Table 3-1: Climatic Normal Conditions at Tillamook and Cloverdale

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Tillamook Mean Max. Temperature (F)	52.1	54.1	55.8	58.3	62.0	65.0	68.0	69.1	69.2	63.1	55.6	51.2	60.3
Tillamook Mean Temperature (F)	44.7	45.4	46.8	48.8	52.8	56.4	59.1	59.5	57.8	52.8	47.6	43.7	51.3
Tillamook Mean Min. Temperature (F)	37.3	36.7	37.8	39.4	43.5	47.7	50.2	49.9	46.4	42.5	39.5	36.3	42.3
Tillamook Mean Precipitation (in.)	13.52	9.68	9.74	7.07	4.72	3.58	1.38	1.31	3.00	6.93	13.84	13.24	88.01
Cloverdale Mean Max. Temperature (F)	51.7	53.9	55.2	57.5	61.7	65.3	69.3	70.4	69.4	63.2	55.3	50.7	60.3
Cloverdale Mean Temperature (F)	46.1	47.2	48.3	50.1	54.1	57.6	60.6	61.3	59.7	54.7	49.2	45.1	52.9
Cloverdale Mean Min. Temperature (F)	40.6	40.5	41.4	42.8	46.5	50.0	52.0	52.3	50.0	46.1	43.0	39.6	45.4
Cloverdale Mean Precipitation (in.)	11.72	8.45	8.88	6.42	4.58	3.38	1.12	1.20	2.96	6.23	13.02	12.00	79.96

Note: This table illustrates how monthly average climate differs between the Tillamook and Cloverdale weather stations over a 30-year record (1981-2010). Tillamook is wetter than Cloverdale.

Table 5-1. Monitoring Point Construction and Survey Summary

Well / Location Name	Transducer Serial Number	Oregon Well Tag	Northing	Easting	Measuring Point Elevation	Depth to Screen Top	Depth to Screen Bottom	Total Depth	Location Description
Miller Field	0112084949	L119971	598476	7310830	13.48	15	20	20	Roma and Sand Lake Rd (older, east)
PGG-1i	0112084850	L106639	598479	7310830	13.36	6.2	8.2	8.2	Roma and Sand Lake Rd (new, west)
PGG-2s		L106645	598064	7310495	16.75	3	5	5	East end Jasmine (west)
PGG-2i	27077	L106644	598063	7310498	16.79	10	12	12	East end Jasmine (middle)
PGG-2d	106693	L106643	598061	7310501	16.97	15.5	17.5	17.5	East end Jasmine (east)
PGG-3s	0112084955	L106641	598474	7310056	17.48	3	5	5	West end Pollock (east)
PGG-3i		L106642	598475	7310054	17.42	8.3	10.3	10.5	West end Pollock (middle)
PGG-3d	0112084843	L106640	598475	7310050	17.27	15.6	17.6	17.6	West end Pollock (west)
PGG-4i	29469	L106647	598062	7309921	18.56	9	11	11	West end Pier (west)
PGG-4d	011054222	L106646	598061	7309923	18.47	15	17	17	West end Pier (east)
TDM Pollock Ditch			598497	7309997	16.80				Metal Stake in ditch, west end Pollock
South Marsh #13			597803	7310719	13.67				Marsh/Wetland East of Pier Stake
Tide Gate Inner	'0032040119		601255	7312494	8.29				Concrete corner west end
Tide Gate Outer	27086		601296	7312500	8.41				Metal plate corner top west end
TDM-1s	*		595932	7309518	22.70	2.2	3.35	3.35	Irish Ave near foredune
TDM-2s	*		596286	7309829	21.18	2.13	3.35	3.35	Sand Lake Road between Floyd and Gage
TDM-3s	*		596666	7309624	22.72	2.2	3.35	3.35	West end Eloise Ave
TDM-4s	*		597164	7310016	20.90	2.2	3.35	3.35	Community Center on Bilyeu

Notes:

All measurements and units in feet

Location description parentheses indicate location of well within well cluster.

Datum: Oregon North Zone Grid NAD 83; NAVD 88

Measuring point elevations are approximately 0.3 ft below ground surface.

Well Logs are included in Appendx A.

^{*} Water level measurements provided by Pacific Hydro-Geology Inc.

⁻⁻ indicates not applicable.

Table 5-2. Manual Water Level Measurements

					Water
				Depth To	Level
			MP Elev	Water	Elevation
Well	Date	Time	(feet)	(feet)	(feet)
Miller Field	2/14/2018	8:20:00 AM	13.48	2.63	10.85
Miller Field	2/14/2018	10:05:00 AM	13.48	2.60	10.88
Miller Field	2/23/2018	12:35:00 PM	13.48	2.74	10.74
Miller Field	3/2/2018	11:39:00 PM	13.48	2.33	11.15
Miller Field	3/9/2018	3:25:00 PM	13.48	2.44	11.04
Miller Field	3/26/2018	3:51:00 PM	13.48	2.81	10.67
PGG-1i	2/15/2018	1:30:00 PM	13.36	1.08	12.28
PGG-1i	2/23/2018	12:38:00 PM	13.36	1.27	12.09
PGG-1i	3/2/2018	11:36:00 PM	13.36	0.07	13.29
PGG-1i	3/9/2018	3:23:00 PM	13.36	0.90	12.46
PGG-1i	3/26/2018	3:48:00 PM	13.36	0.81	12.55
PGG-2d	2/16/2018	8:35:00 AM	16.97	5.93	11.04
PGG-2d	2/23/2018	10:10:00 AM	16.97	5.92	11.05
PGG-2d	3/2/2018	10:35:00 AM	16.97	5.32	11.65
PGG-2d	3/9/2018	4:18:00 PM	16.97	5.63	11.34
PGG-2d	3/26/2018	4:40:00 PM	16.97	5.99	10.98
PGG-2i	2/16/2018	8:40:00 AM	16.79	nr	
PGG-2i	2/23/2018	10:06:00 AM	16.79	1.98	14.81
PGG-2i	3/2/2018	10:40:00 AM	16.79	0.69	16.10
PGG-2i	3/9/2018	4:15:00 PM	16.79	1.57	15.22
PGG-2i	3/26/2018	4:38:00 PM	16.79	1.56	15.23
PGG-2s	2/16/2018	8:45:00 AM	16.75	1.82	14.93
PGG-2s	2/23/2018	10:54:00 AM	16.75	1.91	14.84
PGG-2s	3/2/2018	10:46:00 AM	16.75	0.61	16.14
PGG-2s	3/9/2018	4:11:00 PM	16.75	1.49	15.26
PGG-2s	3/26/2018	4:30:00 PM	16.75	1.51	15.24
PGG-3D	2/15/2018	2:15:00 PM	17.27	3.94	13.33
PGG-3d	2/23/2018	11:56:00 AM	17.27	4.23	13.04
PGG-3d	3/2/2018	5:05:00 PM	17.27	4.23	13.04
PGG-3d	3/9/2018	3:40:00 PM	17.27	4.02	13.25
PGG-3d	3/26/2018	4:14:00 PM	17.27	4.40	12.87
PGG-3i	2/15/2018	2:08:00 PM	17.42	2.00	15.42
PGG-3i	2/23/2018	12:05:00 PM	17.42	2.17	15.25
PGG-3i	3/2/2018	4:21:00 PM	17.42	3.48	13.94
PGG-3i	3/9/2018	3:46:00 PM	17.42	1.77	15.65
PGG-3i	3/26/2018	4:11:00 PM	17.42	1.95	15.47
PGG-3s	2/15/2018	2:05:00 PM	17.48	2.05	15.43
PGG-3s	2/23/2018	12:09:00 PM	17.48	2.19	15.29
PGG-3s	3/2/2018	4:08:00 PM	17.48	1.05	16.43
PGG-3s	3/9/2018	3:51:00 PM	17.48	1.83	15.65
PGG-3s	3/26/2018	4:07:00 PM	17.48	2.02	15.46

Sitka Sedge Page 1 of 2

Table 5-2. Manual Water Level Measurements

					Water
				Depth To	Level
			MP Elev	Water	Elevation
Well	Date	Time	(feet)	(feet)	(feet)
PGG-4d	2/16/2018	1:41:00 PM	18.47	4.90	13.57
PGG-4d	2/23/2018	10:18:00 AM	18.47	5.06	13.41
PGG-4d	3/2/2018	10:07:00 AM	18.47	4.95	13.52
PGG-4d	3/9/2018	4:41:00 PM	18.47	4.68	13.79
PGG-4d	3/26/2018	2:46:00 PM	18.47	5.18	13.29
PGG-4i	2/16/2018	1:17:00 PM	18.56	2.36	16.20
PGG-4i	2/16/2018	1:34:00 PM	18.56	2.39	16.17
PGG-4i	2/23/2018	10:14:00 AM	18.56	2.68	15.88
PGG-4i	3/2/2018	10:05:00 AM	18.56	1.70	16.86
PGG-4i	3/9/2018	4:42:00 PM	18.56	2.21	16.35
PGG-4i	3/26/2018	2:48:00 PM	18.56	2.60	15.96
South Marsh #13	3/26/2018	5:56:00 PM	13.67	0.75	12.92
South Marsh #13	2/23/2018	11:20:00 AM	13.67	0.76	12.91
South Marsh #13	3/2/2018	11:06:00 AM	13.67	0.65	13.02
South Marsh #13	3/9/2018	3:25:00 PM	13.67	0.76	12.91
TDM Pollock Ditch	2/15/2018	10:00:00 AM	16.80	dry	dry
TDM Pollock Ditch	2/23/2018	11:41:00 AM	16.80	dry	dry
TDM Pollock Ditch	3/2/2018	11:18:00 AM	16.80	1.01	15.79
TDM Pollock Ditch	3/9/2018	3:57:00 PM	16.80	dry	dry
TDM Pollock Ditch	3/26/2018	5:05:00 PM	16.80		dry
Tide Gate Inner	2/15/2018	5:40:00 PM	8.29	2.53	5.76
Tide Gate Inner	2/23/2018	1:07:00 PM	8.29	2.79	5.50
Tide Gate Inner	3/2/2018	12:11:00 PM	8.29	1.18	7.11
Tide Gate Inner	3/2/2018	4:39:00 PM	8.29	0.65	7.64
Tide Gate Inner	3/9/2018	3:09:00 PM	8.29	2.80	5.49
Tide Gate Inner	3/26/2018	3:22:00 PM	8.29	2.73	5.56
Tide Gate Outer	2/14/2018	5:45:00 PM	8.41	2.77	5.64
Tide Gate Outer	2/23/2018	1:05:00 PM	8.41	2.86	5.55
Tide Gate Outer	3/2/2018	12:09:00 PM	8.41	nr	nr
Tide Gate Outer	3/2/2018	4:37:00 PM	8.41	1.87	6.54
Tide Gate Outer	3/9/2018	3:07:00 PM	8.41	2.97	5.44
Tide Gate Outer	3/26/2018	3:18:00 PM	8.41	2.94	5.47

All times in Pacifc Standard Time (PST)

Measuring point elevations as surveyed by OPRD.

The Miller well is co-located with PGG-1i.

Sitka Sedge Page 2 of 2

Table 5-3. Average Water Levels and Vertical Differences

	Average W	ater Levels							Vertical Differe	nces Between	Deep and Shall	ow Aquifers
Data Interval	Miller (PGG-1d)	PGG-1i	PGG-2d	PGG-2i	PGG-3d	PGG-3s	PGG-4d	PGG-4i	PGG-1 Vertical Difference	PGG-2 Vertical Difference	PGG-3 Vertical Difference	PGG-4 Vertical Difference
Full Record Average	10.89	12.73	11.34	15.27	13.12	15.59	13.60	16.17	1.85	3.92	2.47	2.56
Minimum	10.60	12.20	10.95	14.75	12.53	15.01	12.99	15.47				
Maximum	11.35	13.64	11.99	16.34	13.80	16.71	14.24	17.18				
Standard Deviation	0.15	0.32	0.21	0.34	0.28	0.34	0.31	0.37	0.39	0.25	0.51	0.21
3-Day Average Rain Event *	11.21	13.19	11.79	16.01	13.59	16.29	14.07	16.87	2.06	4.19	2.80	2.78
Minimum	11.05	12.82	11.50	15.71	13.35	16.06	13.78	16.71				
Maximum	11.35	13.61	11.99	16.34	13.80	16.71	14.24	17.18				
Standard Deviation	0.07	0.18	0.10	0.15	0.10	0.15	0.12	0.13	0.98	0.38	1.16	0.26
Later 3-day Average **	10.70	12.29	11.06	14.79	12.68	15.07	13.15	15.58	1.59	3.73	2.39	2.43
Minimum	10.60	12.20	10.95	14.75	12.61	15.01	13.08	15.49				
Maximum	10.81	12.53	11.20	14.87	12.77	15.15	13.24	15.71				
Standard Deviation	0.06	0.10	0.06	0.03	0.04	0.04	0.04	0.06	0.11	0.08	0.04	0.04

All values in feet NAVD88.

Water levels from pressure transducers

Vertical gradient calculated as shallow/intermediate minus deep completion water interval.

^{*} Includes data from 2/28 through 3/2/18.

^{**} Includes data from 3/19 through 3/21/18.

Table 5-4. Average Groundwater Flow Direction and Gradient

Well Set	PGG-1i : PG	G-2i : PGG-3s	Miller : PGG	-2d : PGG-3d	PGG-4d : PG	G-2d : PGG-3d	PGG-4d : M	iller : PGG-3d	PGG-4i : PG	G-2i : PGG-3s	PGG-4i : PG	G-1i : PGG-3s
Data Interval	Direction	Gradient	Direction	Gradient	Direction	Gradient	Direction	Gradient	Direction	Gradient	Direction	Gradient
	Shallow Aquif	er Unit	Deep Aquifer	Unit	Deep Aquifer	Unit	Deep Aquifer	^r Unit	Shallow Aquit	er Unit	Shallow Aquit	fer Unit
Generalized Direction	NE		E		Ε		E		NE		Ε	
Feb. 16 through March 26	49.1	0.0049	112.4	0.0031	90.5	0.0039	84.1	0.0029	59.6	0.0018	87.0	0.0037
Standard Deviation	1.7	0.0004	1.9	0.0003	2.8	0.0003	4.6	0.0002	3.7	0.0003	2.1	0.0003
March 1 through 3	47.8	0.0054	108.4	0.0032	90.8	0.0039	85.8	0.0031	58.2	0.0017	88.8	0.0040
Standard Deviation	0.6	0.0002	1.5	0.0001	1.6	0.0002	2.5	0.0001	2.0	0.0002	1.6	0.0002
Mach 19 through 21	48.5	0.0048	114.2	0.0028	89.6	0.0036	82.0	0.0026	60.1	0.0016	89.2	0.0036
Standard Deviation	0.3	0.0001	0.8	0.0001	0.4	0.0001	0.9	0.0001	0.8	0.0001	1.0	0.0001

Direction is shown in aziumth degrees (0-360)

Direction is calculated from the three wells at top of each box.

The well set is the three wells used to triangulate the groundwater flow direction and gradient.

See Figures 5-2a and 5-2b for the March 1 and March 19 WL plots.

Table 5-5. Grain Size Analyses

Sitka Sedge Natural Area, Oregon

Grain Size Measurements

		PGG-2	PGG-2	PGG-4	PGG-4
Sieve Size	•	17-19 ft bgs	7-8 ft bgs	12 ft bgs	5 ft bgs
mesh	mm	% Finer	% Finer	% Finer	% Finer
0.625	16				100.0
0.5	12.7				98.3
#4	4.76	100.0		100.0	98.3
#10	2	100.0		91.8	98.3
#20	0.841	99.9	100.0	73.3	98.3
#40	0.42	99.6	99.8	62.4	98.1
#60	0.25	75.2	61.4	46.5	74.6
#100	0.149	13.8	11.8	18.7	28.5
#200	0.074	2.7	0.2	7.7	0.6
USCS Soil	Туре	SP	SP	NP	SP
Soil Descri	ption	Gray poorly graded fine sand	Light brown poorly graded fine sand	Light gray to dark gray poorly graded sand with silt and organics (sandy peat)	Light brown poorly graded fine sand

Hydraulic Conductivity by Calculation Method * (m/day)

riyaraano oonaaba	ity by Gaigaiatio		~ <i>y</i> /	
Alyamani	5.8	5.8	5.8	5.8
Beyer	9.2	9.2	8.7	8.7
Harleman	9.3	9.3	9.3	8.8
Hazen	7.3	7.2	7.2	6.9
Hazen (C_h)	10.2	10.2	10.2	9.6
Kozeny-Carman	7.2	7.2	7.2	7.0

Hydraulic Conductivity Statistics (m/day)

		···· J)		
Median	8.2	8.2	7.9	7.8
Mean	8.2	8.1	8.0	7.8
Std Deviation	1.7	1.7	1.6	1.5

Hydraulic Conductivity Statistics (cm/s)

Median	9.5E-03	9.5E-03	9.2E-03	9.1E-03
Mean	9.4E-03	9.4E-03	9.3E-03	9.0E-03
Std Deviation	1.9E-03	1.9E-03	1.9E-03	1.7E-03

Capillary Rise (hc) Estimate

	()				
D ₁₀		0.1183	0.1349	0.1086	0.1065
hc	mm	573	443	658	677
	m	0.6	0.4	0.7	0.7
	ft	1.9	1.5	2.2	2.2

Notes:

Laboratory grain size analyses in Appendix C.

Capillary height (hc) estimated by method in Lane (1946).

 $h_c(\text{mm}) = -990 \ln D_{10} - 1540$

 D_{10} is the 10th percentile grain size.

^{*} See Rosas et al. (2014) for discussion of calculation methods.

Table 6-1: Surface Water Model Output to Groundwater Model Boundary ConditionsSitka Sedge Natural Area

Simulation Period	Total 38 days. The first 28 days will provide an average winter water level baseline. The last 10 days will provide predicted response to a high tide event combined with an extreme storm event.
Tides	Days 1-28: Use measured tides outboard of the levee from January 7th to Febru-ary 4th, 2017 Days 29-38: Use a 10-day period from the Garibaldi gauge that includes a king tide event, and combine this with the wind setup observed at the site from Feb-ruary 5th to February 13th, to create combined king tide and wind setup storm event. NOTE: For storm conditions (Days 29-38), measured tide levels in Sand Lake from February 5th to 13th include the effects of persistent wind-driven setup. An approximate measure of the wind setup was estimated by subtracting the concurrent Garibaldi tides. This setup was then added onto a 10-day period from the Garibaldi gauge that included a king tide event.
Precipitation	Days 1-28: Use average precipitation conditions for January 7th to February 4th, based on multi-year precipitation records Days 29-38: Start with actual precipitation measured in the 10-day period span-ning the February 2018 flood event, and scale these to 50-year levels
Streamflow	Days 1-28: Wet season average flow for January 7th to February 4th, based on multi-year Tucca Creek flow records Days 29-38: Scale February 5th – 14th flows from Tucca Creek gauge to match 50-year event level NOTE: Inputs for surface water model at Beltz and Reneke Creeks will be based on watershed scaling to Tucca Creek
Climate Change	Climate change would be modeled as a shift in mean sea level. We recommend using estimates for 50 years into the future under a "medium" greenhouse emissions scenario, corresponding to approximately a 1-foot increase in mean sea lev-el. Note, sea level rise will not be incorporated in the initial 'bookend' scenarios.

Note: This table describes the assumptions and parameters applied to the calibrated surface-water model to generate stage data for Beltz Marsh and the Pacific Ocean to be used as input for predictive groundwater model simulations.

Table 6-2: Recharge / Water Balance Using Long-Term Average Monthly Precipitation

General Station and Area Inputs

Vegetation Data

Type of Land Cover	mature conifers
Rooting Depth	36 in
Priestly Taylor "Alpha"	N/A
Average Annual Fractional Foliar Cover	N/A
Average Annual Foliar Interception Capacity	N/A
Net Surface Albedo Value	N/A

Tillamook Weather Station Data

Weather Station ID	Tillamook, OR 358494					
Average Precipitati	88.0 in/yr					
Avg Annual	60.3 °F					
Latitude	45.45 °N					
Longitude	-123.85 °W					
Elevation	12 feet msl					
Model Realization v12						

Cloverdale Weather Station Data

Weather	Cloverdale, OR 351682-1					
Station ID	331002-1					
Average Precipitati	80.0 in/yr					
Avg Annual	60.3 °F					
Latitude	45.20 °N					
Longitude	-123.07 °W					
Elevation	1 feet msl					
Model Realization v21						

Soil and Water Data

Avg. Soil Available Water Capacity (AWC) 0.04 inch/inch within root zone, per NRCS soil descriptions. Ratio of Site:Weather-Station Precipitation 100% of official station Portion of "P" going to immediate runoff* 0% of effective precipitation, per high permeability of soils.

