BON STALE FIRE ARY WILLY MICOU WILLY MICOU	OFFICE OF STATE FIRE MARSHAL REGIONAL HAZARDOUS MATERIAL EMERGENCY RESPONSE TEAMS STANDARD OPERATING GUIDELINES	Number: T-026 Adoption Date: July 12, 2011 Review/Revision Date:
OSFM Approved Mark Wallace, Sta	te Fire Marshal Date 1/12/11 Murilinu Puz Mariana Ruiz-Temple, E	Emergency Response Mgr
OBJECTIVE:	Response to Radiation Incidents Outlines safe and effective response protocols to radiation in or intentional	

I. <u>Scope</u>

Provide guidance on how Regional Hazardous Materials Emergency Response Team personnel safely mitigate incidents where sources of radiation are found or are part of a hazardous materials release. This procedure does not specifically apply to Improvised Nuclear Devices or other nuclear detonation events.

II. <u>General</u>

Since ionizing radiation cannot be detected by normal senses, detection equipment must be used if radiation is suspected, or to handle events with radiological sources and/or contamination present. Monitors should be employed at incidents with explosions, facilities with radiation processes or devices present, product with rad placards or sampling of unidentified powders.

III. Equipment / Resources

Equipment shall be bump tested with a state provided exempt button source, before each use. In addition, have the detectors and pager type dosimeters calibrated by an approved facility either annually or bi-annually, depending upon your agreement with state radiation officials. The Canberra EPD's should be calibrated with the state provided FC2B pig type source on an annual basis. Also perform the unit operational verification tests on the Canberras each quarter. check and replace batteries on all units when needed.

1. Ludlum survey (2) and exposure meters (2)

2. Dositec Electronic pager type dosimeters

July 12, 2011

- 3. Canberra Mini-Radiac Electronic Personal Dosimeters (EPD) (6)
- 4. Minimum of 2 (exempt button type 1 *u*ci to 5*u*ci activity check sources One Strontium 90 Beta only source and one Cesium 137 Gamma and Beta source)

IV. <u>Scene Considerations</u>

Ensure all personnel on scene have appropriate respiratory protection, survey monitors if available (put on – between waist and neck, turn on and ZERO OUT DOSE) and have them don electronic dosimetry, if:

- a) a rad placard is evident
- b) response is to a facility with a known radiation sources
- c) unidentified explosions, or
- d) known or suspected CBRNE/WMD scenes.

Initial companies may designate the Warm Zone boundary if they have monitoring equipment (10 mR/hr). HMRT technicians will monitor and determine the Hot Zone Boundary (10+ R/hr). Consider an initial general fire plume plot or for significant incidents, contact IMAAC for a radiation plume projection model.

Basic Priorities

- Make notifications
- Request technical support
- Establish hazard zones
- Establish PPE levels
- Rescue victims and establish decon operations
- Review Protective Action Recommendations

1. Incidents with Fire and/or patient rescue considerations:

- a. Consult the ERG for appropriate downwind evacuation zones
- b. Minimize the use of water and control runoff if possible
- c. Minimum PPE is full turnouts with SCBA
- d. Remove patients quickly, medical triage before radiation concerns
- e. Alert hospitals to prepare for contaminated patients.

2. Public Protection

- a. Protection in place initially, close doors, window, turn off ventilation
- b. Utilize PEAK for more detailed nuclide information if known
- c. Consult PAG's regarding initial recommendations for downwind populations
- d. Protect in place initially
- e. At remote medical care points, triage for medical first (injury trumps rad issues) and then scan for contamination. Contamination decision point is

July 12, 2011

SOG-T026-2

any reading of ≥ 2 times background – screen 1" away, 1"/second, head, hands and feet (approx 2 min per patient).

3. Transportation Incidents:

- a. Identify all hazards in addition to those indicated by the rad placards/docs
- b. Limit *time* of exposure, maintain *distance* from radiation sources and use vehicles or buildings as *Shielding*
- c. Quickly remove patient from the hazard zone and treat medical concerns before radiological ones.
- d. Notify OERS, indicating a rad incident and ask them to notify state resources, including Radiation Protective Services, FBI, EOD and CST if necessary.
- e. Consult the ERG, stopping fires or runoff if possible, staying upwind
- f. Restrict access to **at least 75 feet** from a small spill or leak.

