Focused Investment Partnership (FIP) Overview

In April 2015, the OWEB Board established Focused Investment Priorities that have clear significance to the state. This process will be revisited at least every 5 years as new Priorities may be added and existing ones modified. Information on Priorities can be found on the OWEB website.

Based on the Board-identified Priorities, OWEB will solicit Focused Investment Partnerships biennially that meet the following criteria:

- Address a Board-identified Focused Investment Priority of significance to the state;
- Achieve clear and measurable ecological outcomes;
- Use integrated, results-oriented approaches as identified through a strategic action plan;
- Are implemented by a high-performing partnership.

Partnerships may apply for Development funding to acquire technical assistance to enhance or create a strategic action plan or build their capacity to strengthen the existing partnership. Or, if the partnership is already established and has a current strategic action plan, the partnership may apply for Implementation funding to pursue a FIP Initiative. If applying for Implementation funding, a strategic action plan must accompany the application at the time of submission.

Development proposals are eligible for up to two years and $150,000 in funding. Implementation proposals will be funded for no more than 6 years. This is referred to as the “current, proposed timeframe” through the remainder of this document. Additionally, each Implementation grant has a maximum funding of $4 million per biennium with a targeted average of $2 million per biennium over the course of the investment.

Relationship between the Strategic Action Plan and the FIP Implementation Program

If applying for Implementation FIP funding, a written Strategic Action Plan (SAP) must accompany the submission. The SAP describes the partnership’s aspirations over the long term and what will be required to achieve ecological goals in the partnership’s focal area. In essence, the SAP will serve as the road map, or blueprint, for the partnership’s restoration activities. If a partnership chooses to submit a proposal for the
Implementation FIP program, the SAP will need to include all of the components described in the SAP Guidance. If the partnership already has a relevant, current plan, it may be submitted in lieu of a plan following this outline. If submitting an existing plan, the applicant must tab that plan or provide a supplemental contents page illustrating where it aligns with the various strategic action plan components.

A SAP will define a specific scope (geographic extent, timeframe, and range of strategies and actions) based on the long-term ecological goals the partnership seeks to achieve. In most cases the geographic and temporal scales of a SAP will necessarily be greater than the range of actions contained in an Implementation FIP initiative. Restoration or conservation efforts will likely need to continue over many decades – extending well beyond the potential 6-year Implementation FIP time period.

For instance, if restoring and conserving sage-steppe habitat in Eastern Oregon for the recovery of sage grouse is the goal identified in the SAP, the application submitted to OWEB might focus on just a subset of the total area of need that is ripe for sage-steppe restoration and conservation, or, alternatively, only the actions that are anticipated to be completed within the 6-year FIP program timeframe. This subset represents the area or sum total of actions that a partnership has the capacity and funding to complete within the 6-year FIP program timeframe. Subsequent application submissions to OWEB and other funders would be needed to address remaining areas for recovery actions outlined in the SAP.

The Implementation FIP application will request funding for just the portion of the SAP that the partnership feels it can accomplish in the current, proposed timeframe with the available funding. OWEB staff are available to help partnerships understand the process for both the SAP and Implementation funding application.

When developing a SAP, there is no page limit on submissions. However, more is not necessarily better. While relevant maps and plan guidance may be appended, other supporting information (e.g., technical documents, letters of support, etc.) is not necessary.

For more information about the Focused Investment Partnership program and applications, please refer to the OWEB website.

Contact the following OWEB staff for questions:

Taylor Larson: taylor.larson@oregon.gov; 971-701-3248

Denise Hoffert: denise.hoffert@oregon.gov; 971-701-3206

Eric Hartstein: eric.hartstein@oregon.gov; 503-910-6201
Strategic Action Plan Guidance

The Strategic Action Plan (SAP) – Components

The OWEB Board encourages strategic approaches to restoration, using written plans as a guide. SAPs can be written in a variety of formats. The following elements represent what is considered essential according to a variety of conservation planning frameworks for developing a comprehensive, logical, and focused action plan. Such a plan synthesizes current knowledge and available information and creates a foundation for science-based adaptive management (Conservation Measures Partnership 2013 and Conservation International 2013).