Recharge Calculator													
Recharge Parameter	January	February	March	April	May	June	July	August	September	October	November De	ecember	Total
Evaporation Estimates													
Monthly Temp (T, °F)	44.7	45.4	46.8	48.9	52.8	56.4	59.1	59.5	57.8	52.8	47.6	43.8	51.3
Monthly Temp (T, °C)	7.1	7.4	8.2	9.4	11.5	13.5	15.1	15.3	14.3	11.6	8.6	6.5	10.7
Blaney Criddle Crop Factor (k)	0.63	0.73	0.86	0.85	0.52	0.53	0.53	0.53	0.50	0.80	0.78	0.64	0.66
Blaney Criddle % of Annual Light (d)	0.064	0.065	0.082	0.091	0.103	0.105	0.106	0.097	0.084	0.076		0.061	1.00
Priestly Taylor Net Radiation (RN)	N/A	0.003 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Potential Evapotranspiration (PET)	0.83	1.01	1.64	1.99	1.67	2.04	2.31	2.17	1.66	1.92	1.21	0.76	19.23
Water Balance (Tillamook); Model Realization v12													
Effective Precipitation (P)	13.52	9.68	9.74	7.07	4.72	3.58	1.38	1.31	3.00	6.93	13.84	13.24	88.01
Interception Loss (IL)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Snowpack Storage (SS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Snowpack Ablation (SA)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Snowmelt (SM)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AvailableThroughfall (ATF)	13.52	9.68	9.74	7.07	4.72	3.58	1.38	1.31	3.00	6.93	13.84	13.24	88.01
Runoff (RO)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Infiltration (I)	13.52	9.68	9.74	7.07	4.72	3.58	1.38	1.31	3.00	6.93		13.24	88.01
Average Soil Moisture in Soil Profile (SW)	1.41	1.40	1.39	1.37	1.39	1.37	0.99	0.80	1.29	1.38	1.40	1.42	1.30
Soil Moistue Deficit (PET-P)	0.00	0.00	0.00	0.00	0.00	0.00	0.93	0.86	0.00	0.00	0.00	0.00	1.79
Actual Evapotranspiration (AET)	0.83	1.01	1.64	1.99	1.67	2.04	1.93	1.35	1.56	1.92	1.21	0.76	17.93
Shallow Recharge (RS)**	12.69	8.68	8.12	5.09	3.03	1.55	0.00	0.00	0.83	5.02	12.61	12.46	70.08
Perched Subflow (PS)***	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Deep Recharge (RD)***	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Water Balance (Cloverdale); Model Realization v21													
Effective Precipitation (P)	11.72	8.45	8.88	6.42	4.58	3.38	1.12	1.20	2.96	6.23	13.02	12.00	79.96
Interception Loss (IL)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Average Snowpack Storage (SS)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Snowpack Ablation (SA)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Snowmelt (SM)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AvailableThroughfall (ATF)	11.72	8.45	8.88	6.42	4.58	3.38	1.12	1.20	2.96	6.23	13.02	12.00	79.96
Runoff (RO)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Infiltration (I)	11.72	8.45	8.88	6.42	4.58	3.38	1.12	1.20	2.96	6.23	13.02	12.00	79.96
Average Soil Moisture in Soil Profile (SW)	1.41	1.40	1.38	1.37	1.38	1.37	0.87	0.66	1.23	1.37	1.40	1.41	1.27
Soil Moistue Deficit (PET-P)	0.00	0.00	0.00	0.00	0.00	0.00	1.34	1.14	0.00	0.00	0.00	0.00	2.48
Actual Evapotranspiration (AET)	0.91	1.12	1.78	2.13	1.78	2.16	1.81	1.22	1.63	2.09	1.32	0.83	18.79
Shallow Recharge (RS)**	10.82	7.34	7.11	4.30	2.78	1.24	0.00	0.00	0.61	4.15	11.68	11.15	61.17
Perched Subflow (PS)***	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Deep Recharge (RD)***	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OTATION.			014	A T.F.	DO.		DET	A E T	DO.	DO.			

	STATION	P	IL	SM	ATF	RO	ı	PET	AET	RS	PS	RD
ANNUAL SUMMARY	- Tillamook	88.01	N/A	N/A	88.01	0.00	88.01	19.23	17.93	70.08	N/A	N/A
	- Cloverdale	79.96	N/A	N/A	79.96	0.00	79.96	20.72	18.79	61.17	N/A	N/A

Notes:

All values used in the Evaporation Estimates, Water Balance, and Annual Summary are in inches unless otherwise noted.

Abbreviations used in the annual summary are defined in the Evaporation Estimates and Water Balance.

Note: this table presents the parameters used to estimate groundwater recharge estimated based on climate, soils and vegetation. Groundwater recharge is a key driver behind groundwater level variations. Estimates of daily recharge were also developed.

^{*} Modeled runoff consists of the sum of the fixed percentage of effective precipitation going to runoff and any infiltration rejected when saturation reaches the land surface.

^{**} Shallow recharge is the water that exits the bottom of the root zone.

^{***} Deep recharge is not applicable to this analysis, and is associated with water that flows through a perching layer.

Table 6-3: Summary of Modeled Aquifer Property Values

Sitka Sedge Natural Area

Model Version 12 (Tillamook Precipitation)

Hydraulic Property Zone	Zone / Reach	Kh Range	Calibrated Kh	Kv Range	Calibrated Kv	S Range	Calibrated S	Comments
K & S of L1 Hydraulic Property	Z1	3 - 60	27	0.1*Kh	2.7	0.1 - 0.4	0.34	Sandy materials, shallow aquifer. S = Sy
K & S of L2 Western Hydraulic Property	Z2	N/A	1	>Z5	0.0034	1E-6 - 1E-4	2E-5	Aquitard materials, more peaty. S = Ss
K & S of L3 Hydraulic Property	Z3	3 - 60	32	0.1*Kh	3	1E-6 - 1E-4	2E-5	Sandy materials, deep aquifer. S = Ss
K & S of Connective Hydraulic Property	Z4	2 - 200	20	2-200	20	see note	see note	Higher energy sediments along bedrock upland
K & S of L2 Eastern Hydraulic Property	Z5	N/A	1	1E-7 - 2E-4	3.4E-4	1E-6 - 1E-4	2E-5	Aquitard materials, more clayey. S = Ss
Ks of Beltz Marsh River Cells	R1, R3	N/A	N/A	0.4 - 4	0.4	N/A	N/A	Finer-graned "skin" materials
Ks of Beach River Cells	R2,R4	N/A	N/A	12 - 40	12	N/A	N/A	Beach sand
Ks of Beach Drain Cells	D-1	N/A	N/A	12 - 40	12	N/A	N/A	Beach sand
Ks of All Other Land-Surface Drains	D-0	N/A	N/A	1.2 - 4	2	N/A	N/A	Surficial Soils
Ks of East Ditch	S-1	N/A	N/A	0.6 - 60	40	N/A	N/A	Maintained periodically
Ks of North Ditch	S-2	N/A	N/A	0.6 - 60	3	N/A	N/A	Maintained rarely

Model Version 21 (Cloverdale Precipitation)

model totalen 1 (diovarda i recipitation)								
Hydraulic Property Zone	Zone / Reach	Kh Range	Calibrated Kh	Kv Range	Calibrated Kv	S Range	Calibrated S	Comments
K & S of L1 Hydraulic Property	1	3 - 60	15	0.1*Kh	1.5	0.1 - 0.4	0.12	Sandy materials, shallow aquifer. S = Sy
K & S of L2 Western Hydraulic Property	2	N/A	1	>Z5	0.0034	1E-6 - 1E-4	2E-5	Aquitard materials, more peaty. S = Ss
K & S of L3 Hydraulic Property	3	3 - 60	30	0.1*Kh	3	1E-6 - 1E-4	2E-5	Sandy materials, deep aquifer. S = Ss
K & S of Connective Hydraulic Property	4	2 - 200	20	2-200	20	see note	see note	Higher energy sediments along bedrock upland
K & S of L2 Eastern Hydraulic Property	5	N/A	1	1E-7 - 2E-4	0.00034	1E-6 - 1E-4	2E-5	Aquitard materials, more clayey. S = Ss
Ks of Beltz Marsh River Cells	R1, R3	N/A	N/A	0.4 - 4	0.4	N/A	N/A	Finer-graned "skin" materials
Ks of Beach River Cells	R2,R4	N/A	N/A	12 - 40	12	N/A	N/A	Beach sand
Ks of Beach Drain Cells	D-1	N/A	N/A	12 - 40	12	N/A	N/A	Beach sand
Ks of All Other Land-Surface Drains	D-0	N/A	N/A	1.2 - 4	2	N/A	N/A	Surficial Soils
Ks of East Ditch	S-1	N/A	N/A	0.6 - 60	40	N/A	N/A	Maintained periodically
Ks of North Ditch	S-2	N/A	N/A	0.6 - 60	3	N/A	N/A	Maintained rarely

N/A = not applicable, either because it is not included in calculating flow (e.g. Kh of "skin" sediments) or has no effect on model results (e.g. Kh of an aquitard)

Note: This table summarizes the hydraulic property ranges for sediments employed during calibration of the groundwater flow model, along with final calibrated model values used for the purpose of predicting groundwater responses to various configurations of the Beltz Dike.

S = storativity. Sy = specific yield. Ss = specific storage. Storage properties for connective zone range from 0.34 (Sy) to 2E-5 (Ss)

K = Hydraulic conductivity. Kh = Horizontal hydraulic conductivity. Kv = Vertical hydraulic conductivity. All K values in ft/d.

Table 6-4: Key Calibration Statitstics

		v12 Stea	dy State	v21 Stea	Steady State Trans		ent ΔH	v12 Transient Tidal Response		v21 Transient	Tidal Response
Name	Observed	Computed	Residual	Computed	Residual	v12	v21	Observed	Computed	Observed	Computed
PGG-1d	10.89	11.41	-0.52	11.37	-0.48	-0.9	-0.5	0.20	0.13	0.20	0.08
PGG-1i	12.73	12.24	0.49	12.35	0.38	0.5	0.5	~0	~0	~0	~0
PGG-2d	11.34	12.84	-1.50	12.82	-1.48	-2.2	-1.6	0.30	0.20	0.30	0.12
PGG-2i	15.27	16.01	-0.74	16.33	-1.06	-1.3	-0.8	~0	~0	~0	~0
PGG-3d	13.12	12.24	0.88	12.16	0.96	0.2	0.7	0.20	0.40	0.20	0.30
PGG-3s	15.59	15.83	-0.24	15.41	0.18	-1.0	0.4	~0	~0	~0	~0
PGG-4d	13.6	12.18	1.42	12.10	1.50	0.6	1.3	0.10	0.50	0.10	0.40
PGG-4i	16.17	15.86	0.31	15.38	0.79	-0.8	0.7	~0	~0	~0	~0
TDM-2s	18.19	18.08	0.11	18.27	-0.08	0.1	0.1	~0	~0	~0	~0
TDM-4s	17.41	16.75	0.66	16.77	0.64	0.2	0.8	~0	~0	~0	~0
East Ditch GW Flux (c	fs)	0.2	15	0.	12	range: 0.06 - 0.65	range: 0.02 - 0.34				
North Ditch GW Flux (cfs)	0.0	04	0.0	03	range: 0.02 - 0.13	range: 0.01 - 0.05]			

Steady-State Statistics:	v12 Steady State	v21 Steady State
Residual Mean	0.09	0.14
Absolute Residual Mean	0.69	0.76
Residual Std. Deviation	0.81	0.88
RMS Error	0.82	0.89
Min. Residual	-1.50	-1.48
Max. Residual	1.42	1.50
Number of Observations	10	10
Range in Observations	7.3	7.3
Scaled Residual Std. Deviation	11.2%	12.1%
Scaled Absolute Residual Mean	9.4%	10.3%
Scaled RMS Error	11.2%	12.2%
Scaled RMS Error (L1 Only)	8.8%	11.4%
Scaled Residual Mean	1.2%	1.9%

All elevation values are in feet NAVD88, all residuals are in feet, and all flow rates are in cubic feet per second (cfs).

Note: This table summarizes groundwater modeling predictions assessed against observed values ("calibration targets") along with statistical assessment of calibration accuracy.

[&]quot;Tidal Response": Diurnal groundwater level variation resulting from tidal influence.

v21: Input precipitation based on Cloverdate records

v12: Input precipitation based on Tillamook records

 $[\]Delta H$: Head difference between the observed hydrograph and the predicted hydrograph.

Table 6-5: Steady State Model Water Budgets

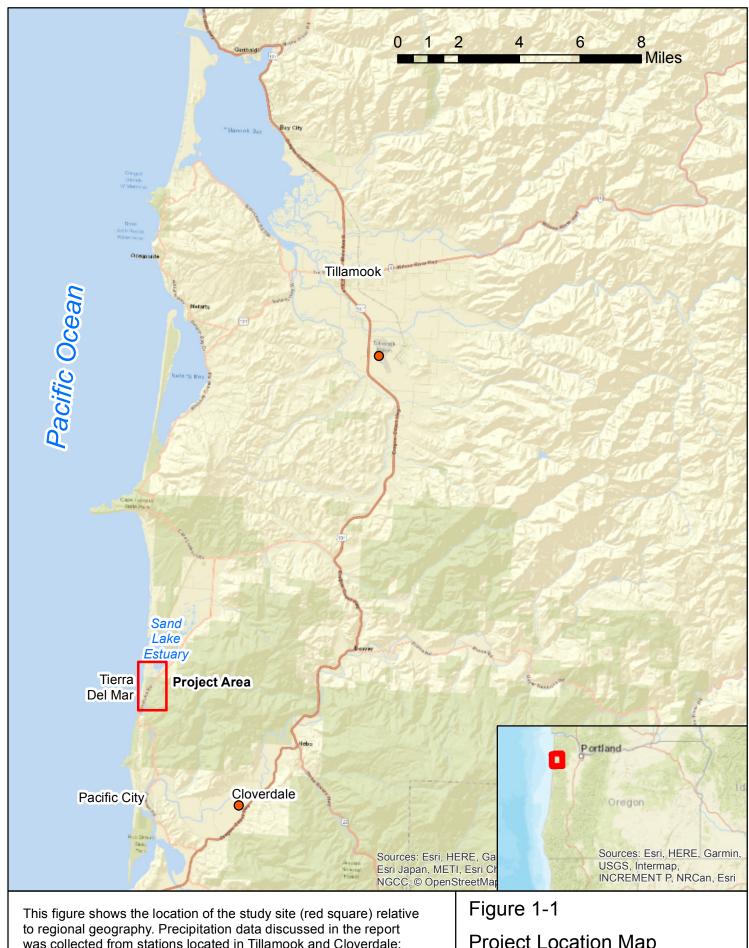
Sitka Sedge Natural Area

	v12 - Tillamook	v21 - Cloverdale
Description	(cfs)	(cfs)
Recharge	4.71	3.69
- Recharge to TDM	0.64	0.50
Constant Head (Sear Lake)	-0.03	-0.03
Rivers (Beach and Marsh)	-3.62	-2.90
- Discharge to Beltz Marsh	-0.71	-0.56
- Discharge to Ocean	-2.91	-2.34
Land Surface Drains	-0.87	-0.62
Streams (East and North Ditches)	-0.19	-0.14
- Discharge to East Ditch	-0.15	-0.12
- Discharge to North Ditch	-0.04	-0.03
Total	0.00	0.00

Positive values indicate model inflows, negative values indicate outflows. A total of zero indicates that inflows and outflows are balanced.

Note: This table summarizes the hydrologic inflows and outflows for calibrated realizations of the groundwater model (steady-state calibration) representing average conditions over the 38-day monitoring period (February 16, 2018 thru March 26, 2016).

Table 7-1: Differences in Predicted Shallow-Aqufer Groundwater Elevations
Sitka Sedge Natural Area


Dike Configuration	Model	Statistic	PGG-1i	PGG-2i	PGG-3s	PGG-4i	TDM-2	TDM-4
		28d Max	0.02	0.00	0.00	0.00	0.00	0.00
		28d Avg	0.01	0.00	0.00	0.00	0.00	0.00
	v12	28d Min	0.00	0.00	0.00	0.00	0.00	0.00
	Tillamook	10d Max	0.01	0.00	0.00	0.00	0.00	0.00
		10d Avg	-0.02	0.00	0.00	0.00	0.00	0.00
Dike Breach		10d Min	-0.10	0.00	0.00	0.00	0.00	0.00
DIKE DIEACH		28d Max	0.02	0.00	0.00	0.00	0.00	0.00
		28d Avg	0.01	0.00	0.00	0.00	0.00	0.00
	v21	28d Min	0.00	0.00	0.00	0.00	0.00	0.00
	Cloverdale	10d Max	0.00	0.00	0.00	0.00	0.00	0.00
		10d Avg	-0.04	0.00	0.00	0.00	0.00	0.00
		10d Min	-0.14	0.00	0.00	0.00	0.00	0.00
		28d Max	0.00	0.00	0.00	0.00	0.00	0.00
		28d Avg	0.00	0.00	0.00	0.00	0.00	0.00
	v12	28d Min	-0.01	0.00	0.00	0.00	0.00	0.00
	Tillamook	10d Max	0.00	0.00	0.00	0.00	0.00	0.00
		10d Avg	-0.03	0.00	0.00	0.00	0.00	0.00
Modern Tide Gate		10d Min	-0.11	0.00	-0.01	0.00	0.00	0.00
Wodelli Tide Gate		28d Max	0.00	0.00	0.00	0.00	0.00	0.00
		28d Avg	0.00	0.00	0.00	0.00	0.00	0.00
	v21	28d Min	-0.01	0.00	0.00	0.00	0.00	0.00
	Cloverdale	10d Max	0.00	0.00	0.00	0.00	0.00	0.00
		10d Avg	-0.05	0.00	0.00	0.00	0.00	0.00
		10d Min	-0.17	0.00	0.00	0.00	0.00	0.00

Difference = alternative configuration minus current conditions simulation 28d = 28-day winter average condition, 10d = 10d high tide/precipitation condition ("storm event") All values in feet

Note: This table summarizes the predicted changes in Shallow Aquifer water-table elevations derived from the predictive model scenarios. Changes are expressed (in feet) relative to the current tide gate for both the "dike breach" and "modern tide gage" dike configurations. All values in feet

For the dike breach configuration, no effects are predicted in wells other than PGG1i. Maximum increase in groundwater level (1/50 inch) occurs during average conditions. Maximum decrease (~1/7 inch) occurs during flood conditions. This observation is representative for the shallow water table beneath TDM near Beltz Marsh. Higher water levels during average conditions reflects more tidal inflow thru the dike breach, whereas lower water levels during the storm event represents more efficient drainage out thru the breach gap.

For the modern tide gate configuration, predicted changes are all limited to Well PGG-1i and are all water-level declines. Declines occur because (relative to the current tide gate) the modern tide gate does a better job limiting inundation during high tide and allowing drainage during low tide.

was collected from stations located in Tillamook and Cloverdale; weather stations are shown by red dots.

