13006

73. EMS for Children Innovation and Improvement Center. Emergency Department PECC Module Series. Accessed September 12, 2024. <https://emscimprovement.center/domains/pecc/pecc-module-ed/>

74. Lee MO, Schertzer K, Khanna K, Wang NE, Camargo CA Jr, Sebok-Syer SS. Using in situ simulations to improve pediatric patient safety in emergency departments. *Acad Med.* 2021;96(3):395–398. PubMed doi: 10.1097/ACM.0000000000003807

75. Vora S, Li J, Kou M, et al. ACEP SimBox: a pediatric simulation-based training innovation. *Ann Emerg Med.* 2021;78(3):346–354. PubMed doi: 10.1016/j.annemermed.2021.03.040

76. Auerbach M, Kessler D, Foltin JC. Repetitive pediatric simulation resuscitation training. *Pediatr Emerg Care.* 2011;27(1):29–31. PubMed doi: 10.1097/PEC.0b013e3182043f3b

77. Harwayne-Gidansky I, Panesar R, Maa T. Recent advances in simulation for pediatric critical care medicine. *Curr Pediatr Rep.* 2020;8(4):147–156. PubMed doi: 10.1007/s40124-020-00226-5

78. Gross IT, Goldberg SA, Whitfill T, et al. Improving pediatric administrative disaster preparedness through simulated disaster huddles. *Disaster Med Public Health Prep.* 2021;15(3):352–357. PubMed doi: 10.1017/dmp.2020.10

79. Toida C, Muguruma T, Hashimoto K. Hospitals' preparedness to treat pediatric patients during mass casualty incidents. *Disaster Med Public Health Prep.* 2019;13(3):429–432. PubMed doi: 10.1017/dmp.2018.98

80. Emergency Medical Services for Children Innovation and Improvement Center. Checklist of Essential Pediatric Domains and Considerations for Every Hospital's Disaster Preparedness Policies. August 2022. Accessed September 12, 2024. <https://emscimprovement.center/education-and-resources/toolkits/pediatric-disaster-preparedness-toolbox/>

81. Brim CB. Emergency nurse certification. *J Emerg Nurs.* 2022;48(3): 299–302. PubMed doi: 10.1016/j.jen.2021.12.004

82. Bennett CL, Espinola JA, Sullivan AF, et al. Evaluation of the 2020 pediatric emergency physician workforce in the US. *JAMA Netw Open.* 2021;4(5):e2110084. PubMed doi: 10.1001/jamanetworkopen.2021.10084

83. Woolridge D, Homme JJ, Amato CS, et al. Optimizing the workforce: a proposal to improve regionalization of care and emergency preparedness by broader integration of pediatric emergency physicians certified by the American Board of Pediatrics. *J Am Coll*

Emerg Physicians Open. 2020;1(6):1520–1526. PubMed doi: 10.1002/emp2.12114

84. Clay CE, Sullivan AF, Bennett CL, Boggs KM, Espinola JA, Camargo CA Jr. Supply and demand of emergency medicine board-certified emergency physicians by U.S. state, 2017. *Acad Emerg Med.* 2021; 28(1):98–106. PubMed doi: 10.1111/acem.14157

85. American College of Emergency Physicians policy statement. Physician Credentialing and Delineation of Clinical Privileges in Emergency Medicine. Revised April 2017. Accessed September 12, 2024. <https://www.acep.org/siteassets/new-pdfs/policy-statements/physician-credentialing-and-delineation-of-clinical-privileges-in-emergency-medicine.pdf>

86. Hsu D, Nypaver M, Fein DM, et al. Essentials of PEM Fellowship Part 2: the profession in entrustable professional activities. *Pediatr Emerg Care.* 2016;32(6):410–418. PubMed doi: 10.1097/PEC.0000000000000827

87. Bulger EM, Snyder D, Schoelles K, et al; American College of Surgeons, Committee on Trauma. An evidence-based prehospital guideline for external hemorrhage control: American College of Surgeons Committee on Trauma. *Prehosp Emerg Care.* 2014;18(2):163–173. PubMed doi: 10.3109/10903127.2014.896962

88. Gardner AH, Fitzgerald MR, Schwartz HP, Timm NL. Evaluation of regional hospitals' use of children in disaster drills. *Am J Disaster Med.* 2013;8(2):137–143. PubMed doi: 10.5055/ajdm.2013.0120

89. AMERICAN ACADEMY OF PEDIATRICS Committee on Pediatric Emergency Medicine; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS Pediatric Emergency Medicine Committee; EMERGENCY NURSES ASSOCIATION Pediatric Committee. Handoffs: Transitions of Care for Children in the Emergency Department [reaffirmed December 2020]. *Pediatrics.* 2016;138(5):e20162680. PubMed doi: 10.1542/peds.2016-2680

90. Institute of Medicine. *Crossing the Quality Chasm: A New Health System for the 21st Century.* National Academies Press; 2001.

