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Importance of Including Distributed Energy 

Resources in Load Forecasts

► Distribution system investments: replacing aging infrastructure and 

distribution expansion

► Procurement of generating capacity to meet peak demand

► Proactive investments to increase hosting capacity

► Evaluating the costs and benefits of incentives or policies to promote 

distributed energy resources (DER)
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Impact of DPV on T&D Investments:

Potential Deferral Value

Source: Adapted from Cohen et al. 2016
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Increasing Adoption of DER Increases the 

Importance of Accurate Forecasts in Planning

Costs of roughly $70 million 
from severe underforecasting
and $20 million from severe 
overforecasting for a utility 
with sales >10TWh/yr and 
with up to 8.5% of sales from 
DPV by the end of a 15-year 
period Source: Gagnon et al. (2018)
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capacity-expansion models used in utility resource planning processes, which first forecast future 

resource needs over some planning horizon, based on load growth and the existing resource base, and 

then select a least-cost mix of new resources to meet forecasted incremental needs. For each planning 

period, RPM assumes a certain amount of DPV when forecasting incremental needs. When the analysis is 

performed under an incorrect DPV forecast, corresponding to the green lines in Figure 1, RPM optimizes 

for a DPV penetration that does not actually occur, resulting in a sub-optimal system buildout over the 

following 5 years. 

For each of the DPV penetration trajectories described in Step 1, we analyze scenarios with systematic 5-

year DPV forecast errors that range from -100% to +100% (i.e., ranging from a forecast of zero DPV 

growth to one with twice the actual level of growth), as well as a scenario in which RPM assumes the 

correct forecast. Figure 3 shows an example set of scenarios. The central black line represents actual DPV 

adoption, as described in Step 1, and each curve branching off the central line is an incorrect forecast.4 

Figure 3 shows only a single DPV-penetration scenario—a similar set of curves is generated for each 

level of DPV penetration. 

 

 

Figure 3. Example scenarios showing a range of DPV forecast error severity 

In Step 3, the DPV adoption from Step 1 and the bulk power system built in Step 2 become inputs to the 

PLEXOS model, which simulates the cost of operating the system under these conditions. The actual 

amount of DPV adopted is always used in this cost modeling, because system dispatch would be based on 

the actual net load, and misforecasting within the planning process does not impact operational unit 

commitment and economic dispatch decisions. However, if the power system was built using an incorrect 

DPV forecast, PLEXOS outputs the cost of operating a system that was designed for a different amount 

of DPV adoption than actually occurred. 

In Step 4, we add the capital costs calculated in RPM and the operational costs calculated in PLEXOS to 

arrive at the total cost of building and operating the power system. Additionally, we make adjustments to 

represent costs that may be incurred when procuring resources to make up for deviations to either 

resource adequacy or RPS requirements. In general, overforecasting can result in the planning reserve 

margin and/or RPS requirements not being met, since there is less capacity on the system than RPM 

                                                      
4 In RPM, once a 5-year plan forecasts DPV at a certain level, future forecasts cannot drop below that level, even if 

they otherwise would based on our systematic error calculation. This modeling artifact results in asymmetries in the 

severity of misforecasting (e.g., compare the distance away from the actual adoption line of the 100% overforecast 

line vs. the 100% underforecast line in the 2020–2025 period in Figure 3), but it does not significantly impact the 

results of this work. 
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4 In RPM, once a 5-year plan forecasts DPV at a certain level, future forecasts cannot drop below that level, even if 

they otherwise would based on our systematic error calculation. This modeling artifact results in asymmetries in the 

severity of misforecasting (e.g., compare the distance away from the actual adoption line of the 100% overforecast 

line vs. the 100% underforecast line in the 2020–2025 period in Figure 3), but it does not significantly impact the 

results of this work. 

Regardless of misforecast 

severity all plans are updated 

every 5 years
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Planning for a Distributed Disruption: 

Innovative Practices for Incorporating 

Distributed Solar into Utility Planning

• Analysts project that distributed solar photovoltaics (DPV) will continue 
growing rapidly across the United States.

• Growth in DPV has critical implications for utility planning processes, 
potentially affecting future infrastructure needs.

• Appropriate techniques to incorporate DPV into utility planning are essential 
to ensuring reliable operation of the electric system and realizing the full 
value of DPV.

Context

• Comparative analysis and evaluation of roughly 30 recent planning studies, 
identifying innovative practices, lessons learned, and state-of-the-art tools. 

Approach

• Electric infrastructure planning (IRPs, transmission, distribution).

• Focus on the treatment of DPV, with emphasis on how DPV growth is 
accounted for within planning studies.

Scope
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Key Findings

► Forecasting load with DER is often “top-down”: separately forecast load 

and quantity of DER at the system level, allocate that system forecast 

down to more granular levels. 

► Many factors affect customer decisions to adopt DER, including the cost 

and performance of DER, incentives, customer retail rates, peer-effects, 

and customer demographics. Customer-adoption models can help 

account for many of these factors. 

