Deschutes Ground Water Mitigation Program:

House Bill 3494 Report

January 2009

State of Oregon Water Resources Department

OWRD GIS (rh), 1/3/2008, des/desfig_USGS_ISWR_SSW.mxd

Deschutes River Basin and Ground Water Study Area.

TABLE OF CONTENTS

Executive Summary	4
1. Introduction	9
2. Program Implementation and Operation	12
3. Progress on Restoring Streamflows for Anadromous Fish	18
4. Deschutes Group Results	21
Successful Elements of Program Primary Issues of Concern Zone of Impact What is Counted under the 200 cfs Cap Offset and Incremental Mitigation Water Quality Non-Irrigation Season Mitigation 7(j) Conditioned Permits	21 23 25 31 35 38 42 45
5. Conclusions	49
6. References	50
Appendices	51

Special Thanks to All of the Members of the Deschutes Group for their Valuable Input and Cooperative Efforts on this Review

Deschutes Ground Water Mitigation Program: House Bill 3494 Report

Executive Summary

Background

House Bill 3494 (Chapter 669, 2005 Oregon Laws) directs the Oregon Water Resources Department (OWRD) to report to the 75th Legislative Assembly, no later than January 31, 2009, on the implementation and operation of the Deschutes River Basin Ground Water Mitigation and Mitigation Bank Programs.

In the Deschutes Basin above Lake Billy Chinook, a US Geological Survey (USGS) study conducted in cooperation with OWRD and others indicated there is a hydraulic connection between ground water and surface water within the Deschutes Ground Water Study Area. Because of this connection, ground water withdrawals within this area are anticipated to affect surface water. Since scenic waterway flows and instream water rights in the Deschutes Basin are not always met, OWRD may not approve new ground water permits unless the impacts are mitigated with a similar amount of water being put instream. The Deschutes Mitigation Program provides a set of tools that applicants for new ground water permits within the study area can use to establish mitigation and, thereby, obtain new permits from OWRD. These programs are implemented under Oregon Administrative Rules (OAR) Chapter 690, Divisions 505 and 521.

The amount of new ground water use that can be approved under the program is limited to a total of 200 cubic feet per second (cfs). Since adoption of the Deschutes Mitigation rules in September 2002, OWRD has issued 67 new ground water permits with associated mitigation, totaling 52 cfs of water. In addition to the 52 cfs allocated, there is approximately 148 cfs in pending applications and approved final orders. Assuming all pending applications and final orders move forward as proposed, the 200 cfs "cap" will be met and no additional permits can be issued without the Water Resources Commission modifying its rules and adjusting the cap.

The Department maintains an accounting record of new ground water permits and associated mitigation with links between the ground water permits and their source of mitigation. Overall, for each year the program has been in place, there has been sufficient mitigation water available to meet the needs of the ground water permits issued under the program. However, there may not be sufficient supplies of mitigation water available to satisfy the mitigation needs of all currently pending ground water use requests. Additionally, there are areas of the basin where mitigation has not been available. To date, much of the mitigation water is temporary in nature (in the form of annual instream leases of existing irrigation water rights). However, the amount of permanent mitigation water available has increased steadily each year of the program.

Deschutes Group

To assist with development of this report to the Legislative Assembly, in May 2008 the Department convened the Deschutes Group, a broad range of water users and organizations with an interest in water use in the Basin. This group was convened to review the implementation and operation of the Deschutes Mitigation Program. The Group met four times over five months. The Group identified where the program was being successfully implemented and where members of the group believed the program could be modified or improved.

In the first meeting the Group generally agreed that the Deschutes Mitigation Program is working and brainstormed a list of successes including:

- Transactions are occurring OWRD has issued mitigation credits and water has been put back into the Middle Deschutes reach.
- All interests are aligned around an instream flow purpose. Everybody has to think about the river in terms of how new water rights can be acquired and what mitigation has to occur in order to provide for those new rights.
- Very few places in the West have capped consumptive use. Overall consumptive use in the Basin is neutral.
- The program has made a good strong start in achieving the goals of mitigation in the Basin. People want to keep improving it, but do not want the program eliminated or compromised.

In subsequent meetings, the Group focused their discussions on the following six issue areas:

- The zones of impact in which mitigation is provided;
- What is counted under the 200 cfs allocation cap on new ground water uses in the Deschutes Basin;
- Offset of impacts on surface water flows resulting in reduced mitigation requirements and incremental mitigation provided by municipal and quasimunicipal ground water permit holders;
- Potential water quality impacts of the Mitigation Program;
- Non-irrigation season mitigation and;
- Water right permits that were issued prior to rule adoption with a condition on their use to allow regulation to protect scenic waterway flows (called "7(j) conditioned water right permits").

Small work groups defined or "framed" these issues between meetings to provide context and background so that the Group could have an informed discussion of the issues at subsequent meetings.

The following is a brief summary of each issue area and the recommendations developed by the Group.

Zones of Impact

Issue Statement: Some stakeholders are concerned about OWRD requiring mitigation only in the "primary" zone of impact when groundwater pumping may impact more than one zone of impact.

Recommendation: Recommend that the Department improve their analytical tools to be able to better assess the zones of impact.

What is Counted Under the 200 cfs Allocation Cap

Issue Statement: A requirement to count all final orders issued under the mitigation rules (even those with zero mitigation obligation, non-consumptive, and offset) appears to be an unintended consequence of the current rules. The issue is whether zero mitigation obligation or non-consumptive uses, such as a closed loop heat exchange, or permits issued under an offset, (defined in OAR 690-505.0610 (8)) should be counted under the 200 cfs cap.

Recommendation: Water allocated under the 200 cfs cap should be restored to the cap if the amount of water use authorized in the permit or final certificate is less than the amount originally approved in the final order.

Offset and Incremental Mitigation

Issue Statement: The mitigation rules allow municipal or quasi-municipal permit holders to meet a mitigation obligation by incrementally obtaining and providing mitigation using a combination of current and future instream leases, permanent instream transfers and the purchase of mitigation credits to satisfy the required mitigation over time. However, as currently written, the incremental mitigation rules do not cross-reference the offset provision, and therefore the rules currently do not allow for the use of "offset" as part of an incremental mitigation plan.

Recommendation: The rules should be modified so that the use of an offset as defined under the current rules would not be counted under the cap.

Recommendation: Recommend that the Mitigation Rules be modified so that offsets, as defined under the current rules, can be used in an incremental mitigation plan.

Water Quality

Issue Statement: Springs and ground water inflow to surface water have an impact on water quality, including temperature. However, the current mitigation program addresses only the water quantity impacts of proposed new ground water uses. In addition, there is no current process for tracking or addressing the potential cumulative impacts on water quality of the mitigation program in combination with other programs in the basin. The key issue is whether there may be a "tipping point" where reduced spring and ground water inflow resulting from all water programs will cumulatively have a negative impact on water quality in the future.

Recommendation: No recommendation was reached by the Group on water quality; however the group did agree that more work is needed to address water quality in the context of an integrated water management plan for the Deschutes Basin. The group also agreed to continue discussions about water quality and the need for an integrated water management plan.

Non-Irrigation Season Mitigation

Issue Statement: Under the Deschutes Mitigation Rules, mitigation is calculated on the basis of the annual volume of consumptive use, rather than on a cubic foot per second basis. While the annualized volumetric approach in the rules addresses the volume of consumptive use, the rules do not address OWRD's estimate that ground water pumping impacts are uniformly distributed over all months of the year. Thus far, all mitigation water has been returned to the system during the irrigation season. While the additional flow to the system during the summer months is a positive effect, some have raised concerns about ground water pumping impacts on streamflow during the non-irrigation season.

Recommendation: While no consensus agreement could be reached, the group agreed that this issue should be addressed in a broader planning process. The group agreed to continue a dialogue about this issue beyond the forum convened for this report.

7(j) Conditioned Permits

Issue Statement: The term "7(j)" refers to a condition required by statute to be included in certain water right permits and certificates in the Deschutes Basin that were issued during the time period after Senate Bill 1033 was enacted in 1995 (amending the Scenic Waterway Act), but before the initial ground water study results were available in 1998. In the absence of technical information to determine whether a proposed use would "measurably reduce" scenic waterway flows, the statute allowed a new ground water permit to be

issued with the condition that provided the ground water use could be regulated in the future if analysis of data available after permit issuance discloses the use will measurably reduce the protected scenic waterway flows. Studies completed in 2001 show a connection between ground water and surface water and, as a result, all new ground water right permits are now required to mitigate for the impacts of their use under the rules. The issue is whether the 7(j) condition has been triggered and, if so, how it should be implemented.

Recommendation: No consensus could be reached on this issue.

Conclusions

The Deschutes Basin Ground Water Mitigation program has been successful in meeting the key goals of the program: (1) to maintain flows for the Deschutes Scenic Waterway and instream water rights; (2) to facilitate restoration of flows in the middle reach of the Deschutes River below Bend; and (3) to accommodate growth through new ground water development. Since implementation of the program, the Department has issued new ground water permits while mitigating impacts to scenic waterway flows and instream water rights. In each year that the program has been in place, sufficient mitigation has been available to meet the needs of new ground water permits. And, the amount of mitigation available, overall, has increased annually. Through mitigation, scenic waterway and instream water right flows have been maintained and, in some areas, have been improved. The benefits of the program have been significant in some areas, such as the flows restored in the Deschutes River below Bend. Overall, as a result of the program, more than 39 cubic feet per second of instream flow has been restored to the Deschutes River and its tributaries.

The mitigation program is working well but, like all regulatory programs, has room for improvement. The Deschutes Group has identified a variety of opportunities to keep improving the program through rulemaking and by making new investments in the science that guides the program.

The water management issues in the Deschutes Basin are complex – municipal, instream, irrigation, and recreation interests all have a stake in successful outcomes. The Department's mitigation program is a small but important piece of overall Basin water management. As the recommendations of the Deschutes Group demonstrate, there is significant opportunity to resolve these complex water management issues in a larger basin water management context. This will require continued commitment and effort locally and investments by the State in supporting these efforts.

1. Introduction

Background on the Deschutes Ground Water Mitigation Program

The Oregon Water Resources Commission adopted the Deschutes Ground Water Mitigation Rules (OAR Chapter 690, Division 505) and the Deschutes Basin Mitigation Bank and Mitigation Credit Rules (OAR Chapter 690, Division 521) in September 2002. The rules implement Senate Bill 1033 (1995, Legislative Assembly) codified as ORS 390.835 to provide for mitigation of impacts to scenic waterway flows and senior water rights while allowing additional qualifying appropriations of ground water within the Deschutes Ground Water Study Area (OAR 690-505-0600).

The goals of the Ground Water Mitigation Program are to:

- Maintain flows for Scenic Waterways and senior water rights, including instream water rights;
- Facilitate restoration of flows in the middle reach of the Deschutes River and related tributaries; and
- Sustain existing water uses and accommodate growth through new ground water development (OWRD, 2008).

The Mitigation Program has five basic elements:

- Requires mitigation for all new ground water permits in the Deschutes Ground Water Study Area;
- Identifies tools for providing mitigation water through either a mitigation project or by obtaining mitigation credits from an established mitigation project;
- Establishes a system of mitigation credits, which may be used to mitigate for new ground water permits;
- Provides the process to establish mitigation banks; and

• Provides for adaptive management through annual evaluations and review of the Program every five years (OWRD, 2008).

House Bill 3494 Requirements

House Bill 3494 (Chapter 669, 2005 Oregon Laws) directs the Oregon Water Resources Department (OWRD) to report to the 75th Legislative Assembly, no later than January 31, 2009, on the implementation and operation of the Deschutes River Basin Ground Water Mitigation and Mitigation Bank Programs. The 2005 act requires that the report include a summary of:

- The cumulative rate of water appropriated under all ground water permits approved in the Deschutes River Basin after the effective date of the 2005 act;
- The volume of water, in acre-feet, provided for mitigation; and
- The measured stream flow of the Deschutes River and its major tributaries.

The report may also include information on the progress on restoring streamflows in the Deschutes River Basin to support anadromous fish and any statutory changes needed to accomplish needed streamflow restoration.

Deschutes Group

To assist with development of the report, in May 2008 the Department convened the Deschutes Group (Group), a broad range of water users and organizations with on-the-ground experience and an interest in water use in the Basin. This group was convened to review the implementation and operation of the Deschutes River Basin Ground Water Mitigation and Mitigation Bank Programs (Program). This review included identifying and discussing successful elements of the existing Program, opportunities to improve the Program in the future, and legislative or rule changes necessary to implement these improvements. Prior to the first meeting of the Group, interviews were conducted with each participant to gather a range of perspectives about the Program. The summary of these premeeting interviews is located in Appendix A.

The Group met four times over five months. In addition, subcommittees met between meetings to "frame" issues for discussion with the broader Group at each meeting. Approved agendas for each of the four meetings are located in Appendix B, and approved summaries of each of the meetings are located in Appendix C. This report provides a synthesis of the work and recommendations of the Deschutes Group. On December 10, 2008, the Department also hosted a public meeting in Bend to present the results of the draft report.

Deschutes Group members included:

- Robert Brunoe, The Confederated Tribes of the Warm Springs Reservation of Oregon;
- Tod Heisler, Deschutes River Conservancy;
- Steve Johnson, Central Oregon Irrigation District;
- Rick Kepler, Oregon Department of Fish and Wildlife;
- Michelle McSwain, U.S. Bureau of Land Management, Prineville District Office;
- Martha Pagel, Schwabe, Williamson, Wyatt;
- Kimberley Priestley, WaterWatch of Oregon;
- John Short, Deschutes Irrigation LLC;
- Adam Sussman, GSI Water Solutions, Inc.; and
- Jan Wick, Avion Water Company

In addition to the participants listed above, two alternates were appointed to the Deschutes Group: Jan Houck (Oregon Parks & Recreation Department) as an alternate for Rick Kepler, and Patrick Griffiths (City of Bend) as an alternate for Adam Sussman. OWRD representatives Debbie Colbert and Kyle Gorman also participated in the Deschutes

Group meetings that were facilitated by Paul Hoobyar and Joanne Richter of Watershed Professionals Network (WPN).

2. Program Implementation and Operation

In addition to the data provided in this section, the WRC is required to evaluate the effectiveness of the Deschutes Mitigation Program every five years. Results from the most recent evaluation which was completed in February 2008 are available at:

http://www1.wrd.state.or.us/pdfs/Deschutes_Mitigation_5_Year_Review_Final_R eport.pdf

Cumulative Rate of Water Appropriated in the Basin

Since adoption of the rules in September 2002, 67 new ground water permits with associated mitigation have been issued, totaling 52 cubic feet per second (cfs) of water (Figure 1). The quantity of water allocated to new permits and requested for new uses have been predominantly for municipal and quasimunicipal uses (Figure 2). The majority of permits, however, have been for irrigation use.

Figure 1. Cumulative amount of water issued under new ground water permits by year.

Figure 2. Quantity of water requested or permitted by type of use through September 2008.

Volume of Water Provided for Mitigation

The Department maintains an accounting record of new ground water permits and mitigation projects and mitigation credits with links between the ground water permits and their associated source of mitigation. Figure 3 shows the amount of mitigation available and the amount of mitigation used each year. Overall, there has been sufficient mitigation to meet the needs of ground water permits issued under the program.

While the program overall has had sufficient mitigation water for the permits issued, much of the mitigation is temporary in nature (in the form of annual instream leases of existing irrigation water right). Moreover, there are areas of the basin where mitigation has not been available or where there may not be sufficient supplies of mitigation to satisfy the mitigation needs of all currently

pending ground water use requests. As shown in Figure 4 below, the Metolius River zone of impact has no mitigation available, and to date no mitigation projects have been proposed in this zone. In addition, in the Upper Deschutes, Little Deschutes, Crooked River, and Whychus Creek zones of impact the amount of mitigation needed for pending ground water applications exceeds the amount of mitigation water presently available in each of these zones. The source of mitigation currently available in these zones is predominately through temporary mitigation (as described above) with no permanent mitigation presently available, except some in the Crooked River zone of impact. However, in each year that the program has been in place, the amount of mitigation water made available has generally increased.

Figure 4. Mitigation credits remaining by zone of impact for 2007.

Sources of mitigation water have been primarily through conversion of existing irrigation rights to instream use through permanent instream transfers and instream leases. As shown in Figure 5, mitigation water has been largely provided through short term instream leases. However, the amount of permanent water provided through instream transfers has been steadily increasing each year.

Figure 5. Distribution of mitigation water between instream leases and instream transfers with acre-feet and percent for each type shown.