4. Unknown Powder/Chemical:

- a. Take an all hazards approach to any unknown product.
- b. Begin the 10 Step process with radiation screening with a contamination meter. Monitor ¹/₂" to 1" away and 1" per second. Determine if ionizing rad is present in the sample. Try to categorize as Alpha, Beta or Gamma, with shielding and/or Alpha probe.
- c. If positive, make notifications and obtain resources to analyze and identify the particular nuclide with an isotope identifinder device (RIID).
- d. If supporting sampling operations, swipes should be 100 cm/sq (size of a dollar bill). Remove sample to decon line to check for elevated readings. Coordinate and analyze with RPS and CST specialist personnel.

5. CBRNE/WMD incidents or unknown explosions:

- a. Have responders turn on their rad monitors if available. Set units to 100x scale and approach scene.
- b. Monitor the ground upon arrival and compare reading with normal background levels.
- c. Approach scene and determine exposure rates, setting the WARM ZONE hazard perimeter at 10 mR/hr.
- d. Obtain as much scene information as possible, including plume description, device size or explosion type, material form, patient numbers.
- e. Have resource enter this information into plume modeling system
- f. Be aware of the potential for secondary explosive devices. Do not operate electronic equipment in the warm zone or closer than 100 feet from source.

6. Decontamination of contaminated patients and Fire/HMRT personnel:

a. Personnel may be contaminated with alpha or beta particulate radiation and must be decontaminated before leaving the warm zone

- b. Anyone that was in the warm or hot zones must be surveyed with radiation detection instruments before being released into the cold zone.
- c. Contaminated patients must pass through the decon corridor or kept in a holding area for decon and triage.
- d. Hold and bag all contaminated clothing and equipment in the decon area.
- e. All treatment personnel should use the following PPE as a minimum: N95 mask, APR, PAPR or SCBA, clothing that has maximum coverage and other universal precautions
- f. Masks may be given to patients to limit further inhalation of rad particles
- g. Most contamination can be removed from exposed skin areas with moist wipes, swabs or adhesive tape. Survey and mark remaining hot spots with a marking pen.
- h. Wounds can be irrigated with lukewarm water, but DO NOT scrub, or abrade

