Resources Study of the Walla Walla River Basin

October 14, 2020

Amanda Garcia and Andy Long, USGS OR & WA Water Science Centers

Downtown Walla Walla, February 11, 2020

What is a Groundwater Study?

Unbiased, data-based scientific investigation of groundwater system
 Water availability
 Water quality
 Simulation tools

U.S. Geological Survey, 2018 at: https://www.usgs.gov/media/ima ges/modflow-output-visualization

What is a Study Workplan?

 Defines study purpose, scope, and objectives
 Provides detailed:

- Tasks
- **J** Timeline
- Budget
- Deliverables

A cooperative study of the groundwater resources of the Walla Walla River Basin, Oregon-Washington

Prepared by: Andy Long¹ (ajlong@usgs.gov) Amanda Garcia² (cgarcia@usgs.gov) Hank Johnson² (hjohnson@usgs.gov) Wendy Welch¹ (wwelch@usgs.gov)

¹U.S. Geological Survey Washington Water Science Center

2116 Gastra		FY	16	r"	FY	17	-	Г			F		
		03	04	Q1	02	03	04	01	02	03	Q4	Q1	02
Project management	Both												
eam meetings (USGS, OWRD)	Both												
takeholder meetings (Technical advisory committee, public meetings)	Both												
Phase 1													
iterature review	USGS												
eologic framework	+	-	-	⊢	-	⊢	-	-	-	-		\vdash	\vdash
Development of working surficial geologic map (compile maps, additional mapping)	OWRD					-	\vdash			-			\vdash
Develop subsurface stratigraphy database (Well logs inventory, lith coding, geophysics)	OWRO	-	-	-	-	-	+	-	-	-			\vdash
Define hydrostratigraphic units (lump geologic map units)	Both									-			F
Create maps of hydrostratigraphic units (extent and thickness)	USGS												\vdash
Field trip to discuss geology	Both									-			F
brilling	-												F
Determine drilling-program objectives	Both						1			-			
Identify well sites	Both						-		_				\vdash
Conduct drilling operations	OWRD												F
Logging and analysis	OWRO												F
Well testing	OWRD												
lydrologic Data Collection and Flow-System Evaluation					-					-			\vdash
Compile existing water-level data	OWRO												
Field inventory wells	OWRD												
Monitor well network and archive groundwater levels	OWRD												
Enter data into NWIS	USGS												
Develop water-level visualization tool	USGS												
Evaluate and interpret water-level data	Both												
Determine GW flow direction (horizontal, vertical)	OWRO												
Determine GW trends (response to pumping and climate)	OWRD												
Determine data gaps	Both												
Evaluate role of structure in hydrology	OWRD												
Evaluate possible groundwater subbasins	OWRD												
Estimate hydrogeologic unit properties (K&S)	OWRO												
Evaluate existing acuifer tests (long-term, single-well, specific capacity)	OWRD												
Conduct and evaluate potential new aquifer tests	OWRO												
Apply/evaluate geochemistry and age dating	USGS												
Evaluate chemical tracer data: isotopes, age dating, major ions, temperature	USGS												
Collect new chemical tracer data-reconnaissance	USGS												
lydrologic Budget													
Estimate GW discharge to wells	USGS												
Estimate GW use	USGS												
Link GW use to wells	OWRD												
Link wells to hydrogeologic units	USGS												L
Assign water use to wells	USGS												

USGS Groundwater Studies in OR

≥USGS

USGS Groundwater Studies in WA

With numerical model

Without numerical model

Why Do We Need a Study?

Basin issues

 Bi-state basin with a complex hydrogeologic system, longterm water level declines in regional aquifers & insufficient in-stream flows

 Need for basin-wide study to understand the resource for its management and protection
 States requested USGS involvement

 Long history of data collection and interpretive studies

Opportunities to collaborate and leverage data sets

Study Value

Why is it important? Competing interests for a limited resource

 How will it be used?
 Inform planning and water-management decisions at a basinwide scale

World Bank Water, December 30, 2015 at: https://twitter.com/worldbankwater/status/682308767443193856?lang=en

Salmon image: Phillip Martin at: http://animals.phillipmartin.info/fish_chinook_salmon.htm

Study Goals

Work with water-resource agencies and stakeholders in OR and WA

Understand and describe the basin-wide groundwater system including
 Groundwater extent and connectivity
 Impacts of pumping on groundwater levels, and
 Interactions between groundwater and surface water.

Develop a tool to simulate the groundwater system and evaluate water-management scenarios

Some Questions to be Addressed

How much water enters the Basin (recharge)?
How much water leaves the Basin (discharge)?
How might water-level declines progress in the future?
How can water-level declines be managed?
How does pumping affect streamflow?
To what degree are different parts of the basin hydrologically connected?

Defined Study Roles

USGS

- Lead collaborative study including data collection and interpretations
- Author peer-reviewed reports
- Cooperating agencies
 Assist in data collection and interpretation
 Contribute to study reports

University of California, Davis, http://watermanagement.ucdavis.edu/teaching/

Study Tasks

 Compile and review data and literature
 Collect new data – groundwater levels, streamflow, geochemistry

 Describe hydrogeologic framework – hydrogeologic units, hydraulic properties, water-level maps

Define hydrologic budget – groundwater use, recharge, discharge

 Evaluate flow-system – water-level trends, flow directions, role of structure, geochemistry and age dating, groundwater-surface water interactions

Publish peer-reviewed reports and data

State of Washington

30-yr average precipitation (1981-2010), PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu

Frequently Asked Questions

What is an aquifer?
What are aquifer properties?
How old is groundwater?
How much recharge is happening?

Amanda Garcia, <u>cgarcia@usqs.gov</u> Andy Long, <u>ailong@usqs.gov</u>

USGS Walla Walla Project Webpage,

https://www.usgs.gov/centers/wa-water/science/walla-wallagroundwater?qt-science_center_objects=0#qtscience_center_objects

References

Healy, R.W., Winter, T.C., LaBaugh, J.W., and Franke, O.L., 2007, Water budgets: Foundations for effective waterresources and environmental management: U.S. Geological Survey Circular 1308, 90 p.

