THYROTOXIC CRISIS

INTRODUCTION (KATRINA KNAPP, D.O., 4/2016)

Thyrotoxicosis is the clinical manifestation of hyperthyroidism. Thyrotoxic crisis, otherwise known as thyroid storm, is a life threatening condition that involves multi-organ system

dysfunction including severe cardiovascular, thermoregulatory, gastrointestinal, and neurobehavioral symptoms. It is seen in less than 1% of adults with hyperthyroidism and is rarer in children. It has a high mortality rate (10-30%) if not recognized early and treated aggressively.

PATHOPHYSIOLOGY

Thyroid hormones are produced in the thyroid gland under the influence of thyroid stimulating hormone (TSH). Thyroid releasing hormone (TRH) from the hypothalamus stimulates TSH release from the pituitary. In order to maintain thyroid hormone levels in normal range, circulating levels of thyroid hormones exert feedback inhibition on the hypothalamus and pituitary axis (HPA).

There are 2 active thyroid hormones: triiodothyronine (T3) and L-thyroxine (T4). T4 is exclusively made in the thyroid gland. T3 is also made in the thyroid but 80% is made in the peripheral tissues by de-iodination of T4. Iodine is essential for thyroid hormone synthesis.

T4 is more abundant than T3 and a greater proportion is protein bound (e.g. TBG, thyroid binding globulin). Only 0.03% of T4 is unbound. It is the unbound ("free") hormones that are active. A greater proportion of T3 is the free form, and has a greater affinity (10 fold) for tissue thyroid hormone receptors than T4. T4 can also be metabolized to reverse T3 which is completely inactive. Most of the biologic activity of thyroid hormones is due to T3, but it is less reliably identified which is why we typically measure free T4.

Thyroid hormones increase oxygen consumption in all tissues except the brain, spleen, and testes. They also stimulate adrenergic receptors sites in myocardial cells and glucocorticoid receptors in lung tissue. In addition, thyroid hormones accelerate the metabolism of other hormones (insulin, cortisol).

Thyrotoxicosis can develop in patients with longstanding untreated hyperthyroidism or it can be precipitated by an acute event (see table below). Thyroid storm is a hypermetabolic and beta-adrenergic driven state. Over production of thyroid hormones increase the density of beta-adrenergic receptors enhancing the effect of catecholamines. 90% of thyrotoxicosis is caused by hyperthyroidism. The most common cause in children is Grave's Disease. Grave's disease is an autoimmune disorder that results in antibody production (TSH receptor stimulating immunoglobulins) that stimulate TSH receptors resulting in excessive stimulation of the thyroid gland.

COMMON CAUSES/PRECIPITATING FACTORS OF THYROTOXICOSIS

Primary hyperthyroidism (Grave's disease, toxic multi-nodular goiter)

Secondary hyperthyroidism (pituitary adenoma)

Thyroiditis (postpartum, radiation thyroiditis)

Drug Induced (lithium, iodine, amiodarone, excessive thyroid hormone ingestion, anticholinergic drugs, adrenergic drugs)

Abrupt cessation of anti-thyroid medications

Thyroid or non-thyroid surgery in a patient with unrecognized hyperthyroidism

Acute illness (diabetic ketoacidosis, sepsis), labor and delivery

Trans-placental passage of maternal thyroid stimulating immunoglobulins

CLINICAL MANIFESTATIONS

The diagnosis of thyrotoxic crisis is based upon the presence of severe life threatening symptoms (cardiovascular dysfunction, altered mental status, hyperpyrexia) in a patient with biochemical evidence of hyperthyroidism.

PRESENTATION	
Metaboli	Fever, sweating, metabolic acidosis, hyperventilation,
	amenorrhea, weight loss
GI	Nausea, vomiting, diarrhea, abdominal pain, hepatic dysfunction
Cardiac	Sinus tachycardia out of proportion to the degree of fever
	Hypotension, congestive heart failure
	Atrial fibrillation (up to 20% of adults, rare in children), Prolonged
	QT interval
Neuro-Psychiatric	Agitation, delirium, psychosis, stupor, coma
Newborns	Irritable, unable to feed appropriately, and have inadequate
	weight gain.