Summary of Measured Stream Flow in the Deschutes River and Its Major Tributaries

OWRD and the U.S. Geological Survey operate 61 stream, canal, and reservoir gages in the Deschutes Basin. All but eight of those stations are within the Deschutes Ground Water Study Area. Tables of mean monthly flow in cubic feet per second for ten key stations are included in Appendix D. These key stations represent the flow of the Deschutes River and its major tributaries within the study area.

OWRD primarily uses a database and streamflow model to monitor the effectiveness of the mitigation program. Because of annual weather cycles, changes in climatic conditions, and other variables, measured streamflow data does not provide sufficient information on how the system is responding in the short period of time the program has been in place. It is not possible to correct real-time data for effects of year–to-year changes in weather (or other variables) with sufficient accuracy. In addition, it may be years before the effects of mitigation activities and ground water use reach equilibrium. For example, in

many cases mitigation water is provided years ahead of consumptive use being initiated. Because of the system variability streamflow records will not be able to detect changes due to mitigation activities. The exception is the Deschutes River below Bend where a combination of mitigation, conservation, and flow restoration, and changes in water management are detectable (Figure 6).

Mitigation Effects on Stream Flow below Bend

Figure 6. Historical median flows (base period flows) and mitigated streamflow in cubic feet per second on the Deschutes River below Bend compared to instream requirements.

To mathematically estimate impact of new ground water permits and mitigation on scenic waterway flow and instream water rights, OWRD developed a model using historic streamflow data. The model calculates the effects of new permitted ground water use and mitigation projects on streamflows. Table 1 shows a summary of the model results through mid-2007 for all gaging stations used in the model. Monthly calculations for these stations are reported in Appendix E. With only one exception, on an annual basis, it is calculated that instream requirements were met or improved compared to baseline conditions (base period from 1966 to 1995).

Table 1. Modeled results showing baseline and changes in the percent of time instream requirements are met. The annual changes in streamflow are based on mitigation water and new ground water permits issued under the mitigation program.

Gage Site	Base Line % Time Instream Requirements are met	Change in Percent of Time Instream Requirements are Met	Annual change in streamflow (cfs)
Deschutes River at Mouth	96.2	+0.02	1.17
Deschutes River below Pelton Dam	69.3	+0.59	1.17
Deschutes River Downstream of Bend	28.6	-0.36	15.2
Deschutes River Upstream of Bend	22.7	+2.34	27.3
Little Deschutes River at mouth	45.3	+3.55	8.74
Deschutes River below Fall River	63.5	0	0
Deschutes River below Wickiup	58.7	0	0
Metolius River at Lake Billy Chinook	99.7	0	0

3. Progress on Restoring Streamflows to Support Anadromous Fish

Anadromous Fish Reintroduction

An evaluation of streamflow restoration in the Deschutes Basin to support anadromous fish is not available at this time. Recent efforts have been focused on fish passage and reintroduction of anadromous fish to streams they once inhabited above the Pelton Round-Butte Hydroelectric Project (PRB). The Deschutes River Basin above Pelton Round-Butte was once home to native runs of summer steelhead, Chinook salmon, sockeye salmon, and Pacific lamprey. Efforts were made to provide fish passage and sustain the upper basin's salmon and summer steelhead runs when the hydroelectric project was constructed, but the efforts failed and were abandoned in 1969. There has long been an interest in reestablishing anadromous fish runs in the upper Deschutes River subbasin. The relicensing of PRB provided the opportunity to implement recent technological innovations in order to attempt to reestablish anadromous fish runs upstream. The Federal Energy Regulatory Commission (FERC) license includes mandatory conditions from the U.S. Fish and Wildlife Service ("USFWS") and the National Marine Fisheries Service ("NOAA Fisheries") to implement a fish passage plan to reinitiate fish passage through PRB.

In conjunction with these efforts, in 2008, Oregon Department of Fish and Wildlife and the Confederated Tribes of the Warm Springs Reservation published the "Reintroduction and Conservation Plan for Anadromous Fish In the Upper Deschutes River Sub-basin, Oregon." This Reintroduction Plan is intended to contribute to a successful reintroduction effort by identifying key fish management issues and how they will be resolved in an adaptive fashion. It discusses species and stocks to be reintroduced to areas above PRB where these species had originally inhabited, and provides general guidance on methods, release locations, numbers, timing, and adjustments in hatchery supplementation as populations become re-established. The goal of reintroduction is to restore self-sustaining and harvestable populations of native summer steelhead, Chinook salmon, and sockeye salmon in areas where they had originally inhabited in the Deschutes River and its tributaries upstream from PRB, and to reconnect native resident fish populations that are currently fragmented by PRB.

These reintroduction efforts are well underway with releases of steelhead fry in both 2007 and 2008 and chinook in 2008. Increased releases of fry as well as smolts are planned for spring 2009. The new selective water withdrawal and fish

collection facility are scheduled to be completed and operational by May 2009. Full scale monitoring and evaluation of these facilities will likely take place in the spring of 2010. The earliest returns of adults expected at the Pelton trap and potentially being transported upstream would be 2011, but most likely 2012. Adults known to originate from upper basin releases will only be passed upstream once the 50% reservoir passage efficiency is met.

In addition to these efforts, the Deschutes Basin Board of Control (DBBC), Confederated Tribes of Warm Springs (CTWS), and others have been scoping a proposed multi-species Habitat Conservation Plan (HCP). They are currently trying to secure additional funds through US Fish and Wildlife Service and Congress to move forward with the next steps. Draft forms of the HCP are scheduled to be completed by 2011/2012 with the final HCP approved and released in 2014.

Efforts to Improve Streamflows

Over the past decade many organizations and agencies have been working in the Deschutes River Basin to restore natural stream flows and to improve water quality and aquatic habitat in the river and its main tributaries. As part of this ongoing work, the Deschutes Water Alliance (DWA) was formed in 2004 by the Deschutes River Conservancy (DRC), the Deschutes Basin Board of Control (DBBC; an association of irrigation districts), the Confederated Tribes of Warm Springs (CTWS), and the Central Oregon Cities Organization (COCO). The DWA's mission has three elements:

- Move stream flows toward a more natural hydrograph while securing and maintaining improved instream flows and water quality to support fish and wildlife;
- Secure and maintain a reliable and affordable supply of water to sustain agriculture in the Basin; and

• Secure a safe, affordable, and high quality water supply for urban communities (DWA, 2006).

In addition, the DRC, the Upper Deschutes Watershed Council (UDWC), the Crooked River Watershed Council (CRWC), and the Deschutes Land Trust (DLT) have created a strategic alliance to implement projects in the Middle Deschutes River, Metolius River, Lower Crooked River, and Whychus Creek to improve instream flows, water quality, and aquatic, riparian and upland habitat in these key subbasins where anadromous fish are being reintroduced. These collaborative efforts will take many years to implement, but ultimately will lead to healthier ecosystems and anadromous fish populations in the Basin.

4. Deschutes Group Results

The following is a summary of discussions and outcomes from each of the four meetings of the Deschutes Group held in July, September, October and November, 2008. The approved agendas from each of these meetings can be found in Appendix B, and the approved meeting summaries can be found in Appendix C of this report. Issue framing papers developed by Group subcommittees are included in the body of this report; attachments to issue framing papers are either provided in Appendix E or available on the OWRD website at www.wrd.state.or.us. The following description reflects the range of comments and perspectives shared by Group members at each meeting.

Successful Elements of the Ground Water Mitigation Program as Identified by the Deschutes Group

Below is a summary of what Deschutes Group members identified as the successful elements of the Ground Water Mitigation Program. These are comments captured during the meetings:

 Transactions are occurring – OWRD has issued credits and water has been put back into the Middle Deschutes reach.

- Cities support having the regulatory program because it provides definitions and sideboards.
- The program has allowed municipalities and quasi-municipalities to mitigate incrementally, which has been very helpful.
- All interests are aligned around an instream flow purpose. Everybody has to think about the river in terms of how new water rights can be acquired and what mitigation has to occur in order to provide for those new rights.
- The program has helped educate the public about water issues in the Basin. Everybody is more knowledgeable about this water issue.
- The program has helped create a roadmap for the mitigation process, which is useful to all water users.
- The program provides a pilot project and creative solutions for water management in other basins (though concerns were expressed that details of the program may not be transferrable and only the concept and approach may be transferable).
- Using instream leases as a bridge to permanent mitigation is working well.
- Instream leasing can provide a stable source of mitigation credits, but we need to be cautious to not rely too much on temporary leases.
- OWRD can track transactions well (in terms of what mitigation is occurring and where the uses are located).
- OWRD has started doing a more robust review of the applications (making sure speculation is not happening).
- There are now market-based (market pricing, supply and demand oriented) solutions in the basin, and the market can respond quickly to changes.
- Very few places in the West have capped consumptive use. Overall consumptive use in the Basin is neutral.
- There is more water instream in the Middle Deschutes River in the summertime.
- The water banks and mitigation credits are linked with flows.

• The program has made a good strong start in achieving the goals of mitigation in the Basin. People want to keep improving it, but don't want the program eliminated or compromised.

Primary Issues of Concern as Identified by the Deschutes Group

At their first meeting the Deschutes Group discussed key issues of concern about the implementation and operation of the Program, as well as bigger picture water issues in the Deschutes Basin.

The Deschutes Group brainstormed the following list of opportunities to improve the program:

- How applications are "counted" under the 200 cfs allocation cap ;
- Zones of impact determination;
- Non-irrigation season mitigation;
- 7(j) conditioned ground water rights;
- Need to improve analytical monitoring tools used by the Program;
- Program sunset dates;
- Net consumptive use in the basin;
- Need to shorten the length of time to process new ground water and mitigation project applications;
- Need to evaluate how transferable the program is;
- Need for monthly accounting of instream flows to be part of any report or analysis of the Program;
- The changing environment of the program;
- Location of mitigation (where water is actually transferred back instream);
- The need to address or develop ways to extend or improve alternative mitigation options;
- Limitations due to mitigation water not being available in all areas.

OWRD staff and Deschutes Group members also brainstormed the following "big picture" water issues in the basin:

- Water quality impacts including potential impacts to springs;
- Other basin efforts such as the ongoing Habitat Conservation Planning (HCP) process;
- Broader restoration efforts and actions;
- Need to investigate ground water (aquifer) declines in certain areas in the basin;
- Need to determine net consumptive use in the basin;
- Understanding the impact of exempt wells;
- Winter flow restoration efforts and opportunities;
- Need to evaluate the sustainability of the Deschutes Water Alliance (DWA) Water Bank.

From the issues that the Group brainstormed above, the Group focused their discussions on the following six issue areas:

- The zones of impact in which mitigation is provided;
- What is counted under the 200 cfs allocation cap on new ground water uses in the Deschutes Basin;
- Offset of impacts on surface water flows resulting in reduced mitigation requirements and incremental mitigation provided by municipal and quasimunicipal ground water permit holders;
- Potential water quality impacts of the mitigation program;
- Non-irrigation season mitigation and;
- Water right permits that were issued prior to rule adoption with a condition on their use to allow regulation to protect scenic waterway flows (called "7(j) conditioned water right permits").

Small work groups defined or "framed" these issues between meetings to provide context and background so that the Group could have an informed discussion of

the issues at subsequent meetings. The remaining issues were not discussed further by the Group because of time constraints for reporting on the program.

The following sections on each focus issue are organized with a statement of the issue; recommendations agreed upon by the Group that address some aspect of the issue; the issue framing paper developed by the small work groups; and the range of discussion by the Group on each focus issue. Not all discussion points raised in the issue framing papers were discussed by the Group.

Zones of Impact

Issue Statement: Some stakeholders are concerned about the Department requiring mitigation only in the "primary" zone of impact when ground water pumping may impact more than one zone of impact.

Recommendation #1: Recommend that the Department improve their analytical tools to be able to better assess the zones of impact.

Issue Framing Paper

Background

The Deschutes Mitigation Rules adopted by the WRC require mitigation be provided within the zone of impact identified by the Department. The rules divide the required location of mitigation into two areas – (1) those in general zone and (2) those in local zones. The concept is that those in the general zone are developing water in the "regional aquifer" and their potential groundwater pumping impacts would be on the regional confluence areas of the Deschutes, Crooked and Metolius Rivers, hence they need only provide mitigation anywhere above the Madras gage on the Lower Deschutes River. For those wells determined by the Department to have a localized impact on surface water, mitigation must be provided in the local zone of impact. The local zones are

generally described by rule as anywhere within the impacted subbasin of the Deschutes River as identified by the Department. The initial local zones of impact identified by the Department were the Middle Deschutes, Crooked River, Whychus Creek, Upper Deschutes River, Little Deschutes River, and Metolius River.

In its determination of local zones of impact, the Department considered subbasin boundaries, locations where instream water rights or scenic waterway flows were not being met, general ground water flow information, and other hydrogeologic information, including identification of where stream reaches were influenced by groundwater discharge.

Once the local zones were identified, the Department pinpointed the lower boundary within each local zone by one of two means: (1) the lower boundary of the zone being located below the lowest groundwater discharge area, and (2) the lower boundary of the zone being within the groundwater discharge area where instream requirements are not met above that point (http://www1.wrd.state.or.us/pdfs/Deschutes_Mitigation_5_Year_Review_Final_ Report.pdf: see page 20 of 5-year evaluation report).

The rules require the Commission to review the general zones of impact identified by the Department every five years.

Issue Framing

Issues raised by stakeholders about the zones of impact, as they relate to the implementation and operation of the mitigation program, are described below. A. Primary/Secondary Impact: This issue is highlighted in the October 31, 2007 letter from Director Ward (see Appendix E1). In short, some stakeholders have raised concerns with regards to the Department requiring mitigation only in the "primary" zone of impact when groundwater pumping may impact more than one zone of impact. This issue may raise the following discussion points.

- Is OWRD's approach to the primary/secondary impact issue consistent with its rules?
- What is the extent of the primary/secondary issue? (i.e. how many applications have been approved/are in the queue that may impact more than one zone of impact? How does the OWRD determine the primary zone of impact when there may be more than one zone?
- What are the implications for senior surface water rights and scenic waterway flows on any "secondary impact" streams?
- Is OWRD's current approach a problem?
- What is being done/can be done to monitor potential primary/secondary impacts?
- What can or should be done?
- Does the available information and scale of the program lend itself to a primary/secondary impact approach?
- Would a more detailed approach (multiple zones of impact) lend itself to a program that can be administered by OWRD?
- What are the implications of a primary/secondary approach?

B. Location of Mitigation Within a Local Zone: Again, focusing on location of impact vs. mitigation, some stakeholders would like more information regarding the potential impact from groundwater pumping vs. the location of mitigation being provided within a local zone. This issue may raise the following discussion points.

- Is mitigation being provided at or above the point of impact?
- Does the Department track, on a case-by-case basis how mitigation and potential impact match-up in the local zones as it indicated it could in a 2003 monitoring plan provided to the Commission?
- Can this issue be monitored for future review?
- Do changes need to be made?
- Should the Department refine the local zones of impact? (i.e. Tumalo Creek, Indian Ford Creek)

- What are the implications of a different approach?
- How is the program working for local impacts on tributaries within a local zone? (i.e. Indian Ford Creek and Tumalo Creek)
- Is the Department undertaking identical injury determinations for senior consumptive and instream water rights?

C. Availability of Mitigation: As described in the Department's 5-year review report, not all zones of impact have mitigation water available and some that do may only have limited amounts of year-to-year temporary mitigation. Stakeholders have raised concerns about the "lumpy" supply of mitigation in some zones and the lack of mitigation altogether in others. This issue may raise the following discussion points.

- What are the implications for the program if mitigation is not available in a particular zone?
- Are there ways to facilitate the development of mitigation where no or little mitigation is available today?
- What are the implications of the Fort Vannoy case on the availability of mitigation, if any?
- Others?

Discussion

The following represents the range of perspectives discussed by the Group on this focus issue. OWRD staff explained that the Department currently identifies only one zone of impact based on where most of the impact will occur using the Department's conceptual understanding of the ground water flow system (based on the USGS-OWRD Deschutes Basin Ground Water Study) and well construction information provided by the applicant (e.g., well depth, water table elevation). This information is then assessed in relation to regional ground water flow direction, areas of ground water discharge, and the proximity of the proposed well to those discharge zones. The Department's ground water permit review involves three separate findings: under Oregon Administrative Rules (OAR) Division 690-08, Division 690-09, and the Scenic Waterway. The Division 8 (groundwater availability) and Division 9 (groundwater / surface water interference) findings are recorded on a form called the "Public Interest Review for Ground Water Applications." Staff may identify specific stream reaches that would likely be impacted by the proposed ground water use on this form. Those stream reaches may or may not be in another "zone of impact". A "zone of impact" finding is strictly related to a scenic waterway review in the upper Deschutes Basin.