Project Location Map

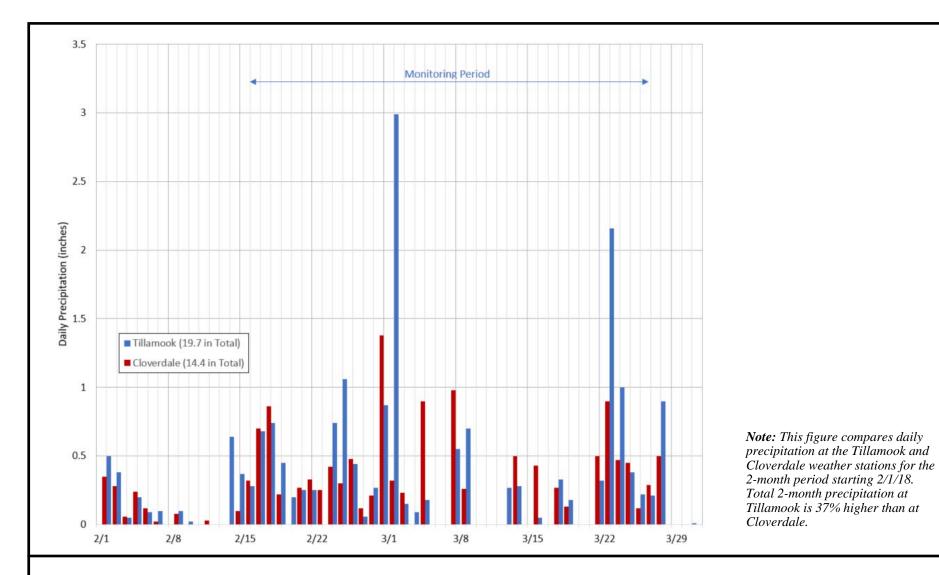
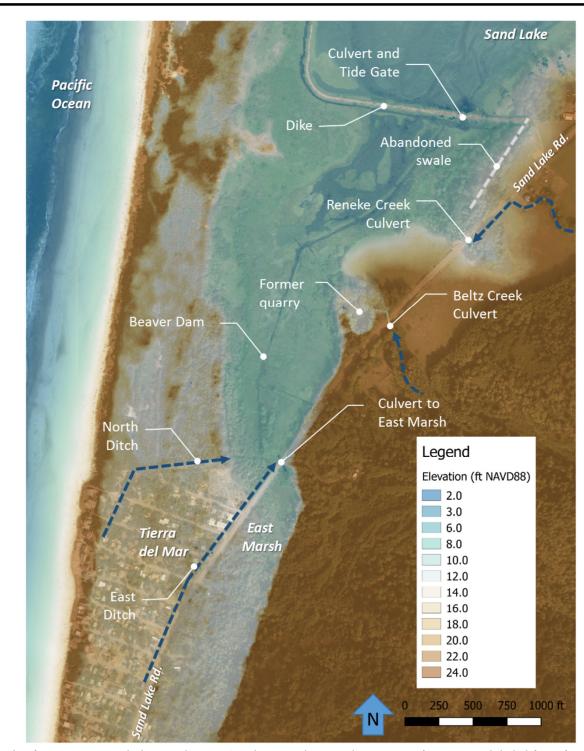



Figure 3-1
Daily Precipitation at Tillamook and Cloverdale (Feb-Mar 2018)

PgG

Note: This figure is an aerial photo with a LiDAR elevation data overlay. Key site features are labeled for reference.

Figure 4-1
Annotated Site Topographic and Hydrologic Map

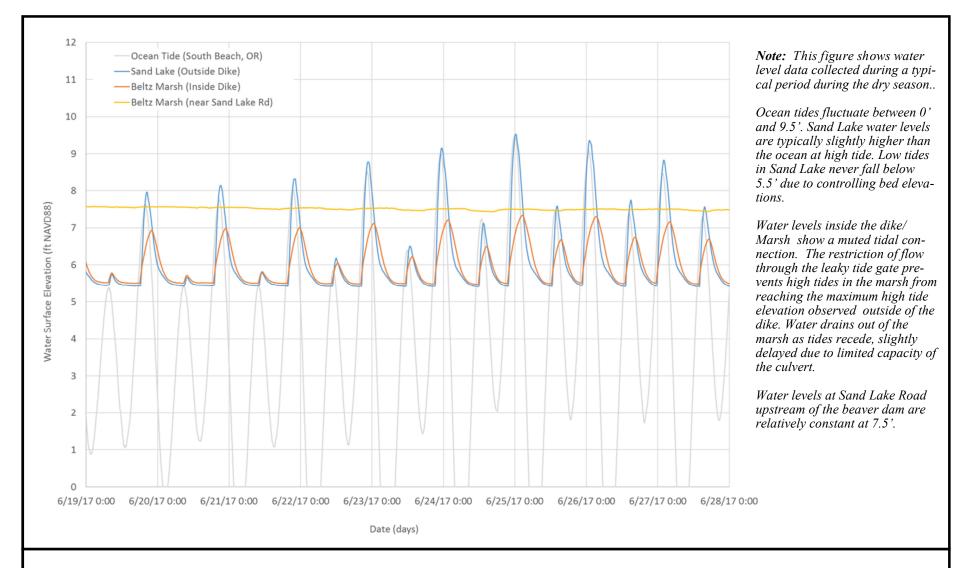


Figure 4-2
Typical Water Level Fluctuations in Beltz Marsh During the Dry Season

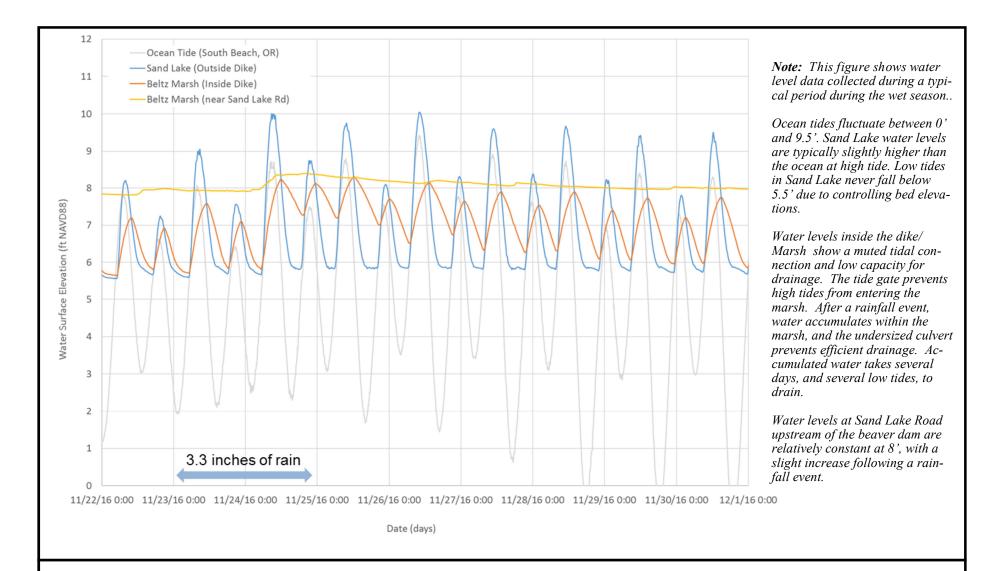


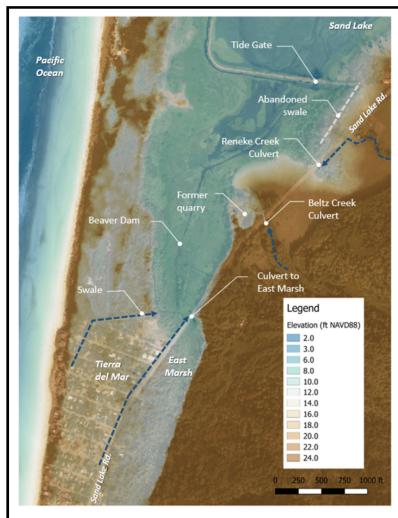
Figure 4-3
Typical Water Level Fluctuations in Beltz Marsh During the Wet Season

Recent Events	48-Hr Rainfall (inches)				
Dec. 18, 2015	4.1				
Nov. 24, 2016	3.3				
Dec. 20, 2016	2.3				
Feb. 9, 2017	3.1				
Feb. 16-19, 2017	2.4 + 1.6				
Mar. 7, 2017	1.3				
Mar. 15, 2017	2.9				

Note: This figure shows areas of surface-water ponding observed following rainfall events.

These ponded areas generally correspond to depression areas without positive drainage.

Figure 4-4
Areas of Surface-Water Ponding in Tierra Del Mar



- Beltz Dike and tide gate
 - · Limited tidal flux in/out of marsh
 - High tides behind dike are 1-2' lower than Sand Lake
 - Water still flowing into marsh when tides begin to fall
 - · Culvert limits draining of marsh
 - Heavy rainfall events can take several tide cycles for freshwater to drain out of marsh
- Beaver Dam within marsh
 - About 3 feet tall
 - · Limits tidal fluctuation at south end of marsh
 - Steady water levels 7 to 8' NAVD88
 - · Backwater at culvert and east marsh
- Multiple Culverts (not shown)

Note: This figure provides summary information on the primary features that control surface-water movement into, out of, and within Beltz Marsh.

Figure 4-5
Hydraulic Control Features Affecting Surface-Water Movement

FEMA Base Flood EL. +11.8 ft

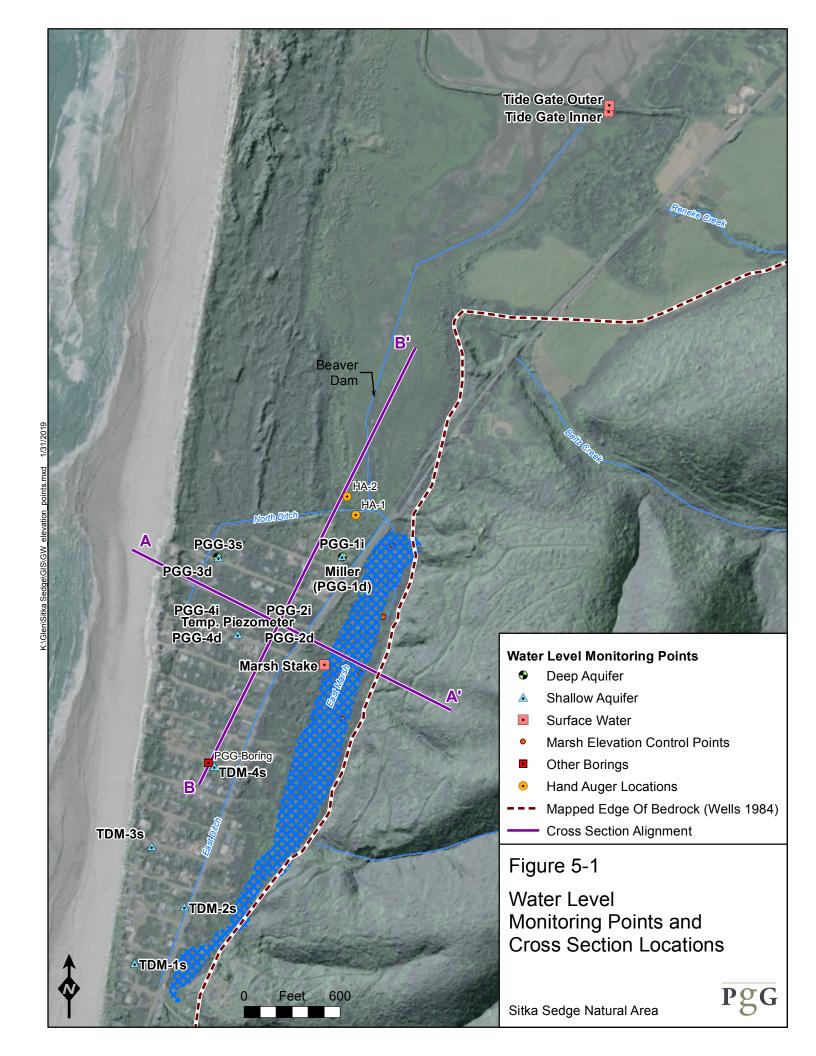
Low top of Dike EL. +12.1 ft Bottom of Tide Gate EL. +1.3 ft Scour hole EL. -4.5 ft

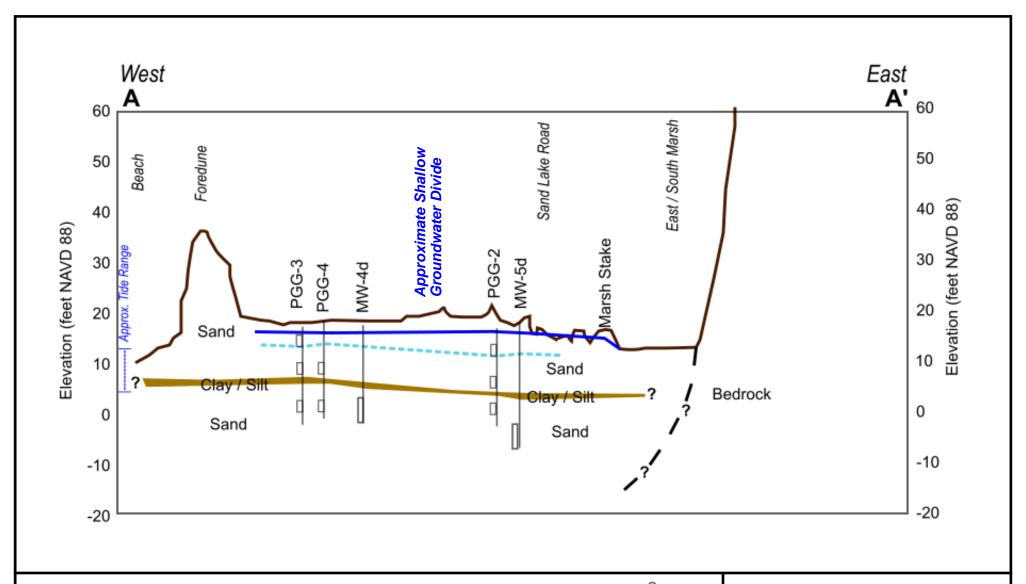
Low tide in Sand Lake EL. +5.5 ft MSL in Ocean EL. +3.8 ft

Reneke Ck. Culvert Invert. EL. +9.6 ft

Beltz Ck. Culvert Invert. EL. +20.7 ft

Top of Beaver Dam EL. ~8.0 ft


Culvert to East Marsh Invert EL. 5.15 ft Low Point in Sand Lk. Rd EL. ~11.6 ft


Culvert Invert at Roma Ave = +11.7 ft Land in Tierra del Mar EL. +14 to 22 ft

Note: This figure summarizes the elevations of key features within the project area. All elevations are referenced to North American Vertical Datum 1988 (NAVD88).

Figure 4-6
Elevations of Key Site Features and Water Levels (NAVD88)

Shallow Potentiometric Surface

Deep Potentiometric Surface

15x Vertical Exaggeration

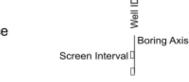
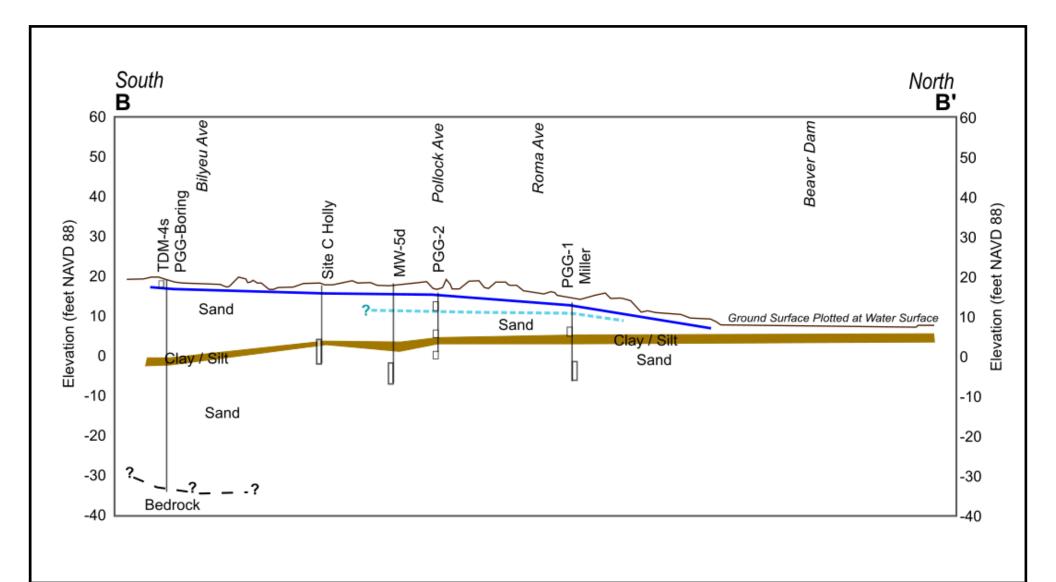



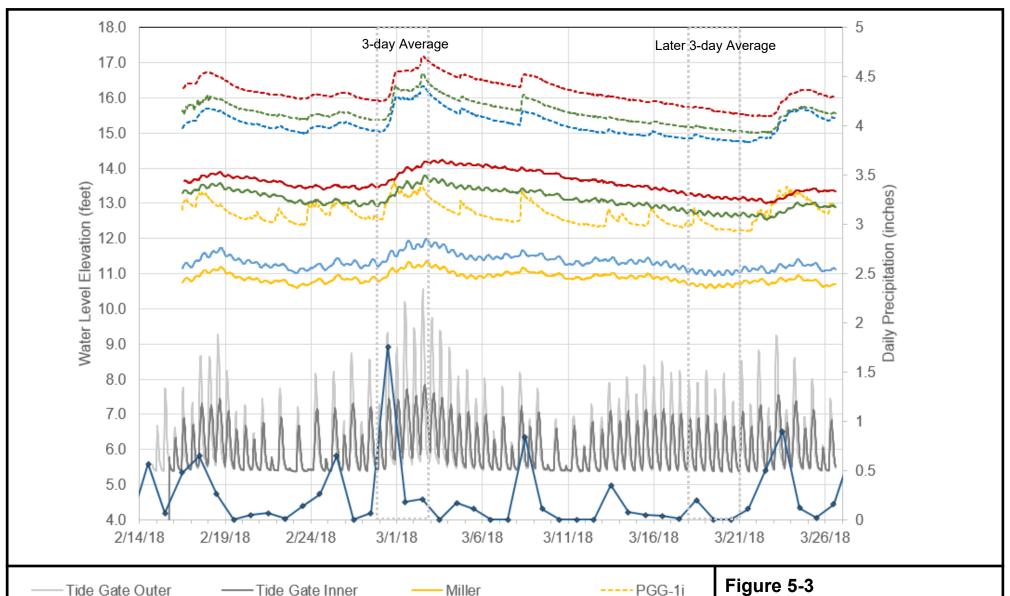
Figure 5-2a Geologic Cross Section A-A'

This figure shows a cross section through the study area from the beach (west) to bedrock in the hills east of TDM. There are no borings at or west of the foredune, and the clay layer is expected to pinch out west of the foredune, though the location of that transition is uncertain. It is common for water levels (reflecting pressure head) in semi-confined or confined aquifers to rise above the elevation overlying confining layer, as observed for the deep potentiometric surface, above.

Shallow Potentiometric Surface

Deep Potentiometric Surface

15x Vertical Exaggeration


This figure shows a south to north cross section through the study area from near the TDM Community Center into Beltz Marsh. The boring log from a well on Whalen Island on the north part of Sand Lake Estuary suggests that the clay layer is present throughout the estuary. The shallow potentiometric surface (water table) dips to the north reflecting groundwater discharge towards surface water features (some of which are out of the plane of the cross section). It is common for water levels in semi-confined or confined aquifers to rise above the overlying confining layer, as observed for the deep potentiometric surface, above.