The investment required to develop this type of plan is significant, especially when involving multiple partners with diverse interests and areas of expertise. Ongoing capacity and investment is also required to keep the plan updated, to collect monitoring data on key outputs and outcomes, and to act on learning to adapt future restoration strategies and actions. If it is not likely that there will be sufficient funding to implement a plan of this scale, alternative planning frameworks that are more streamlined may provide better value and less risk – although with less opportunity to benefit from a science-based adaptive management process.

1. Introduction
2. Partnership Roles
3. Scope
4. Vision
5. Ecological Priorities and Goals
6. Profile of the Focus Area
 a) Biophysical
 b) Social
 c) Historical
7. Conservation Needs and Opportunities
8. Theory of Change
 a) Strategies
 b) Actions
 c) Outputs
 d) Outcomes
9. Progress Monitoring Framework
 a) Outputs and Objectives
 b) Outcomes and Target Values
 c) Indicators
 d) Communicating Progress

10. Adaptive Management

11. Sustainability

12. Literature Citations

13. Partnership Certification Page

Strategic Action Plan Outline

The following outline details the components of the SAP template.

1. **Introduction**
 Provide a brief overview and summary of the SAP and discuss the process used for developing the plan.

2. **Partnership Roles**
 Purpose: To identify the members of the partnership and their relative contributions.

 Identify the core members of the partnership and provide a brief discussion of their experience and anticipated role in SAP implementation. Core partners are those who will bring substantial staff and/or resources to the partnership and will lead the effort to manage, implement, monitor, adaptively manage, and communicate progress. If there are external partners or collaborators who are integral to the successful implementation of this SAP, please identify them.

3. **Scope**
 Purpose: To define the spatial and temporal scope for this SAP.

 Define the geographic boundaries of the SAP’s area of focus. Include a map and explain the rationale for delineating the boundaries, including how it aligns with the capacity, strengths, and nature of the partnership.

 Describe the period of time the SAP is intended to be relevant and explain why that timeframe has been chosen.
4. **Vision**
Purpose: To describe the vision for the future.

Provide a brief vision statement describing your desired future condition.

A vision is an aspirational statement that describes the state or condition of your area of focus if the restoration and conservation strategies are ultimately successful and the ecological goals are fully achieved.

5. **Ecological Priorities and Goals**
Purpose: To describe the ecological priorities that are the focus of this SAP and their desired future status.

Provide a description of the **ecological priorities** that are the focus of the partnership’s restoration and conservation efforts under this SAP. Ecological priorities are most likely ecosystem-level habitats or communities. Note that OWEB Board-adopted FIP priorities are available on OWEB’s website, and will be revisited at least every 5 years.

Examples include dry-type forest habitat, freshwater aquatic habitats, floodplain and riparian forests, sage-steppe habitat, oak woodland and prairie habitat, estuary wetlands habitats, etc. If species are identified as ecological priorities, include supporting habitats as priorities as well (if strategies are focused on restoring or protecting habitats).

Describe the partnership’s restoration **goals**. Goals are statements that describe the desired status or condition of each ecological priority within a specific timeframe. Goals are typically defined by stating desired improvements of key attributes of that ecological priority.

Examples of goals are as follows:

- **Dry-type forest habitat:** By 2030, 80% of dry forest habitat within the partnership’s geographic scope will contain a balance of late seral closed and open canopy conditions and species composition within the desired range of variability.

- **Freshwater aquatic habitat:** By 2025, the suite of stream channel and floodplain conditions required for O. mykiss spawning and rearing will be restored along 5 stream miles.

6. **Profile of the Focus Area**
Purpose: To describe the social, ecological and historical context of this SAP.