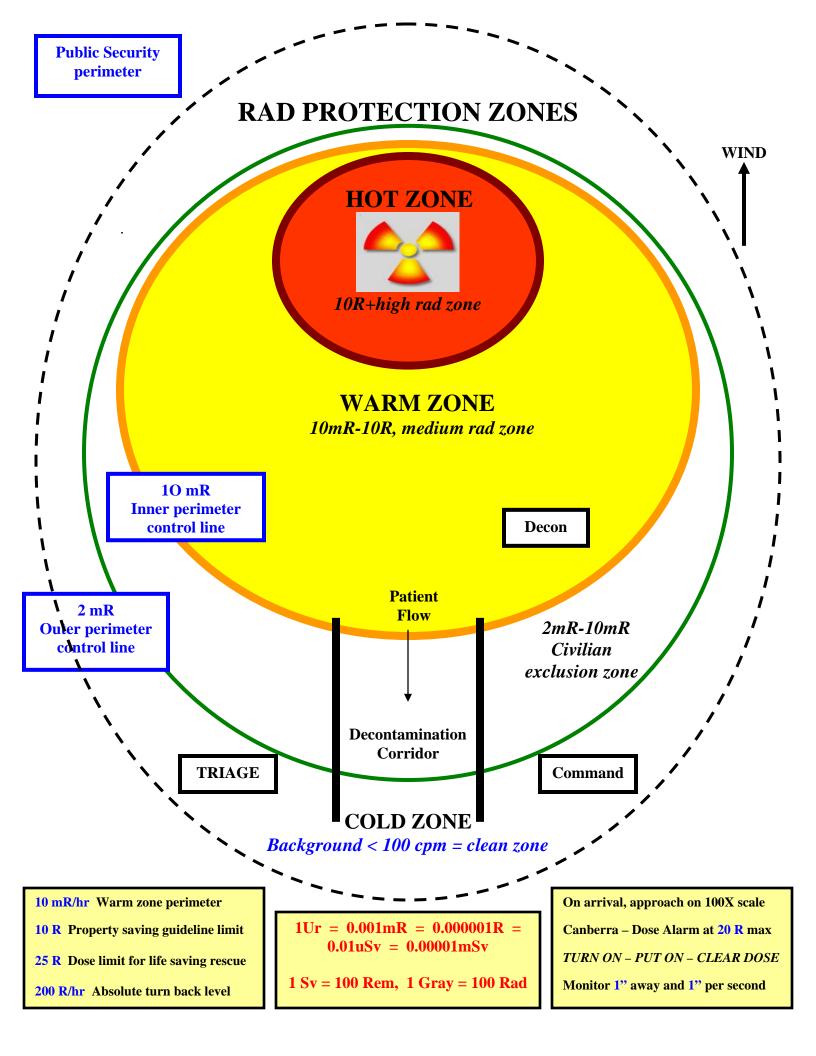
V. <u>Attachments</u>

- 1. Radiation Response Checklist
- 2. Radiation Protection Zones
- 3. Radiation Safety Officer
- 4. Plume Modeling Procedures (IMAAC)
- 5. IED Standoff Distances
- 6. Protective Action Guidelines (PAGS)
- 7. Patient Screening Procedures
- 8. Ludlum Field Guide
- 9. Canberra Field Guide
- 10. Dosimeter Tracking Form
- 11. Radioisotopes
- 12. Nuclear Terms
- 13. Radiation Response Resources

RADIOLOGICAL INCIDENT	
Response and Assessment Checklist	

Location:

Time:


Date:

	Kesponse una Assessment Checklist
	PRE-ARRIVAL: Activate radiation plan en route
	Bump test equipment Obtain initial rad readings via radio Notify OERS
	Oversee/Assist first responders with rescue & pt treatment/decon
	 Grab/Strip/Wrap/Ship Turn on/Put on Radiac EPD's Injury trumps rad contam Eval PPE for Warm Zone/resp protection Patient symptoms Eval red pts for Gamma contam/mark w/G for hosp Pt screening, 1" away, 1"/sec, Heads/Hands/Feet – 2 min/pt - > than 2X background = contam
	Initial Scene Assessment Information
	Incident Type: \Box Open container \Box Spill \Box Explosion \Box Fire \Box Unknown / Other
	Placard Special Hazards
	Form: Solid Liquid Gas Powder
	Release Amt RP name Transportation Mode
	Initial Rad Readings Location Assess for IED's
	Make Agency Notifications - (Refer to opposite side of this form)
	Evaluate/Establish/Verify radiation protection boundaries
	 10mR/hr Warm Zone and Decon Corridor 2mR/hr Public Exclusion Zone – safe CP location 10R/hr Hot Zone
	Assess radiation hazard -
	Alpha Beta Gamma Neutron Accidental Intentional Form
C	Obtain background Instrument type Probe type
	Readings/Alarms: Exposure Rate Count rate
C	Other Info: Shielding material: Lead Plastic/Paraffin Metal Other

Special containers: Cylinders Totes: Boxes Package Type
Assess and Identify Specific Nuclide(s)
RIID Device – Acquire Spectrum – Min sample collection time 300 seconds
\Box Communicate Nuclide ID and rad emission type to hospital \Box Submit to DOE reachback
Emerg Resp Officer 202-586-8100 email triage.data@hq.doe.gov
Follow-up Communications :
RESOURCES
 OERS (800-452-0311) Oregon Radiation Protective Services (RPS) (971-673-0490 or 503-799-6977) HMRT (2nd unit if needed) thru OERS ODOT (Transportation only) (503-986-3020) FBI (503-224-4181) 102nd Civil Support Tm (CST) (503-584-3112 or 932-6813) RAP Team (509-373-3800) EOD
 NARAC/IMAAC (925-424-6465) DOE (509-373-5325) RAP TEAM (509-373-4348 or 5325) CHEMTREC (800-262-8200) Info they will need: Your title, Callback #, Dispatch #, Incident description.