91. Abulebda K, Whitfill T, Montgomery EE, et al; Improving Pediatric Acute Care through Simulation (ImPACTS). Improving pediatric readiness in general emergency departments: a prospective interventional study. *J Pediatr.* 2021;230:230–237.e1. PubMed doi: 10.1016/j.jpeds.2020.10.040

92. Remick KE, Bartley KA, Gonzales L, MacRae KS, Edgerton EA. Consensus-driven model to establish paediatric emergency care measures for low-volume emergency departments. *BMJ Open Qual.* 2022;11(3):e001803. PubMed doi: 10.1136/bmjoq-2021-001803

93. Stang AS, Straus SE, Crotts J, Johnson DW, Guttmann A. Quality indicators for high acuity pediatric conditions. *Pediatrics.* 2013; 132(4):752–762. PubMed doi: 10.1542/peds.2013-0854

94. Hoffmann JA, Johnson JK, Pergjika A, Alpern ER, Corboy JB. Development of quality measures for pediatric agitation management in the emergency department. *J Healthc Qual.* 2022;44(4): 218–229. PubMed doi: 10.1097/JHQ.0000000000000339

95. Schlappbach LJ, Watson RS, Sorce LR, et al; Society of Critical Care Medicine Pediatric Sepsis Definition Task Force. International consensus criteria for pediatric sepsis and septic shock. *JAMA.* 2024; 331(8):665–674. PubMed doi: 10.1001/jama.2024.0179

96. Children's Hospital Association of Texas. Improving Pediatric Sepsis Outcomes. Accessed December 11, 2025. <https://www.childrenshospitals.org/content/quality/product-program/challenge-sepsis-change-lives>

97. American Academy of Pediatrics. VIP Pathways for Improving Pediatric Asthma Care (PIPA): Clinical Pathway for Pediatric Asthma in the Emergency Department Setting. Accessed September 12, 2024. <https://downloads.aap.org/DOCCSA/PIPAToolkit.pdf>

98. Kaiser SV, Johnson MD, Walls TA, et al. Pathways to Improve Pediatric Asthma Care: a multisite, national study of emergency department asthma pathway implementation. *J Pediatr.* 2020;223: 100–107.e2. PubMed doi: 10.1016/j.jpeds.2020.02.080

99. Kuppermann N, Holmes JF, Dayan PS, et al; Pediatric Emergency Care Applied Research Network (PECARN). Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. *Lancet.* 2009;374(9696):1160–1170. PubMed doi: 10.1016/S0140-6736(09)61558-0

100. Children's Hospital Association; Sepsis Collaborative. Accessed September 12, 2024. <https://www.childrenshospitals.org/content/quality/product-program/challenge-sepsis-change-lives>

101. American Academy of Pediatrics. Collaborative Initiatives. Accessed September 12, 2024. <https://publications.aap.org/journal-blogs/blog/28762/Large-Scale-Quality-Improvement-Collaboratives-in>

102. EMS for Children Innovation and Improvement Center; Facility Recognition Collaborative. Accessed September 12, 2024. Available at: <https://emscimprovement.center/collaboratives/>

103. EMS for Children Innovation and Improvement Center; Pediatric Readiness Quality Collaborative. Accessed September 12, 2024. Available at: <https://emscimprovement.center/collaboratives/PRQuality-collaborative/>

104. McDaniel CE, Kerns E, Jennings B, et al; AAP REVISE II QI Collaborative. Improving guideline-concordant care for febrile infants through a quality improvement initiative. *Pediatrics.* 2024;153(5):e2023063339. PubMed doi: 10.1542/peds.2023-063339

