Enhanced Safety Settings Troubleshooting

OWEC December 4, 2025

Agenda

ESS program overview

- Pacific Power summary
- Definition and purpose
- Customer communications

ESS outages troubleshooting

- General response/restoration process
- Customer communications

ESS reliability troubleshooting

- Thresholds for review
- General review process
- Customer communications

Waveform learnings

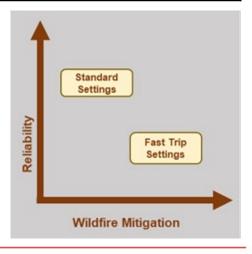
- Understanding the different waveform types
- How it is used in ESS troubleshooting

ESS Program Overview

2025 Oregon **SAIDI Excluding ESS** 110.3* SAIDI ESS 123.1* **Number of Circuits** 547 Number of ESS Activated Circuits **274** (50% of Total) Number of Protective Devices (Circuit Breaker, Recloser, Fuse 1,158 saver) **664** (57% of Total) Number of Protective Devices ESS Activated Number of Protective Devices ESS Activated with SCADA **169** (14% of Total) Number of Protective Devices with HIF Trip **188** (16% of Total) Number of Communicating Fault Circuit Indicators (CFCI's) 953

Number of CFCI's on ESS Activated Circuits

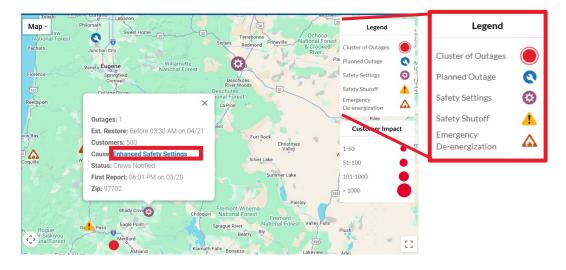
Pacific Power summary


POWERING YOUR GREATNESS

700 (73% of Total)

Definition and purpose

- Enhanced Safety Settings (ESS) are protection settings on relays designed to clear faults in < 1 second to limit arc energy as compared to traditional schemes where clearing times can be 4-10 seconds.
 - Additionally, these settings are designed to limit potential expulsion protection device operation (fuses).
- Depending on the relay capability ESS can mean different things.
 - A summary of the ESS settings that are currently implemented by the company is provided on the right.


ESS Setting	Relay Trip Response
Tagged/Hold	Instantaneous Pickup, Lockout
Fire Mode or Elevated Fire Risk (EFR)	Harmonic Restrained Fast Curve (HR-Fast), 30 second open interval, HR-Fast, Lockout
Lever Down (FuseSaver only)	Instantaneous Pickup, Lockout

Customer communications

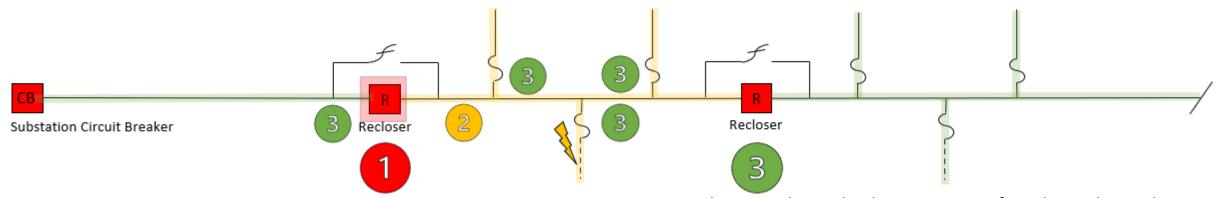
- Pacific Power uses multiple methods to inform customers about Enhanced Safety Settings before and during wildfire season, including:
 - Pre-season emails and bill messages
 - Community events (in-person, virtual)
 - Handouts
 - Paid advertising (targeted to areas previously impacted)
 - Local media stories
 - Social media messaging
 - Website
 - Sharing resources with partners
- Customers receive a letter or email letting them know when they have been placed on settings for the season:
 - Explaining why and how settings are used
 - What to expect from Pacific Power
 - How customers can prepare

ESS Outage Troubleshooting

General response/restoration process

 The goals for risk mitigation for restoration of ESS circuits is the same as the activation, being to limit arc energy and limiting potential for expulsion protection devices to operate (fuses).

1 Targets


Retrieve fault magnitude and targets from the relay. This provides indication of where to start looking and allows RTE/FE to provide fault map to system operator to provide first responder potential fault locations.

2 Patrol and isolate

Patrol the line to identify the outage cause. If areas haven't been patrolled or can't be seen, isolate them. "If you haven't seen it, isolate it" (reclosers, switches, underground dips, etc.).