title, Callback #, Dispatch #, Incident description, injuries/exposures, material/container type, release amount, location, weather

NOTES

RADIATION SAFETY OFFICER

- □ Check in with IC Report to Hazmat Branch
- □ Integrate with Rad officials upon arrival -EDU - RPS - FBI - CST - RAP - FRMAC
- Assess Radiation Levels Alpha, Beta, Gamma, Neutron
- □ Verify Radiation Boundaries
- Verify / Redefine Contaminated Areas
- **Establish Dose Guidelines and Dosimetry**
- □ Identify Radioisotopes
- **Review Monitoring and Decon** Operations
- Support Medical Branch Insure Rad info is communicated to Hospitals
- Support / Review Plume Modeling Info and Public Action Recommendations
- Provide support to the PIO
- □ Support / Review documentation of doses

PLUME MODELING PROCEDURES

NARAC (National Atmospheric Release Advisory Center) IMAAC (Interagency Modeling and Atmospheric Assessment Center)

EMERGENCY CONTACT NUMBERS – 24/7

NARAC: 925-422-9100 IMAAC: 925-424-6465 FAX: 925-423-4527

EMAIL <u>narac@llnl.gov</u> or <u>imaac@llnl.gov</u> WEB imaacweb.llnl.gov

1.	1. Collect as much incident information as possible:					
Inc	cident/	Facility Name				
W	HEN	Date	Release Sta	rt Time	Release End Time	
W	HERI	E Address			City, State	
		Latitude / Lon	gitude (optio	nal)		
W	HAT	Complete as n	nuch as is kno	own:		
•	Incid	lent Type (spill,	fire, expl, or	unk)		
•	Mate	erial Type (rad,	chem., bio, o	or unk)		
•	Spec	ific Material (e.	.g., Cl, Cs-13	7, Anthrax,	etc.)	
•	Spec	ific Form (e.g.,	gas, liquid, p	owder, etc.))	
•	Amo	ount Released or	at Risk (rai	l car, 10 lb,	100 Ci, etc.)	
•	Plun	ne Height (abov	e ground)			
•	Loca	l Weather Cond	litions (optio	onal) wind s	speed direction	
•	Disti	ribution – <u>where</u>	(EOC, JOC,	IC) & <u>how</u>		
2.	2. Transmit incident info to IMAAC via one of the numbers shown above					
3.	Prov	ride contact info	rmation: Na	ame	Title	
					number	
	E-ma					

IED SAFE STANDOFF DISTANCES

Threat	Explosive	O/S Evac	Build Evac	Lethal Blast
PIPE BOMB	5 lbs	850 ft	70 ft	
SUICIDE VEST	20 lbs	1360 ft	110 ft	
BRIEFCASE	50 lbs	1850 ft	150 ft	
SEDAN	1000 lbs	1750 ft	400 ft	125 ft
SMALL VAN	4000 lbs	2750 ft	640 ft	200 ft
DELIV TRUCK	10,000 lbs	3750 ft	850 ft	300 ft
SEMI-TRAILER	60,000 lbs	7000 ft	1570 ft	600 ft

Threat Descrip	LPG Size	Fireball Size	Safe Distance
SM LPG TANK	20lbs/5gal	40 ft	160 ft
LG LPG TANK	100lbs/25gal	70 ft	280 ft
SM LPG TRUCK	8,000lbs/2,000gal	290 ft	1170 ft
LG LPG TRUCK	40,000lbs/10,000ga	al 500 ft	2000 ft

GUIDELINES FOR RADIATION EXPOSURE LIMITS

CategoryDescriptionReading (mREM)

Levels are given in Total Effective Dose Equivalents (TEDE) unless otherwise noted 1 uR = 0.001 mR = 0.000001R = 0.01 uSv = 0.00001mSv 1 Sv = 100 REM