Screen Interval

Boring Axis

Figure 5-2b Geologic Cross Section B-B'

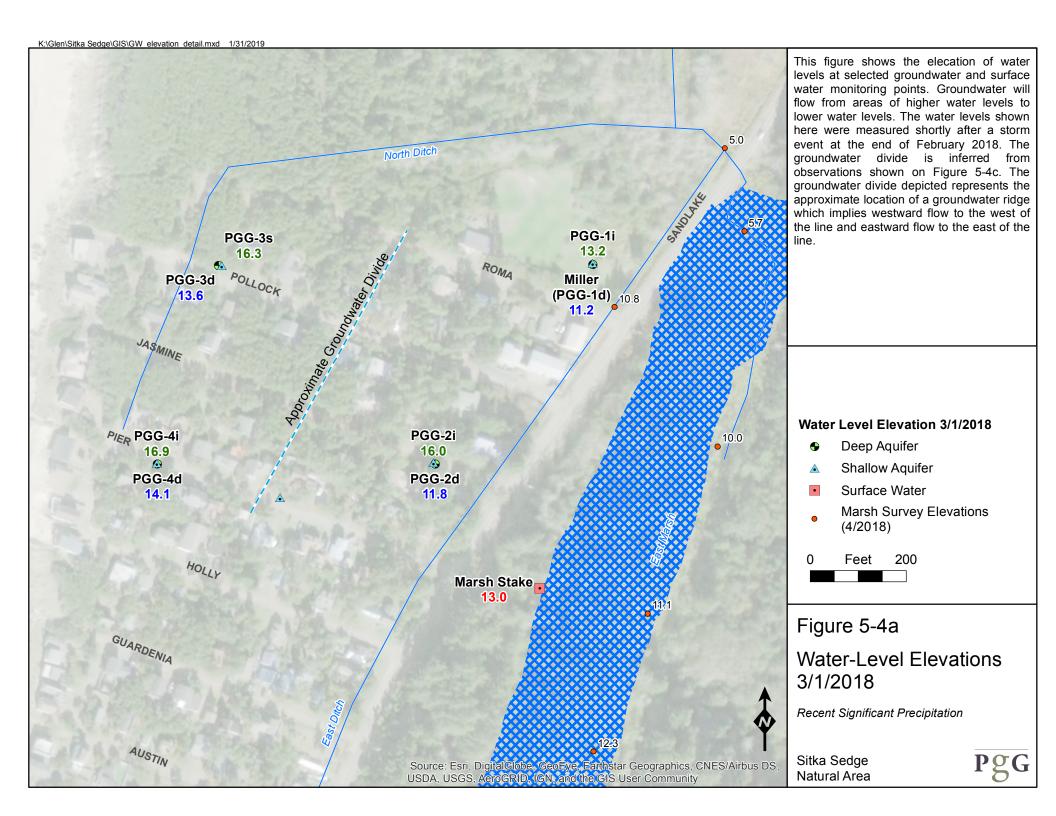
---- PGG-3s

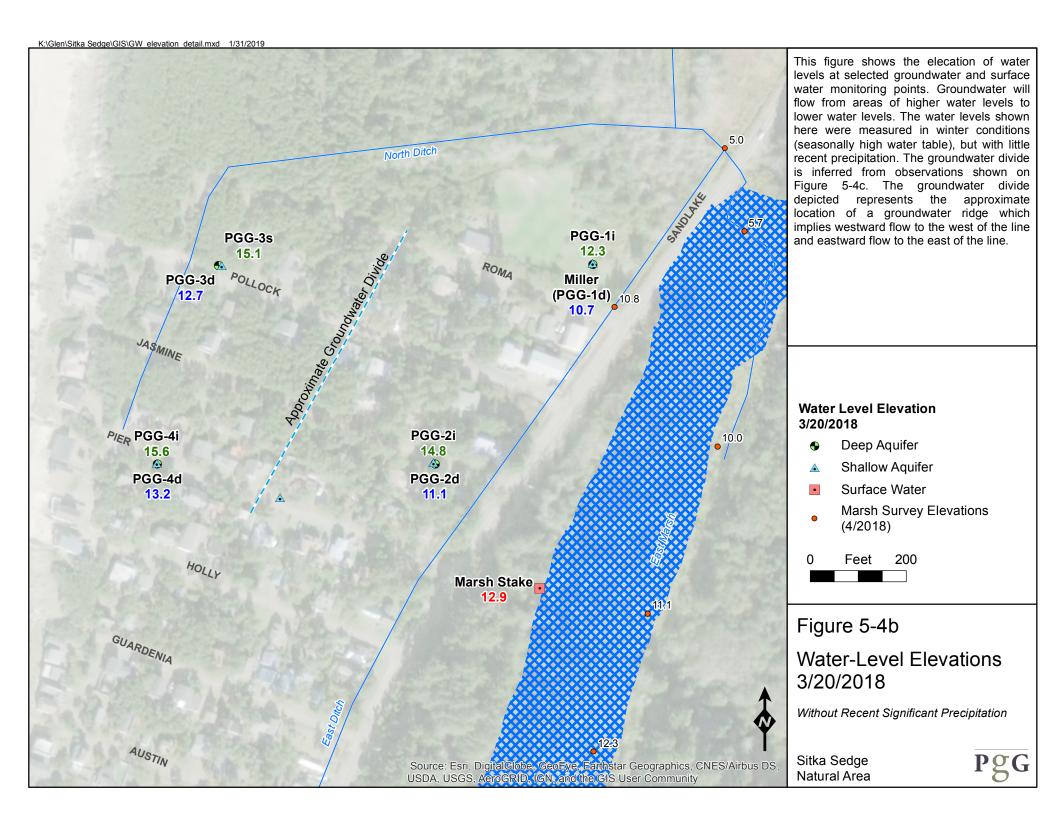
→ KTMK Precip

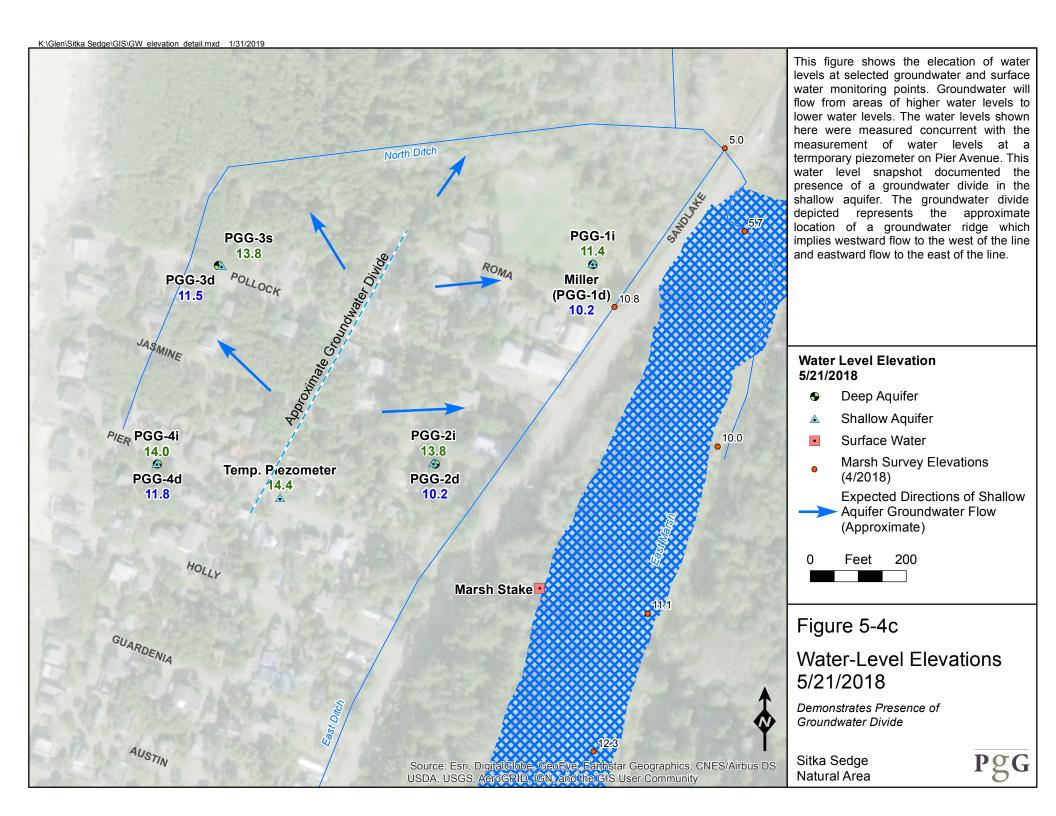
This figure shows the variation in water level elevations measured in each of the study wells and at the surface water monitoring points at the tide gate. This figure also shows the daily precipitation record from Tillamook, Oregon. Water levels measured in wells can be seen to rise following precipitation events as recharge reaches the water table. KTMK is the Tillamook weather station.

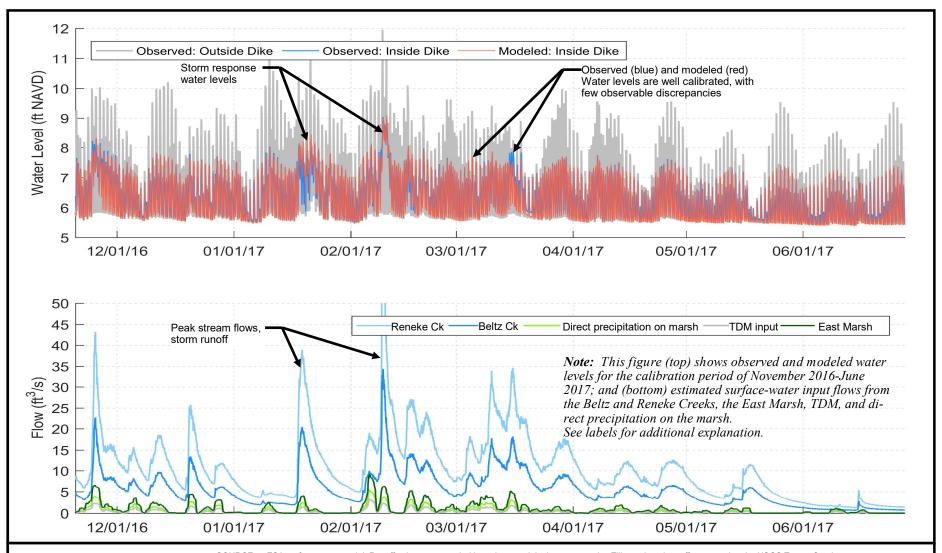
PGG-2d

PGG-4d


-----PGG-2i


---- PGG-4i


Figure 5-3 Water-Level Hydrographs


Sitka Sedge Natural Area

PGG-3d

SOURCE: ESA surface water model. Runoff values were scaled based on precipitation measured at Tillamook and runoff measured at the USGS Tucca Creek

Figure 6-1 Comparison of Observed and Modeled Water Levels and Estimated Surface-water Input Flows for the 2016-2017 Model Calibration Period

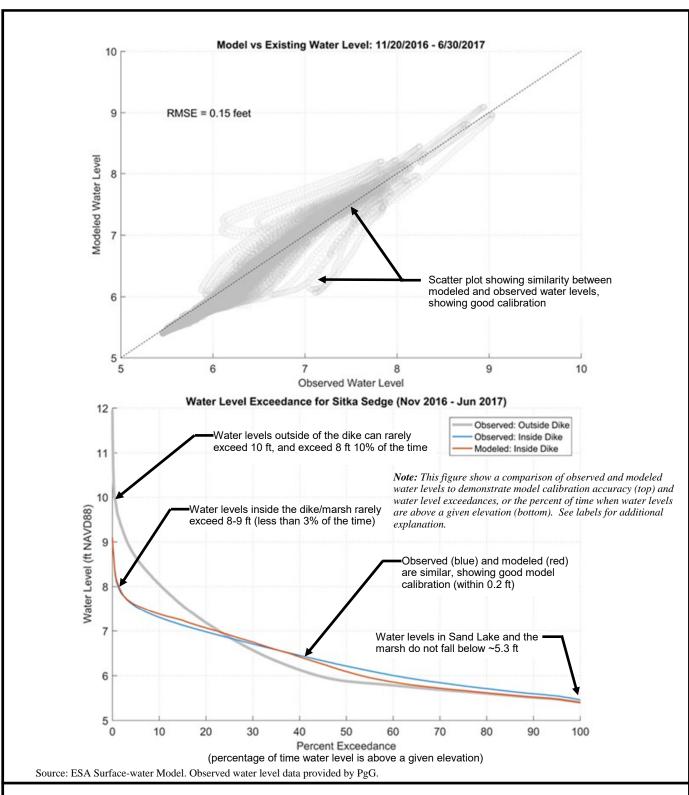
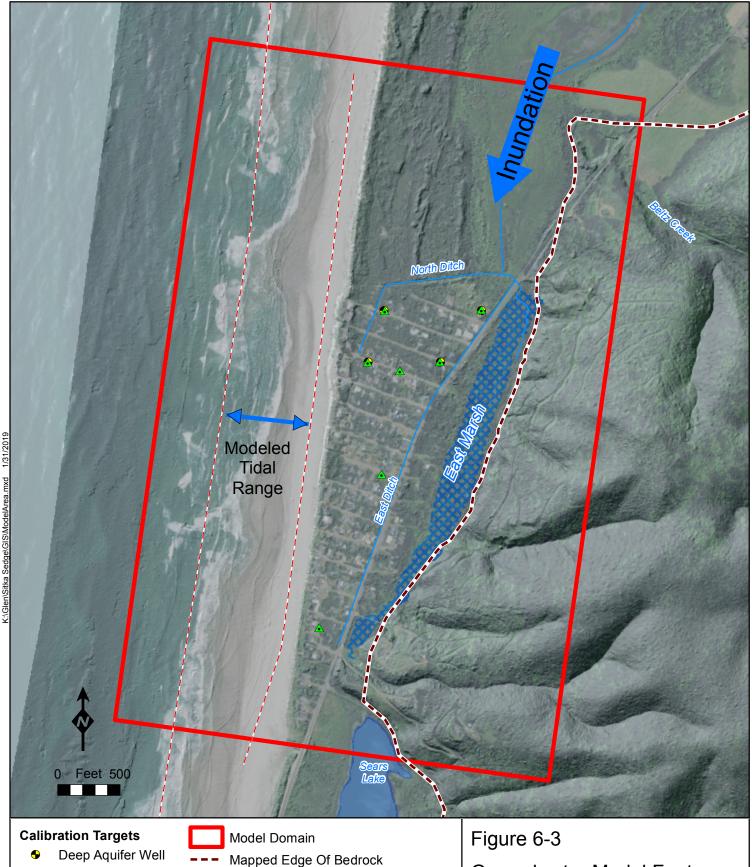



Figure 6-2 Comparison of Observed and Modeled Water Levels and Water-Level Exceedance Percentages

Shallow Aquifer Well

Groundwater Model Features

Note: Groundwater modeling requires segmenting the modeling area into a "grid" of "cells". Cell size and dimensions are selected based on required resolution and expected areas of maximum hydrologic change. The grid depicted in this figure was designed to represent the groundwater flow system at a resolution appropriate for efficient numerical computation and adequate accuracy.