105. Callahan JM, Baldwin S, Bodnar C, et al; AMERICAN ACADEMY OF PEDIATRICS; Committee on Pediatric Emergency Medicine; Council on Clinical Information Technology; Council on Children and Disasters; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS; Pediatric Emergency Medicine Committee; Policy Statement; Organizational Principles to Guide and Define the Child Health Care System and/or Improve the Health of All Children. American College of Emergency Physicians, Pediatric Emergency Medicine Committee. Access to critical health information for children during emergencies: emergency information forms and beyond. *Ann Emerg Med.* 2023;81(3):e27–e36. PubMed doi: 10.1016/j.annemergmed.2022.12.005

106. Triage Qualifications and Competency. ENA Position Statement. Accessed September 12, 2024. <https://media.emscimprovement.center/documents/triagequalificationscompetency.pdf>

107. Fein JA, Zempsky WT, Cravero JP; Committee on Pediatric Emergency Medicine and Section on Anesthesiology and Pain Medicine; American Academy of Pediatrics. Relief of pain and

anxiety in pediatric patients in emergency medical systems [reaffirmed December 2020]. *Pediatrics*. 2012;130(5):e1391–e1405. PubMed doi: 10.1542/peds.2012-2536

108. Mace SE, Brown LA, Francis L, et al; EMSC Panel (Writing Committee) on Critical Issues in the Sedation of Pediatric Patients in the Emergency. Clinical policy: Critical issues in the sedation of pediatric patients in the emergency department. *Ann Emerg Med*. 2008;51(4):378–399, 399.e1–399.e57. PubMed doi: 10.1016/j.annemergmed.2007.11.001

109. Chumpitazi CE, Chang C, Atanelov Z, et al; ACEP Pediatric Emergency Medicine Committee. Managing acute pain in children presenting to the emergency department without opioids. *J Am Coll Emerg Physicians Open*. 2022;3(2):e12664. PubMed doi: 10.1002/emp2.12664

110. Coté CJ, Wilson S; AMERICAN ACADEMY OF PEDIATRICS; AMERICAN ACADEMY OF PEDIATRIC DENTISTRY. American Academy of Pediatric Dentistry. Guidelines for monitoring and management of pediatric patients before, during, and after sedation for diagnostic and therapeutic procedures. *Pediatrics*. 2019;143(6):e20191000. PubMed doi: 10.1542/peds.2019-1000

111. Emergency Medical Services for Children Innovation and Improvement Center. Pediatric Education and Advocacy Kit (PEAK): Pain. Accessed September 12, 2024. <https://emscimprovement.center/education-and-resources/peak/peak-pediatric-pain/>

112. Tasker RC, Turgeon AF, Spinella PC; Pediatric Critical Care Transfusion and Anemia Expertise Initiative (TAXI); Pediatric Critical Care Blood Research Network (BloodNet), and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Recommendations on RBC Transfusion in Critically Ill Children With Acute Brain Injury From the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. *Pediatr Crit Care Med*. 2018;19(9S)(suppl 1):S133–S136. PubMed doi: 10.1097/PCC.0000000000001589

113. Noland DK, Apelt N, Greenwell C, et al. Massive transfusion in pediatric trauma: An ATOMAC perspective. *J Pediatr Surg*. 2019;54(2):345–349. PubMed doi: 10.1016/j.jpedsurg.2018.10.040

114. Kamyszek RW, Leraas HJ, Reed C, et al. Massive transfusion in the pediatric population: A systematic review and summary of best-evidence practice strategies. *J Trauma Acute Care Surg*. 2019;86(4):744–754. PubMed doi: 10.1097/TA.0000000000002188

115. Trappey AF III, Thompson KM, Kuppermann N, et al; Traumatic Injury Clinical Trial Evaluating Tranexamic Acid in Children (TIC-TOC) Collaborators of the Pediatric Emergency Care Applied Research Network (PECARN). Development of transfusion guidelines for injured children using a Modified Delphi Consensus Process. *J Trauma Acute Care Surg*. 2019;87(4):935–943. PubMed doi: 10.1097/TA.0000000000002432

116. Ishimine P, Foster A, Dietrich A, Slubowski D, Benjamin L. Evaluation and treatment of minors - Policy Resource and Education Document (PREP). Revised 2021. Accessed March 24, 2024. <https://www.acep.org/siteassets/new-pdfs/preps/evaluation-and-treatment-of-minors—prep.pdf>