RESPONDERS			
Contamination outer perimeter	2 mR/hr		
Warm Zone	Industrial 2 mR/hr- 10R/hr release		
Hot Zone	RDD 10 mR/hr- 10R/hr		
Lifesaving (informed consent only)	10 R +	25,000 mR	250 mSv
Protecting major property	Protection of large populations	10,000 mR	100 mSv
Turn Back – regardless of life saving issues	populations	200 R/hr	
GENERAL PUBLIC			
Emergency limits	Seven consecutive days One hour limit	100 mR 2 mR	1mSv 0.02mSv
Emergency Protective Action Guides (CEDE)	Max to thyroid Max to whole body Relocate if 1 st year dose >	15,000 mR 5,000 mR 2,000 mR	150 mSv 50 mSv 20 mSv
Public Sheltering decision For Early Phase	Shelter if projected dose No shelter if projected dose	> 1 Rem < 100 mR	
Public Evacuation decision For Early Phase	No evac if projected dose	< 5 Rem	
	No evac for special populations if projected dose	< 10 Rem	
Decon and dose reduction for intermediate phase	Yes, if annual projected dose	> 500 mR	

Business closures	If annual projected dose for the first year	> 2 Rem
Decon of people Unconditional release Contaminated Medical rad evaluation	< than 2x background > than 2x background > than 2x background after decon	
Decon of equip & animals Release Impound / refer Contaminated		
OCCUPATIONAL		

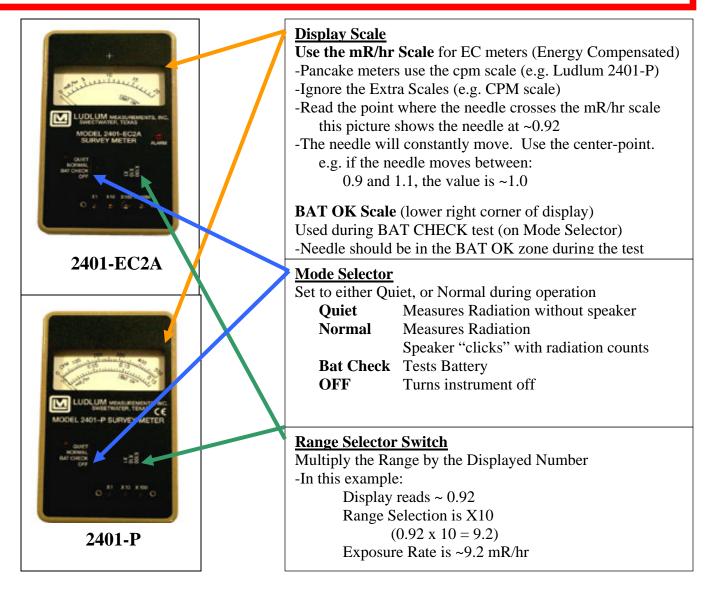
NOTES:

	ormal background nnual background		0.01 – 0.02 mR/hr approx 250 mR/hr
Canberra	Dosimeter Settings		
<u>Rate</u>	Upper Limit 10 R/hr	Lower Limit 2mR/hr	
<u>Dose</u>	Upper Limit	Lower Limit	
	20R	5R	

RADIATION SCREENING PROCEDURES

- 1. Proceed to screening point and await arrival of civilians and health department staff. Prepare to receive several hundred or more at each site
- 2. Minimum resources needed at each screening point:
 - 2 + fire responder companies (each FF can monitor approx 25 pts per hour)
 - 1-2 police patrol units
 - Equipment:
 - Clipboard with screening documentation forms
 - Traffic cones with tape to designate waiting lines
 - Megaphone to give group directions when needed
 - At least 5 radiation contamination monitors
 - Canberra dosimeters for each first responder
 - SIRAD rad detection badges for health dept staff, if available
 - Self decon kits with instructional handouts
 - Several boxes of Tyvek suits
- 3. Screening Procedures:
 - Form multiple lines, depending on # of civilians
 - One FF with contam monitor for each line set unit to 1 scale turn down the volume and watch scale.
 - Hold monitor 1" away from body and monitor in this order (approx two minutes per person) 1 inch per second
 - **Head** (face, hair and head in that order)
 - Hands (fronts then backs)
 - **Feet** (bottoms then tops)
- 4. An individual shall be considered **CONTAMINATED** and in need of decon, when readings are found that are over **100 CPM** (2x background level)

Send these patients to holding area and should be directed to remove outer clothing. Do spot decontamination on scene, don Tyvek suits and be re-monitored.