Figure 6-4 Model Grid

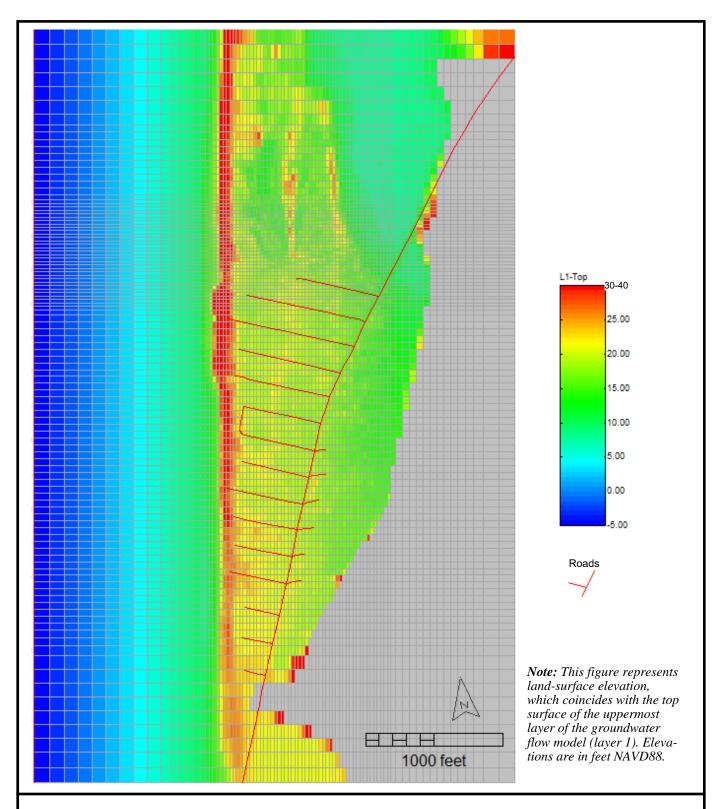


Figure 6-5 Model Top Elevation

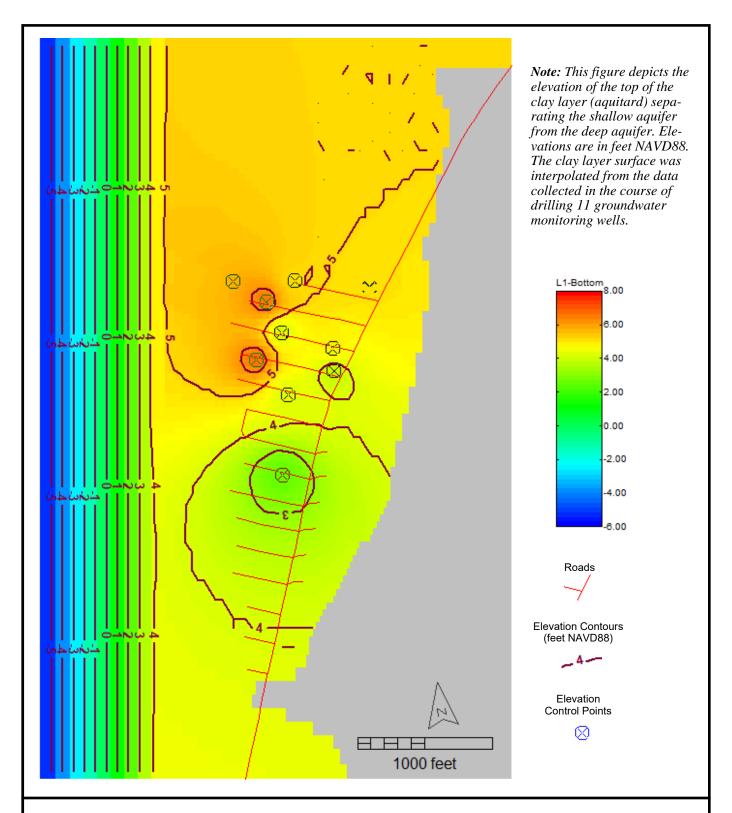


Figure 6-6 Layer 1 Bottom Elevation

PgG

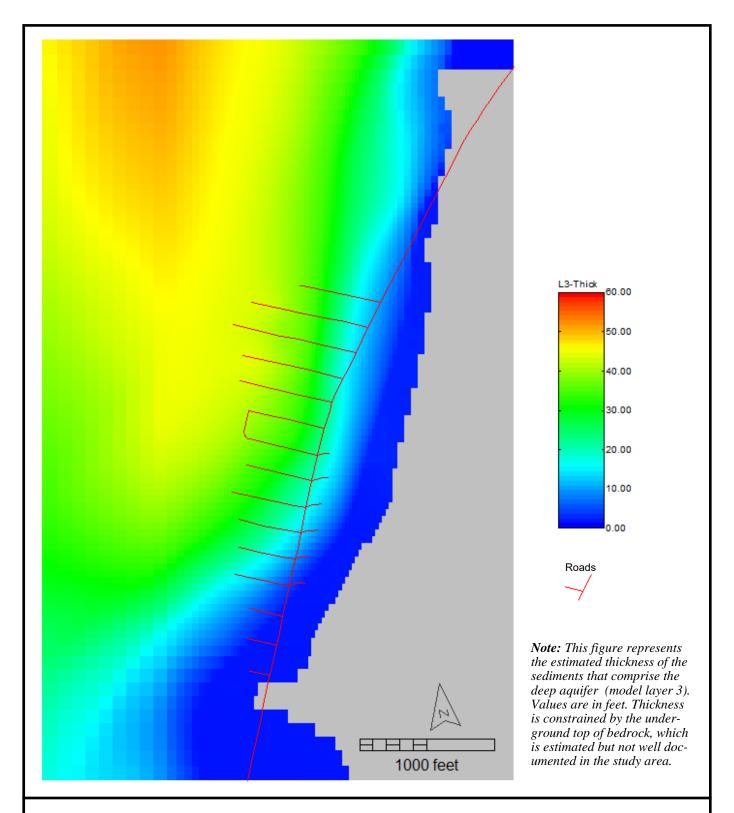


Figure 6-7 Layer 3 Thickness

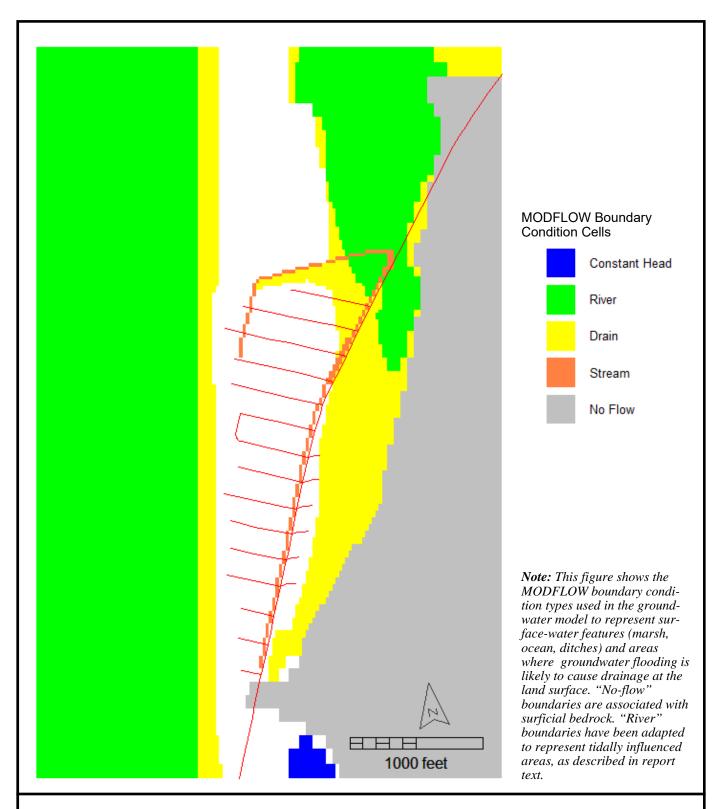
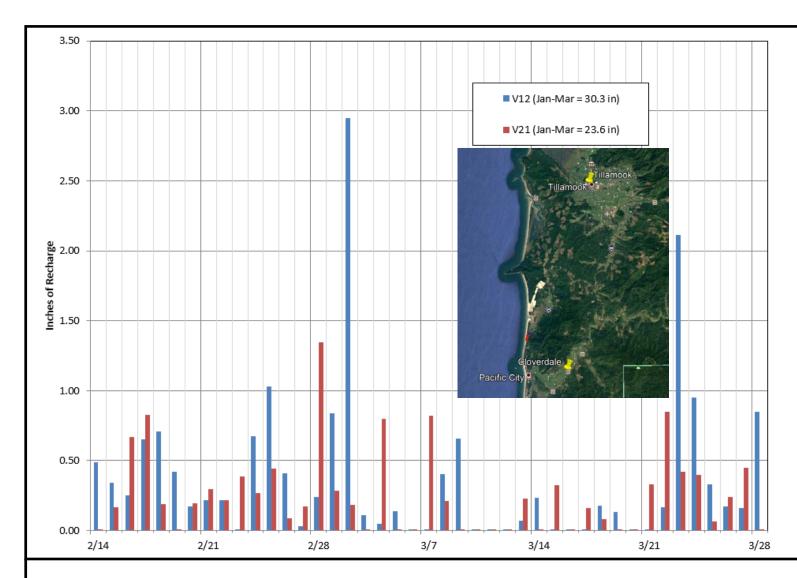
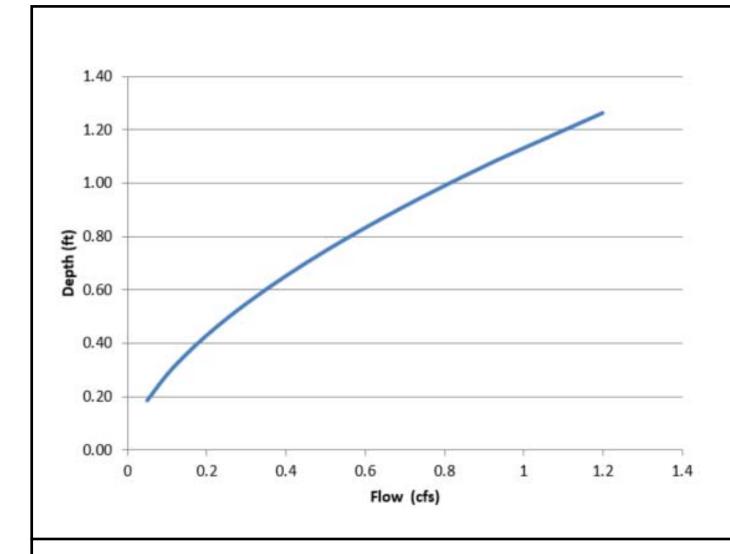



Figure 6-8 Boundary Conditions in Layer 1



Note: This figure shows the results of PGG recharge calculations using a proprietary version of the Deep Percolation Model (DPM). The values are based on precipitation at Tillamook (v12) and Cloverdale (v21). These two weather stations are assumed to provide a range of values for application to TDM. It is worth noting that for the 3month period from January to March 2018, the DPM predicts 28% more recharge at Tillamook than at Cloverdale.

Figure 6-9
Predicted 2018 Recharge Using Precipitation Data from Tillamook & Cloverdale

PgG

Note: MODFLOW stream package assumptions for simplified stage/discharge relationships used to represent TDM's East Ditch and North Ditch. This assumed relationship allows modeled water level in the ditches to vary with groundwater inflows (including going "dry" over portions of the ditch, if relevant). This approach is more realistic than other MODFLOW packages, which specify fixed water-level elevations for the ditches.

Figure 6-10 Stream Package Relationship Between Flow and Depth

PgG

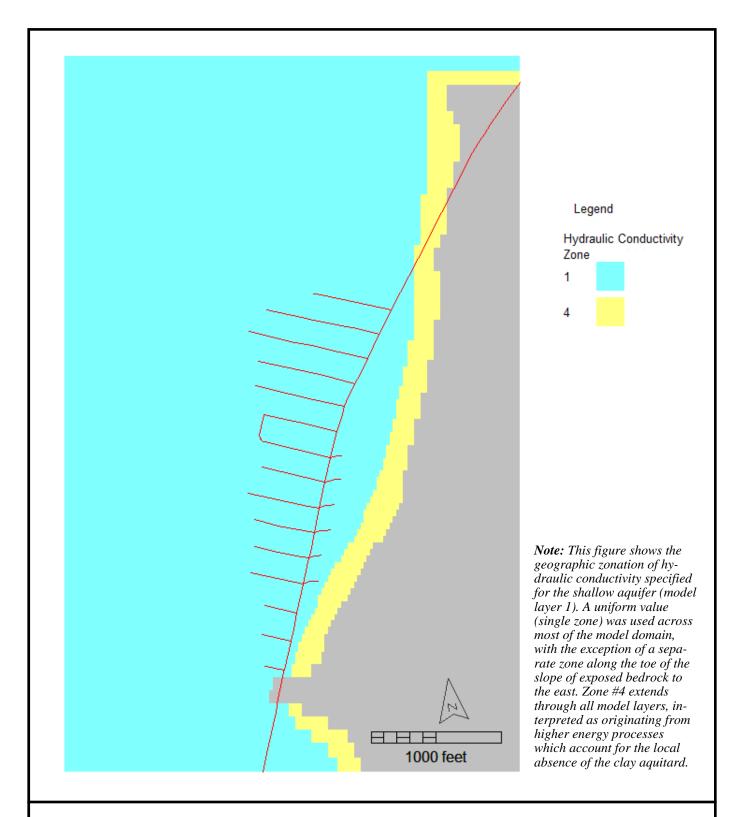


Figure 6-11 Hydraulic Conductivity Zones in Layer 1

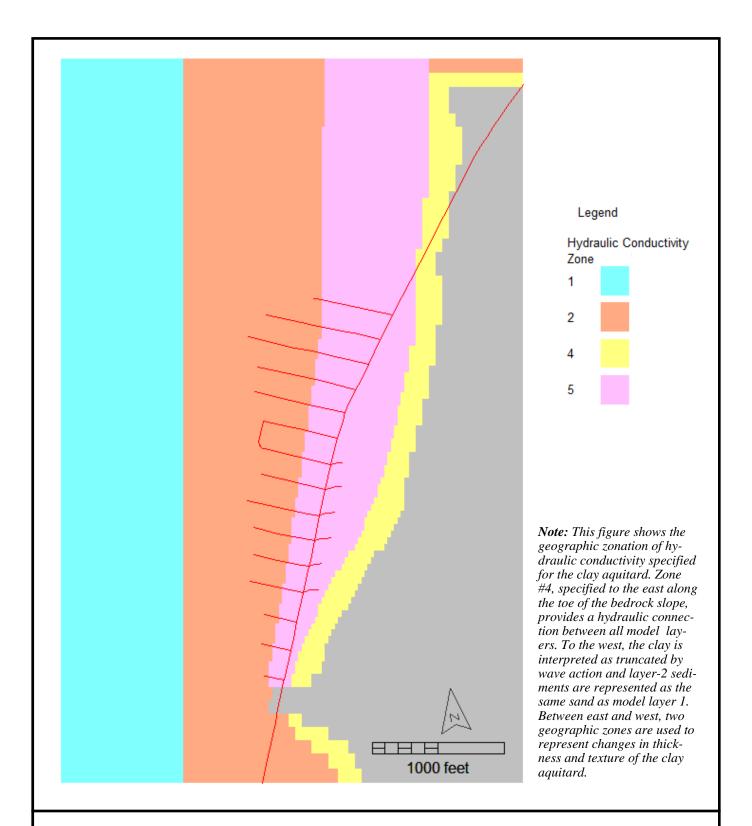


Figure 6-12 Hydraulic Conductivity Zones in Layer 2

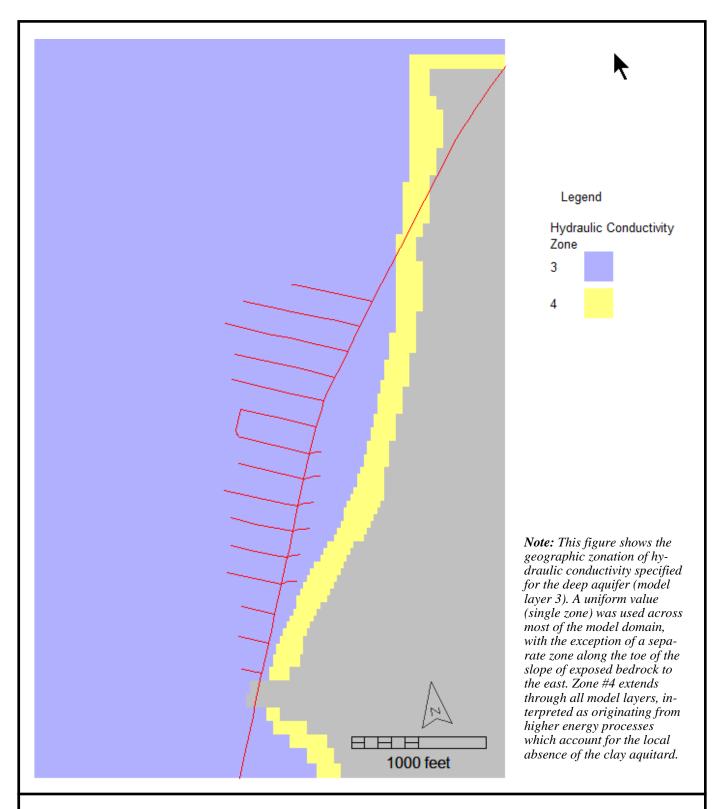
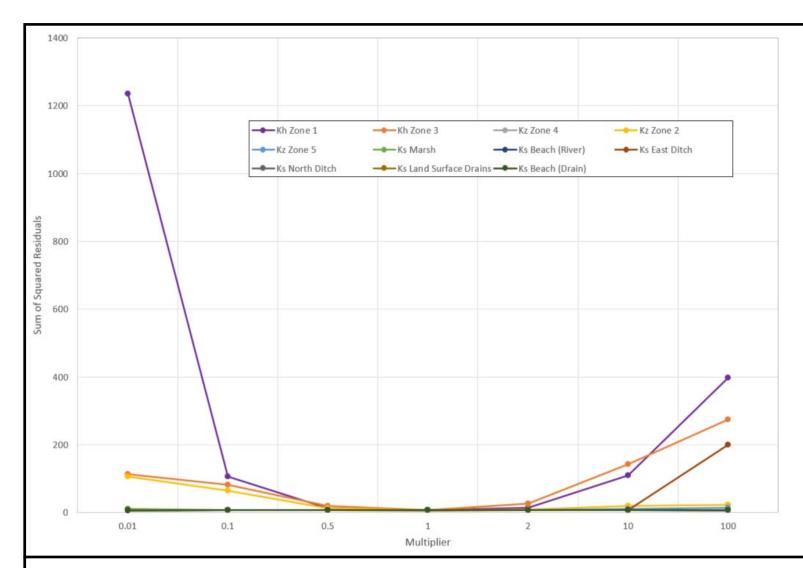
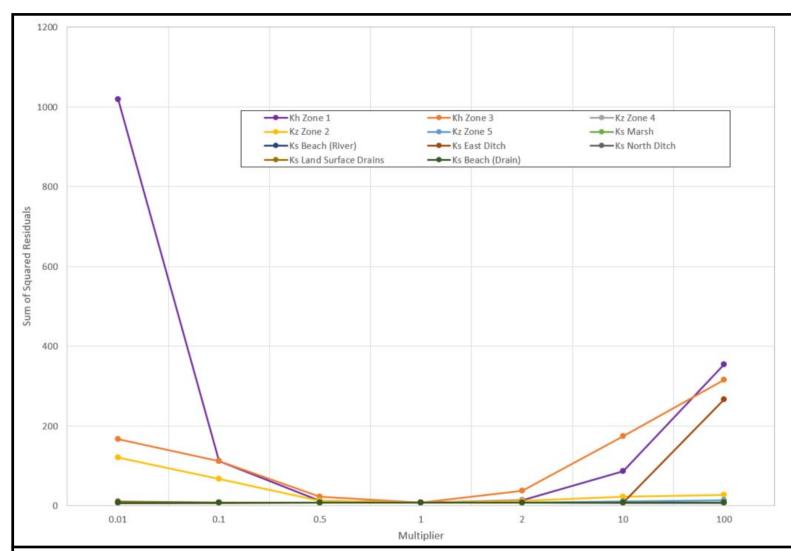



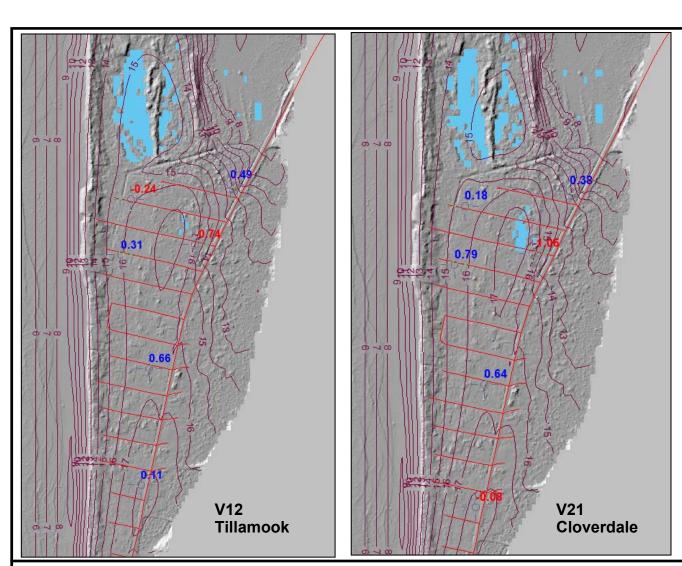
Figure 6-13 Hydraulic Conductivity Zones in Layer 3



Note: Sensitivity analysis was performed on key model parameters by varying values a range (0.01x thru 100x) andnoting the effect on the sum of squared target water-level elevation residuals (SSR). A model is "sensitive" to parameters that substantially effect the SSR, and insensitive to parameters that have little effect on SSR. Along with the horizontal hydraulic conductivity (Kh) of Zones 1 & 3, the vertical hydraulic conductivity (Kz) of Zone 2, and the skin conductivity (Ks) of the East Ditch, the model proved highly sensitive to variation in groundwater recharge (not shown).

Figure 6-14
Sensitivity Analysis for Sitka Steady-State Calibration to Tillamook Recharge (v12)

PgG


Note: Sensitivity analysis was performed on key model parameters by varying values a range (0.01x thru 100x) andnoting the effect on the sum of squared target water-level elevation residuals (SSR). A model is "sensitive" to parameters that substantially effect the SSR, and insensitive to parameters that have little effect on SSR. Along with the horizontal hydraulic conductivity (Kh) of Zones 1 & 3, the vertical hydraulic conductivity (Kz) of Zone 2, and the skin conductivity (Ks) of the East Ditch, the model proved highly sensitive to variation in groundwater recharge (not shown).

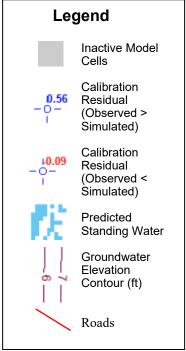
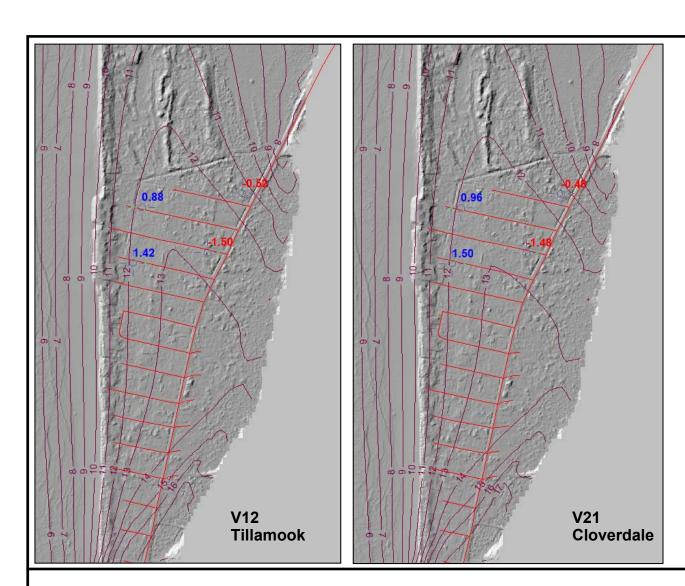
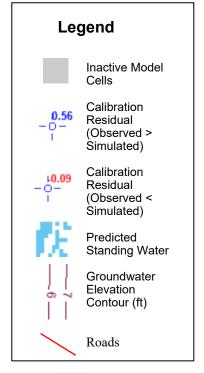

Figure 6-15 Sensitivity Analysis for Sitka Steady-State Calibration to Cloverdale Recharge (v21)

Figure 6-16
Predicted Steady-State Water-Level Rise Associated with Inundation Behind Beaver Dam





Note: Steady-state calibration predictions of Shallow Aquifer groundwater level contours and calibration target residuals (observed minus simulated water-level elevations). Calibration also predicted areas of groundwater flooding (standing water). The calibrated model adequately predicted groundwater elevations measured during the data-collection period and reasonably predicted the occurrence of standing water. The calibrated model was later used to perform predictive simulations.

Figure 6-17
Shallow Aquifer Head Residuals from Steady-State Calibrations

Note: Steady-state calibration predictions of Shallow Aquifer groundwater level contours and calibration target residuals (observed minus simulated water-level elevations). Calibration also predicted areas of groundwater flooding (standing water). The calibrated model adequately predicted groundwater elevations measured during the datacollection period. The calibrated model was later used to perform predictive simulations.