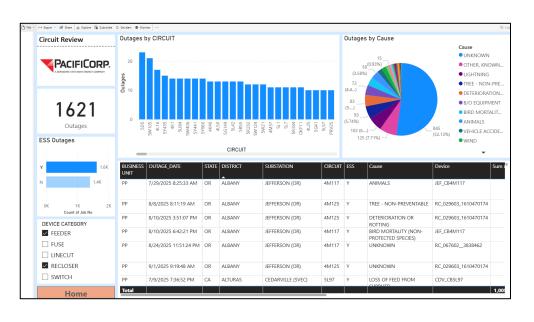
3 Step Restore

Step restore the circuit by closing in device that locked out. Close in overhead taps first sequentially. Once all overhead taps have been energized, close in underground dips sequentially.

Restoration process can vary with meteorology risk color. See SOP-202 for policy and procedures.

Customer communications

- Pacific Power notifies customers when outages related to Enhanced Safety Settings occur:
 - Real time outage notifications
 - Updated before 2025 wildfire season to be specific to enhanced safety settings
 - Outage map
 - Updated before 2025 wildfire season to show enhanced safety settings icon and link to additional information
- Some customers will be restored before others due to step restoration process


Figure 7: Visual Depiction of Single Restoration vs Step Restoration

ESS Reliability Troubleshooting

Thresholds for review

ESS Criteria	Ops Count	# of Days
Any Recloser, Circuit Breaker, or Fusesaver with 2 Lockouts in ESS in 1 week	2	7
Any Recloser, Circuit Breaker, or Fusesaver with 4 Lockouts in ESS in 1 month	4	30
Any Recloser, Circuit Breaker, or Fusesaver with 6 Lockouts in ESS in a season	6	365

Other methods include:

Customer Feedback

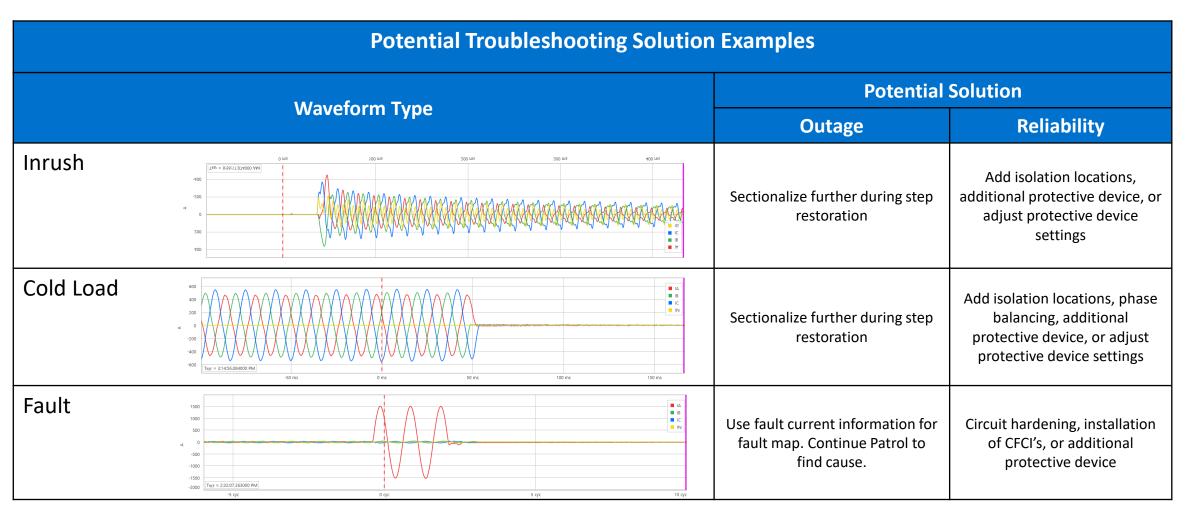
General review process

- 1. Review outage history, outstanding conditions and relay event data
- 2. Verify meteorology fuel/terrain polygons
- 3. Implement new settings on existing protective devices (if possible)
- 4. Install additional protective devices to further isolate wildfire risk areas (i.e. reclosers, fuse savers, etc.)
- 5. Install Communication Faulted Circuit Indicators (CFCIs)
- 6. Additional inspections (mainly via drone, but can include visual or detail)
- 7. Expedite existing reliability/wildfire hardening projects currently in progress (if any)

Example: Chesterfield CB11

Customer communications

- When an area experiences reliability impacts due to enhanced safety settings, additional outreach and communications are used, including:
 - Targeted customer emails
 - Communication to key stakeholders
 - Community events (where appropriate)
 - Example: Talent, Oregon
- The focus of these communications are to let customers know what Pacific Power is doing and what to expect



Waveform Learnings

How it is used in ESS troubleshooting

Oscillography/Waveform Data Sources: Protective Device Relays (SEL-351, SEL-651R2, SEL-751) and CFCI's (MM3)

Questions?

Thank you

Jon Connelly

Director, Real Time Grid Engineering jonathan.connelly@pacificorp.com

Learn more

PacificPower.net/Settings