117. Sirbaugh PE, Diekema DS; Committee on Pediatric Emergency Medicine and Committee on Bioethics. Consent for emergency medical services for children and adolescents [reaffirmed April 2020]. *Pediatrics*. 2011;128(2):427–433. PubMed doi: 10.1542/peds.2011-1166

118. US Department of Labor, Occupation Safety and Health Administration. Guidelines for Preventing Workplace Violence for Healthcare and Social Service Workers. 2016. Accessed September 12, 2024. <https://www.osha.gov/Publications/osha3148.pdf>

119. US Department of Labor, Occupation Safety and Health Administration. Preventing Workplace Violence: A Roadmap for Healthcare Facilities. December 2015. Accessed September 12, 2024. <https://www.osha.gov/hospitals/workplace-violence>

120. American College of Emergency Physicians. Protection from Violence and the Threat of Violence in the Emergency Department. June 2022. Accessed September 12, 2024. <https://www.acep.org/patient-care/policy-statements/protection-from-violence-and-the-threat-of-violence-in-the-emergency-department>

121. Tedford NJ, Keating EM, Ou Z, Holsti M, Wallace AS, Robison JA. Social needs screening during pediatric emergency department visits: disparities in unmet social needs. *Acad Pediatr*. 2022;22(8):1318–1327. PubMed doi: 10.1016/j.acap.2022.05.002

122. Cook JT, Frank DA, Berkowitz C, et al. Food insecurity is associated with adverse health outcomes among human infants and toddlers. *J Nutr*. 2004;134(6):1432–1438. PubMed doi: 10.1093/jn/134.6.1432

123. Levy S, Brogna M, Minegishi M, et al. Assessment of screening tools to identify substance use disorders among adolescents. *JAMA Netw Open*. 2023;6(5):e2314422. PubMed doi: 10.1001/jamanetworkopen.2023.14422

124. Saidinejad M, Duffy S, Wallin D, et al; AMERICAN ACADEMY OF PEDIATRICS Committee on Pediatric Emergency Medicine; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS Pediatric Emergency Medicine Committee; EMERGENCY NURSES ASSOCIATION Pediatric Committee. The Management of Children and Youth With Pediatric Mental and Behavioral Health Emergencies. *Pediatrics*. 2023;152(3):e2023063256. PubMed doi: 10.1542/peds.2023-063256

125. US Department of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Bureau. *Critical Crossroads Pediatric Mental Health Care in the Emergency Department: A Care Pathway Resource Toolkit*. US Department of Health and Human Services; 2019.

126. Gerson R, Malas N, Feuer V, Silver GH, Prasad R, Mroczkowski MM. Best Practices for Evaluation and Treatment of Agitated Children and Adolescents (BETA) in the Emergency Department: Consensus Statement of the American Association for Emergency Psychiatry. *Focus Am Psychiatr Publ*. 2023;21(1):80–88. PubMed doi: 10.1176/appi.focus.23022005

127. Emergency Medical Services for Children Innovation and Improvement Center. Pediatric Education and Advocacy Kit (PEAK): Agitation. Accessed September 12, 2024. <https://emscimprovement.center/education-and-resources/peak/pediatric-agitation/>

128. Goddard A, Janicek E, Etcher L. Trauma-informed care for the pediatric nurse. *J Pediatr Nurs.* 2022;62:1–9. PubMed doi: 10.1016/j.jpedn.2021.11.003

129. Forkey H, Szilagyi M, Kelly ET, et al; COUNCIL ON FOSTER CARE, ADOPTION, AND KINSHIP CARE, COUNCIL ON COMMUNITY PEDIATRICS, COUNCIL ON CHILD ABUSE AND NEGLECT, COMMITTEE ON PSYCHOSOCIAL ASPECTS OF CHILD AND FAMILY HEALTH. Trauma-Informed Care. *Pediatrics.* 2021;148(2):e2021052580. PubMed doi: 10.1542/peds.2021-052580

130. Emergency Medical Services for Children Innovation and Improvement Center. Pediatric Education and Advocacy Kit (PEAK): Suicide. Accessed September 12, 2024. <https://emscimprovementcenter/education-and-resources/peak/pediatric-suicide-screening-mental-health/>

131. Emergency Medical Services for Children Innovation and Improvement Center. Pediatric Education and Advocacy Kit (PEAK): Child Abuse. Accessed September 12, 2024. <https://emscimprovementcenter/education-and-resources/peak/child-abuse/>