Figure 6-18
Deep Aquifer Head Residuals from Steady-State Calibrations

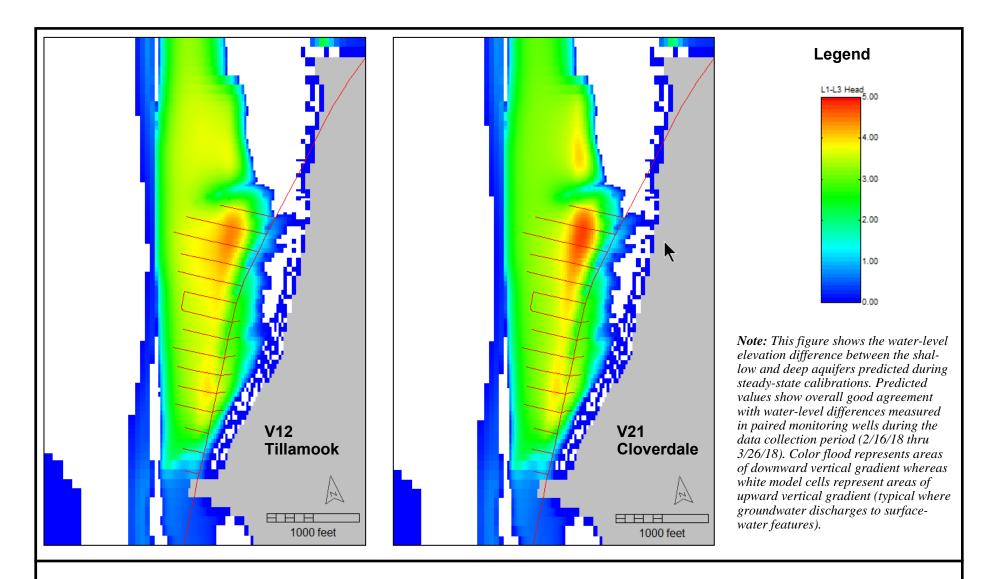
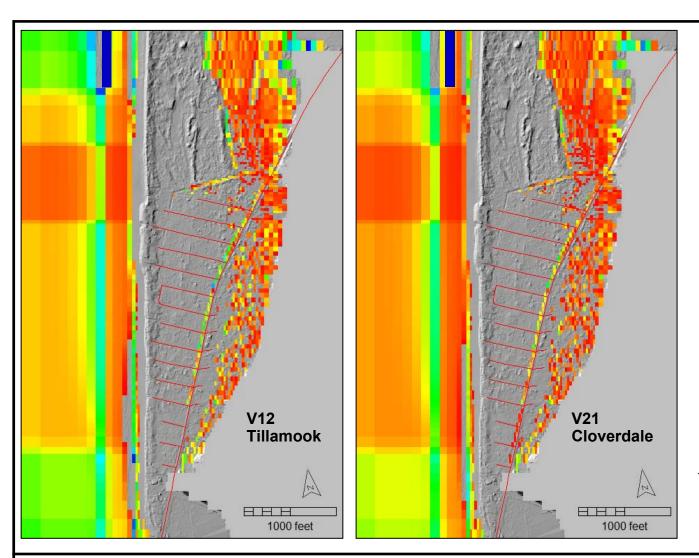
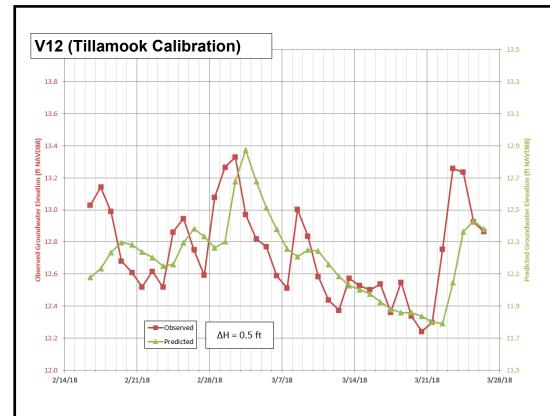
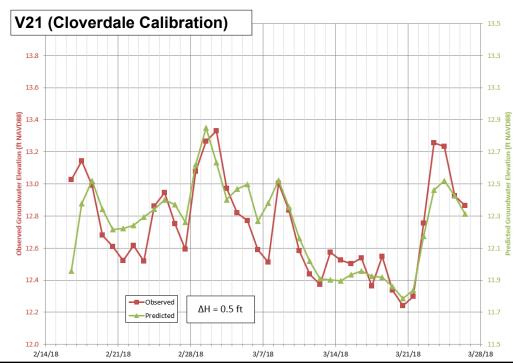



Figure 6-19
Predicted Steady-State Water-Level Difference b/t Shallow and Deep Aquifers


Groundwater Flux (cfd) -1.0(-101 -201 -301 -401 -501 -601 -701


< -801

Legend

Note: This figure shows the amount of groundwater discharge to model cells associated with surface-water boundary conditions as estimated by the calibrated steady-state models. MODFLOW uses negative values of groundwater flux to indicate groundwater discharge to surface-water features. Cells without color indicate no surface-water feature or seepage loss from surface-water feature. Values are in cubic feet per day (cfd). See Table 6-5 for summary water budgets.

Figure 6-20 Predicted Steady-State Groundwater Flux to Surface-Water Features

Note:

This figure compares observed to model-predicted groundwater elevation hydrographs in Monitoring Well PGG-1i over the 38-day calibration period.

Differences in precipitation data between Tillamook and Cloverdale account for some of the differences in model predictions of groundwater level trends.

In contrast to steady-state calibration, transient calibration adjusts model parameters so that timevarying stresses (precipitation recharge or fluctuating tidal inundation) and corresponding groundwater level responses are well represented in the model. Transient calibration followed initial steady-state calibration.

Well locations are mapped on Figure 5-1.

Figure 6-21
Transient Calibration Results for Well PGG-1i (Shallow Aquifer)

PgG

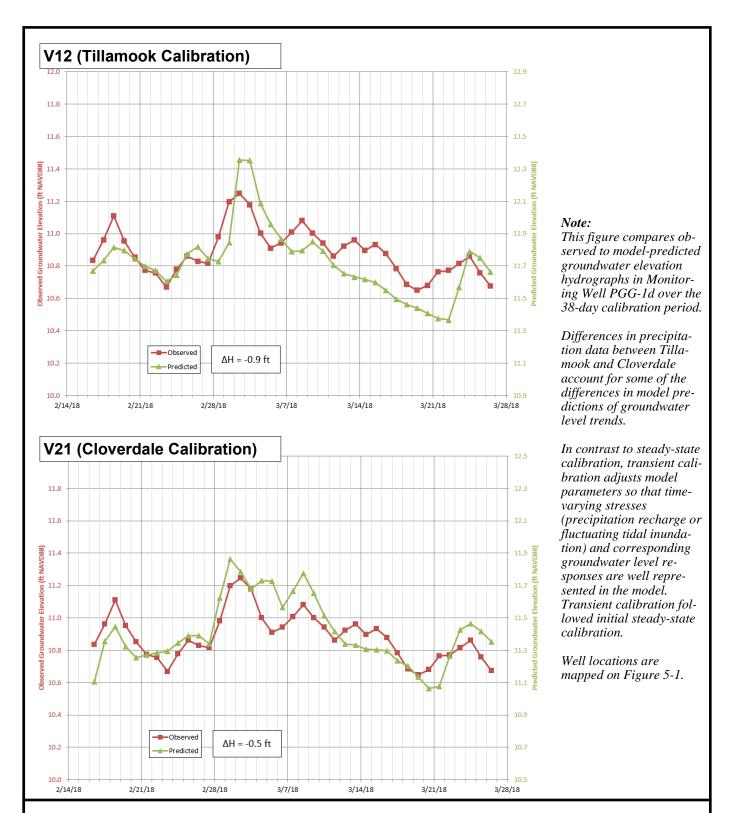


Figure 6-22
Transient Calibration Results for Well PGG-1d (Deep Aquifer)

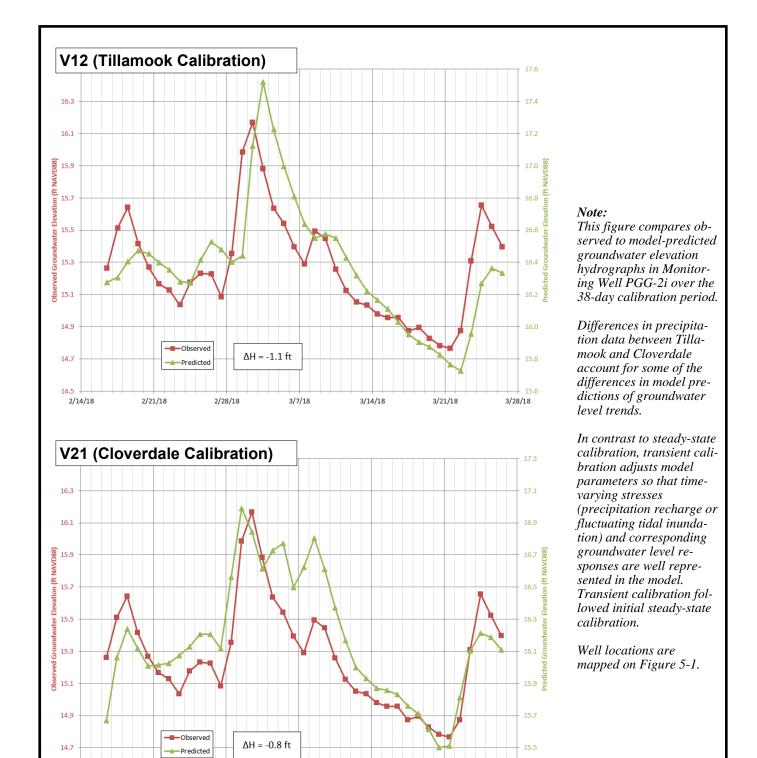
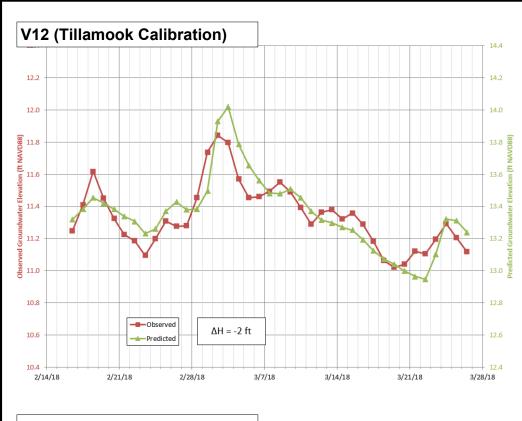


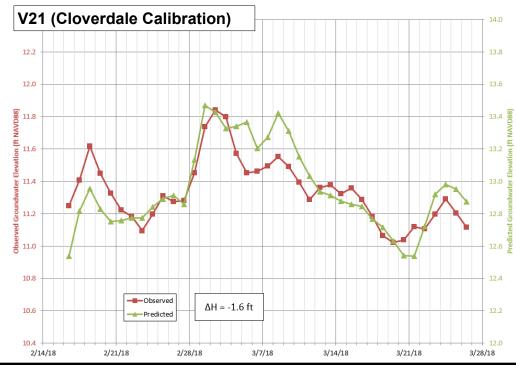
Figure 6-23
Transient Calibration Results for Well PGG-2i (Shallow Aquifer)

3/7/18

3/14/18

3/21/18


PgG


3/28/18

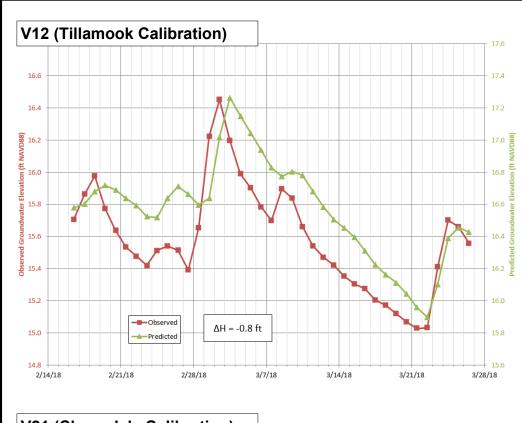
2/14/18

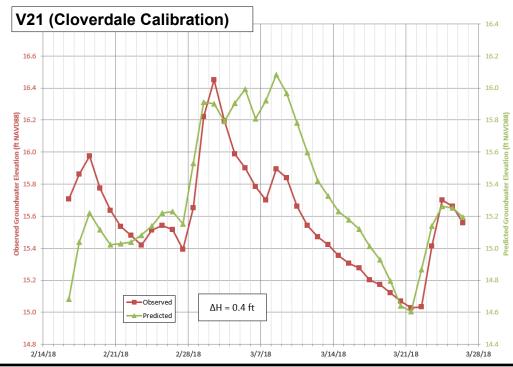
2/21/18

2/28/18

Note:

This figure compares observed to model-predicted groundwater elevation hydrographs in Monitoring Well PGG-2d over the 38-day calibration period.


Differences in precipitation data between Tillamook and Cloverdale account for some of the differences in model predictions of groundwater level trends.


In contrast to steady-state calibration, transient calibration adjusts model parameters so that timevarying stresses (precipitation recharge or fluctuating tidal inundation) and corresponding groundwater level responses are well represented in the model. Transient calibration followed initial steady-state calibration.

Well locations are mapped on Figure 5-1.

Figure 6-24
Transient Calibration Results for Well PGG-2d (Deep Aquifer)

PgG

Note:

This figure compares observed to model-predicted groundwater elevation hydrographs in Monitoring Well PGG-3s over the 38-day calibration period.

Differences in precipitation data between Tillamook and Cloverdale account for some of the differences in model predictions of groundwater level trends.

In contrast to steady-state calibration, transient calibration adjusts model parameters so that timevarying stresses (precipitation recharge or fluctuating tidal inundation) and corresponding groundwater level responses are well represented in the model. Transient calibration followed initial steady-state calibration.

Well locations are mapped on Figure 5-1.

Figure 6-25
Transient Calibration Results for Well PGG-3s (Shallow Aquifer)

PgG

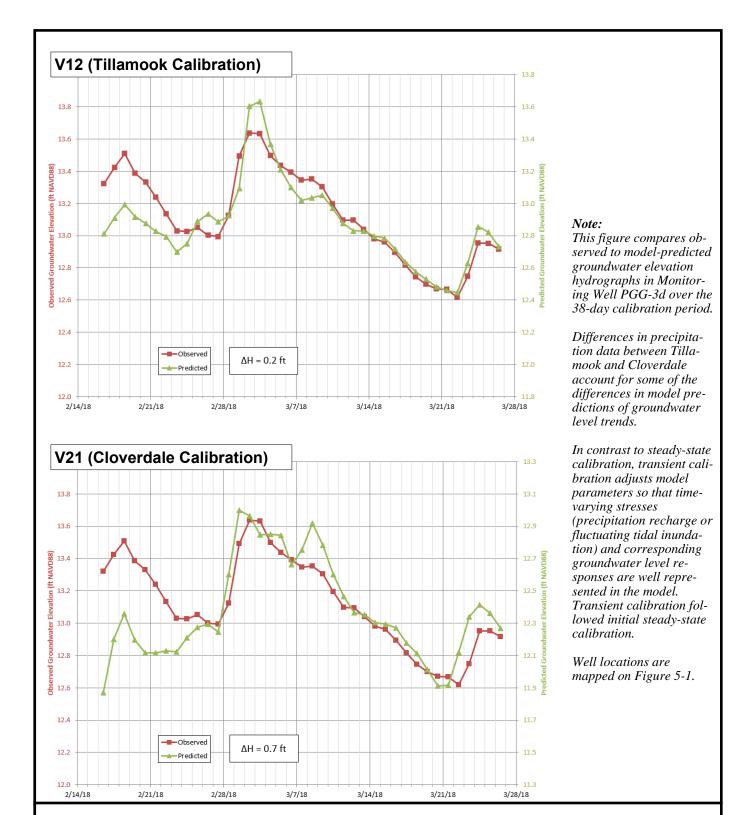


Figure 6-26
Transient Calibration Results for Well PGG-3d (Deep Aquifer)

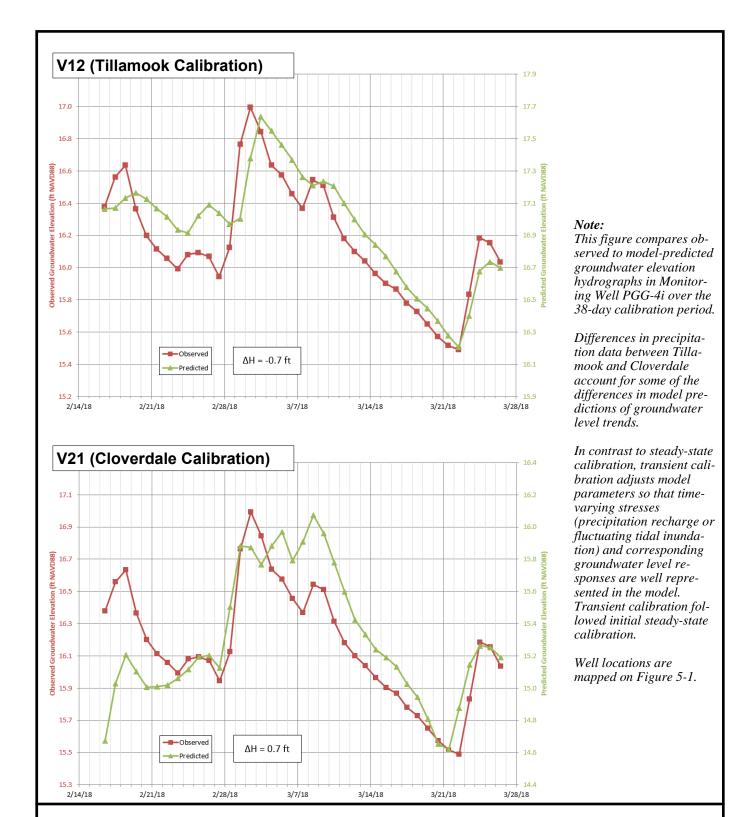


Figure 6-27
Transient Calibration Results for Well PGG-4i (Shallow Aquifer)

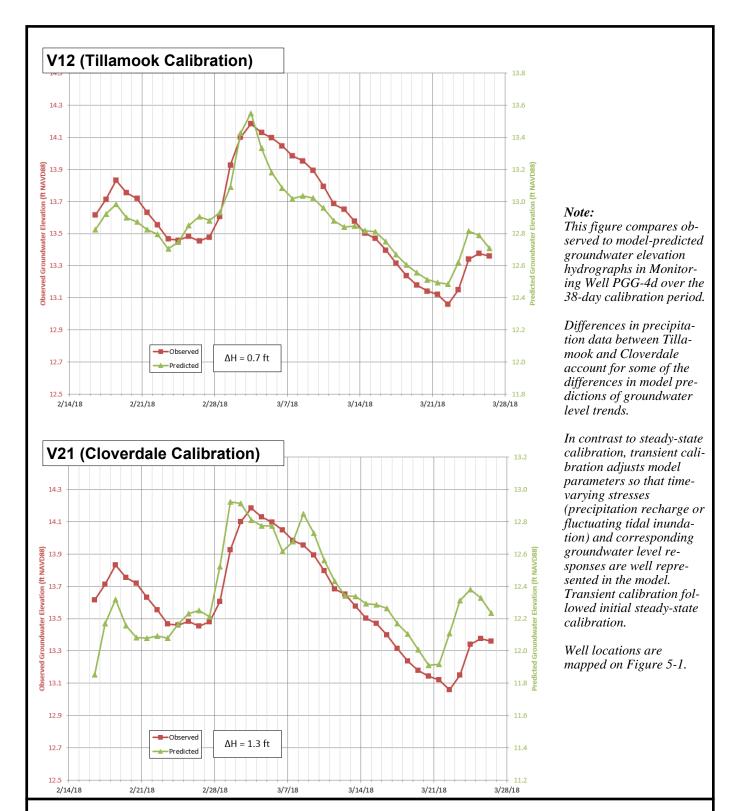
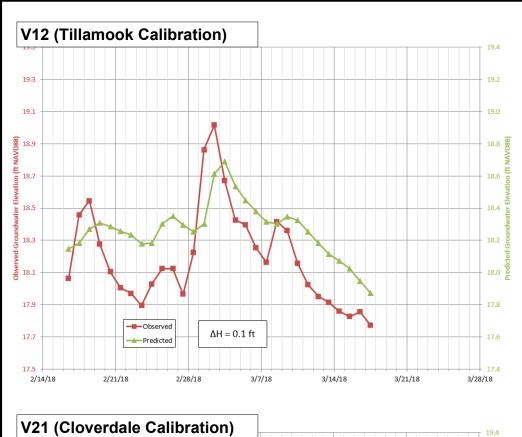
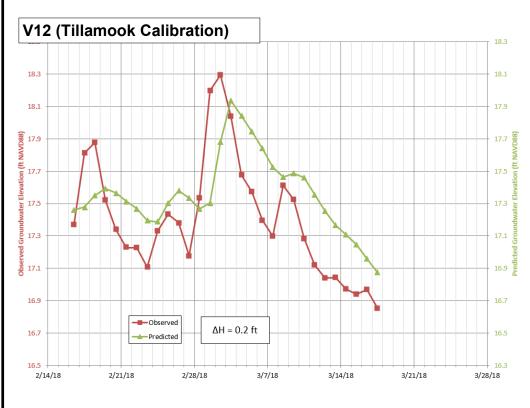



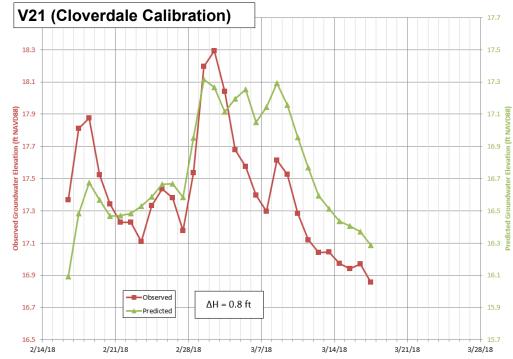
Figure 6-28
Transient Calibration Results for Well PGG-4d (Deep Aquifer)

19.3 19.1 19.0 18.9 18.7 18.5 18.3 18.1 17.9 17.8 $\Delta H = 0.1 ft$ 17.7 Predicted 17.4 2/14/18 2/21/18 2/28/18 3/7/18 3/14/18 3/21/18 3/28/18

Note:

This figure compares observed to model-predicted groundwater elevation hydrographs in Monitoring Well TDM-2 over the 38-day calibration period.