Provide a description of the biophysical, social, and historical context for the focal area. Elements of this section should include:

- a) **Biophysical**
 - Geological setting
 - Ecoregional context
 - Terrestrial and aquatic ecosystems and supported species
b) Social
- Land ownership (public, private, industrial, conservation, etc.)
- Land uses (timber management, agriculture, wilderness, conservation etc.)
- Communities (urban or rural population centers) and their relationship with ecological priorities and the larger landscape
- Key stakeholders that may be important for the implementation of the SAP (e.g., timber industry, ranching, recreation, etc.)
- Economic context (historical, current, and future trends relevant to the ecological priorities)

c) Historical
- Past events or activities that have influenced or are currently influencing the status or condition of the ecological priorities.
- Past, ongoing, or planned activities focused on restoring, conserving, and protecting ecological priorities.

7. Conservation Needs and Opportunities
 Purpose: To identify the need for conservation relevant to the above-described ecological priorities that will be addressed by this SAP.

 Provide a description of the conservation or restoration needs and opportunities and include a discussion of ongoing or anticipated threats and limiting factors impacting the ecological priorities. Reference or cite key documents (e.g., species recovery plans, subbasin plans, assessments, etc.) that support your description of the conservation need.

 Describe other ongoing conservation, restoration, or natural resource management efforts that influence the partnership’s work or desired ecological outcomes. Explain the relationship the SAP initiative has with these efforts (geographically and programmatically) and how the efforts leverage the capacity of one another (implementation, monitoring, communications, etc.).

8. Theory of Change
 Purpose: To describe underlying theories and assumptions for strategies that are expected to lead to ecological goals.

 A theory of change is an articulation of the hypothesized relationships and underlying assumptions between strategy implementation, resulting intermediate ecological outcomes, and long-term ecological goals (defined in Section 5) (Conservation International 2013).

 Theories of change can be developed and communicated using a combination of graphical and narrative approaches. For example, results chains (Figure 1), which are both a process and a tool contained in the Conservation Measures Partnership’s Open Standards for the Practice of Conservation (Conservation Measures Partnership 2013),
are used by many partnerships to develop and document theories of change (Margoluis et al. 2013, Foundations of Success 2007, and Association of Fish and Wildlife Agencies 2011).

![Figure 1. Generic results chain with elements of a theory of change (Adapted from Association of Fish and Wildlife Agencies 2011).](image)

It is recommended that the development of a theory of change be accomplished collaboratively with all members of a partnership or a designated subgroup of the partnership, to ensure common agreement and understanding regarding the theories and underlying assumptions of how long-term goals are expected to be achieved through strategy implementation. Additionally, a collaboratively developed theory of change provides the foundation for monitoring both implementation progress and ecological outcomes (Section 9).

Explicitly articulate the theory of change using the following guiding questions, augmenting your information with tables, results chains or other graphical tools, as needed. Where appropriate, provide citations or other documentation to support assertions regarding the relationships or assumptions between linked elements. An example of a Theory of Change is included as Appendix A.

a) What are the strategies? A strategy is a group of related actions that are intended to reduce or eliminate limiting factors in order to restore critical ecological processes or functions associated with ecological priorities.

Examples of restoration strategies include ecological forest management, stream and floodplain restoration, fish passage restoration, instream flow restoration, native plant community restoration. When community engagement is an important part of making restoration strategies successful, include it here.

b) What actions will be implemented under the strategies? Actions are specific ecological conservation or restoration treatments, projects or other activities that have specific aims.

Examples include mechanical forest thinning, prescribed fire, juniper removal, culvert replacement, acquiring interest in land or water, or dam removal. Actions produce outputs.

c) What outputs does the partnership anticipate from the actions? Outputs are the immediate, measurable, on-the-ground results of implementing an action or series of related actions. Objectives related to key outputs will be described in Section 9.
Examples of outputs include: potential open forest habitat sites identified and thinned, tree and fuels density reduced, stream channel projects completed, area of floodplain reconnected, water rights transfers completed, invasive species removed, fencing completed, fish migration barriers removed, or community presentations delivered.

d) How will the outputs reduce or eliminate limiting factors and lead to the desired short-, medium-, and/or long-term ecological outcomes necessary to ultimately achieve long-term goals? Ecological outcomes are the specific physical and biological conditions or processes that develop as a direct result of the outputs. Outcomes may occur on a timeframe from several years to decades after implementation of restoration strategies. The cumulative ecological outcomes ultimately achieve goals (i.e., a desired status of the ecological priority).