Patients that have less than **50 CPM** (approximate background radiation levels) are not considered as contaminated

5. Bag and tag all clothing of patients from the holding area

Ludlum 2401-EC2A *Exposure Rate* Meter <u>Gamma</u>, 0 - 2000mR/hr Ludlum 2401-P *Survey* Meter <u>Alpha/Beta/Gamma</u>, 0-15mR/hr, 0-50,000 cpm

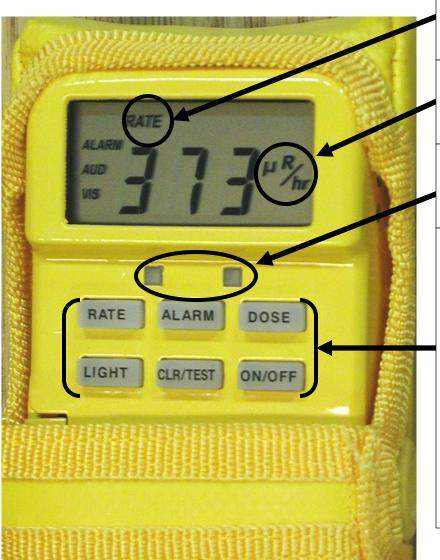
INSTRUCTIONS

- Test the instrument
 - a. Turn Mode Selector to [BAT CHECK]
 - i. The needle should move to the "BAT OK" range
 - ii. If the needle is below (to the left) of "BAT OK", replace the battery (9-volt)
 - b. Check for Radiation Response
 - i. Turn Mode Selector to either [QUIET] or [NORMAL]
 - ii. Place meter on a radiation "check source"
 - iii. The needle should move, indicating radiation is present
 - iv. The QC program may require you to record the reading
- 2 Turn Mode Selector to either [QUIET] or [NORMAL]
- 3 Set Range Selector Switch to X1
- 4 If Radiation Field is near the end of the scale (far right side) move up to the next scale
- 5 If the Needle "Pegs", and will not change:
 - a. Cycle Power: Turn Mode to "OFF", and listen for a high-pitched chirp
 - b. Move Range Selector Switch up to a higher setting
 - c. Turn Mode to either [QUIET] or [NORMAL]
 - d. Repeat if needed, up to the highest setting

Canberra UltraRadiac Personal Radiation Monitor

START UP INSTRUCTIONS

- Press and hold [ON/OFF]


 Listen for a click, and display will turn on
- 2. Clear Dose: Press and Hold [DOSE+CLR/TEST]
 -Hold buttons until Flashing Stops
 -Display changes to "00.0 uR"
 -Wait for Display to change to Rate (uR/hr)
- 3. Test: Press and Hold [CLR/TEST]
 -Hold buttons until display changes to ".8.8.8" then release
 -10-second counting sequence
 -A flashing "9" indicates success
- 4. Device is Ready for use -Attach to PPE as appropriate

Suggested Alarm Levels				
High Rate 300 mR/hr* High Dose 20 R**				
Alarm		Alarm		
Low Rate	10 mR/hr	Low Dose	3 R	
Alarm		Alarm		

*Turn-Back Rate (OR Dept of Energy) **Highest Dose Allowed – OR OSFM

ADVANCED OPTIONS

- Check your "Stay-Time"
- 1. Push and Hold [ALARM]
 - This tells time you can stay in this radiation field

Mode Display indicates RATE = Rate of Exposure DOSE = Radiation Dose

Units are auto-displayed µR/hr = micro R per hour (U-R per hour) Normal RATE level is ~10 µR/hr

Warning Lights Left Light = Rate Alarm Right Light = Dose Alarm

Button Functions: **RATE**

1.Rate Mode (press)

- 2.Source Finder (press/hold)
- 3.Data Log [RATE+DOSE]

ALARM Shows Stay Time DOSE Show's the worker's dose LIGHT Lights display for 5 sec CLR/TEST