132. Hunter AA, Flores G. Social determinants of health and child maltreatment: a systematic review. *Pediatr Res.* 2021;89(2):269–274. PubMed doi: 10.1038/s41390-020-01175-x

133. Marin JR, Lyons TW, Claudius I, et al; AMERICAN ACADEMY OF PEDIATRICS Committee on Pediatric Emergency Medicine, Section on Radiology; AMERICAN COLLEGE OF RADIOLOGY; AMERICAN COLLEGE OF EMERGENCY PHYSICIANS Pediatric Emergency Medicine Committee. American College of Emergency Physicians, Pediatric Emergency Medicine Committee; American College of Radiology. Optimizing advanced imaging of the pediatric patient in the emergency department: policy statement. *Pediatrics.* 2024;154(1):e2024066854. PubMed doi: 10.1542/peds.2024-066854

134. Kanal KM, Butler PF, Chatfield MB, et al. U.S. diagnostic reference levels and achievable doses for 10 pediatric CT examinations. *Radiology.* 2022;302(1):164–174. PubMed doi: 10.1148/radiol.2021211241

135. Nelson TR. Practical strategies to reduce pediatric CT radiation dose. *J Am Coll Radiol.* 2014;11(3):292–299. PubMed doi: 10.1016/j.jacr.2013.10.011

136. O'Malley P, Barata I, Snow S, et al; American Academy of Pediatrics Committee on Pediatric Emergency Medicine; American College of Emergency Physicians Pediatric Emergency Medicine Committee; Emergency Nurses Association Pediatric Committee. Death of a child in the emergency department [reaffirmed November 2024]. *Pediatrics.* 2014;134(1):198–201. PubMed doi: 10.1542/peds.2014-1245

137. O'Malley P, Barata I, Snow S, et al; American Academy of Pediatrics Committee on Pediatric Emergency Medicine; American College of Emergency Physicians Pediatric Emergency Medicine Committee; Emergency Nurses Association Pediatric Committee. Death of a child in the emergency department [reaffirmed November 2024]. *Pediatrics.* 2014;134(1):e313–e330. PubMed doi: 10.1542/peds.2014-1246

138. Patient- and family-centered care and the role of the emergency physician providing care to a child in the emergency department. *Ann Emerg Med.* 2019;73(3):e29–e31. PubMed doi: 10.1016/j.annemergmed.2018.11.006

139. Dudley N, Ackerman A, Brown KM, et al; American Academy of Pediatrics Committee on Pediatric Emergency Medicine; American College of Emergency Physicians Pediatric Emergency Medicine Committee; Emergency Nurses Association Pediatric Committee. Patient- and family-centered care of children in the emergency department. *Pediatrics.* 2015;135(1):e255–e272. PubMed doi: 10.1542/peds.2014-3424

140. Institute for Patient- and Family-Centered Care website. Accessed September 12, 2024. www.ipfcc.org

141. Emergency Medical Services for Children Innovation and Improvement Center. Patient- and Family-Centered Care Toolkit. 2019. Accessed September 12, 2024. <https://emscimprovementcenter/education-and-resources/toolkits/patient-and-family-centered-care-toolkit/>

142. Carrier E, Yee T, Holzwart RA. National Institute for Healthcare Reform. Research Brief Number 3. Coordination Between Emergency and Primary Care Physicians. February 2011. Accessed September 12, 2024. <https://www.nihcr.org/analysis/improving-care-delivery/prevention-improving-health/ed-coordination/>

143. Turchi RM, Antonelli RC, Norwood KW Jr, et al; Council on Children with Disabilities and Medical Home Implementation Project Advisory Committee. Patient- and family-centered care coordination: a framework for integrating care for children and youth across multiple systems [reaffirmed April 2023]. *Pediatrics.* 2014;133(5):e1451–e1460. PubMed doi: 10.1542/peds.2014-0318

144. Zager K, Taylor YJ. Discharge to medical home: A new care delivery model to treat non-urgent cases in a rural emergency department. *Healthcare (Amst).* 2019;7(1):7–12. PubMed doi: 10.1016/j.hjdsi.2018.08.001

145. Fleary SA. Association between the medical home model of care and demographic characteristics in US children. *Clin Pediatr (Phila).* 2019;58(3):270–281. PubMed doi: 10.1177/0009922818813568