Examples of outcomes include increased landscape proportion of open forest canopy, increased resilience to drought, extreme fire, insects, and disease, increased frequency of floodplain inundation, increase in stream shade, reductions in stream temperature, establishment of a native plant community, reduced fire severity, or an engaged and informed public.

9. Progress Monitoring Framework

Purpose: To identify the subset of outputs and outcomes that will be monitored to measure progress and inform adaptive management.

The outline below provides a foundation for partnerships to strategically monitor progress toward desired ecological goals (see Appendix A).

a) Outputs and Objectives

i. Based on your theory of change, identify the key implementation outputs that represent the most informative measures of implementation progress. These will likely be outputs that:

- Can be measured within a short timeframe after actions are implemented
- Are directly related to the restoration action or treatment
- Add to the understanding about linkages between actions and outputs
- Are likely to be valuable in communicating about restoration progress to stakeholders, funders, and the interested public.

ii. Define SMART objectives for each key output. SMART objectives are Specific, Measurable, Achievable, Results-oriented, and Time-based (SMART):

- Specific: Clear, concise and to the point. A specific objective will answer the four W’s: What, Why, Who, and Where.
- Measurable: Proper objectives are always measurable and answer how much or how many.
• **Achievable:** Objectives must be realistic and attainable.

• **Results-oriented:** This stresses the importance of objectives that are dynamic and proactive and geared toward achieving results.

• **Time-based:** This stresses the importance of grounding objectives with a target timeframe.

These objectives represent the desired outputs produced by one or more actions (i.e., individual projects or groups of projects) that will be implemented over time. Objectives establish milestones for key outputs identified in the theory of change.

Examples of objectives are as follows:

- By 2027, 85% of invasive knotweed is removed from 44 acres of prioritized riparian habitat
- By 2025, 11 miles of fence had been installed to exclude domestic livestock grazing from 1,200 acres of prairies habitat
- By 2025, 6 water rights transactions are completed to restore 15 cfs of instream flow along 20 miles along Fish Creek

iii. **Assign the specific actions** you plan to implement to achieve your outputs to each objective. Strategies, objectives, and actions relate to each other as follows:

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Objective #1</th>
<th>Objective #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Action C</td>
<td>3. Action F</td>
</tr>
</tbody>
</table>

b) **Outcomes and Target Values**

i. Identify the key **ecological outcomes** in your theory of change. Key outcomes will be those that:

- Can be measured over relatively short or long timeframes after actions are implemented. Because outcomes represent physical or biological responses to restoration actions, outcomes typically are achieved on longer timeframes (e.g., 3-10+ years) than outputs, which can often be measured immediately following implementation of a restoration action(s).
• Add to understanding and/or reduce uncertainty about the linkages between strategies, outputs, outcomes and long-term ecological goals.

• Are likely to be valuable for communicating about restoration and restoration progress to stakeholders, funders, and the public.

ii. If possible, assign target values to quantify your key ecological outcomes. Because outcomes are often influenced by inter-annual variability, random events, unrelated activities in the watershed and other external factors, it is often very difficult to identify a specific degree of change or a timeframe by which an ecological outcome will be achieved. Given this limitation, consider using trajectories (usually toward a desired condition or away from a degraded condition) and ranges for describing as specifically as possible your anticipated outcomes.

c) Indicators

i. For both key outputs and key outcomes, identify what indicators or metrics will be measured to evaluate progress and/or change. Include an associated monitoring protocol or monitoring program. If it is useful for organizing information, key outputs, key outcomes, indicators and protocols may be presented in table format (see Appendix A).

d) Communicating progress

i. Summarize who will be responsible for collecting, compiling, interpreting and sharing the information within and beyond your partnership. Indicate roles and responsibilities for progress monitoring, including:

• Partner roles and responsibilities

• How and when results will be summarized and communicated within the partnership and to key stakeholders and funders

• If the partnership will work with others (agencies, academia, larger conservation initiatives) to carry out monitoring responsibilities (sampling, data management, data analysis, reporting and relevant scales, etc.) and, if so, what will be the roles of those entities.