1.Shut off **Alarms** (press) 2.QC Tests

See #3 in Start Up Instr 3.Alarm Test: During the test

press [RATE] or [DOSE] **ON/OFF** Power Button

PERSONNEL DOSIMETER TRACKING FORM

INCIDENT LOCATION _____

DATE	AGENCY	

TRACKING OFFICER _____

Personnel	Individual Dosimeter	Initial Reading	Final Reading	Decon	Medical Screen	Total Dose
1.	Yes No					
2.	Yes No					
3.	Yes No					
4.	Yes No					
5.	Yes No					
6.	Yes No					
7.	Yes No					
8.	Yes No					
9.	Yes No					
10.	Yes No					
11.	Yes No					
12.	Yes No					
13.	Yes No					
14.	Yes No					
15.	Yes No					
16.	Yes No					

17.	Yes No			
18.	Yes No			
19.	Yes No			
20.	Yes No			
21.	Yes No			
22.	Yes No			
23.	Yes No			
24.	Yes No			
25.	Yes No			
26.	Yes No			
27.	Yes No			
28.	Yes No			
29.	Yes No			
30.	Yes No			
31.	Yes No			
32.	Yes No			
33.	Yes No			
34.	Yes No			
35.	Yes No			
36.	Yes No			
37.	Yes No			
38.	Yes No			
39.	Yes No			

RADIOISOTOPES

(Probable sources for RDD devices)

Isotope	Emission	¹ / ₂ life	Organ	Source - Form
Americium-241	Alpha, <mark>Gamma</mark>	433 yrs	Bone	Smk detect, well log, nonmet solid
Barium-140		13 days		
Cadmium-109	Gamma	462 days		Metal analysis
Calcium-47	Beta, Gamma	4.5 days		Medical research
Californium-244	Alpha, <mark>Gamma</mark>	18 yrs		Inspect luggage, moisture insp
Carbon-14	Beta	5730 yrs		Bio-research, pollution control
Cesium-137	Beta, <mark>Gamma</mark>	30 yrs	Total body	Food irrad, cancer ther - powder
Chromium-51	Gamma	28 days		Medical research
Cobalt-57	Gamma	272 days		Medical diagnostic
Cobalt-60	Beta, <mark>Gamma</mark>	5.3 days	Total body	Irradiation, cancer ther - metal
Copper-67	Beta, <mark>Gamma</mark>	2.6 days		Cancer treatment
Curium-244	Alpha, <mark>Gamma</mark>	18 yrs		Mining and drilling
Gallium-67	Gamma	3.3 days		Medical diagnostic
Iodine-123	Gamma	13 hours		Medical diagnostic
Iodine-125	Gamma	60 days		Medical diagnostic, research
Iodine-129	Beta, <mark>Gamma</mark>	15 mill yrs		Check radiation counters
Iodine-131	Beta, <mark>Gamma</mark>	8 days	Thyroid	Nuclear medicine
Iridium-192	Beta, <mark>Gamma</mark>	74 days	Lung	Ind radiography, cancer, metal
Iron-55	Alpha, <mark>Gamma</mark>	2.7 yrs		Industrial analysis, research
Krypton-85	Beta, <mark>Gamma</mark>	10.8 yrs		Industrial gauges, indicator lites
Nickel-63	Beta	100 yrs		Explosive detect, voltage regs
Phosphorus-32	Beta	14 days		Bio-medical research
Plutonium-238	Alpha, <mark>Gamma</mark>	88 yrs	Bone	Nuclear weapon, NASA power

Plutonium-239	Alpha, <mark>Gamma</mark>	24,000 yrs		Nuclear weapon			
Polonium-212	Alpha, <mark>Gamma</mark>	138 days		Photographic film			
Promethium-147	Beta, Gamma	2.6 yrs		Material gauges, thermostats			
Radium-226	Alpha, beta, <mark>Gamma</mark>	1599 yrs	Bone	Dials, medical therapy			
Radon-222		4 days		Environ level			
Selenium-75	Gamma	120 days		Protein research			
Sodium-24	Beta, <mark>Gamma</mark>	15 hours					
Spent Fuel	Alpha, Beta, Gamma						
Strontium-85	Gamma	65 days		Medical research			
Strontium-90	Beta	29 yrs	Bone	Eye therapy - ceramic			
Sulfur-35	Beta	87 days		Survey meters, med research			
Technetium-99m		6 hrs		Diagnostic imaging			
Thorium-234	Alpha, Beta, Gamma	a 24 days					
Tritium (H-3)	Beta	12 yrs	Total body	Exit signs			
Uranium 235/38	Alpha, Beta, <mark>Gamma</mark>	a 15 days	Kidney				
RADIATION UNITS							
Measure of		<u>Quantity</u>		<u>Unit</u>			
Amnt of Rad material		Activity		Curie (Ci)			
Ionization in air		Exposure		Roentgen (R)			
Absorbed Energy per mass		Absorbed Dose		rad			
Absorbed Dose by rad type		Dose Equivalent		rem			