Differences in precipitation data between Tillamook and Cloverdale account for some of the differences in model predictions of groundwater level trends.


In contrast to steady-state calibration, transient calibration adjusts model parameters so that timevarying stresses (precipitation recharge or fluctuating tidal inundation) and corresponding groundwater level responses are well represented in the model. Transient calibration followed initial steady-state calibration.

Well locations are mapped on Figure 5-1.

Figure 6-29
Transient Calibration Results for Well TDM-2 (Shallow Aquifer)

PgG

Note:

This figure compares observed to model-predicted groundwater elevation hydrographs in Monitoring Well TDM-4 over the 38-day calibration period.

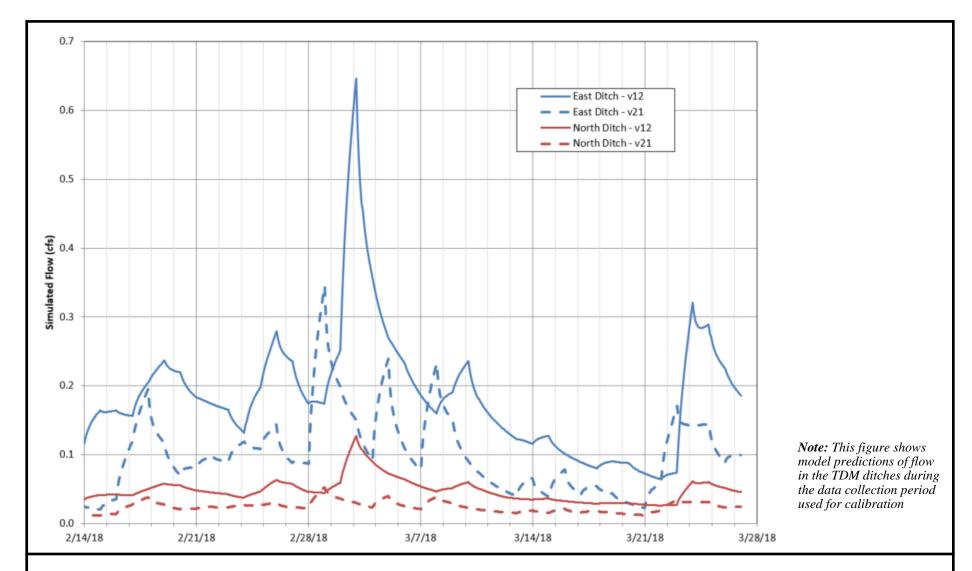
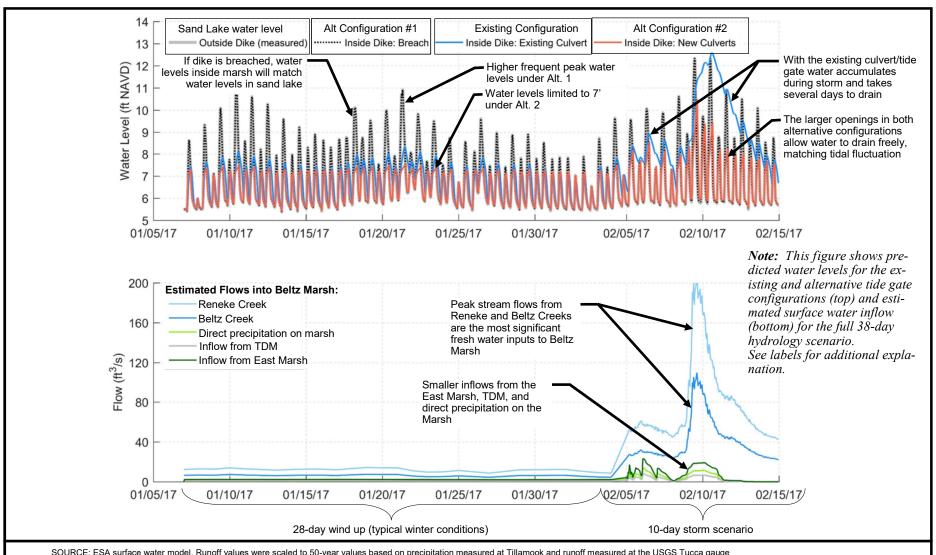
Differences in precipitation data between Tillamook and Cloverdale account for some of the differences in model predictions of groundwater level trends.

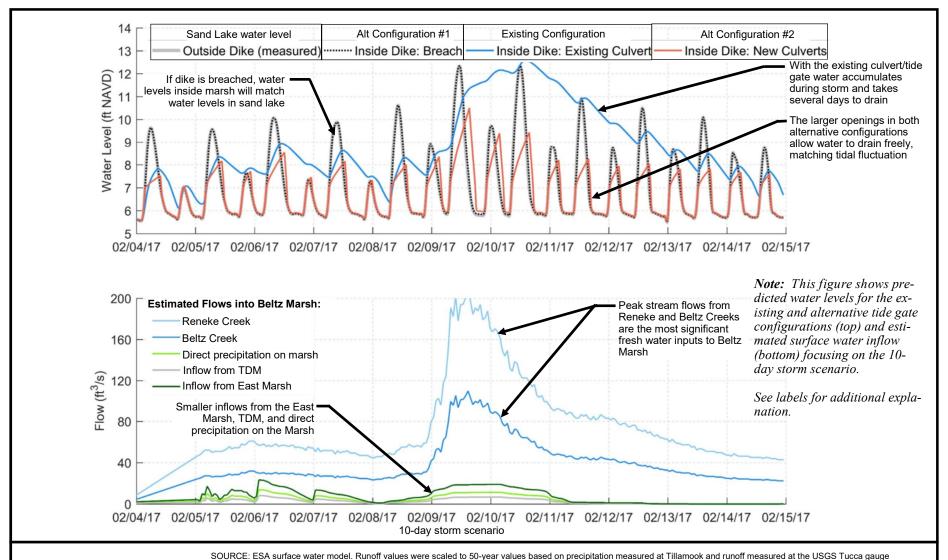
In contrast to steady-state calibration, transient calibration adjusts model parameters so that timevarying stresses (precipitation recharge or fluctuating tidal inundation) and corresponding groundwater level responses are well represented in the model. Transient calibration followed initial steady-state calibration.

Well locations are mapped on Figure 5-1.

Figure 6-30 Transient Calibration Results for Well TDM-4 (Shallow Aquifer)

PgG


Figure 6-31 Modeled Ditch Flow in Transient Calibrations

SOURCE: ESA surface water model. Runoff values were scaled to 50-year values based on precipitation measured at Tillamook and runoff measured at the USGS Tucca gauge

Figure 7-1 Predicted Water Levels in Beltz Marsh for the Existing and Alternative Tide Gate Configurations for the Full 38-day Hydrology Scenario

Predicted Water Levels in Beltz Marsh for the Existing and Alternative Tide Gate Configurations

for the 10-day Storm Scenario

Figure 7-2

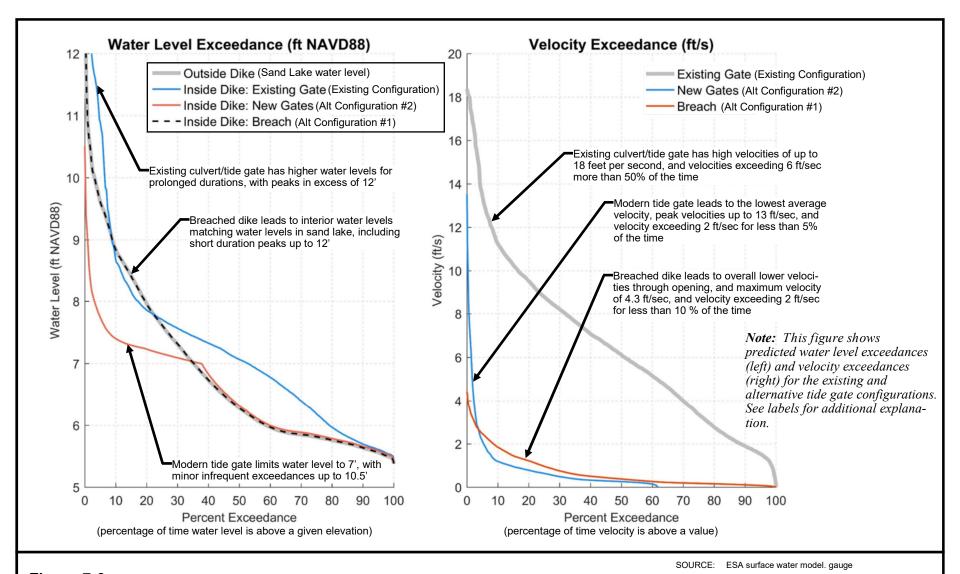
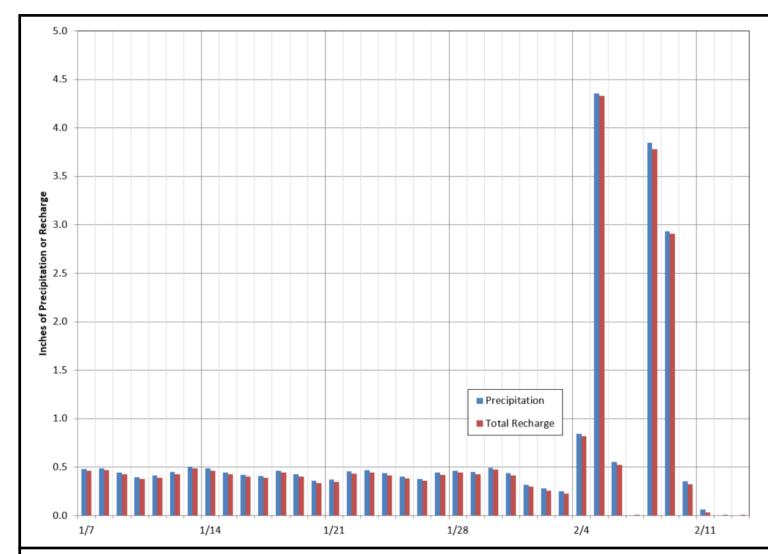



Figure 7-3
Comparison of Water-Level Exceedances and Velocity Exceedances for Existing and Alternative Tide Gate Configurations

ESA

Note: This figure shows Tillamook precipitation and the resulting groundwater recharge used for the predictive model simulations. Recharge was estimated with PGG's proprietary version of the Deep Percolation Model (DPM). During the wet season, little water is lost to evapotranspiration and recharge is close to precipitation. Two large storm events occur during the final 10 days of the prediction period.

Figure 7-4
Predictive Simulation Precipitation and Recharge

PgG

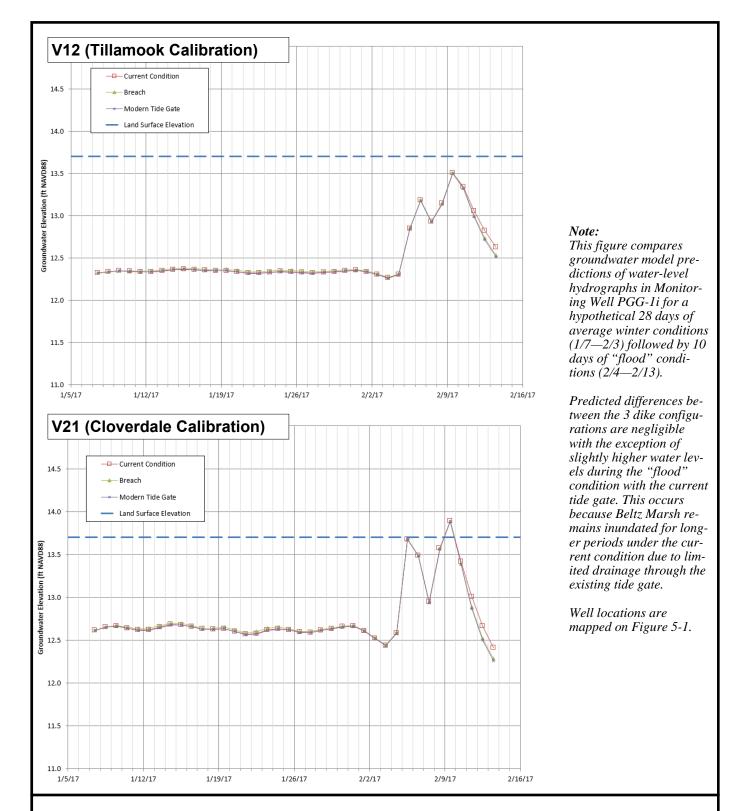


Figure 7-5
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-1i (Shallow Aquifer)

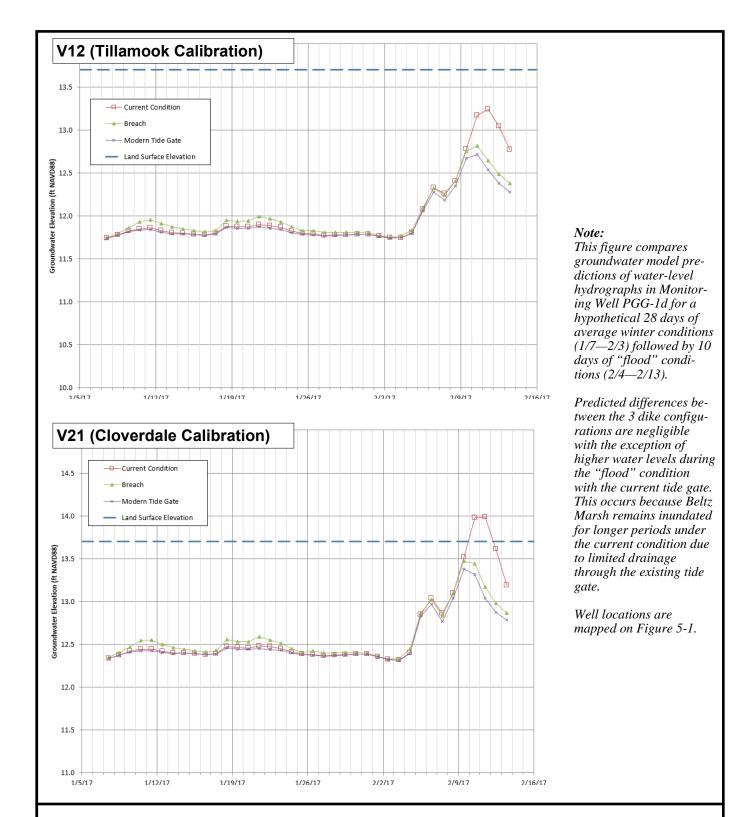


Figure 7-6
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-1d (Deep Aquifer)

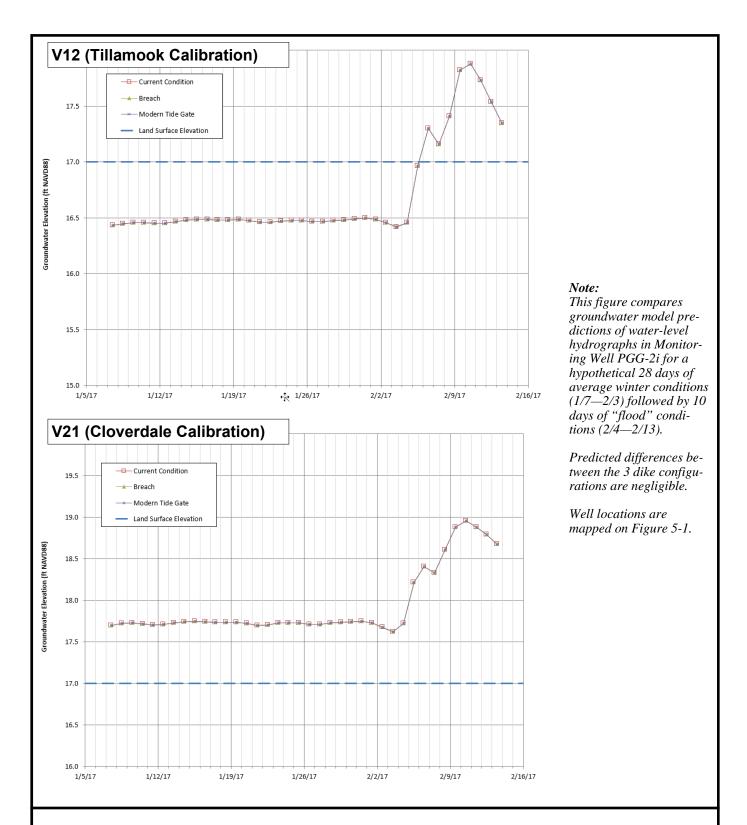


Figure 7-7
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-2i (Shallow Aquifer)

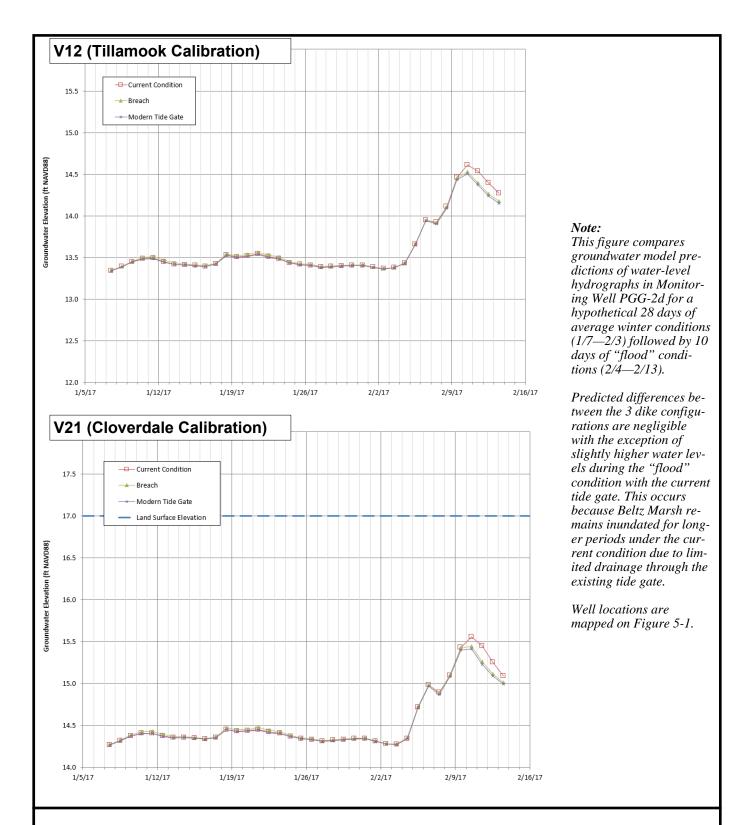


Figure 7-8
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-2d (Deep Aquifer)

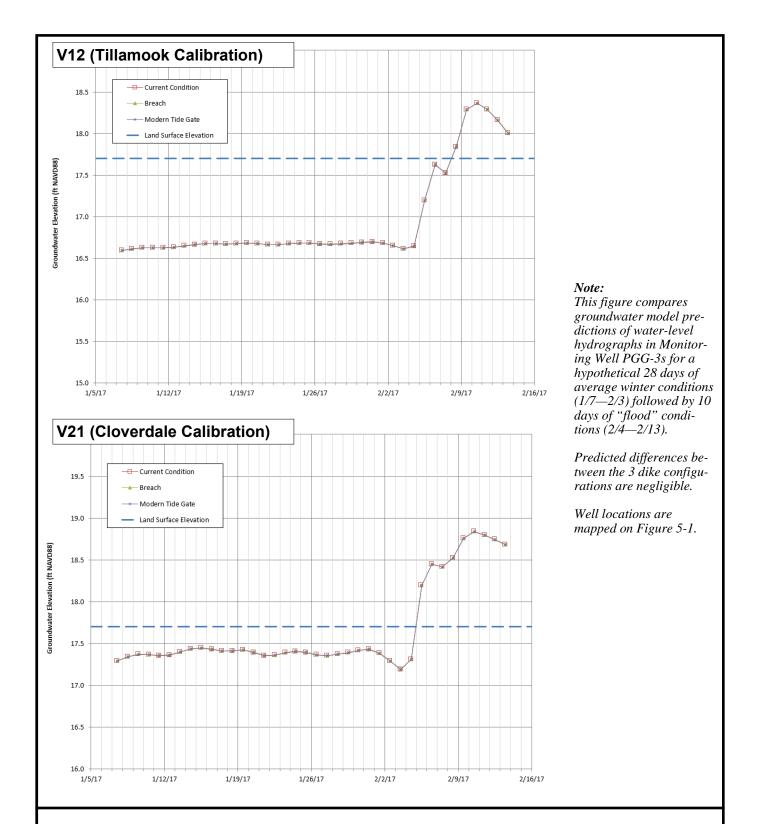


Figure 7-9
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-3s (Shallow Aquifer)