When the Department was moving forward with implementing the program, considerable thought focused on how to balance using the best information without making the review and process so complex as to overwhelm staff and applicants. The Department subsequently chose to use the conceptual approach instead of the regional flow model to make zone of impact findings in order to achieve a balance between the needed information and staff/applicant resources and capacities.

The Group raised questions about how precise / accurate the Department's conceptual approach is, and what physical (scientific) factors such as well depth and geology may influence the zone of impact decisions. Improving the analytical tools used by the Department to determine zones of impact, so that the best possible analysis can be made, was also discussed. The Group reached consensus agreement on this issue (see Recommendation #1 above).

Discussion of Splitting Zones of Impact

The Group discussed whether the Department should consider splitting zones of impact (and require mitigation in more than one zone) if their analysis shows significant impacts in more than one zone. Department staff clarified that in some cases the Department may be able to identify impacts in more than one zone. However, splitting by zone using the numerical model would be constrained by

available staff resources and model uncertainty. Other group members also stated that because of its limitations, the existing model should not be used to determine quantitative splits of impacts into more than one zone. Other participants said that if the analytical tools could be improved, that it would be good to split out impacts into multiple zones. Another suggestion was to split impacts and mitigate in multiple zones if the analytical tools allow for this, subject to the availability of mitigation credits. Others did not like this suggestion that requiring mitigation in more than one zone would be subject to availability.

No consensus was reached on the proposal

Discussion of Unavailability of Mitigation in Some Areas

The Group discussed the lack of availability of mitigation water in all zones of impact. Participants pointed out that there is a perception that because the Program is in place, mitigation credits are available in every zone of impact. However, the general public and elected officials do not appear to understand that certain areas in the Basin currently have no known source of mitigation. The Group discussed whether the Department should identify those areas in the Basin where no mitigation is currently available so as to raise awareness, to educate and inform communities, and create better understanding of the issue. Discussion noted that the intent of the proposal was to inform the Legislature that the Program cannot function in certain areas in the Basin because no mitigation is available in certain zones.

The Group agreed on the need to clarify in this report that mitigation is not currently available in all zones.

Discussion of Proposal to Look for Alternatives if No Mitigation Water is Available Another suggestion discussed by the Group was whether alternative forms of mitigation should be considered if no mitigation water is available in a zone as long as flows are not impaired. Some suggested that there needs to be a

reasonable approach to determine if there are any other creative options to enhance flows that could be applied in those zones where permanent mitigation is not available. Others did not support this idea because it represented a fundamental change in the Program that currently takes a "bucket for bucket" approach to mitigation.

No consensus was reached on this proposal.

What is Counted Under the 200 cfs Cap

Issue Statement: A requirement to count all final orders issued under the mitigation rules (even zero mitigation obligation, non-consumptive, and offset) appears to be an unintended consequence of the current rules. The issue is whether zero mitigation obligation or non-consumptive uses, such as a closed loop heat exchange, or permits issued under an offset, should be counted under the 200 cfs cap.

Recommendation #2: Water allocated under the 200 cfs cap should be restored to the cap if the amount of water use authorized in the permit or final certificate is less than the amount originally approved in the final order.

Issue Framing Paper

Background

The Deschutes Mitigation Rules adopted by the WRC established a 200 cfs cap under OAR 690-505-0500(1). The purpose of the cap was to establish a check-in point for the Commission to evaluate the mitigation program and rules. The cap rule reads as follows:

(1) Except for a cumulative total of 200 cubic feet per second (cfs) maximum rate for final orders approving ground water permit applications issued after the effective date of these rules, ground water in the Deschutes Ground Water Study Area is closed to further appropriation.

The Department's interpretation of this rule is that it applies to <u>all</u> groundwater permits issued in the Study Area – even those that are for a non-consumptive use or those that might be using the offset provision under OAR 690-505-0610(8). The offset provision reads as follows:

(8) Notwithstanding section (1) of this rule, if the impact of use under a ground water permit application is completely offset by a proposed voluntary cancellation of an existing ground water use subject to transfer, such that impact on surface waters from the new ground water use is the same as, or less than, impact on surface waters from the existing ground water use subject to transfer, the ground water permit application may be approved without additional mitigation once the proposed voluntary cancellation is complete.

Issue Framing

A requirement to count all permits issued under the mitigation rules (even nonconsumptive or offset) appears to be an unintended result. The specific issue here is whether it makes sense to count non-consumptive uses, such as a closed loop heat exchange, or permits issued under an offset against the cap, and if not how can this be remedied?

According to the Department, to date, only one non-consumptive use permit for 0.22 cfs (heat exchange) has been issued. However, in the queue under the 200 cfs cap there is a pending permit for 15 cfs by Three Sisters Irrigation District for non-consumptive flow augmentation as part of a surface water/groundwater exchange.

According to the Department, to date, no permits have been issued under the offset provision; however, one application in the queue is proposing a small amount of offset. In addition, applications in the queue where mitigation is not readily available (Crooked and Little Deschutes Zones of Impact for example) may ultimately use the offset provision when it is time to respond to the mitigation obligation calculated by OWRD.

Additional issues/questions as they relate to the implementation and operation of the mitigation program are described below.

- Does it make sense to have the cap based on rate (cfs) when the mitigation program is based on annual volume of consumptive use? This is particularly true for large rate permits with small volume authorizations.
- How does the offset provision get incorporated into the opportunity for municipal and quasi-municipal water providers to provide incremental mitigation?

Discussion

The Department's interpretation of the cap rule is that it applies to all final orders approving ground water permit applications issued in the Study Area – even those that are for a non-consumptive use, or those that might be using the offset provision under OAR 690-505-0610(8). The offset provision allows for a ground water use to be "completely offset by a proposed voluntary cancellation of an existing ground water use" so that the impact on stream flows from the new ground water use is the same, or less, than the impact on stream flows from the existing ground water use. See focus issue "Offset and Incremental Mitigation" section below.

Discussion of Non-consumptive Uses under the Cap

The Group discussed whether non-consumptive uses that have no mitigation obligation should be counted under the 200 cfs cap. Specifically, the group considered the following proposal: *If a final order for a new ground water application has no mitigation obligation, it should not be counted under the 200 cfs cap.* Some were concerned that non-consumptive uses could have an impact on stream flows in the non-irrigation season. Members noted that details regarding this proposal would likely be resolved during the rule making process, if the Department chose to bring this proposal forward.

The Group agreed in concept that those uses with zero mitigation obligation should not be counted under the 200 cfs cap. However, the Group could not agree on the types of uses that would fall in this category.

The Group also discussed whether offset provisions and incremental mitigation used by municipal and quasi-municipal water purveyors to meet their long-term water supply commitments should be counted under the 200 cfs cap. Certain members felt that the rules need to be modified to clarify that offset can be used in an incremental mitigation plan (see "Offset and Incremental Mitigation" section below).

Discussion of Rate versus Volume

The Group discussed whether it made sense to base the cap on rate (cubic feet per second) versus volume (acre-feet) of water used. Members of the Group had varying opinions about this issue. A number supported the change, while others expressed concern about making decisions based on flows that are averaged over the water year (annualized volumes). Some expressed concern that flows in the Deschutes River vary considerably over the year, and others expressed concerns that low flows are getting lower in the river. Concern was also expressed that the Program may ultimately result in less flow in the winter because instream transfers do not occur outside of the irrigation season.

No consensus was reached on this topic.

Discussion of Cap based on Final Orders or Applications

A final question addressed by the group was whether the 200 cfs cap should be based on final orders that are not developed or fully developed by the applicant. The Group reached consensus agreement on this issue (see Recommendation #2 above).

Offset and Incremental Mitigation

Issue Statement: The mitigation rules allow municipal or quasi-municipal permit holders to meet a mitigation obligation by incrementally obtaining and providing mitigation using a combination of current and future instream leases, permanent instream transfers, and the purchase of mitigation credits to satisfy the required mitigation over time. However, as currently written, the incremental mitigation rules do not cross-reference the offset provision, and therefore the rules currently do not allow for the use of "offset" as part of an incremental mitigation plan.

Recommendation #3:	The rules should be modified so that the use of an
	offset, as defined under the current rules, should
	not be counted under the cap.
Recommendation #4:	Recommend that the Mitigation Rules be modified s

ecommendation #4: Recommend that the Mitigation Rules be modified so that offsets, as defined under the current rules, can be used in an incremental mitigation plan.

Issue Framing Paper

Introduction

At its September 5, 2008 meeting the HB 3494 work group discussed the "offset" provision under OAR 690-505-0610(8) and whether the offset rate included in the associated permit should be counted under the 200 cfs cap. There appears to

be consensus that the associated permit rate should not be considered under the cap. There was also a brief discussion regarding the use of the offset provision in the context of incremental mitigation by a municipal or quasi-municipal water provider. This memorandum provides some additional background on these two topics.

Background

A. Offset Provision: If additional water supply is needed, a good option (in lieu of obtaining a new water right permit) may be the transfer of an existing water right. However, such a transfer may not be feasible or the amount of water in the transfer may only be a portion of what is needed for a new water supply. To provide for additional flexibility in addressing impact from "new" groundwater use, the Department incorporated the "offset" provision into the mitigation rules at OAR 690-505-0610(8).

(8) Notwithstanding section (1) of this rule, if the impact of use under a ground water permit application is completely offset by a proposed voluntary cancellation of an existing ground water use subject to transfer, such that impact on surface waters from the new ground water use is the same as, or less than, impact on surface waters from the existing ground water use subject to transfer, the ground water permit application may be approved without additional mitigation once the proposed voluntary cancellation is complete.

The following example describes how this provision could be used. Two distinct wells (A and B) appropriate water from different sources (aquifers), such as an alluvial aquifer and a basalt aquifer, but still have the same zone of impact designation. The water right at well A cannot be transferred to well B because the Department would determine such a transfer is a change in the source of water and is prohibited. However, under the offset provision, it may be possible to voluntarily cancel the water right at well A and use this offset to obtain a "new"
permit at well B for the amount of water previously authorized at well A. Of course, such a transaction must be deemed by the Department to meet the rule requirements. This example and other uses of the offset provision provided needed flexibility, especially where mitigation is not readily available.

B. Incremental Mitigation and Offset: The mitigation rules at OAR 690-505-0625 allow municipal or quasi-municipal permit holders to meet a mitigation obligation by incrementally obtaining and providing mitigation. Under the incremental mitigation rule, the mitigation provided must meet specific criteria outlined in OAR 690-505-0610(2)-(5). Typically, an incremental mitigation plan describes how a combination of current and future instream leases, permanent instream transfers and the purchase of mitigation credits will satisfy the required mitigation over time.

Unfortunately, as written, the incremental mitigation rules do not cross-reference the offset provision, and the Department has preliminarily indicated that the incremental mitigation rules do not allow for the use of "offset" as part of an incremental mitigation plan. This means that the offset provision is only available for use (one time) at the time of permit application processing.

Municipal and quasi-municipal water providers are authorized to develop their permits over long periods of time. Incremental mitigation provides needed flexibility; however, the current rules do not appear to provide a way to include future offset opportunities into the water providers' long-term plan for mitigation and permit development

Issues/Options:

• Should the incremental mitigation rules be modified to allow offset as part of an incremental mitigation plan?

Discussion

The Group discussed whether the use of an offset in an incremental mitigation plan should be counted under the cap. It was clarified that there are limits to transferability and that the offset provision only applies to ground water permits. The Group reached consensus agreement on this issue (see Recommendation #3 above). Clarification was also provided that if an offset was used by a water provider as incremental mitigation later in time, it would be subtracted from the cap at that later date. OWRD staff also clarified that the Department would not rebate the offset until there was voluntary cancellation of the water right proposed as the offset. The Group reached consensus agreement on this issue (see Recommendation #4 above).

Water Quality

Issue Statement: Springs and ground water have an impact on water quality, including temperature; however, the current mitigation program addresses only the water quantity impacts of proposed new ground water uses. In addition, there is no current process for tracking or addressing the potential cumulative impacts on water quality of the mitigation program in combination with other programs in the basin. The key issue is whether there may be a "tipping point" where reduced spring and ground water inflow resulting from all water programs will cumulatively have a negative impact on water quality in the future.

Issue Framing Paper

Framework

- Potential impacts to water quality including temperature as a result of reduced spring and groundwater flow, are not considered in the Mitigation Program.
- Currently, there is no data that illustrates the effects of reduced spring and groundwater flow on water quality. However, water quality data collected by the ODEQ and BLM in the Middle Deschutes River, Lower Crooked

River, and Whychus Cr. indicate that springs and groundwater inflow to these streams reduce water temperature and change chemical constituents in the rivers and creek.

- Other water programs operating in the basin, such as the Conserved Water Program that allows for lining and piping of canals, could also contribute to water quality impacts due to diminishment of groundwater discharge at springs.
- Currently, there is no coordinated mechanism for tracking potential impacts to water quality as a result of reduced inflow from groundwater discharges and springs due to new groundwater development and other water management programs.
- Although the current Mitigation Program may provide some water quality benefits by improving stream flows in severely impaired areas such as the Middle Deschutes River, there may be a "tipping point" where reduced spring and groundwater inflow resulting from all water programs will cumulatively have a negative impact on water quality in the future.
- More information is needed to identify whether or when such a "tipping point" will be reached, and how potentially negative impacts can be averted.

<u>Issues</u>

- There is a need to better understand the contributions of the springs and groundwater to water quality of the river, and how the chemical make-up and temperature of those sources affect aquatic life and other resource values.
- There is a need to better understand what level of development is acceptable and at what level of reduced spring and groundwater inflow will result in reduced water quality in the Deschutes River and tributaries, including the Lower Crooked River.

- The OWRD and partner agencies should construct and maintain a broader evaluation of how the different water programs, not just the Mitigation Program, affects groundwater and spring flows to the streams.
- Explore the possibility of using the USGS groundwater model to estimate changes to key chemical constituents and water temperature from springs and groundwater sources.
- Consider options for funding from a variety of sources -- for spring and groundwater studies, including the broader evaluation by OWRD of impacts to springs and groundwater flows resulting from implementing all water programs (i.e. Mitigation Program, conserved water program, etc.).
- Consider allowing applicants to satisfy part of their mitigation obligation through cash contributions or projects to address water quality.

Discussion

The group discussed potential water quality impacts related to implementation of the Program. It was generally agreed that more time, money and technical expertise is needed to better understand the Program's potential impact on water quality. It appears that spring inputs into the Middle Deschutes and Crooked Rivers are important, but not enough is known about the implications of this or how it relates to the Mitigation Program. Several Group members noted that the science needed to analyze effects on spring inputs is beyond the scope of the Program, and outside of the Department's general area of expertise. Others noted that the Program is not set up to solve this question, but that the Department could help leverage a better understanding of the issue by seeking funding to engage with other partner agencies in the Basin to look more closely at water quality issues.

It was also suggested that the USGS model could be used in a different capacity to help analyze the Program's impacts on water quality. In addition, the other activities in the basin that have effects on local ground water recharge (i.e. canal lining, piping, and other conservation measures) have an impact on springs.

40

Further and more robust analysis to determine the causal relationships are outside of the scope of this review.

Another area of discussion concerned the apparent disconnect between the Program and other water quality issues related to the Clean Water Act such as 303(d) listings and the pending TMDL(s) for the Deschutes Basin. These need to be connected with other issues related to Program implementation.

It was also discussed that the current Program is not set up to address water quality issues in the Basin because it is regulatory / statutory by design and not conducive to taking a bigger picture look. However, the Group could recommend funding for a bigger picture scientific look at water quality to better understand water quality impacts. Several Group members agreed that the State needs to take a comprehensive look at the issues and begin to address impacts that are occurring in the streams today. Several Group members agreed that a comprehensive water management plan needs to be developed to better understand bigger picture water quality and water quantity issues in the Basin, including those related to the Clean Water Act. The Program could be left as it is, but integrated into this bigger picture of water management analysis.

No recommendation was reached by the Group on water quality. However, the group agreed that more work is needed to address water quality in the context of a water management plan for the Basin. The group also agreed to continue discussions about water quality and the need for an integrated water management plan.

A separate but related discussion took place around the limitations of the Mitigation Program in addressing the bigger picture of restoration needs in the Basin. Each mitigation request does not necessarily relate to bigger picture issues, but it may be possible to use the Program to fund bigger restoration efforts in the Basin using existing mechanisms like the Deschutes Water Alliance (DWA). Some members suggested that cash contributions to fund larger restoration efforts could possibly be set aside as part of the mitigation obligation. However, several members of the Group were not comfortable with the notion of cash contributions in lieu of flow mitigation and no agreement could be reached on this issue.