DIFFERENTIAL	DIAGNOSIS
Endocrine	Pheochromocytoma, adrenal crisis
Infections	Sepsis, gastroenteritis
Toxicologic	Hyperpyrexia syndromes: malignant hyperthermia, neuroleptic
	malignant syndrome, serotonin syndrome
	Anticholinergics, Sympathomimetics (cocaine, amphetamine)
	Medication withdrawal: cocaine, opiates
Environmental	Heat stroke
Psychiatric	Anxiety/panic attack

PHYSICA	L EXAMINATION
Eyes	Staring appearance due to upper eyelid retraction, eyelid lag (both due sympathetic over-activity). Light sensitivity
	Grave's ophthalmopathy (periorbital edema, proptosis) is an autoimmune mediated inflammation and edema of extraocular muscles and intra-orbital connective tissue. 50-70% of children.
Neck	Smooth, diffusely and symmetrically enlarged goiter.
	No palpable nodularity. Typically, non-tender to palpation.
	Bruit over a large vascular gland possible
Cardiac	Most common cardiac finding is sinus tachycardia.
	Heart failure and arrhythmia (atrial fibrillation) more common in adults.
	High cardiac output produces bounding pulse, widened pulse pressure.
Skin	Warm (cutaneous vasodilation) and moist (diaphoresis)
	Grave's dermatopathology (bilateral non-pitting edema with associated
	thickening and induration of the skin)
	Typically seen over the ankles and feet. Rare in children
Neuro	Altered mental status, hand tremor, agitation, psychosis, hyperreflexia,

A clinical scoring system for diagnosing thyroid storm was published (See table below, Burch, Endo-Metab Clinics of NA 1993, <u>PUBMED ID: 8325286</u>) but has not been validated.

POINT SCALE FOR THE	DIAGNOSIS	OF THYROID STORM	
TEMPERATURE		GASTROINTESTINAL DYSFU	NCTION
99.0-99.9	5	Absent	0
100.0-100.9	10	Moderate (N,V,D, abd pain)	10
101.0-101.9	15	Severe (Jaundice)	20
102.0-102.9	20	PRECIPITANT HISTORY	
103.0-103.9	25	Positive	0
≥ 104.0	30	Negative	10
TACHYCARDIA		CNS DYSFUNCTION	
100-109	5	Absent	0
110-119	10	Mild (Agitation)	10
120-129	15	Moderate*	20
130-139	20	Severe (Seizure, Coma)	30
≥ 140	25	*Delerium, psychosis, severe lethargy	
ATRIAL FIBRILLATION			
Absent	0		
Present	10		
CONGESTIVE HEART FA	ILURE		
Absent	0	TOTAL SCORE	
Mild	5	THYROID STORM	> 45
Moderate	10	IMPENDING STORM	24-44
Severe	20	STORM UNLIKELY	< 25

LABORATORY TESTING

Laboratory findings are consistent with primary hyperthyroidism (Low TSH, high free T4/T3). Values are similar to those seen in uncomplicated hyperthyroidism. Abnormal liver function tests (thyroid hormones play a role in the metabolism of bilirubin) and an elevated glucose (catecholamine induced inhibition of insulin and increase glycogenolysis), elevated calcium (increased bone resorption) and leukocytosis or leukopenia may be seen.

MANAGEMENT

Initially treatment is directed at inhibiting the peripheral effects of thyroid hormone and decreasing metabolic rate and cardiac workload. Subsequent treatment is directed at decreasing thyroid hormone production, inhibiting release and enhancing clearance as well as recognition and treatment of precipitating factors. The patient should be admitted to an ICU to monitor for clinical deterioration and to provide ongoing care. See also: Hyperthyroidism Guidelines: American Association of Clinical Endocrinologists 2011: <u>PUBMED ID: 21700562</u>

INITIAL STABILIZATION

Airway protection, oxygenation, ventilation PRN

EKG, cardiac monitoring, avoid medications that can prolong the QT interval

Supportive measures including aggressive cooling e.g. cooling blankets

Fluid resuscitation (increased insensible fluid losses)

Acetaminophen for temperature regulation*

Decrease metabolic rate: Beta blockers (e.g. Propranolol)

Decrease thyroid hormone production: Methimazole, Propylthiouracil, Iodine

Consider corticosteroids, bile acid sequestration (e.g. Cholestyramine)

Treatment of precipitating factors

Admit to Intensive Care Unit

*DO NOT GIVE ASPIRIN: Increases T4 by displacing thyroid hormone from protein binding and increase metabolic demand by uncoupling oxidative phosphorylation