Please note whether a formal monitoring plan is already in place. If not, describe who will develop the plan and when the plan will likely be developed.

10. Adaptive Management

Purpose: To describe the partnership’s process for gathering, documenting, and analyzing monitoring data and new emerging knowledge and how decisions will be made to adapt strategies.

Adaptive management is commonly described as the intentional practice of adjusting strategies through a cycle of assessing, planning, implementing, monitoring, and
evaluation. It is an important element of conservation initiatives where there are critical uncertainties regarding the status of focal ecological systems or the effectiveness of conservation strategies and actions and where there is an expectation that the partners will gather new information in the course of implementation actions, monitoring results, or through ongoing assessment or research.

Describe how the partnership will structure and carry out an approach and process to adaptively manage conservation strategies.

- What are the uncertainties identified in the partnership’s theory of change and how will it use formal monitoring and evaluation to gather information needed to reduce them?
- How will the partnership capture and document lessons learned or other useful information gathered through advancing its work? For example, personal observations, experiential learning, lessons learned, new ideas or facts?
- How will all members of the partnership engage in the process of evaluating results and new information and how will adaptation decisions be made?
- How often will the partnership members gather to discuss, document, and make adaptive decisions about the SAP and/or restoration strategies?

11. Sustainability

Purpose: To describe how the partnership plans to sustain its capacity to implement the SAP over its defined timeframe.

Provide a discussion of how the partnership will sustain the ecological outcomes, long-term funding, and the partnership’s structure and function over time. If several years or decades will pass before some of the ecological outcomes can be realized, discuss that situation.

12. Literature Citations

If the strategic action plan references specific documents, list them here. There is no particular format, but a standard convention is suggested below.

13. Partnership Certification Page

Include the signature of the appropriate representative from each entity in the partnership.

CERTIFICATION: I certify that this strategic action plan is a true and accurate representation of the proposed work and that I am authorized to sign as the Partner Representative or Co-Representative(s).

- Partner Signature
- Partner Print Name
- Title
- Organization
- Date
References

Appendix A - Example Theory of Change and Progress Monitoring Framework

The following hypothetical example provides a template for how the elements of a theory of change could be organized and documented in a SAP. A hypothetical vision, ecological priority, and goal are included to illustrate how these elements relate to the theory of change.

A results chain is also included to demonstrate how a graphical representation can support a theory of change narrative. The decision of whether to include a results chain or any other graphical model will depend on the needs and desires of the partnership as they consider how to represent and communicate the strategic foundation of their work.

14. Hypothetical Example

Vision
The partnership envisions creating a healthy and resilient forest landscape with abundant, productive, and diverse populations of native terrestrial species. A healthy and resilient forest ecosystem will contribute to the social, cultural, and economic well-being of the communities that live, work, and recreate within its boundaries.

Ecological Priority
Dry-Type Forest Habitat

Goal
By 2030, 80% of dry forest habitat within the partnership’s geographic scope will contain a balance of late seral closed and open canopy conditions and species composition within the desired range of variability.

Strategy 1
Ecological thinning and prescribed fire
This strategy focuses on active treatments to reduce excessive accumulations of surface fuels in targeted areas in order to reset the stage for beneficial long-term maintenance with controlled fire.