146. Medical Home Initiatives for Children With Special Needs Project Advisory Committee. American Academy of Pediatrics. The medical home. *Pediatrics.* 2002;110(1 Pt 1):184–186. DOI. PubMed

147. Fallat ME, Deshpande JK; American Academy of Pediatrics Section on Surgery, Section on Anesthesia and Pain Medicine, and Committee on Bioethics. Do-not-resuscitate orders for pediatric patients who require anesthesia and surgery. *Pediatrics.* 2004;114(6):1686–1692. PubMed doi: 10.1542/peds.2004-2119

148. EMS for Children, Emergency Nurses Association, Society for Trauma Nurses. Pediatric Interfacility Transfer Guide. Accessed September 12, 2024. <https://emscimprovementcenter/education-and-resources/interfacility-transfer/>

149. Marcin JP, Sauers-Ford HS, Mouzoon JL, et al. Impact of tele-emergency consultations on pediatric interfacility transfers: a cluster-randomized crossover trial. *JAMA Netw Open.* 2023;6(2):e2255770. PubMed doi: 10.1001/jamanetworkopen.2022.55770

150. American College of Emergency Physicians. Immunization of Adults and Children in the Emergency Department. October 2020. Accessed September 12, 2024. <https://www.acep.org/patient-care/policy-statements/immunization-of-adults-and-children-in-the-emergency-department>

151. Emergency Nurses Association. Immunizations and the Responsibility of the Emergency Nurse. Accessed September 12, 2024. https://media.emscimprovement.center/documents/immunizations_IBGUfpB.pdf

152. Saidinejad M, Barata I, Foster A, et al; ACEP Pediatric Emergency Medicine Committee. The role of telehealth in pediatric emergency care. *J Am Coll Emerg Physicians Open*. 2023;4(3):e12952. PubMed doi: 10.1002/emp2.12952

153. Foster CC, Macy ML, Simon NJ, et al. Emergency care connect: extending pediatric emergency care expertise to general emergency departments through telemedicine. *Acad Pediatr*. 2020;20(5):577–584. PubMed doi: 10.1016/j.acap.2020.02.028

154. Sikka N, Gross H, Joshi AU, et al. Defining emergency telehealth. *J Telemed Telecare*. 2021;27(8):527–530. PubMed doi: 10.1177/1357633X19891653

155. Greenbaum J, Crawford-Jakubiak JE, Chrisitan CW, et al; Committee on Child Abuse and Neglect. Child sex trafficking and commercial sexual exploitation: health care needs of victims [reaffirmed October 2020]. *Pediatrics*. 2015;135(3):566–574. PubMed doi: 10.1542/peds.2014-4138

156. Chisolm-Straker M, Sze J, Einbond J, White J, Stoklosa H. Screening for human trafficking among homeless young adults. *Child Youth Serv Rev*. 2019;98:72–79. doi: 10.1016/j.chlyouth.2018.12.014

157. Corwin DJ, Durbin DR, Hayes KL, Zonfrillo MR. Trends in emergent head computed tomography utilization for minor head trauma after implementation of a clinical pathway. *Pediatr Emerg Care*. 2021;37(9):437–441. PubMed doi: 10.1097/PEC.0000000000001728

158. Nigrovic LE, Kuppermann N. Children with minor blunt head trauma presenting to the emergency department. *Pediatrics*. 2019;144(6):e20191495. PubMed doi: 10.1542/peds.2019-1495

159. Shorvon S, Baulac M, Cross H, Trinka E, Walker M; TaskForce on Status Epilepticus of the ILAE Commission for European Affairs. The drug treatment of status epilepticus in Europe: consensus document from a workshop at the first London Colloquium on Status Epilepticus. *Epilepsia*. 2008;49(7):1277–1285. PubMed doi: 10.1111/j.1528-1167.2008.01706_3.x

160. Rutman L, Klein EJ, Brown JC. Clinical pathway produces sustained improvement in acute gastroenteritis care. *Pediatrics*. 2017;140(4):e20164310. PubMed doi: 10.1542/peds.2016-4310

161. Murray AL, Alpern E, Lavelle J, Mollen C. Clinical pathway effectiveness: febrile young infant clinical pathway in a pediatric emergency department. *Pediatr Emerg Care*. 2017;33(9):e33–e37. PubMed doi: 10.1097/PEC.0000000000000960