Non-Irrigation Season Mitigation

Issue Statement: Under the Deschutes Mitigation Rules, mitigation is calculated on the basis of the annual volume of consumptive use, rather than on a cubic foot per second basis. While the annualized volumetric approach in the rules addresses the volume of consumptive use, the rules do not address the OWRD's estimate that ground water pumping impacts are uniformly distributed over all months of the year. Thus far, all mitigation water has been returned to the system during the irrigation season. While the additional flow to the system during the summer months is a positive effect, some have raised concerns about ground water pumping impacts on streamflow during the non-irrigation season.

Issue Framing Paper

Background

The Scenic Waterway Act prohibits issuance of new ground water rights if the Department has determined that the new use will "measurably reduce" scenic waterway flows unless mitigation is provided to ensure the maintenance of the free-flowing character of the scenic waterway in quantities necessary for recreation, fish and wildlife. ORS 390.835(9). Under the Deschutes Basin Ground Water Mitigation Rules, mitigation is calculated on the basis of the annual volume of consumptive use, rather than on a cubic foot per second basis. OAR 690-505-0605(11) & (13). While the annualized volumetric approach in the rules addresses the volume of consumptive use, the rules do not address the Department's estimate that ground water pumping impacts are uniformly distributed over all months of the year, as described below. This annualized

volumetric approach was among the issues raised by WaterWatch in challenging the legal sufficiency of the rules. (*WaterWatch of Oregon, Inc. v Water Resources Commission*, 199 Or App 59). In ruling for Water Watch on this issue, the Court of Appeals found that maintaining *flows* in quantities necessary for fish, recreation and wildlife uses is different from maintaining a certain yearly average *volume* of water in a system. Id. at p. 614.

In response to the Court of Appeals' May 2005 ruling, in July 2005 the Legislature passed HB 3494 that mandates that for the purposes of mitigation in the Deschutes Basin, the rules satisfy "requirements relating to mitigation" under the Scenic Waterway Act, the Instream Water Rights Act and the ground water permitting statutes. As a result, the annualized volumetric approach to mitigation has been approved in the current rules. However HB 3494 calls for rules to sunset in 2014. Water Watch and others have expressed continuing concerns about the fact that the rules do not address potential year-round impacts.

As noted in the Department's Deschutes Ground Water Mitigation Program Fiveyear Evaluation Report, as of February 2008, the OWRD had issued 66 new groundwater permits, totaling 52 cfs of water. The Department has developed a numeric model to estimate the effects of the consumptive use of these groundwater withdrawals, as well as associated mitigation projects. The DRAFT report outlining the numeric model and associated assumptions is Attachment 2 to the Department's staff report dated February 29, 2008 (Assessing the Impact of Mitigation on Stream Flow in the Deschutes Basin). To date, the DRAFT report has been reviewed internally at OWRD and peer reviewed by one staff person at the USGS.¹

¹ Since this issue framing paper was originally developed by the subgroup, the Department has finalized this report. The full report, Assessing the Impact of Mitigation on Stream Flow in the Deschutes Basin, is available at http://www1.wrd.state.or.us/pdfs/DeschutesMitigationReport.pdf.

Included in the Department's numeric modeling is a calculation of the "change in stream flow" by month (see tables in Appendix E). As the Five-year Report and the DRAFT numeric model report describe, the numeric model uses a uniform time series for ground water discharge – meaning effects from ground water pumping are uniformly distributed over all months of the year. Based on the current modeling approach, and as depicted in the Five-year Report tables mitigation debits (i.e. consumptive use of ground water) produce a decrease in streamflow that is uniformly distributed over all months of the year, while mitigation credits (i.e. instream leases, transfers, etc.) generally increase streamflow only during the irrigation season. Specifically, model results estimate monthly stream flows have generally increased from May to October, and have decreased from November to March.

From a legal standpoint, instream water rights and scenic waterway flows are set and protected, by month. While the additional flow to the system during the summer months is a positive effect, the potential negative impacts during the offirrigation season raise concerns for those interested in protecting year-round scenic waterway flows and instream water rights. An additional concern raised by WaterWatch relates to the fact that the amount of impact during the nonirrigation season is not reflected in the OWRD model for determining water availability which could exacerbate the problem of impacts during the nonirrigation season by setting the stage for new water rights to be issued for storage projects on the basis of an inaccurate reflection of stream flows.

<u>Issues</u>

- Whether the mitigation rules should be changed to require year-round mitigation.
- Whether the existing data and magnitude of potential impact warrant changes to the mitigation rules at this time.
- Whether other actions should be taken to address estimated impacts outside of the irrigation season.

44

- Whether OWRD water availability data should reflect mitigation deficits during the non-irrigation season.
- Assuming stored water from the upper basin was available to address this issue, what is the impact of the Pelton Round-Butte project.

Discussion

The group discussed aspects of this issue related to the accuracy of the models and stream gages used to measure flow in the Deschutes River below the Pelton Round Butte Complex. Some believe that the impact of mitigation credits and debits relative to river flows is small. Therefore, for most areas, stream gages currently used to measure flow in the Program area cannot measure the impact of the Program on stream flows in the Lower Deschutes River and therefore need to be "calculated" based on a model with a number of assumptions. Several members felt that this reduction in winter flow should be addressed before the 200 cfs cap is changed. A concern was also expressed that low winter flows being lowered further would be detrimental to aquatic species, and some members believed that this showed a trend.

While no consensus agreement could be reached, the group agreed that this issue should be addressed in a broader planning process. The group agreed to continue a dialogue about this issue beyond the forum convened for this report.

7(j) Conditioned Permits

Issue Statement: The term "7(j)" refers to a condition required by statute to be included in certain water right permits and certificates in the Deschutes Basin that were issued during the time period after SB 1033 was enacted in 1995, but before the ground water study results were available in 1998. In the absence of technical information to determine whether a proposed use would "measurably reduce" surface water flows, the statute allowed a new ground water permit to be issued with the condition that

provided the ground water use could be regulated in the future if analysis of data available after permit issuance discloses the use will measurably reduce the protected scenic waterway flows. Studies completed in 2001 show a connection between ground water and surface water and, as a result, all new ground water rights are now required to mitigate their use under the rules. The issue is whether the 7(j) condition has been triggered and, if so, how it should be implemented.

Issue Framing Paper

Background

The term "7(j)" refers to a condition required to be included in water right permits and certificates issued for ground water use in the Deschutes Basin under provisions of SB 1033. The bill required the Department to review ground water applications and make a finding on whether proposed use will "measurably reduce" the flows necessary to maintain the free-flowing character of a scenic waterway in quantities necessary for recreation, fish and wildlife. A ground water use "measurably reduces" if it individually or cumulatively reduces streamflow by 1% of average daily flow or 1 cfs, whichever is less. If the measurable reduction standard is triggered, the statute requires the state to deny the application unless the applicant provides mitigation. If measurable reduction cannot be determined at the time the application is reviewed, the statute requires conditioning of permits to allow for regulation in the future if the "measurably reduce" standard is triggered. The "7(j)" or "Scenic Waterway Condition" reads:

Use of water under authority of this permit may be regulated if analysis of data available after the permit is issued discloses that the appropriation will measurably reduce surface water flows necessary to maintain the free-flowing character of scenic waterways in the quantities necessary for recreation, fish and wildlife in effect as of the priority date of the right or as those quantities may be subsequently reduced. From 1995 to 1998, the Department issued 187 permits/certificates for a total of 188.5 cfs that are conditioned with the 7(j) condition.

In 1998, based upon preliminary information developed for the USGS Study, the Department found that the ground water in the Deschutes Groundwater Study Area had the potential for substantial interference with surface water and that the measurably reduce standard had been triggered. New ground water applications were put on hold and the Department convened the Deschutes Basin Steering Committee develop a ground water mitigation plan for the Deschutes Basin. This group met from 1999 to 2001.

In 2001, the Department prepared, with the assistance and input of from the Deschutes Basin Steering Committee, a public review draft of the report "Ground Water Mitigation Strategy for the Deschutes Basin." In this draft report, the Department indicated that mitigation was required for: 1) existing ground water permits and their subsequent certificates issued since 1995 that include the "Scenic Waterway Condition"; 2) applications for new ground water permits currently pending before the Water Resources Department; and 3) future applications for new ground water permits.

The draft report stated:

A number of ground water permits have been issued by the Department since the Scenic Waterway Law change in 1995 and are thus subject to mitigation requirements. In most cases, these permits contain the Scenic Waterway Condition which alerts them to the possibility of future regulation. With the substantial completion of the Ground Water Study Area, the Department has clear evidence of the extent to which any given ground water use under such permits will "measurably reduce the surface water flows necessary to maintain the free-flowing character of [the] scenic waterway in quantities necessary for recreation, fish and wildlife." ORS 390.835(9)(a). This, in turn, triggers the requirement for mitigation by holders of existing permits with the Scenic Waterway condition. This draft report was never finalized. Instead, the Department, moved into a rulemaking process. During the rulemaking process, implementation of the 7(j) condition was one of several issues that became somewhat controversial. The final rules addressed the 7(j) conditioned water rights with the following provision:

Holders of existing ground water permits and associated certificates in the Deschutes Ground Water Study Area issue after July 19, 1995, with priority dates after April 19, 1991, that are specifically conditioned to allow regulation for measurable reduction of a state scenic waterway and that choose to provide mitigation meeting the standards of these rules shall not be subject to regulation for scenic waterway flows pursuant to ORS 390.835(9). A ground water permit or certificate for which a mitigation project has been approved by the Department prior to the effective date of these rules shall not be subject to regulation for scenic waterway flows pursuant to ORS 390.835(9).

OAR 690-505-0600(4).

Before the rules were completed, four 7(j) applicants provided mitigation that was approved by the WRD and thus, per the above rule language, are not subject to regulation. However, none of the other 183 permit/certificate holders has provided mitigation for their use. Thus far, the Department has not curtailed these water right holders' use nor informed them that mitigation is required.

<u>Issue</u>

• Has the 7(j) conditioned been triggered?

Associated Issues

- If 7(j) has been triggered, how should it be implemented?
- If 7(j) has not been triggered, when and how would it be triggered?
- If triggered, is there sufficient mitigation water available to meet the consumptive use of the 7j conditioned water permits/certificates (permitted amount of 188 cfs)?

• How do these outstanding 7(j) conditioned permits/certificates impact discussions regarding any amendments to the 200 cfs cap?

Discussion

The key question discussed by the Group was whether the 7(j) condition had been triggered, and if so, how will the Department implement the rule and what would the mitigation look like? Department staff clarified that if the 7(j) conditioned permits provide mitigation (through the existing rules) then OWRD would not regulate these permits. The Group discussed whether there might be some other way for a 7(j) permit holder to create mitigation and still avoid regulation.

No consensus could be reached on this issue.

5. Conclusions

The Deschutes Basin Ground Water Mitigation program has been successful in meeting the key goals of the program: (1) to maintain flows for the Deschutes Scenic Waterway and instream water rights; (2) to facilitate restoration of flows in the middle reach of the Deschutes River below Bend; and (3) to accommodate growth through new ground water development. Since implementation of the program, the Department has issued new ground water permits while mitigating impacts to scenic waterway flows and instream water rights. In each year that the program has been in place, sufficient mitigation has been available to meet the needs of new ground water permits. And, the amount of mitigation available, overall, has increased annually. Through mitigation, scenic waterway and instream water right flows have been maintained and, in some areas, have been improved. The benefits of the program have been significant in some areas, such as the flows restored in the Deschutes River below Bend. Overall, as a result of the program, more than 39 cubic feet per second of instream flow has been restored to the Deschutes River and its tributaries.

The mitigation program is working well but, like all regulatory programs, has room for improvement. The Deschutes Group has identified a variety of opportunities to keep improving the program through rulemaking and by making new investments in the science that guides the program.

The water management issues in the Deschutes Basin are complex – municipal, instream, irrigation, and recreation interests all have a stake in successful outcomes. The Department's mitigation program is a small but important piece of overall Basin water management. As the recommendations of the Deschutes Group demonstrate, there is significant opportunity to resolve these complex water management issues in a larger basin water management context. This will require continued commitment and effort locally and investments by the State in supporting these efforts.

6. References

Oregon Water Resources Department. 2008. Deschutes Ground Water Mitigation Program, Five-Year Program Evaluation Report, February 29, 2008. Available at http://www1.wrd.state.or.us/pdfs/Deschutes_Mitigation_5_Year_Review_Fin al_Report.pdf

R.M. Cooper, Assessing the Impact of Mitigation on Stream Flow in the Deschutes Basin. November 2008. Available at http://www1.wrd.state.or.us/pdfs/DeschutesMitigationReport.pdf

Appendix A

Summary of Pre-Meeting Interviews

In order to gain better insight and understanding of the range of perceptions that different stakeholder representatives hold about the Ground Water Mitigation and Mitigation Bank Programs (Program), what issues would be most controversial, and where agreement may exist among these constituent groups, the WPN consultants conducted interviews of the stakeholder representatives as one of the first official tasks under the contract. The list of interview questions was developed in concert with OWRD staff to ensure that the Department was supportive of the interview questions, and supported the role and intent of the interviews. These confidential interviews were conducted in person or by telephone, and a summary of generalized responses was prepared as follows.

Has the Ground Water Mitigation Program been successful?

- Deschutes Group members defined success in many ways. Multiple participants said that more protected water has been put back into the Middle Deschutes which helps improve fisheries habitat.
- Multiple participants said that they've seen an increase in knowledge, focus and involvement in water related issues in the Basin, as well as increased planning and collaboration among Basin water users.
- Multiple participants said that the Program has helped educate water users that new water rights require mitigation, shown them how to get additional water supplies, and thus has provided for economic growth in the Basin.
- Several participants said the Program has created an alignment of development and environmental interests around understanding the importance of river restoration.

What are the greatest benefits from the Program?

- Multiple participants said the Program has established a structure and framework to acquire water rights, which has helped maintain a reasonable cost for mitigation, and help avert "chaos" in the Basin.
- Several participants said the Program helped spark development of the Deschutes Water Alliance, which has helped reallocate irrigation water for municipal / residential uses.
- Several participants said the Program is protecting the aquifer and has "capped" consumptive use in the Basin.

What aspects of the Program need improvement?

• Multiple participants mentioned procedure "tweaks" they'd like to see made to the Program including standardizing and streamlining the application process; spending less time on processing temporary leases; modifying the way mitigation credits could be created; allowing for a refund of credits if more were purchased than needed; and creating more certainty for acquiring mitigation credits for new projects.

- Multiple participants said the 200 cfs cap and the 2014 Rule sunset date are creating too much risk for applicants, creating problems for long-term water supply planning, and leading to speculation.
- Multiple participants had concerns about how the primary and secondary Zones of Impact have been defined; whether mitigation water is available within all of the Zones; and whether there may be greater impacts in certain zones, or sub-areas of certain zones, than in others.
- Several participants said they would like to see a more strategic watershed approach to mitigation with clear instream targets for Scenic Waterways and fish needs, and greater flexibility to "move water around."
- Several participants expressed concerned that many permanent, longterm ground water rights are mitigated for by temporary water leasing in the summer months, and that we need to identify a source for year-round mitigation.
- Several participants said that OWRD needs to improve the analysis of Program impacts, review the Program more frequently, and use improved analytical tools to evaluate the Program.
- Several participants were concerned about the cumulative effects from the Program including a possible net increase in the consumptive use of water in the Basin.

What are the greatest challenges and shortcomings of the Program?

- Many responses repeated those issues brought up in the previous question including: concerns about the 200 cfs cap, the 2014 sunset date, the year-round mitigation issue, lack of certainty regarding availability of mitigation credits, Zones of Impact issues, and leases versus permanent water rights.
- Several participants expressed concern that the potential water quantity and water quality impacts of the Program can't be accurately measured at this point because the Program is a broad scale approach to regulatory requirements, and it's difficult to rely on models to manage the Program at the stream gage level.

What can OWRD do to enhance the success of the Program?

- Multiple participants mentioned administrative changes such as streamlining the application process, increasing the efficiency of the transactions, improving the paperwork flow, and cutting down on processing time.
- Several participants suggested that OWRD should show more leadership, be "at the table" as an advocate for the Program, and be more involved in doing more education and outreach about the Program.
- Several participants said that the Zone of Impact map needs to be improved, and that OWRD needs to be more transparent about the land use and market implications of the Zone of Impact map.

- Several participants suggested that OWRD should work to improve analytical Program assessment tools, and invest in tracking and analyzing the program more frequently than every five years (on-going analysis needed).
- Several participants suggested that OWRD fund a regional water governance group that would help change the focus from just looking at instream rights to a more holistic, Basin-wide approach.
- Several participants suggested that conservation (canal lining) and piping efficiency issues need to be addressed in the context of mitigation. The rules say lining and piping projects are an acceptable form of mitigation, but no projects of this type have been brought forward. Should they be allowed to generate mitigation credits?