Actions:

- Conduct assessments to identify appropriate sites for applying thinning and prescribed fire treatments, develop thinning and burn plans, and coordinate with partners and landowners
- Implement targeted mechanical thinning treatments in priority sites and remove or burn biomass
- Conduct prescribed fire treatments in priority sites per burn plans
Theory of Change
Thinning in strategically identified forest habitat sites will result in the removal of vegetation that impedes development of large oaks and reduce the density of smaller, understory plants.

- Strategic thinning will increase the proportion of open canopy at the landscape scale, increase the recruitment and vigor of fire-resistant species, and increase the resilience of forest ecosystems to drought, extreme fire, insects, and disease (Graham et al. 2009).
- These landscape scale results will lead to an overall improvement of habitat supporting forest dependent wildlife species (Kennedy and Fontaine 2009).

The process of prioritizing areas to optimize restoration and fire management will result in the engagement and education of private landowners and the implementation of actions to reduce fuel density in these areas.

- Fuel-reduction actions will increase the landscape proportion of open canopy and result in a shift in the frequency and severity of wildfire risk towards an acceptable range of variation.
- The reduction in fuel density will reduce the occurrence of severe outbreaks of forest insects and diseases, thereby reducing tree mortality.

Figure 2. Hypothetical results chain.
Progress Monitoring Framework

Outputs

<table>
<thead>
<tr>
<th>Implementation Results (Output)</th>
<th>Objective</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1i- Potential open forest habitat sites are identified and thinned</td>
<td>By 2020, 4,200 acres of potential open forest habitat sites are identified and thinned.</td>
<td>Area of open habitat potential thinned/planted/restored</td>
</tr>
<tr>
<td>2i- Vegetation impeding large oak branching structures are removed</td>
<td>By 2025, 80% of brush and other competitive vegetation is removed in critical oak habitat.</td>
<td>Proportion of brush removed in areas identified as critical habitat</td>
</tr>
<tr>
<td>3i- Private landowners are engaged and educated</td>
<td>By 2020, 10 landowner contracts are executed. By 2020, landowner attendance at meetings increases by 50%</td>
<td>Number of landowner contracts Landowner attendance at meetings</td>
</tr>
<tr>
<td>4i- Tree and fuels density is reduced</td>
<td>By 2025, fuels density is reduced by 75%</td>
<td>Density of fuels in treated areas</td>
</tr>
</tbody>
</table>

Ecological Outcomes

<table>
<thead>
<tr>
<th>Limiting Factor Reduction or Intermediate Ecological Outcome</th>
<th>Outcome</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e- Density of smaller ingrowth and encroachment is reduced</td>
<td>By 2025, 80% reduction in density of smaller ingrowth achieved through restoration treatments</td>
<td>Understory cover Abundance and diversity of native species</td>
</tr>
<tr>
<td>2e- Landscape proportion of open canopy is increased</td>
<td>By 2025, proportion of open canopy is increased by 80% in treated areas.</td>
<td>Stand structure (tree species, diameter, density, basal area, canopy closure)</td>
</tr>
<tr>
<td>3e- Proportion and vigor of fire resistant species is restored and preserved</td>
<td>By 2030, the proportion of fire resistant species is increased by 80%</td>
<td>Stand structure Fuel model</td>
</tr>
<tr>
<td>4e- Habitat supporting forest dependent wildlife is protected and improved</td>
<td>By 2030, habitat structure and function necessary to support forest dependent species meets or exceeds defined criteria within the initiative area</td>
<td>Stand structure (tree species, diameter, density, basal area, canopy closure)</td>
</tr>
<tr>
<td>5e- Resilience to drought, extreme fire, insects, and disease is increased</td>
<td>By 2030, modeled fire risk associated with drought, extreme fire, insects, and disease is reduced by 50%.</td>
<td>Modeled wildfire hazard</td>
</tr>
</tbody>
</table>
References

Kennedy, Patricia & Fontaine, J.B. 2009. Synthesis of knowledge on the effects of fire and fire surrogates on wildlife in US dry forests. Corvallis, OR: Oregon State University, Agricultural Experiment Station.