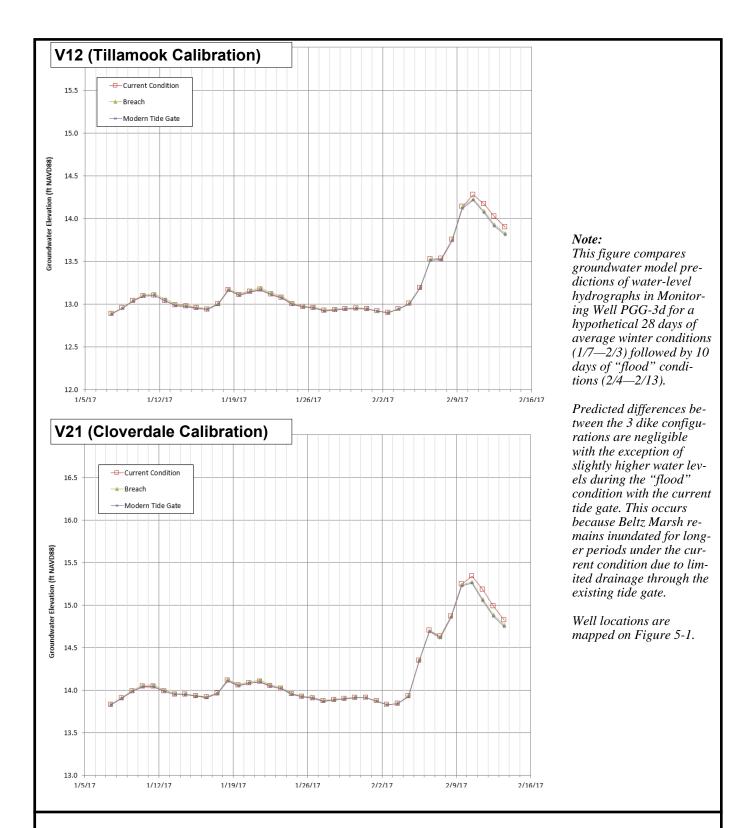


Figure 7-10
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-3d (Deep Aquifer)

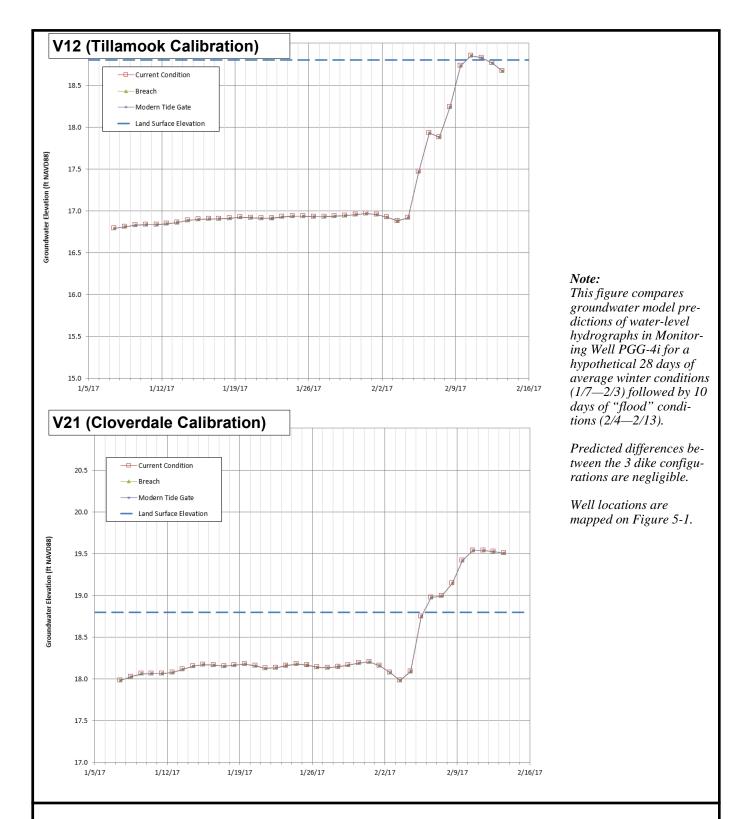


Figure 7-11
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-4i (Shallow Aquifer)

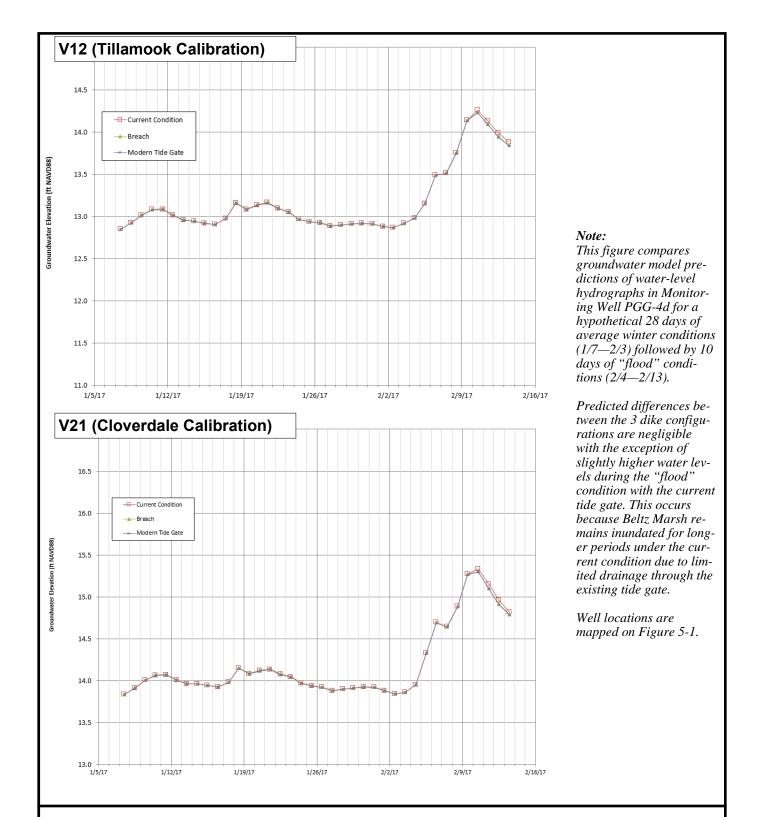


Figure 7-12
Predicted Effect of Dike Configuration on Groundwater Levels in PGG-4d (Deep Aquifer)

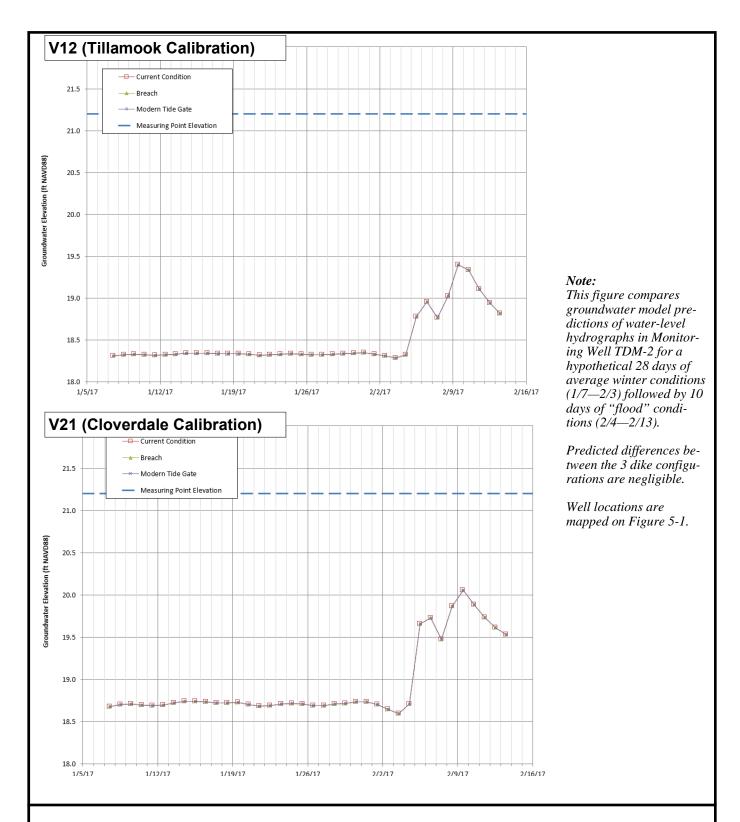


Figure 7-13
Predicted Effect of Dike Configuration on Groundwater Levels in TDM-2 (Shallow Aquifer)

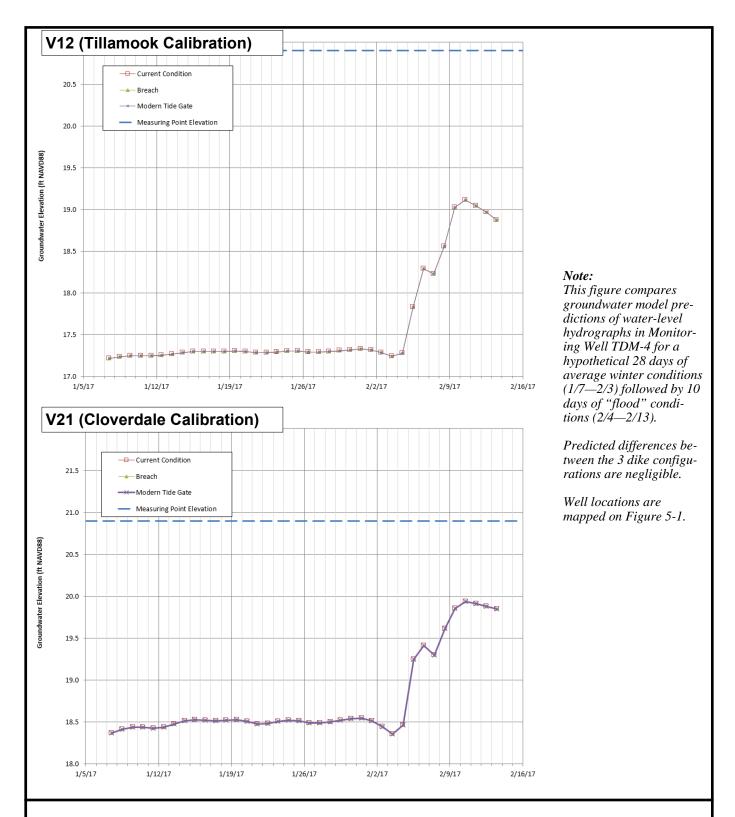


Figure 7-14
Predicted Effect of Dike Configuration on Groundwater Levels: TDM-4
(Shallow Aquifer)

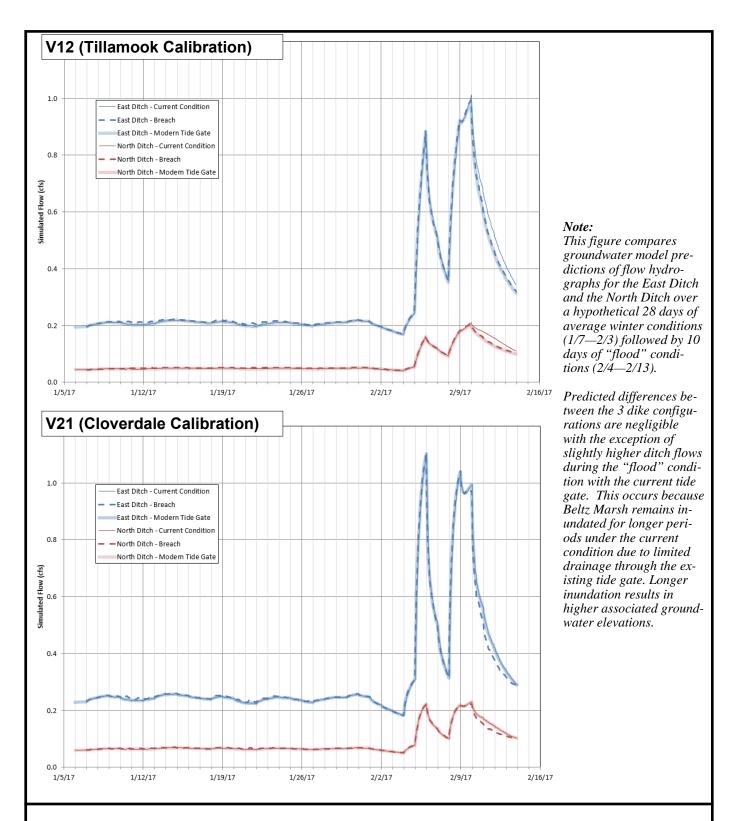


Figure 7-15
Predicted Effect of Dike Configuration on Ditch Flows

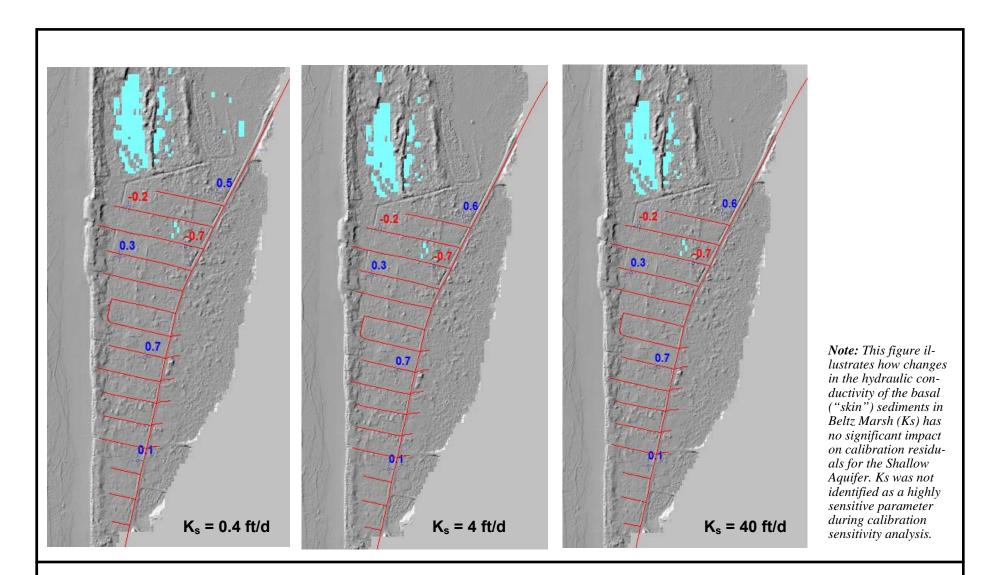


Figure 7-16 Shallow Aquifer Residuals as a Function of Beltz Marsh K_s (Steady-State Model v12– Tillamook)

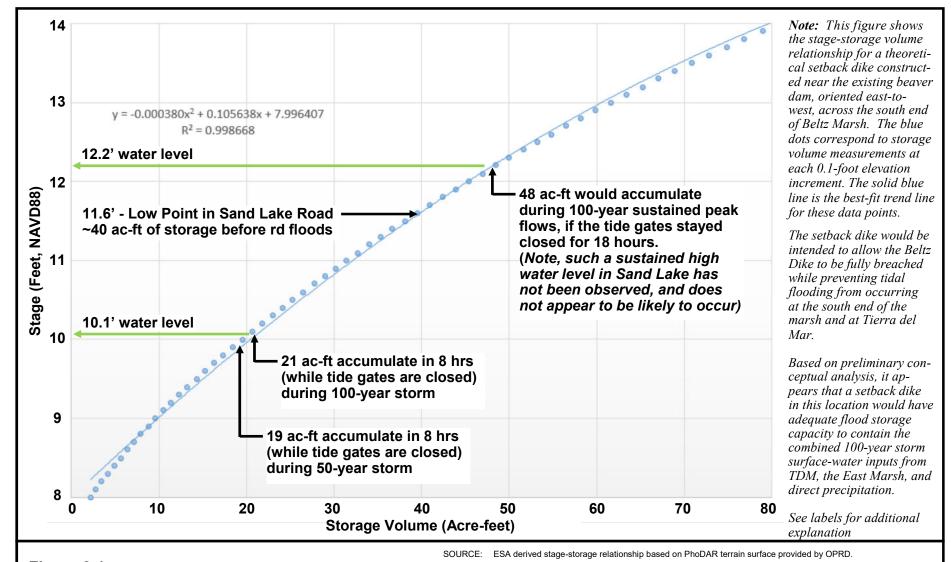


Figure 8-1
Annotated Stage-Storage Relationship for the Area Behind a Proposed Setback Dike

ESA

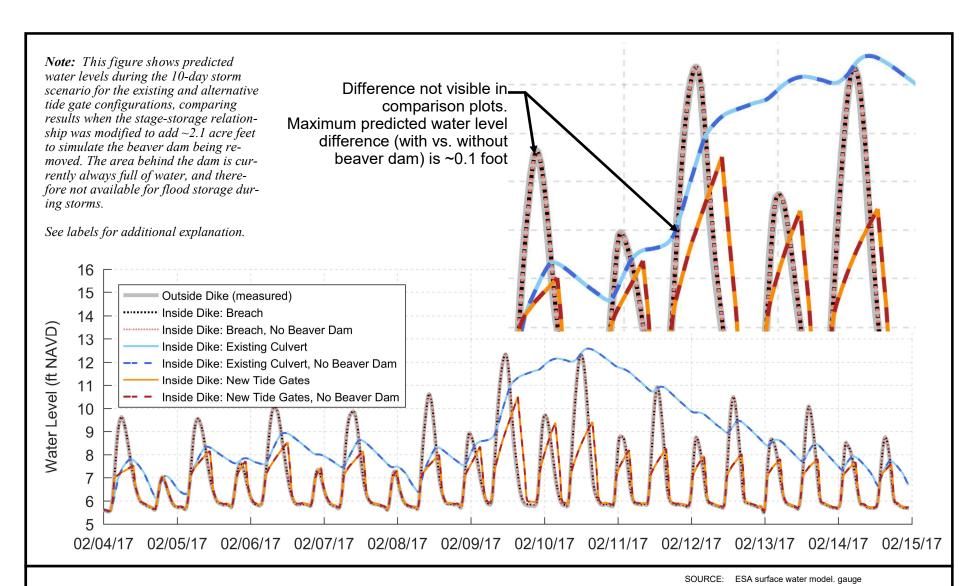
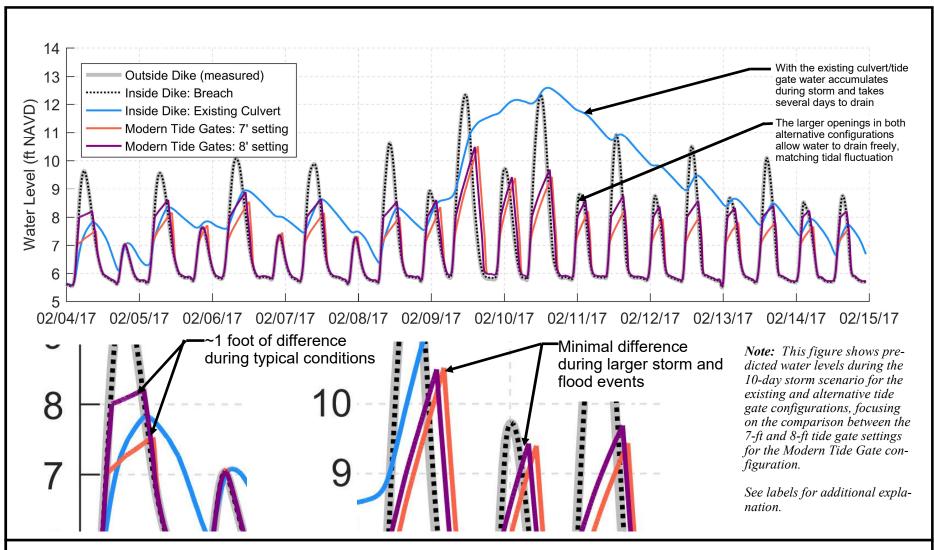



Figure 8-2 Comparison of Predicted Water Levels for the Alternative Configurations, with and without the Beaver Dam

ESA

SOURCE: ESA surface water model. Runoff values were scaled to 50-year values based on precipitation measured at Tillamook and runoff measured at the USGS Tucca gauge

Figure 8-3 Comparison of Predicted Water Levels for Modern Tide Gate Using 7-foot Vs. 8-foot Closure Settings