Other issues of concern with the Program:

- Multiple participants expressed concern that the Program is vulnerable to being used in a larger political land use debate, that mitigation banks are vulnerable to market manipulation, and that proposed destination resorts could have impacts on the Program and water use in the Basin.
- Several participants brought up 7(j) conditioned water right permits as an issue.
- Several participants suggested that the question of whether the Program should establish priority water rights for municipal and quasi-municipal uses needs to be assessed.

Other "Big Picture" water issues in the Basin:

- Multiple participants expressed concern about the reintroduction of endangered species into Basin, and how ESA, TMDLs, and stormwater issues may come into play.
- Multiple participants talked about the need to look at how ground water withdrawals authorized under the Program may be affecting cold water spring discharge and water quality (temperature) in the Middle Deschutes.
- Several participants expressed concern about water management / mismanagement in the Basin: how water reservoir management practices (winter storage) can create artificial scarcities; that we need to create incentives for the agricultural community to use less water or use water more efficiently; that we need to look for ways to "move water around" to increase instream flows; and that we need to look at using flood-event flows to recharge ground water supplies.
- Several participants said that we need to have a better understanding of Basin hydrology: how much water is actually being used for consumptive purposes in the Basin (including exempt wells), and how much is available for continued development and instream needs.

Appendix B1

OWRD Ground Water Mitigation Stakeholder Group

Agenda

First Meeting—July 17th, 10:00 am-2:00 pm Meeting Place: City of Bend Public Works Facility 62975 Boyd Acres Road (see attached map)

This Draft agenda has been developed on the assumption that the group will meet four times over the course of approximately three months. Please review the proposed agenda and bring any suggestions for changes to the first meeting.

	Time
Introductions/Welcome	30 min
• Brief introductions and affiliations from all participants	
• Purpose of the stakeholder process	
• Purpose of today's meeting and what we hope to accomplish in future me	eetings
Process Overview / Meeting Mechanics	60 min
Agenda review/approval	
Meeting agreements	
Meeting process	
• What decision-making process will be used?	
• How will the media be addressed?	
• How will "Issues Bin" tool be used?	
• Process for taking public comments at end of meetings	
• Time management / role of facilitators	
Questions and answers	
LUNCH (working lunch with a short break)	15 min
Synopsis of Pre-Meeting Interviews with Participants	35 min
 Major issues identified through interviews 	
• Other issues that need to be addressed?	
Questions and answers	
Setting the Context for the HB 3494 Report	45 min
• OWRD staff overview	
• HB 3494 requirements	
• Sideboards for discussion in these meetings	
• Other issues / topics to address outside of this process	
Questions and answers	

 HB 3494 Part 1: Discussion of Mitigation Program Program implementation successes (what's working) 	30 min
Public Comments	10 min
Next Steps	15 min
• Issues Bin review / decisions / items for the next agenda	
Process check in with group	
• Number and schedule of meetings (bring your calendars!)	
Homework /check in with constituents	

Adjourn

Appendix B2

OWRD Ground Water Mitigation Stakeholder Group

Agenda

Second Meeting—September 5th, 10:00 am-2:00 pm

Meeting Place: City of Bend Public Works Facility 62975 Boyd Acres Road

This Draft agenda has been developed based on the discussion and decisions reached at our first Deschutes Group meeting. Please review the proposed agenda and bring any suggestions for changes to the September 5^{th} meeting.

m•

Introductions/Welcome	45 min
 Brief introductions and affiliations from all participants Purpose of today's meeting; review and approve agenda Review Meeting Agreements Discuss suggested changes to Draft Meeting Summary from the July 17th r Approve summary from the July 17th meeting Media contact check-in 	neeting
Public Comment Period	5 min
 Issue Framing Discussions Zones of Impact 7(j) Conditioned Water Right Permits 	70 min
LUNCH (working lunch with a short break)	15 min
 Continuation of Issue Framing Discussions Applications Counted under 200 cfs Cap Potential Water Quality Impacts from the Program 	70 min
Public Comment Period	5 min
 Next Steps Issues Bin review / decisions / items for the next agenda Process check in with group Schedule for future Homework /check in with constituents 	30 min

Adjourn

Appendix B3 OWRD Ground Water Mitigation Stakeholder Group Agenda

Third Meeting—October 22, 10:00 am-2:00 pm

Meeting Place: City of Bend Public Works Facility 62975 Boyd Acres Road

This Draft agenda has been developed based on the discussion and decisions reached at our first Deschutes Group meeting. Please review the proposed agenda and bring any suggestions for changes to the October 22nd meeting.

	Time
Introductions/Welcome	45 min
 Brief introductions and affiliations from all participants 	
• Purpose of today's meeting; review and approve agenda	
Review Meeting Agreements	
 Discuss suggested changes to Draft Meeting Summary from the Septem meeting 	ber 5th
• Approve summary from the September 5th meeting	
• Media contact check-in	
Public Comment Period	5 min
Issue Froming Discussions (follow up from last mosting)	60 min
• Offset / Incremental Mitigation	00 11111
Onset / Incremental Witigation Detertial Water Ovality Immasta from the Droomer	
• Potential water Quanty impacts from the Program	
LUNCH (working lunch with a short break)	20 min
Continuation of Issue Framing Discussions	65 min
• Follow-up on proposals tabled at last meeting	
Non-irrigation Season Mitigation	
• Other outstanding issues?	
Discussion elements of Draft Final Report and	
Sequence for Report Production	20 min
Public Comment Period	5 min
Next Steps	20 min
• Issues Bin review / decisions / items for the next agenda	
• Process check in with group	
• Schedule for last meeting (need to move November 14 th meeting)	
• Schedule date for public meeting in December	
• Homework /check in with constituents	

Adjourn

Appendix B4

OWRD Ground Water Mitigation Stakeholder Group Agenda

Final Meeting—November 14th, 10:00 am-2:00 pm

Meeting Place: City of Bend Public Works Facility 62975 Boyd Acres Road (see attached map)

This Draft agenda has been developed based on the discussion and decisions reached at our previous Deschutes Group meeting. Please review the proposed agenda and bring any suggestions for changes to the November 14th meeting.

	Time
Introductions/Welcome	40 min
• Brief introductions and affiliations from all participants	
• Purpose of today's meeting	
Approve draft Agenda	
Review Meeting Agreements	
Approve Meeting Summary from the October 22nd meetingMedia contact check-in	
Public Comment Period	5 min
Legislative Concept Discussion	30 min
 Review Washington State Watershed Assessment document (forwarded as a model for a Legislative Concept of a proposed Water Management Discussion 	by Tod) Plan
Review of Draft Summary Report	45 min
 Review/discuss Draft Summary Report (especially Section #4 that summ Group meetings/discussions/recommendations) 	narizes
LUNCH (working lunch with a short break)	15 min
Review of Draft Summary Report (cont'd)	45 min
Public Meeting Design	30 min
• Discussion on design, format, roles of public meeting to be held Decem from 6:30-8:30 in Bend	ber 10 th
Public Comments	5 min
Next Steps	25 min
• Issues Bin review / decisions	
• Draft edits/next steps	
• Schedule public meeting and group member involvement	
Adjourn	

Appendix C1 OWRD GROUND WATER MITIGATION PROJECT SUMMARY OF JULY 17, 2008 DESCHUTES GROUP MEETING (As approved at the September 5, 2008 meeting)

<u>Deschutes Group Members Present</u>: Debbie Colbert, Kyle Gorman, Tod Heisler, Steve Johnson, Rick Kepler, Michelle McSwain, Martha Pagel, Kimberley Priestley, John Short, and Adam Sussman

Deschutes Group Members Absent: Jan Wick, Robert Brunoe

<u>Guests Present</u>: Mary Meloy (State Water Resources Commissioner), Jeremy Giffin (OWRD Water Master), Patrick Griffiths (City of Bend)

<u>Meeting Facilitators</u>: Paul Hoobyar and Joanne Richter, Watershed Professionals Network

After group introductions, Paul Hoobyar gave an explanation of the stakeholder process, discussed the purpose of the meeting, and what OWRD and members of the group had indicated as goals for future meetings. After approval of the agenda, Paul provided an overview and led discussions of specific meeting mechanics including suggested Meeting Agreements, the decision-making process, the "Issues Bin," public comments, time management, and the role of the facilitators. Following are specific procedures the group agreed to.

Meeting Agreements: The group approved the following Meeting Agreements:

- Honor the agenda and only change by agreement from the group.
- Stay focused on issues, not on people or personalities.
- Listen carefully to speakers.
- Avoid interruptions of speakers.
- Monitor speaking time.
- Be recognized before speaking.
- Avoid side conversations.
- Respect differing opinions.

Decision Making: The group agreed that they would strive for consensus, but if that can't be reached they would fall back to having a vote. No decision was reached as to whether the group would employ a simple majority (51%) or a super majority (66-75%) voting process. If consensus cannot be reached on an issue, a request was made to present both the majority and minority opinions in the final report to the Legislature.

Media: The group agreed to a number of specifics in responding to media requests including:

- Kyle Gorman was nominated as the primary media spokesman for the Deschutes Group. If requested by the media, he will explain the purpose of the stakeholder review process, background information on the Deschutes Ground Water Mitigation Program, and HB 3494 requirements.
- If other members of the group are contacted by the media, they may refer the caller to Kyle, or share their own view of the issues but not represent anyone else's views.
- The group agreed to **not** discuss with the media the specific content of what is discussed in the meetings.

Public Comments: Public comments will be taken both at the beginning and end of the meeting. The time allowed for public comments may vary depending on the number of people who show up at the meetings. Generally five minutes at the beginning and end of the meeting will be reserved for public comment.

Pre-Meeting Interview Summary: Joanne Richter provided a synthesis of comments collected by the facilitators during the Pre-Meeting Interviews, including comments on the following:

- Whether the Ground Water Mitigation Program has been successful.
- What the greatest benefits provided by the Program.
- What aspects of the Program need improvement.
- What are the greatest challenges and shortcomings of the Program.
- What can OWRD do to enhance the success of the Program.
- Other issues of concern with the Program.
- Other "big picture" water issues in the Basin.

Group members identified issues discussed with the facilitators but not captured in the Summary document. Otherwise the group thought the Summary of Pre-Meeting Interviews handout, with the noted amendments, adequately reflected the comments made to the facilitators during the interviews.

OWRD Staff Role: Debbie Colbert and Kyle Gorman identified their role as providing technical support and being advocates for completing the required five-year evaluation of the Program. They showed a brief Power Point presentation that outlined HB 3494 requirements and the goals of the Ground Water Mitigation Program, and provided summary data related to implementation of the Program. Issues of concern related to the Program, and other "big picture" water management issues were also discussed, and group members added a few more items to Debbie and Kyle's list of issues.

Program Successes: The facilitators led a discussion of the Mitigation Program successes (i.e. what the group perceived as working with the Program). Participants'

comments clarified those recorded during the Pre-Meeting Interviews, and will be included in the draft report.

Primary Issues of Concern: The group discussed some of the issues of concern that OWRD staff had identified in their Power Point presentation, and developed an agenda of items for the next meeting based on these, as well as the additional issues identified by the group. Small work groups agreed to help define or frame the following issues by the end of August (prior to the next Deschutes Group meeting on September 5th). The next agenda will include the following:

- How applications are counted under the 200 cfs cap (Adam Sussman to frame).
- Further discussion of the Zones of Impact (Kimberley Priestley, John Short and Adam Sussman to frame).
- Issues related to the 7J Conditioned ground water rights (Kimberley Priestley and Martha Pagel to frame).
- Potential water quality impacts from the Program (Tod Heisler, Rick Kepler, Michelle McSwain and Martha Pagel to frame).
- Discussion of non-irrigation season (winter) mitigation (full group).

Issues Bin: Other issues of concern raised by the group include the following:

- Revisit 200 cfs cap and Program sunset dates.
- Need to improve analytical Program monitoring tools.
- Improve length of time to process applications.
- Need to evaluate how transferable the Program is.
- Need for monthly accounting of instream flows to be part of any report or analysis of the Program.
- Need to investigate aquifer declines in the Basin.
- Evaluate potential impacts to springs.
- Determine net consumptive use in the Basin.
- Look at exempt wells and what can / should be done with them.
- Need to evaluate sustainability of DWA Water Bank.

Future Meeting Dates: September 5th, October 10th and November 14th. The October 10th meeting date may need to be revisited because Jan Wick will be unable to attend that day.

Appendix C2 OWRD GROUND WATER MITIGATION PROJECT SUMMARY OF SEPTEMBER 5, 2008 DESCHUTES GROUP MEETING (As approved at the October 22, 2008 meeting)

<u>Deschutes Group Members Present</u>: Debbie Colbert, Kyle Gorman, Tod Heisler, Steve Johnson, Rick Kepler, Michelle McSwain, Martha Pagel, Kimberley Priestley, Adam Sussman, and Jan Wick

Deschutes Group Members Absent: Robert Brunoe and John Short

<u>Guests Present</u>: Mary Meloy (State Water Resources Commissioner), Jeremy Giffin (OWRD Water Master), Ken Lite (OWRD Hydrologist), Patrick Griffiths (City of Bend), and Mark Yinger (consultant)

<u>Meeting Facilitators</u>: Paul Hoobyar and Joanne Richter, Watershed Professionals Network

After group introductions, Paul Hoobyar discussed the purpose of the meeting, the group approved the agenda, and Paul reviewed the Meeting Agreements with the group and asked whether there had been any media contacts (there were none). The group then discussed proposed changes to the Draft Meeting Summary from the July 17th meeting, and approved those changes.

Zone of Impact Issue Framing Discussion: Kimberley presented an overview of the issue framing paper that she, Adam and John had worked on. Adam added a key question they were concerned about: How does the Department interpret their own rules regarding zone of impact determinations? Ken Lite discussed in some detail how he makes zone of impact findings and clarified technical issues for the group. Main questions raised by the group, Ken's responses, and additional information provided by the Department after the meeting are shown below:

- How does Ken pick the primary zone of impact? <u>Response</u>: OWRD currently identifies one zone of impact based on where most of the impact is going to occur. To identify the primary zone of impact, Ken uses the Department's conceptual understanding of the ground water flow system (based on the USGS-OWRD Deschutes Basin Ground Water Study) and well construction information provided by the applicant (e.g., well depth, water table elevation). He relates that to regional ground water flow direction, areas of ground water discharge, and the proximity of the proposed well to those discharge zones.
- Does the Department account for possible impacts in other zones? <u>Response:</u> Ken's review of an application for a groundwater permit involves three separate findings: under Division 690-08, Division 690-09, and the Scenic Waterway.

The Division 8 (groundwater availability) and Division 9 (groundwater / surface water interference) findings are recorded on a form called the "Public Interest Review for Ground Water Applications." There is a place on that form where Ken may identify specific stream reaches that would likely be impacted by the proposed ground water use. Those stream reaches may or may not be in another "zone of impact". A "zone of impact" finding is strictly related to a scenic waterway review in the upper Deschutes Basin.

- Why does the Department use a conceptual understanding of the system instead of the regional flow model to make zone of impact findings? <u>Response</u>: When the Department was moving forward with implementing the program, there was considerable thought about how to balance using the best information without making the review and process so complex as to overwhelm staff and applicant. That is why the Department chose to go with the conceptual approach to making these findings.
- Does the Department think its zone of impact implementation is consistent with the rules? <u>Response</u>: Yes
- Based on input from its AG, can the Department require mitigation in more than one mitigation zone? <u>Response</u>: Based on the rules, the Department could require mitigation in more than one zone.

<u>Proposal</u> (**agreed upon by DG**): Request that the Legislature give the Department funding to develop and refine the analytical tools used to determine the Program's impact in the Basin, including the development of a water budget for the Basin. This might include funding to run simulations of the ground water flow model that could be compared to the findings developed using the conceptual approach.

<u>Proposal</u> (**tabled by DG**): If OWRD's analysis shows a significant impact in more than one zone, the Department should look at splitting zones of impact and requiring mitigation in more than one zone. Staff indicated that in **some** cases the Department may be able to identify impacts in more than one zone. However, the Department noted that splitting by zone using the numerical model would be constrained by available staff resources and, in some cases, model uncertainty. This proposal was tabled for now because several members stated that the existing model should not be used to determine quantitative splits of impacts into more than one zone.

The Group also discussed the availability (or lack thereof) of mitigation in all zones of impact. The general public and elected officials don't seem to understand that mitigation water for new ground water permits is not available everywhere in the Basin.