For most types of radiation 1R = 1 rad = 1 rem

International Units

1 Gray = 100 Rads 1 Sievert = 100 Rems

Nuclear Terms

ALARA – "As Low As Reasonably Achievable" – a process to control or manage radiation exposure to individuals and releases of radioactive material to the environment. Ensures doses that are as low as social, technical, economic, practical and public welfare considerations permit.

Alpha –Particulate radiation, made up of twoneutrons and two protons with a charge of +2. This particle can'tpenetrate turnouts or even the outer skin layer. Very damaging ifinhaled or swallowed.

Beta – Particulate radiation, made up of single electrons with a charge of -1. Can't generally move far in air and are stopped by a thin sheet of aluminum but can penetrate the skin, causing burns.

Contamination – The deposition of particulate radioactive radiation on the surfaces of structures, areas, objects or people where it may be external or internal.

Curie – The traditional measure of radioactivity based on the observed decay rate of 1 gram of radium. One curie will have 37 billion disintegrations each second.

Exposure – Radiation energy that affects material, but unlike particulate radiation, does not cause contamination.

Gamma – High energy rays with a short wavelength. This energy can penetrate much farther than particulate radiation and is stronger than, but similar to X-Rays.

Half-life – The time any substance takes to decay by half of its original amount. A rule of thumb is after 10 half-lives, the amount of radioactivity left in the sample is negligible.

Ionizing Radiation – Any radiation capable of displacing electrons from atoms, thereby producing charged atoms or molecules (ions).

Isotope – A nuclide of an element having the same number of protons, but a different number of neutrons.

Neutron – A small atomic particle possessing no electrical charge and typically found within the nucleus. It has about the same mass as a proton.

Rad – A unit expressing the *absorbed dose* of ionizing radiation, or the energy deposited per unit mass. The units of rad and gray are the units in two different systems for expressing absorbed dose:

1 rad = 0.01 gray (Gy); 1 Gy = 100 rad

Rem – A unit of *absorbed dose* that accounts for the relative biological effectiveness of ionizing radiation in tissue (also called *equivalent dose*). The units of rem and sievert are the units in two different systems for expressing equivalent dose:

1 rem = 0.01 sieverts: 1 Sv = 100 rem

Roentgen – A unit of exposure to x-rays or gamma rays. The primary standard of measurement used by the US emergency responder community.

1,000 micro-roentgen (uR) = 1 milli-roentgen (mR) 1,000 milli-roentgen (mR) = 1 roentgen ® 1,000,000 uR = 1 R

Time/Distance/Shielding – Principles for radiation protection. Time is protection by limiting the time spent in close proximity to a source. Distance is protection that decreases exposure by the inverse square of the distance from the source. Shielding is the material between a source and the responder that reduces exposure, based on material type and thickness.

X-Ray – Electromagnetic radiation that can travel long distances through air and other materials.

RADIATION RESPONSE RESOURCES

- 1. Civil Support Team (CST)
- 2. Oregon Emergency Response System (OERS)
- 3. National Response Center (NRC)
- 4. Radiological Assessment Program (RAP) (DOE)
- 5. Explosives Disposal Unit (EDU)
- 6. Radiological Protection Services (RPS)
- 7. Environmental Protection Agency (EPA)
- 8. Emergency Operations Center (EOC)
- 9. Federal Bureau of Investigation (FBI)
- 10. Interagency Modeling & Atmospheric Assessment Ctr (IMAAC)