162. Hoffmann JA, Pergjika A, Liu L, et al. Standardizing and improving care for pediatric agitation management in the emergency department. *Pediatrics*. 2023;152(1):e2022059586. PubMed doi: 10.1542/peds.2022-059586

163. Ralston SL, Lieberthal AS, Meissner HC, et al; American Academy of Pediatrics. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. *Pediatrics*. 2014;134(5):e1474–e1502. PubMed doi: 10.1542/peds.2014-2742

164. Kirolos A, Manti S, Blacow R, et al; RESCEU Investigators. A systematic review of clinical practice guidelines for the diagnosis and management of bronchiolitis. *J Infect Dis*. 2020;222(7)(suppl 7): S672–S679. PubMed doi: 10.1093/infdis/jiz240

165. Weiss SL, Fitzgerald JC. Pediatric sepsis diagnosis, management, and sub-phenotypes. *Pediatrics*. 2024;153(1):e2023062967. PubMed doi: 10.1542/peds.2023-062967

166. Smith DM, McGinnis EL, Walleigh DJ, Abend NS. Management of status epilepticus in children. *J Clin Med*. 2016;5(4):47. PubMed doi: 10.3390/jcm5040047

167. Russell WS, Schuh AM, Hill JG, et al. Clinical practice guidelines for pediatric appendicitis evaluation can decrease computed tomography utilization while maintaining diagnostic accuracy. *Pediatr Emerg Care*. 2013;29(5):568–573. PubMed doi: 10.1097/PEC.0b013e31828e5718

168. Cabana MD, Flores G. The role of clinical practice guidelines in enhancing quality and reducing racial/ethnic disparities in paediatrics. *Paediatr Respir Rev*. 2002;3(1):52–58. PubMed doi: 10.1053/prrv.2002.0182

169. Wright JL, Davis WS, Joseph MM, Ellison AM, Heard-Garris NJ, Johnson TL; AAP Board Committee on Equity. Eliminating race-based medicine. *Pediatrics*. 2022;150(1):e2022057998. PubMed doi: 10.1542/peds.2022-057998

170. Emergency Nurses Association. Weighing All Patients in Kilograms. ENA Position Statement. Accessed September 12, 2024. https://media.emscimprovement.center/documents/Weighing_All_Patients_in_Kilograms_ENA_Position_Statement.pdf

171. Samuels-Kalow ME, Tassone R, Manning W, et al. Analysis of a medication safety intervention in the pediatric emergency department. *JAMA Netw Open*. 2024;7(1):e2351629. PubMed doi: 10.1001/jamanetworkopen.2023.51629

172. Winkelman TNA, Caldwell MT, Bertram B, Davis MM. Promoting health literacy for children and adolescents. *Pediatrics*. 2016; 138(6):e20161937. PubMed doi: 10.1542/peds.2016-1937

173. Taveras EM, Flores G. Why culture and language matter: the clinical consequences of providing culturally and linguistically appropriate services to children in the emergency department. *Clin Pediatr Emerg Med*. 2004;5(2):76–84. doi: 10.1016/j.cpem.2004.01.004

174. Sadler BL, Joseph A. *Evidence for Innovation: Transforming Children's Health Through the Physical Environment*. National Association of Children's Hospitals and Related Institutions; 2008.

175. Joint Commission. National Patient Safety Goals. Accessed December 11, 2025. <https://www.jointcommission.org/en-us/standards/national-patient-safety-goals>

176. American Board of Internal Medicine Foundation. Choosing Wisely Initiative. Accessed March 11, 2025. <https://www.choosingwisely.org/>
177. International Atomic Energy Agency. Radiation protection of children in radiology. Accessed September 12, 2024. <https://www.iaea.org/resources/rpop/health-professionals/radiology/children>
178. Goske MJ, Applegate KE, Boylan J, et al. The 'Image Gently' campaign: increasing CT radiation dose awareness through a national education and awareness program. *Pediatr Radiol.* 2008;38(3):265–269. PubMed doi: 10.1007/s00247-007-0743-3
179. Strauss KJ, Goske MJ. Estimated pediatric radiation dose during CT. *Pediatr Radiol.* 2011;41(S2)(suppl 2):472–482. PubMed doi: 10.1007/s00247-011-2179-z