<u>Proposal</u> (**tabled by DG**): Identify areas in the Basin where no permanent mitigation is currently available (Whychus, Metolius, Crooked River) so as to raise awareness and create better understanding of the issue. The proposal was tabled for now, but a request was made that the Final Report clarify that the mitigation available in all zones (shown in

Five Year Report) is based on the availability of temporary water rights, not permanent mitigation.

<u>Proposal</u> (**tabled by DG**): Look at other alternatives for mitigation if no mitigation water is available in certain zones of impact. The proposal was tabled for now so that the group could have more discussion about the range of mitigation options that might be available and acceptable to them.

Several members of the Group wanted to discuss issues related to the location of mitigation (where water is actually transferred back instream), but agreed to table the discussion until the next meeting.

7(j) Conditioned Permits Issue Framing Discussion: Kimberley presented an overview of the issue framing paper that she and Martha had worked on. A key question is whether 7(j) has been triggered, and if so how will the Department implement the rule and what would the mitigation look like? OWRD staff stated that if 7(j) conditioned permit holders can provide mitigation through the existing rules than the Department won't regulate them. Another key question is whether different types of mitigation could be applied to 7(j) conditioned permits?

<u>Proposal</u> (agreed upon by DG): Table the discussion of this issue for now, and move on to other issues that the Group may be able to positively affect.

What is Counted under the 200 cfs Cap Issue Framing Discussion: Adam presented an overview of the issue framing paper he had prepared. The cap is based on water right permits issued, not on perfected water rights. The cap also includes non-consumptive uses and uses that have been offset. The group discussed whether these should be included against the cap. Another key question is whether it makes sense to base the cap on rate instead of volume? Also, how do incremental mitigation and offset provisions used by municipal and quasi-municipal water providers to meet their long-term water supply commitments fit under the 200 cfs cap?

<u>Proposal</u> (tabled by DG): Modify the rule so that final orders for non-consumptive uses and uses associated with offsets are not counted under the cap and have no mitigation obligation. The proposal was tabled for now because members needed more discussion of what non-consumptive use really means. Adam agreed to further clarify offset provisions and why he believes they could be used for incremental mitigation.

<u>Proposal</u> (**agreed upon by DG**): Water allocated under the 200 cfs cap can be restored to the cap if not perfected under the permit.

<u>Proposal</u> (**tabled by DG**): Cap overall demand in terms of volume, not rate (cfs). This proposal was tabled for now because members felt that low flow periods are important for fish, and you need to look at more than just an averaged volume. Concern was also expressed that the Program may ultimately result in less flow in the winter because instream transfers do not occur outside of the irrigation season.

Topics for Next Meeting: The Group agreed that the following topics should be discussed at the next DG meeting:

- Water quality issue framing paper (discuss existing paper).
- Offset / incremental mitigation. Adam agreed to frame this issue by October 3rd.
- Non-irrigation season mitigation (winter flow restoration). Martha, Kimberley, Adam and Steve agreed to work on framing this issue by October 3rd. They will also try to tie in discussions of rate versus volume and timing of impacts.
- Kimberley offered to frame the net consumptive use issue. Martha agreed to help frame this issue. The group recognized they may not have time to discuss this topic given the other items that still need to be discussed.
- Follow up on proposals (above) that were tabled by the Group and needed further discussion.
- Discuss what the draft final report should contain / consist of.

Issues Bin: Additional issues of concern raised by the group include the following:

- Need to address or develop ways to extend or improve alternative mitigation options.
- Location of Zones of Impacts and availability of mitigation water need to be addressed.

Future Meeting Dates: October 22nd and November 14th

Appendix C3 OWRD GROUND WATER MITIGATION PROJECT SUMMARY OF THE OCTOBER 22, 2008 DESCHUTES GROUP MEETING (As approved at the November 14, 2008 meeting)

<u>Deschutes Group Members Present</u>: Debbie Colbert, Kyle Gorman, Tod Heisler, Steve Johnson, Rick Kepler, Michelle McSwain, Martha Pagel, Kimberley Priestley, John Short, Adam Sussman, and Jan Wick

Deschutes Group Members Absent: Robert Brunoe

<u>Guests Present</u>: Gary Eder (Basin resident), Jeremy Giffin (OWRD Water Master), Nunzie Gould (Basin resident), Patrick Griffiths (City of Bend), Sandy Lonsdale (Basin resident), Jack Remington (Basin resident), Don Southern (Basin resident), and Mark Yinger (consultant)

<u>Meeting Facilitators</u>: Paul Hoobyar and Joanne Richter, Watershed Professionals Network

After group introductions, Paul Hoobyar discussed the purpose of the meeting and the group approved the agenda. The group then discussed proposed changes to the Draft Meeting Summary from the September 5th meeting, and approved those changes. Paul reiterated the Meeting Agreements with the group, and asked whether there had been any media contacts (there had been none). Paul also asked the group whether they would like to see the approved meeting summaries posted on the Department's web site. There was agreement that the approved summaries should be posted.

Offset and Incremental Mitigation Issue Framing Discussion: Adam provided an overview of the background and issue framing paper that he had prepared. The group first discussed details of the offset provision as it is defined in the current Mitigation Rules, and Adam's suggestion that use of the offset should not be counted under the 200 cfs cap. It was clarified that there are limits to transferability and that the offset provision only applies to canceling the existing or qualifying ground water rights. Following discussion, the group agreed to the following proposal:

<u>Proposal</u> (**approved by DG**): *The rules should be modified so that the use of an offset as defined under the current rules should not be counted under the cap.*

The group also discussed the use of incremental mitigation as defined in the Rules, and specifically whether offset should be allowed as part of an incremental mitigation plan. After some discussion the group agreed to the following proposal:

<u>Proposal</u> (**approved by DG**; Rick Kepler not present for the vote): *Recommend that the Mitigation Rules be modified so that offset can be used in an incremental mitigation plan.*

Water Quality Issue Framing Discussion: Michelle provided an overview of the water quality issue paper prepared by Martha, Tod and herself. She also showed a brief Power Point presentation illustrating the importance of spring inputs into the Crooked and Middle Deschutes Rivers above the Pelton Round Butte complex. There is a need to better understand the contributions of springs and ground water to water quality in the rivers, though existing data show that flows are substantially increased and river temperatures decreased from spring inputs. Water quality parameters also appear to be influenced by spring discharge.

The group had a long discussion about the issue, with the general consensus being that more time, money and technical expertise is needed to better understand the Program's potential affect on water quality; that currently there's a disconnect between the Program and other water quality issues related to the Clean Water Act such as 303(d) listings and the pending TMDL(s) for the Deschutes Basin; that the Program is not set up to address bigger water quality issues in the Basin; and that a comprehensive water management plan needs to be developed to better understand water quality and quantity issues in the Basin, including those related to the Clean Water Act. The group agreed to the following proposal:

<u>Proposal</u> (**approved by DG**): Recommend to the Legislature that funding be provided to State Agencies and their Basin partners, in coordination with affected stakeholders, to develop an Integrated Water Management Plan for the Deschutes Basin that would address water quality and quantity issues, with the goal of finishing the plan by 2012.

Follow-up on Proposals Tabled at the September 5th Meeting: The group revisited each of the proposals that were tabled at the last DG meeting. The discussion on each proposal is summarized as follows:

- <u>Proposal from September meeting:</u> *If OWRD's analysis shows a significant impact in more than one zone, the Department should look at splitting zones of impact and requiring mitigation in more than one zone.* Some members of the group thought that the Department should split the impacts into more than one zone, to the extent that that's possible given the limitation of the analytical tools. However, no consensus was reached on the proposal and it was permanently tabled. The draft final report will present the range of perspectives that were discussed by the group on this issue.
- <u>Proposal from September meeting</u>: *Identify areas in the Basin where no permanent mitigation is currently available (Whychus, Metolius, Crooked River) so as to raise awareness and create better understanding of the issue.* The group discussed that the intent of the proposal was to inform the Legislature that the

Program cannot function in certain areas in the Basin because no mitigation is available in certain zones. The conversation then shifted to the question of whether alternative forms of mitigation should be considered in those zones where no permanent mitigation water is available. No consensus could be reached, but the draft final report will present the range of perspectives that were discussed by the group on this issue.

- <u>Proposal from September meeting</u>: *Look at other alternatives for mitigation if no mitigation water is available in certain zones of impact.* This proposal was addressed by the group in the previous discussion and no consensus could be reached.
- <u>Proposal from September meeting</u>: *Modify the rule so that final orders for nonconsumptive uses, and uses with no mitigation obligation, are not counted under the cap.* A proposal was put forth, and the group discussed whether nonconsumptive uses that don't require mitigation (zero mitigation obligation) should be counted under the cap or not. Specifically, the group considered the following proposal: *If a final order for a new ground water application has no mitigation obligation, it should not be counted under the 200 cfs cap.* Most members of the group supported this proposal, but consensus agreement could not be reached because several members needed to understand the details of the proposal better. The draft final report will present the range of perspectives that were discussed by the group on this issue, and suggest that details regarding this proposal could be resolved during rule making.
- <u>Proposal from September meeting</u>: *Cap overall demand in terms of volume, not rate(cfs)*. This tabled proposal was not discussed further due to lack of time.

Non-Irrigation Season Mitigation Issue Framing Discussion: Kimberley presented information that was contained in the issue framing paper prepared by herself, Adam, Martha and Steve. After accounting for the mitigation program, OWRD modeled results estimate monthly stream flows have generally increased from May to October, and have decreased from November to March. There was a concern expressed that low winter flows being lowered further would be detrimental to aquatic species.

The group discussed aspects of this issue related to the accuracy of the models and stream gages that are used to measure flow in the Deschutes River below the Pelton Round Butte Complex. A range of perspectives were discussed, including that the issue of flow depletion during the non-irrigation season needs to be addressed before the 200 cfs cap is changed. No consensus could be reached, but the draft final report will present the range of perspectives that were discussed by the group on this issue.

Public Comments: Nunzie Gould (Basin resident) commented on the role science plays in supporting this type of program and in evaluating the limits of the program.

Issues Bin Review: At the September 5th meeting several members of the group wanted to discuss issues related to the location of mitigation (where water is actually transferred back instream), and whether the Department should be refining the zone of impact analysis to look at sub-zone or local zone impacts. It was agreed to table that discussion until the October 22nd meeting, but the group again ran out of time to discuss this issue. However, it was agreed that the topic may be partially addressed by the proposal (approved at the September meeting) to recommend development of more refined analytical tools that can be used to determine the Program's impact in the Basin.

Topic for Final DG Meeting: The Group will review a draft of the final project report, as well as a Legislative Concept for a proposed Water Management Plan for the Deschutes Basin that will be prepared by Adam, Kimberley, Martha and Tod.

Next Meeting Date: November 14th, 10 am – 2 pm, City of Bend Boyd Acres Facility

Appendix C4 OWRD GROUND WATER MITIGATION PROJECT SUMMARY OF THE NOVEMBER 14, 2008 DESCHUTES GROUP MEETING

(This summary has been reviewed but not approved by the Deschutes Group due to lack of time)

<u>Deschutes Group Members Present</u>: Debbie Colbert, Kyle Gorman, Tod Heisler, Steve Johnson, Rick Kepler, Michelle McSwain, Martha Pagel, Kimberley Priestley, John Short, Adam Sussman, and Jan Wick

Deschutes Group Members Absent: Robert Brunoe

<u>Guests Present</u>: Patrick Griffiths (City of Bend) and Mary Meloy (Water Resources Commissioner)

<u>Meeting Facilitators</u>: Paul Hoobyar and Joanne Richter, Watershed Professionals Network

After group introductions, Paul Hoobyar discussed the purpose of the meeting and the group approved the agenda. The group then discussed proposed changes to the Draft Meeting Summary from the October 22nd meeting, and approved those changes. Paul reiterated the Meeting Agreements with the group, and asked whether there had been any media contacts (there had been none).

Legislative Concept for Water Management Plan: The Group discussed a possible concept for the integrated water management plan that had been proposed at the October 22nd Deschutes Group meeting. It was generally agreed that this plan should be as comprehensive as possible, and focus on current and pending water management challenges in the Basin related to water quality and quantity, endangered fish populations, reservoir storage, increased water demands from population growth, and projected land use actions. It was also generally agreed that this planning process should be led by a task force of public and private stakeholders; that it should establish priorities and plans for water management in the Basin; and that it be coordinated with other on-going planning processes in the Basin. The Group also discussed where funding might come from to sustain the work of the task force, and agreed that it was imperative to get city and county elected officials appointed to, and involved in, the task force. Mary Meloy agreed to facilitate a subgroup consisting of Tod Heisler, Steve Johnson, Martha Pagel, Adam Sussman and Jan Wick who agreed to explore and refine how a water management planning process for the Basin might be developed and possibly funded.

General Comments on Section 4 of the Draft Report: There was general agreement that Section 4 needed to be reorganized so that each focus issue discussion include:

- A brief introduction of the issue;
- Any consensus recommendation approved by the Group;

- The issue framing paper prepared by the subgroup; and
- The range of perspectives discussed by the Group on that issue.

It was also suggested that the focus issues discussed in Section 4 be reordered to put those that the Group had recommendations for first in the section.

The Group also agreed that a two to three page Executive Summary be developed for legislative review that would include a brief introduction of each focus issue discussed by the group, followed by the consensus recommendations approved by the Group. It was also suggested that this summary include a brief discussion of those issues not addressed by the Group (e.g. the 200 cfs cap), and how the Department might pursue these issues and other potential changes to the Mitigation Program.

Changes to Recommendations in Draft Report: The Group discussed consensus recommendations that had been approved in previous meetings, and made the following changes to those recommendations that are listed in Section 5 of the draft report:

- **Recommendation #1** was changed to: *Recommend that the Department improve their analytical tools to be able to better assess the zones of impact.*
- **Recommendation #2** was changed to: Water allocated under the 200 cfs cap should be restored to the cap if the amount of water use authorized in the permit or final certificate is less than the amount originally approved in the final order.
- **Recommendation #3** was changed to: *The rules should be modified so that the use of an offset, as defined under the current rules, should not be counted under the cap.*
- **Recommendation #4** was changed to: *Recommend that the Mitigation Rules be modified so that offsets, as defined under the current rules, can be used in an incremental mitigation plan.*
- **Recommendation # 5** was eliminated because no consensus could be reached regarding a proposed water management plan for the Basin that would address water quality and quantity issues. However, the Group was interested in pursuing this concept outside the context of the Ground Water Mitigation Program review, as discussed above under *Legislative Concept for Water Management Plan*.

Other Changes to Section 4 of the Draft Report: The Group discussed the remainder of Section 4, and suggested specific language changes that will be reflected in the final draft report that will be submitted to the Department for their review by December 1, 2008.