PROPRANOLOL

Action	Inhibits the peripheral effects of thyroid hormone
	Beta-blocker. Limits B-adrenergic activity and block peripheral
	conversion of T4 to T3. Highly lipid soluble, crosses the blood brain
	barrier so may help with neurologic symptoms
Indications	Tachycardia, hypertension, agitation
Dose	0.5 – 1 mg IV over 10 minutes then 1-2 mg every few hours
	Adolescent/Adult: 60-80 mg PO every 4-6 hours
	Infants/Children: 0.5 to 2 mg/kg/day PO divided Q6 hours
Contraindications	Congestive heart failure, hypotension
	Asthma: choose a cardio-selective agent e.g. Atenolol, Metoprolol
	Severe asthma: consider rate control with calcium channel blocker
Alternatives	Esmolol: Loading 250-500 mcg/kg then 100 mcg/min infusion
Adverse effects	Hypotension, hypoglycemia, bronchospasm, heart block

THIONAMIDES (Propylthiouracil (PTU), Methimazole). Decreases synthesis of thyroid hormones within 1-2 hours by inhibiting iodine oxidation. Does not effect release of preformed hormone. One or the other is administered and not both. PTU preferred in life-threatening illness. Methimazole for less severe illness (see indications below).

PROPYLTHIOUR	ACIL (PTU)
Action	Decreases synthesis of thyroid hormones within 1-2 hours
	Decreases peripheral conversion of T4 to T3
Indications	Preferred for life-threatening illness: Decreases synthesis of
	thyroid hormones within 1-2 hours, may more rapidly decrease T3
	Preferred during first trimester in pregnancy due to less
	teratogenicity compared to Methimazole (can cross the placenta)
Dose	Adolescent/Adult: 500-1000 mg then 250 mg PO Q4 hours
	Child: 5-7 mg/day PO divided Q8 hours (maximum 1,200 mg/day)
Adverse effects	Risk of hepatotoxicity with liver failure in 1 of 2,000-4,000 children
	Reports of fulminant hepatic necrosis requiring liver transplant

METHIMAZOLE	
Action	Decreases synthesis of thyroid hormones within 1-2 hours
Indications	Preferred for severe illness: Longer duration of action, less
	hepatotoxic, ultimately results in euthyroidism faster than PTU
	Readily crosses placenta and distributes into breast milk, can be
	used in pregnancy. Safer in children
Dose	Adolescent/Adult: 60-80 mg/day PO/NG divided Q4-6 hours
	Infants/Children: 0.5 – 0.7 mg/kg/day PO/NG divided Q8 hours
Adverse effects	Adverse effects seen up to 20% of children. Allergic reactions,
	fever, myalgias, arthralgias, rash, hepatitis, headache
	Agranulocytosis in 0.3% of adults (unknown risk in children)

OTHER MEDICATIONS

IODINE	
Action	Blocks synthesis and release of T4 and T3
Indications	At least 1 hour after synthesis blockade with PTU or Methimazole
Dose	Lugol solution: 5% lodine and 10% Potassium lodide
	(126 mg lodine/ml or 8 mg lodine per drop)
	Children/Adolescents: 10 drops PO TID
	SSKI (Saturated Solution of Potassium Iodide (38 mg Iodine/drop)
	Infants < 1 year: 150-200 mg PO TID
	Children/Adolescents: 300 to 500 mg PO (5 drops) Q6 hours)
	Adults: 5 drops (0.25 ml or 250 mg) PO Q6 hours
Contraindications	Do not administer until 1 hour after the dose of thionamide
	If given prior to synthesis blockade the addition of iodine will act
	as a substrate promoting further hormone production

GLUCOCORTICO	IDS
Action	Inhibit thyroid hormone release from the thyroid and decreases peripheral conversion of T4 to T3
	Decrease autoimmune process in Grave's disease
Indications	Used in extreme cases; patient with CHF, arrhythmias, or shock.
Dose	Dexamethasone 0.2 mg/kg (1-2 mg Q6 hours) or Hydrocortisone (adolescent/adult): 300 mg IV, then 100 mg Q8H Hydrocortisone (infant/child): 1-2 mg/kg Q8 hours

Action	Thyroid hormones are metabolized in the liver, get secreted into
	bile and get reabsorbed if not bound by enterohepatic circulation.
	Bile acid sequestrants interfere with enterohepatic circulation and
	reduce thyroid hormone levels
Dose	Adult: 4 grams PO QID