Design of December 10th Public Meeting: The Group discussed in general a design for the December 10th Public Meeting that will be held in the Deschutes County Services Building in Bend. It was suggested that the Department begin with an overview of the Ground Water Mitigation Program followed by a short (20 minute) question and answer

session facilitated by Paul Hoobyar. The Group then discussed two other possible formats for the meeting: 1) having an open house format with Department staff available at several stations where the public could get more information about the Program (from maps, charts, etc.); or 2) having a panel discussion where members of the Deschutes Group could field questions from the public. No agreement could be reached by the Group on either approach, but the Department will continue to work on a meeting design. It was clarified that the draft report will be made available to the public at the December 10th public meeting.
Appendix D Mean Monthly Flows at Key Deschutes Basin Gages

Deschutes River near Madras, Discharge, cubic feet per second, Monthly mean in cfs

					1010	Jinting mea	11 111 013					
YEAR						-						
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	3,935	4,375	4,473	4,842	4,480	4,302	4,268	3,934	4,238	3,895	3,796	3,827
2003	4,090	4,209	4,391	4,500	4,755	4,386	4,330	3,812	3,890	3,709	3,677	3,739
2004	4,066	4,143	4,682	4,716	4,699	5,481	4,892	4,438	4,208	3,923	3,900	3,909
2005	4,144	4,286	4,525	4,329	4,161	4,203	4,177	4,725	3,916	3,717	3,711	3,802
2006	4,132	4,360	4,710	7,670	5,845	5,300	7,436	5,356	4,898	4,162	3,879	3,914
2007	4,210	4,753	5,297	5,570	5,047	5,442	4,711	4,183	4,105	3,886	3,843	4,129
2008	4,649	4,654	4,724	4,387	4,399	4,655	4,607	4,985	4,656	4,172	3,946	3,958
Mean	4,175	4,397	4,686	5,145	4,769	4,824	4,917	4,490	4,273	3,923	3,822	3,897
Max	4,649	4,753	5,297	7,670	5,845	5,481	7,436	5,356	4,898	4,172	3,946	4,129
Min	3,935	4,143	4,391	4,329	4,161	4,203	4,177	3,812	3,890	3,709	3,677	3,739
Instream												
Requirements	3,800	3,800	3800/4500	4,500	4,500	4500/4000	4,000	4,000	4,000	4,000	3,500	3500/3800

Deschutes River at Moody, Discharge, cubic feet per second, Monthly mean in cfs

YEAR												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	4,414	4,889	5,399	6,065	5,249	5,222	6,204	5,473	5,548	4,615	4,272	4,300
2003	4,587	4,710	4,982	5,732	6,311	5,804	5,602	4,651	4,558	4,240	4,127	4,110
2004	4,439	4,579	5,294	6,143	6,836	7,170	6,382	5,512	5,157	4,650	4,467	4,406
2005	4,600	4,670	5,037	4,933	4,760	4,891	4,992	5,731	4,491	4,231	4,151	4,310
2006	4,790	5,177	6,451	12,240	8,113	6,484	9,675	7,305	5,868	4,684	4,392	4,421
2007	4,739	5,760	7,072	7,671	6,531	7,133	5,923	5,095	4,915	4,528	4,362	4,668
Mean	4,590	4,960	5,710	7,130	6,300	6,120	6,460	5,630	5,090	4,490	4,300	4,370
Max	4,790	5,760	7,072	12,240	8,113	7,170	9,675	7,305	5,868	4,684	4,467	4,668
Min	4,414	4,579	4,982	4,933	4,760	4,891	4,992	4,651	4,491	4,231	4,127	4,110
Instream												
Requirements	3,800	3,800	3800/4500	4,500	4,500	4500/4000	4,000	4,000	4,000	4,000	3,500	3500/3800

Deschutes River near Culver, Discharge, cubic feet per second, Monthly mean in cfs

					1010	many mea						
YEAR												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	730.8	960.9	995.3	1,051	952.6	985.8	796.9	514.3	637	480.2	470.5	483.4
2003	706.6	873.1	903.1	1,032	1,087	1,007	865.8	536.8	568.7	504.4	501.5	502.1
2004	732.4	894.4	980	924.1	949.1	951.5	713.7	543.6	580.8	535.6	534.4	521.8
2005	785.6	856.4	987.5	940.7	869.4	916.8	621.2	642.9	541.5	515.3	507.7	526.2
2006	761.8	883.7	930.7	1,298	1,091	1,023	983.9	709.6	835.7	659.6	550.3	558.6
2007	780.1	1,139	1,334	1,322	1,300	1,403	805.1	565.9	596.4	542.6	546.9	558.1
Mean	750	935	1,020	1,090	1,040	1,050	798	586	627	540	519	525
Max	786	1,139	1,334	1,322	1,300	1,403	984	710	836	660	550	559
Min	707	856	903	924	869	917	621	514	542	480	471	483
Instream												
Requirements	250/500	500	500	500	500	500	500/250	250	250	250	250	250

*"Instream requirement" indicates flows associated with an instream water right, a scenic waterway, or a treaty with the Warm Springs tribes – whichever is largest for that month at that location.

Note that 2008 data is preliminary and subject to review: Data users are cautioned to consider carefully the nature of the information before using it for decisions that concern personal or public safety or the conduct of business that involves substantial monetary or operational consequences.

Metolius river near Grandview, Discharge, cubic feet per second, Monthly mean in cfs

YEAR												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	1,329	1,371	1,449	1,504	1,360	1,421	1,798	1,717	1,764	1,600	1,451	1,386
2003	1,328	1,298	1,319	1,494	1,540	1,538	1,508	1,426	1,453	1,371	1,316	1,283
2004	1,268	1,263	1,402	1,418	1,531	1,635	1,642	1,642	1,587	1,465	1,397	1,337
2005	1,289	1,275	1,327	1,287	1,254	1,301	1,362	1,445	1,321	1,274	1,245	1,213
2006	1,209	1,244	1,361	2,049	1,738	1,470	1,593	1,773	1,694	1,515	1,410	1,355
2007	1,309	1,544	1,691	1,716	1,581	1,686	1,579	1,546	1,487	1,426	1,369	1,334
Mean	1,290	1,330	1,420	1,580	1,500	1,510	1,580	1,590	1,550	1,440	1,360	1,320
Max	1,329	1,544	1,691	2,049	1,738	1,686	1,798	1,773	1,764	1,600	1,451	1,386
Min	1,209	1,244	1,319	1,287	1,254	1,301	1,362	1,426	1,321	1,274	1,245	1,213
Instream												
Requirements	1,080	1,140	1,110	1,150	1,150	1,160	1,160	1,240	1,200	1,170	1,140	1,100

Crooked River below Opal Springs near Culver, Discharge, cubic feet per second,

VFAD	Monthly mean in crs											
I LAN	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	1,310	1,291	1,284	1,306	1,283	1,276	1,245	1,185	1,195	1,177	1,205	1,280
2003	1,351	1,293	1,286	1,302	1,318	1,288	1,302	1,223	1,207	1,200	1,206	1,282
2004	1,334	1,332	1,348	1,426	1,525	2,461	2,085	1,691	1,471	1,339	1,354	1,375
2005	1,341	1,357	1,358	1,359	1,336	1,325	1,541	1,934	1,367	1,255	1,246	1,377
2006	1,436	1,403	1,611	3,217	2,086	2,143	4,248	2,065	1,619	1,288	1,326	1,406
2007	1,488	1,344	1,453	1,663	1,451	1,751	1,715	1,335	1,327	1,274	1,269	1,413
Mean	1,380	1,340	1,390	1,710	1,500	1,710	2,020	1,570	1,360	1,260	1,270	1,360
Max	1,488	1,403	1,611	3,217	2,086	2,461	4,248	2,065	1,619	1,339	1,354	1,413
Min	1,310	1,291	1,284	1,302	1,283	1,276	1,245	1,185	1,195	1,177	1,205	1,280
nstream												

Requirements

Presently, the instream water right is protested

Deschutes River below Bend near Bend, Discharge, cubic feet per second, Monthly mean in cfs

					1010	onding the						
YEAR												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	269	435	445	472	404	441	252	45	42	47	48	61
2003	236	365	380	454	479	452	364	58	55	55	56	53
2004	243	386	452	406	430	455	247	59	73	78	84	73
2005	293	345	446	411	351	430	141	70	85	77	77	88
2006	289	390	416	649	490	468	459	134	106	100	93	100
2007	266	487	685	736	716	804	269	92	113	93	98	88
2008	291	423	469	416	469	534	227	148	107	117	124	102
Mean	270	404	470	506	477	512	280	86	83	81	83	81
Max	293	487	685	736	716	804	459	148	113	117	124	102
Min	236	345	380	406	351	430	141	45	42	47	48	53
Instream												
Requirements	250/500	500	500	500	500	500	500/250	250	250	250	250	250

Deschutes River below Wickiup Reservoir, near Lapine, Discharge, cubic feet per second, Monthly mean in cfs

					Jinning me						
Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
335	30	33	35	30	29	466	1,118	1,254	1,495	1,401	1,114
293	29	31	32	29	35	301	1,078	1,347	1,461	1,266	1,063
387	36	40	44	38	30	448	1,063	1,286	1,474	1,368	1,092
466	37	33	30	30	32	466	679	1,275	1,439	1,469	1,142
234	31	31	30	31	32	203	860	939	1,375	1,427	1,152
375	101	190	290	309	350	658	1,421	1,331	1,563	1,515	1,141
242	40	47	70	127	137	549	990	1,015	1,466	1,391	1,256
333	43	58	76	85	92	441	1,030	1,207	1,467	1,405	1,137
466	101	190	290	309	350	658	1,421	1,347	1,563	1,515	1,256
234	29	31	30	29	29	203	679	939	1,375	1,266	1,063
500	400	400	400	400	400	500	500	500	500	500	500
	Oct 335 293 387 466 234 375 242 333 466 234 500	Oct Nov 335 30 293 29 387 36 466 37 234 31 375 101 242 40 333 43 466 101 234 29 500 400	Oct Nov Dec 335 30 33 293 29 31 387 36 40 466 37 33 234 31 31 375 101 190 242 40 47 333 43 58 466 101 190 234 29 31 500 400 400	Oct Nov Dec Jan 335 30 33 35 293 29 31 32 387 36 40 44 466 37 33 30 234 31 31 30 375 101 190 290 242 40 47 70 333 43 58 76 466 101 190 290 234 29 31 30 500 400 400 400	Oct Nov Dec Jan Feb 335 30 33 35 30 293 29 31 32 29 387 36 40 44 38 466 37 33 30 30 234 31 31 30 31 375 101 190 290 309 242 40 47 70 127 333 43 58 76 85 466 101 190 290 309 234 29 31 30 29 333 43 58 76 85 466 101 190 290 309 234 29 31 30 29 500 400 400 400 400	Oct Nov Dec Jan Feb Mar 335 30 33 35 30 29 293 29 31 32 29 35 387 36 40 44 38 30 466 37 33 30 31 32 234 31 31 30 31 32 375 101 190 290 309 350 242 40 47 70 127 137 333 43 58 76 85 92 466 101 190 290 309 350 234 29 31 30 29 29 500 400 400 400 400 400	Oct Nov Dec Jan Feb Mar Apr 335 30 33 35 30 29 466 293 29 31 32 29 35 301 387 36 40 44 38 30 448 466 37 33 30 31 32 203 375 101 190 290 309 350 658 242 40 47 70 127 137 549 333 43 58 76 85 92 441 466 101 190 290 309 350 658 242 40 47 70 127 137 549 333 43 58 76 85 92 441 466 101 190 290 309 350 658 234 29 31 30 <td>Oct Nov Dec Jan Feb Mar Apr May 335 30 33 35 30 29 466 1,118 293 29 31 32 29 35 301 1,078 387 36 40 44 38 30 448 1,063 466 37 33 30 30 32 466 679 234 31 31 30 311 32 203 860 375 101 190 290 309 350 658 1,421 242 40 47 70 127 137 549 990 333 43 58 76 85 92 441 1,030 466 101 190 290 309 350 658 1,421 234 29 31 30 29 29 203 679</td> <td>Oct Nov Dec Jan Feb Mar Apr May Jun 335 30 33 35 30 29 466 1,118 1,254 293 29 31 32 29 35 301 1,078 1,347 387 36 40 44 38 30 448 1,063 1,286 466 37 33 30 30 32 466 679 1,275 234 31 31 30 31 32 203 860 939 375 101 190 290 309 350 658 1,421 1,331 242 40 47 70 127 137 549 990 1,015 333 43 58 76 85 92 441 1,030 1,207 466 101 190 290 309 350 658 1,421</td> <td>Oct Nov Dec Jan Feb Mar Apr May Jun Jul 335 30 33 35 30 29 466 1,118 1,254 1,495 293 29 31 32 29 35 301 1,078 1,347 1,461 387 36 40 44 38 30 448 1,063 1,286 1,474 466 37 33 30 30 32 466 679 1,275 1,439 234 31 31 30 31 32 203 860 999 1,375 375 101 190 290 309 350 658 1,421 1,331 1,563 242 40 47 70 127 137 549 990 1,015 1,466 333 43 58 76 85 92 441 1,030 1,207 <</td> <td>Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 293 29 31 32 29 35 301 1,078 1,347 1,461 1,266 387 36 40 44 38 30 448 1,063 1,286 1,474 1,368 466 37 33 30 30 322 466 679 1,275 1,439 1,461 243 31 31 30 30 322 466 679 1,275 1,439 1,427 375 101 190 290 309 350 658 1,421 1,331 1,563 1,515 242 40 47 70 127 137 549 990 1,015 1,466 1,391 333 43 58 76 85 92 441 1,030 1,207 1,467 1,405 <td< td=""></td<></td>	Oct Nov Dec Jan Feb Mar Apr May 335 30 33 35 30 29 466 1,118 293 29 31 32 29 35 301 1,078 387 36 40 44 38 30 448 1,063 466 37 33 30 30 32 466 679 234 31 31 30 311 32 203 860 375 101 190 290 309 350 658 1,421 242 40 47 70 127 137 549 990 333 43 58 76 85 92 441 1,030 466 101 190 290 309 350 658 1,421 234 29 31 30 29 29 203 679	Oct Nov Dec Jan Feb Mar Apr May Jun 335 30 33 35 30 29 466 1,118 1,254 293 29 31 32 29 35 301 1,078 1,347 387 36 40 44 38 30 448 1,063 1,286 466 37 33 30 30 32 466 679 1,275 234 31 31 30 31 32 203 860 939 375 101 190 290 309 350 658 1,421 1,331 242 40 47 70 127 137 549 990 1,015 333 43 58 76 85 92 441 1,030 1,207 466 101 190 290 309 350 658 1,421	Oct Nov Dec Jan Feb Mar Apr May Jun Jul 335 30 33 35 30 29 466 1,118 1,254 1,495 293 29 31 32 29 35 301 1,078 1,347 1,461 387 36 40 44 38 30 448 1,063 1,286 1,474 466 37 33 30 30 32 466 679 1,275 1,439 234 31 31 30 31 32 203 860 999 1,375 375 101 190 290 309 350 658 1,421 1,331 1,563 242 40 47 70 127 137 549 990 1,015 1,466 333 43 58 76 85 92 441 1,030 1,207 <	Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 293 29 31 32 29 35 301 1,078 1,347 1,461 1,266 387 36 40 44 38 30 448 1,063 1,286 1,474 1,368 466 37 33 30 30 322 466 679 1,275 1,439 1,461 243 31 31 30 30 322 466 679 1,275 1,439 1,427 375 101 190 290 309 350 658 1,421 1,331 1,563 1,515 242 40 47 70 127 137 549 990 1,015 1,466 1,391 333 43 58 76 85 92 441 1,030 1,207 1,467 1,405 <td< td=""></td<>

Little Deschutes River near Lapine, Discharge, cubic feet per second, Monthly mean in cfs

					1010	onding the						
YEAR												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	34	58	84	108	78	108	341	204	141	83	132	108
2003	39	52	66	121	183	182	217	184	118	81	145	102
2004	31	48	91	72	95	151	223	230	150	99	127	98
2005	49	53	111	73	62	90	109	148	86	119	106	90
2006	35	79	78	191	149	154	295	567	319	113	111	94
2007	40	107	132	101	123	194	232	165	112	117	125	100
2008	69	107	92	72	73	112	146	485	376	154	146	86
Mean	42	72	93	105	109	142	223	283	186	109	127	97
Max	69	107	132	191	183	194	341	567	376	154	146	108
Min	31	48	66	72	62	90	109	148	86	81	106	86
Instream												
Requirements	116	164	196	200	200	236	240	240	200	126	75	92

Whychus Creek at Sisters, Discharge, cubic feet per second, Monthly mean in cfs

Year												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	22	39	54	66	45	39	39	29	95	12	- 3	3
2003	26	36	43	89	81	53	25	14	25	9	5	4
2004	29	47	53	48	48	37	11	33	48	18	12	9
2005	35	43	58	61	38	38	19	54	12	8	7	7
2006	25	47	69	122	66	35	23	70	153	81	15	14
2007	43	109	122	100	83	66	34	20	26	17	13	13
2008	38	100	94	52	47	32	17	58	99	87	20	11
Mean	31	60	70	77	58	43	24	40	65	33	11	9
Max	43	109	122	122	83	66	39	70	153	87	20	14
Min	22	36	43	48	38	32	11	14	12	8	3	3
Instream												
Requirements	50	30	30	30	20	20	20	20	20	20	20	20/30

Deschutes River at Benham Falls near Lapine, Discharge, cubic feet per second, Monthly mean in cfs

					1010	Junity me						
Year												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2002	823	501	529	551	510	535	1,165	1,747	1,788	1,908	1,835	1,619
2003	791	497	511	579	635	618	912	1,618	1,808	1,906	1,748	1,489
2004	818	451	517	502	539	399	1,001	1,674	1,755	1,901	1,808	1,479
2005	894	447	509	468	453	480	955	1,212	1,697	1,848	1,854	1,589
2006	690	480	478	723	604	596	892	1,789	1,650	1,849	1,888	1,657
2007	863	614	763	855	856	975	1,281	1,940	1,879	1,971	1,898	1,607
2008	763	538	521	523	608	701	1,119	1,864	1,785	1,968	1,909	1,729
Mean	806	504	547	600	601	615	1,046	1,692	1,766	1,907	1,849	1,596
Max	894	614	763	855	856	975	1,281	1,940	1,879	1,971	1,909	1,729
Min	690	447	478	468	453	399	892	1,212	1,650	1,848	1,748	1,479
Instream												
Requirements	1,000	660	660	660	660	1,000	1,000	1,600	1,600	1,600	1,600	1,600

Appendix E – Issue Framing Attachment

MAR 04 2008 10:19 HP LASERJET 3200 03/04/2008 11:03 FAX 503 378 3225 GOY OFFICE 123 P.2

Water Resources Department North Mall Office Building 725 Summer Street NE, Sutte A Salem, OR 97301-1260 503-986-0900 FAX 503-986-0900

Orego

October 31, 2007

Governor Theodore Kulongoski State Capital Salem, OR 97301-4047

Dear Governor Kulongoski:

Thank you for your July 13, 2007 letter directing the Water Resources Department (WRD) to evaluate whether the existing laws and rules that it administers are adequate to ensure that new destination resort development in or near the Metolius Basin would result in no reduction of stream flows in the Metolius River. We have completed that evaluation and offer the following for your consideration.

WRD has a number of programs in place to administer laws that ensure existing waterrights and public values are protected, while allowing for new development. In the Deschutes Basin, of which the Metolius is a part, the Deschutes Mitigation Program is the strongest program available to the department to address protection of streamflow in the Metolius River.

The Deschutes Mitigation Program was established in 2002 as a result of a multi-year ground water research study conducted by WRD and the United States Geological Survey (USGS). The study confirmed that ground and surface water are directly connected within the Deschutes study area, including the Metolius sub-basin. This means any new ground water use would impact stream flow that is already fully appropriated in the Deschutes Basin.

The mitigation program divides the Upper Deschutes Basin into seven sub-basins or "zones of impact" and requires bucket for bucket mitigation for any new ground water use to protect streamflow in the <u>primary</u> zone of impact. Water right applicants purchase credits from a mitigation bank as needed to balance their new use. The credits are generally derived from existing out-of-stream water rights that are left instream. The program has been successful at protecting streamflow in the Deschutes Basin and at the same time allowing for economic growth in the region. While mitigation credits are available for most sub-basins, there are no credits currently available for the Metolius zone due to the lack of historic water development in that area.

Any new development would likely rely on ground water to meet its water supply needs. The study found that ground water is connected to surface water beyond the sub-basin boundary where the wells are constructed. This means that ground water withdrawal outside of the Metolius sub-basin could have an impact on stream flow in the Metolius River. 03/04/2008 11:03 FAX 508 378 3225 GOY OFFICE 123

Governor Theodore Kulongoski October 31, 2007 Page 2

The Deschutes Mitigation Program will ensure no diminishment of flow in the Metolius River when the primary zone of impact of the new development is the Metolius subbasin. The mitigation program, as currently administered, does not provide that same level of protection of the Metolius River when the Metolius sub-basin is not the primary zone of impact.

One option to strengthen these protections would be to require mitigation for new ground water use in all zones where state scenic waterways are impacted. The Metollus River is a designated state scenic waterway from its source at river mile 41.2 downstream to Candle Creek at river mile 29. We've been advised by the Attorney General's office that mitigation could be required for impacts to multiple zones involving state scenic waterways. This option however, could have far reaching effects that could potentially eliminate most new ground water development in portions of the Deschutes Basin. For example, using this broader "mitigate everywhere" approach could seriously constrict the affect flows in the Metolius sub-basin and require mitigation where credits are not available.

A second option would be to close the Metolius Basin to new appropriations of water. This could be done by Water Resource Commission (WRC) or legislative action, however this option would not provide protection against ground water use by proposed development located outside of the Metolius sub-basin.

A third option would be for the WRC to withdraw designated areas from particular ground water uses. This would limit where new development could withdraw ground water. The difficulty with this option would be hydrologically justifying the withdrawal boundaries.

If implemented, option one could have significant consequences on economic development in the region. Option two does not provide additional protection beyond what the existing mitigation program provides. Option three would limit the development of ground water in designated areas, but without a strong hydrologic basis for delineating those areas, actions under this option would likely be subject to legal challenge.

It is the department's view that the Deschutes Mitigation Program has been successful at balancing streamflow protection with cconomic development in the Deschutes Basin. For this reason, we recommend this program continue to operate as it is currently administered.

Sincerely,

Ward Phillip C. Director

Appendix E – Issue Paper Attachment Change in Stream Flow Tables - Modeled²

For September, 2007

To monitor the impact of new ground water permits and mitigation on scenic waterway flows and instream water right flows, the Department developed a streamflow monitoring model using historic streamflow data. The streamflow model was constructed using a base period of flows from 1966 to 1995 at selected gaging stations around the basin. This base period represents river flows during a period of time after all of the dams were constructed and before the Scenic Waterway Act was amended to include consideration of ground water impacts.

The model considers the effects of new permitted ground water use and mitigation projects on streamflows. The following tables show the monthly model results through mid-2007 for all gaging station sites most closely representing each zone of impact and areas of special interest. With only one exception, instream requirements are met or improved compared to base line conditions when averaged annually. Based on modeled results, streamflow overall has improved by as much as 27 cfs in some areas due to mitigation.

This document includes tables for the following locations:

Deschutes River at the Mouth – Station #14103000 Deschutes River below Pelton Dam – Station #14092500 Metolius River at Lake Billy Chinook – Station #14091500 Deschutes River downstream of Bend – Station #14070500 Deschutes River upstream of Bend – Station #14070500 + four canals Little Deschutes River at mouth – Station #14063000 Deschutes River below Fall River – Station #14056500 and 14057500 Deschutes River below Wickiup Dam – Station #14056500

² September 2007 data based on R.M. Cooper, Assessing the Impact of Mitigation on Stream Flow in the Deschutes Basin. November 2008. Available at www.wrd.state.or.us

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use										
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change						
	%	%	%	%						
January	93.2	93.1	-0.11	-0.12						
February	90.8	90.4	-0.35	-0.39						
March	95.3	95.1	-0.22	-0.23						
April	99.9	99.8	-0.11	-0.11						
May	99.1	99.1	0.00	0.00						
June	98.0	98.7	0.67	0.68						
July	91.0	92.0	1.08	1.17						
August	100	100	0.00	0.00						
September	98.1	98.1	0.00	0.00						
October	97.4	97.3	-0.11	-0.11						
November	99.9	99.9	0.00	0.00						
December	91.7	91.1	-0.64	-0.71						
Annual	96.2	96.2	0.02	0.02						

Deschutes River at Mouth Gaging Station 14103000

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

Month	Base Line Stream Flow*	Mitigated Stream Flow*	Change in Stream Flow	Percent Change
_	cfs	cfs	cfs	%
January	6910	6900	-17.4	-0.25
February	7080	7060	-17.4	-0.25
March	7250	7230	-17.3	-0.24
April	6640	6630	-4.63	-0.07
May	5800	5820	16.6	0.28
June	5200	5220	24.6	0.47
July	4590	4610	23.3	0.50
August	4380	4400	22.6	0.51
September	4430	4450	16.9	0.38
October	4710	4710	0.29	0.01
November	5390	5380	-17.4	-0.32
December	6190	6170	-17.4	-0.28
Annual	5710	5710	1.17	0.02

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use				
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
_	%	%	%	%
January	64.7	64.1	-0.64	-1.01
February	63.0	62.2	-0.83	-1.33
March	67.8	66.9	-0.97	-1.45
April	71.4	71.3	-0.11	-0.16
May	58.8	62.9	4.09	6.50
June	55.6	59.1	3.56	6.02
July	41.0	42.7	1.72	4.03
August	98.2	99.0	0.86	0.87
September	66.8	67.6	0.78	1.15
October	81.1	80.3	-0.75	-0.94
November	97.2	97.2	0.00	0.00
December	66.1	65.5	-0.64	-0.99
Annual	69.3	69.9	0.59	0.85

Deschutes River below Pelton Dam

Gaging Station 14092500

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

		0		
Month	Base Line Stream Flow*	Mitigated Stream Flow*	Change in Stream Flow	Percent Change
_	cfs	cfs	cfs	%
January	5240	5230	-17.4	-0.33
February	5190	5180	-17.4	-0.34
March	5520	5500	-17.3	-0.31
April	5130	5130	-4.63	-0.09
May	4420	4440	16.6	0.37
June	4230	4250	24.6	0.58
July	4020	4040	23.3	0.58
August	3940	3960	22.6	0.57
September	3980	3990	16.9	0.42
October	4190	4190	0.290	0.01
November	4680	4670	-17.4	-0.37
December	5030	5010	-17.4	-0.35
Annual	4630	4630	1.17	0.03

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use				
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
_	%	%	%	%
January	97.7	97.7	0.00	0.00
February	99.2	99.2	0.00	0.00
March	99.8	99.8	0.00	0.00
April	100	100	0.00	0.00
May	100	100	0.00	0.00
June	100	100	0.00	0.00
July	100	100	0.00	0.00
August	100	100	0.00	0.00
September	100	100	0.00	0.00
October	100	100	0.00	0.00
November	100	100	0.00	0.00
December	100	100	0.00	0.00
Annual	99.7	99.7	0.00	0.00

Metolius River at Lake Billy Chinook Gaging Station 14091500

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

Month	Base Line Stream Flow*	Mitigated Stream Flow*	Change in Stream Flow	Percent Change
	cfs	cfs	cfs	%
January	1510	1510	0.00	0.00
February	1560	1560	0.00	0.00
March	1560	1560	0.00	0.00
April	1520	1520	0.00	0.00
May	1560	1560	0.00	0.00
June	1590	1590	0.00	0.00
July	1490	1490	0.00	0.00
August	1400	1400	0.00	0.00
September	1350	1350	0.00	0.00
October	1330	1330	0.00	0.00
November	1370	1370	0.00	0.00
December	1450	1450	0.00	0.00
Annual	1470	1470	0.00	0.00

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use				
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
	%	%	%	%
January	60.5	58.7	-1.83	-3.11
February	63.8	62.1	-1.65	-2.66
March	68.3	67.7	-0.54	-0.79
April	23.6	23.8	0.22	0.94
May	1.29	1.40	0.11	7.69
June	2.11	3.11	1.00	32.1
July	0.11	0.54	0.43	80.0
August	0.86	1.40	0.54	38.5
September	3.67	4.11	0.44	10.8
October	13.0	13.5	0.54	3.97
November	52.2	50.4	-1.78	-3.52
December	56.3	54.5	-1.83	-3.35
Annual	28.6	28.3	-0.36	-1.26

Deschutes River Downstream of Bend Gaging Station 14070500

As A Result Of Mitigated Groundwater Use					
Month	Base Line Stream Flow*	Mitigated Stream Flow*	Change in Stream Flow	Percent Change	
	cfs	cfs	cfs	%	
January	683	679	-4.03	-0.59	
February	705	701	-4.03	-0.57	
March	714	710	-4.03	-0.57	
April	299	306	7.32	2.39	
May	51.2	83.1	31.9	38.4	
June	50.5	88.9	38.4	43.2	
July	42.6	80.9	38.4	47.4	
August	46.2	84.4	38.2	45.3	
September	61.0	93.5	32.5	34.8	
October	222	236	14.2	6.01	
November	551	547	-4.03	-0.74	
December	614	610	-4.03	-0.66	
Annual	335	350	15.2	4.33	

Change In Mean Stream Flow

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use				
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
_	%	%	%	%
January	37.3	37.3	0.00	0.00
February	40.0	40.0	0.00	0.00
March	24.8	24.8	0.00	0.00
April	33.3	33.7	0.33	0.99
May	6.45	8.92	2.47	27.7
June	17.7	24.3	6.67	27.4
July	27.1	35.2	8.06	22.9
August	4.95	12.0	7.10	58.9
September	1.78	3.78	2.00	52.9
October	15.2	16.3	1.18	7.24
November	29.0	29.0	0.00	0.00
December	35.7	35.7	0.00	0.00
Annual	22.7	25.0	2.34	9.34

Deschutes River Upstream of Bend Gaging Station 14070500 + 4 Canals*

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

Month	Base Line Stream Flow**	Mitigated Stream Flow**	Change in Stream Flow	Percent Change
	cfs	cfs	cfs	%
January	712	712	-0.118	-0.02
February	738	738	-0.118	-0.02
March	781	780	-0.118	-0.02
April	877	885	8.37	0.95
May	1180	1230	54.5	4.42
June	1360	1420	61.0	4.30
July	1440	1500	61.0	4.08
August	1290	1350	60.9	4.51
September	1090	1150	55.5	4.85
October	721	746	24.8	3.33
November	590	590	-0.118	-0.02
December	650	650	-0.118	-0.02
Annual	953	980	27.3	2.78

* The four canals are the DCMID (14068500), the North Unit Main (14069000), the North (14069500), and the Swalley (14070000).

Change In Percent Of Time Instream Requirements Are Met				
	As A R	esult Of Mitigated G	Froundwater Use	
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
	%	%	%	%
January	22.9	22.9	0.00	0.00
February	37.3	37.3	0.00	0.00
March	27.4	27.4	0.00	0.00
April	45.2	45.2	0.00	0.00
May	55.9	57.3	1.40	2.44
June	56.6	67.9	11.3	16.7
July	85.1	98	12.9	13.2
August	93.9	96.1	2.26	2.35
September	72	79.7	7.67	9.62
October	11.6	18.5	6.88	37.2
November	14.7	14.7	0.00	0.00
December	20.3	20.3	0.00	0.00
Annual	45.3	48.8	3.55	7.27

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

Change in

Stream Flow

cfs

-0.038

-0.038

-0.038

-0.038

4.89

25.3

25.3

21.8

18.6

8.69

-0.038

-0.038

8.74

Percent Change

%

-0.02

-0.02

-0.02

-0.01

1.46

7.82

9.90

9.85

11.5

10.2

-0.04

-0.03

4.26

Mitigated

Stream Flow*

cfs

162

183

219

262

334

323

256

222

162

85.4

108

142

205

Little Deschutes River at mouth Gaging Station 14063000

*Stream flows have been rounded to three significant figures.

Base Line

Stream Flow*

cfs

162

183

219

262

329

298

230

200

144

76.7

108

142

196

Month

January

March

April

May

June

July

August

October

September

November

December

Annual

February

84

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use				
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
	%	%	%	%
January	29.7	29.7	0.00	0.00
February	30.1	30.1	0.00	0.00
March	33.5	33.5	0.00	0.00
April	68.4	68.4	0.00	0.00
May	97.8	97.8	0.00	0.00
June	98.8	98.8	0.00	0.00
July	100	100	0.00	0.00
August	100	100	0.00	0.00
September	99.8	99.8	0.00	0.00
October	56.8	56.8	0.00	0.00
November	20.9	20.9	0.00	0.00
December	24.7	24.7	0.00	0.00
Annual	63.5	63.5	0.00	0.00

Deschutes River below Fall River

Gaging Stations 14056500 + 14057500

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

Month	Base Line Stream Flow*	Mitigated Stream Flow*	Change in Stream Flow	Percent Change
	cfs	cfs	cfs	%
January	329	329	0.00	0.00
February	331	331	0.00	0.00
March	319	319	0.00	0.00
April	654	654	0.00	0.00
May	1220	1220	0.00	0.00
June	1500	1500	0.00	0.00
July	1690	1690	0.00	0.00
August	1530	1530	0.00	0.00
September	1260	1260	0.00	0.00
October	561	561	0.00	0.00
November	246	246	0.00	0.00
December	280	280	0.00	0.00
Annual	829	829	0.00	0.00

Change In Percent Of Time Instream Requirements Are Met As A Result Of Mitigated Groundwater Use				
Month	Base Line Percentage	Mitigated Percentage	Change in Percentage	Percent Change
_	%	%	%	%
January	26.0	26.0	0.00	0.00
February	27.6	27.6	0.00	0.00
March	22.8	22.8	0.00	0.00
April	57.3	57.3	0.00	0.00
May	95.9	95.9	0.00	0.00
June	98.2	98.2	0.00	0.00
July	99.8	99.8	0.00	0.00
August	100	100	0.00	0.00
September	99.2	99.2	0.00	0.00
October	47.0	47.0	0.00	0.00
November	10.1	10.1	0.00	0.00
December	18.6	18.6	0.00	0.00
Annual	58.7	58.7	0.00	0.00

Deschutes River below Wickiup Dam Gaging Station 14056500

Change In Mean Stream Flow As A Result Of Mitigated Groundwater Use

Month	Base Line Stream Flow*	Mitigated Stream Flow*	Change in Stream Flow	Percent Change
_	cfs	cfs	cfs	%
January	201	201	0.00	0.00
February	204	204	0.00	0.00
March	189	189	0.00	0.00
April	518	518	0.00	0.00
May	1080	1080	0.00	0.00
June	1360	1360	0.00	0.00
July	1550	1550	0.00	0.00
August	1400	1400	0.00	0.00
September	1130	1130	0.00	0.00
October	428	428	0.00	0.00
November	115	115	0.00	0.00
December	151	151	0.00	0.00
Annual	696	696	0.00	0.00