► Forecasts are uncertain: It may be valuable to combine various 

approaches and to benchmark against third-party forecasts.
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High End of 3rd Party Forecasts Suggests 

More DPV Than Considered By Utilities
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A Variety of Methods Are Used to Develop 

DPV Forecasts 
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Note: All utility planner estimates for the near term (2020) are shown in darker colors. Longer-term estimates are 

depicted in lighter colors and pertain to the year 2030 with the exception of APS, whose long-term estimate 

references the year 2029. As noted in Table 5, some forecasts use multiple methodologies. In such cases, we used 

our judgment to categorize the forecast’s methodology. 

Figure 7. Utility DPV Forecasts Grouped by Forecasting Methodology 

 

3.5 Advancing Customer-Adoption Models  

As discussed in Section 3.2, currently used customer-adoption models do not clearly agree on all 

parameters, methods for developing parameters are not always clear, and the models do not 

always exploit the larger amounts of data available as more customers adopt DPV. As DPV 

deployment has increased, the sophistication of methods used to analyze customer preferences 
and predict PV adoption has also improved. Roughly speaking, these methods predict aggregate 

deployment in a top-down (using regional-level characteristics) or bottom-up (using individual-

level characteristics) manner. In this subsection, we highlight recent state-of-the-art models that 

have been used to forecast DPV adoption, and we note unresolved issues in the literature. 

Though these advanced methods are not employed in the utility planning documents we review, 

they build on the customer-adoption modeling framework described in Section 3.2 and represent 
potential improvements to DPV forecasting tools. 

 

3.5.1 Improving Representation of Customer-Adoption Decisions 

Agent-based models (ABMs) have emerged as common, bottom-up techniques for simulating 

customer adoption of new technologies, because they are well suited to represent the 

complexities of consumer behavior and technology valuation. ABMs are a class of 
computational models for simulating the interactions and actions of distinct autonomous agents 

and, by association, assessing their effects on a larger system. These models have been 

successfully used to forecast aggregate PV deployment at the city, regional (Rai and Robinson 
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Customer-adoption Modeling Brings 

Customer Decisions Into DPV Forecast

Method Description

Explanatory Factors Used

Recent 
installation 
rates

Incentive
program 
targets

Technical 
potential

PV 
economics

End-user
behaviors

Stipulated 
Forecast

Assumes end-point
DPV deployment

Historical 
Trend

Extrapolates future 
deployment from 
historical data

X

Program-
Based 
Approach

Assumes program 
deployment targets 
reached

X

Customer-
Adoption
Modeling 

Uses adoption models 
that represent end-
user decision making 

X X X X
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Some Planners Use Customer-adoption 

Models for DPV Forecasting

Technical 
Potential

Willingness-
to-adopt

Diffusion

Adapted from: 
Gagnon et al. 
2016

*illustrative

*illustrative
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Technical Potential Estimates Are Typically 

Based on Customer Count and Rooftops

► Technical potential studies used by utilities in our sample of studies were 

based primarily on customer counts and floor space surveys

◼ Rooftop space is based on average number of floors and assumptions about 

the density of PV arrays

► New emerging tools like Light Detection and Ranging (LiDAR) imaging 

can refine technical potential estimates:

◼ Infer shading, tilt, and azimuth from rooftop images 

◼ Apply availability constraints to exclude unsuitable orientations or insufficiently 

large contiguous areas

► Can also refine with permitting and zoning restrictions, if applicable

► May overestimate suitability without consideration of roof condition, 

building age, electric code compliance, and building ownership
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The flat rate scenario leads to the highest deployment in 2050, and the lower feed-in tariff 
scenario leads to the lowest. Most of the rate and compensation scenarios follow temporal 
trends similar to that of the reference scenario (with different magnitudes), but the time-
varying rate scenario follows a different overall trajectory. Specifically, under the time-varying 
rate scenario, PV deployment is greater than in the reference scenario through about 2030, 
after which it falls below the reference deployment. This is because, at low solar penetrations, 
the higher average compensation for PV under time-varying rates boosts PV deployment. 
However, as regional PV penetration increases and the energy and capacity value of PV erodes, 
compensation for net-metered PV generation also erodes under time-varying rates, leading to 
lower deployment. 
 

 
Figure 7. National distributed PV deployment by scenario (with rate feedback effects included) 

Figure 8  focuses on 2050 cumulative PV deployment for each of the seven alternative scenarios 
relative to the reference scenario. Only the flat rate and higher feed-in tariff scenarios increase 
deployment; all other scenarios reduce deployment. The results indicate that, were all 
residential and commercial customers on a time-invariant flat rate with no fixed or demand 
charges, PV deployment would increase by 5% owing to the increased average compensation 
under that simple rate design. The higher feed-in tariff level of $0.15/kWh also increases 
deployment relative to the reference scenario; the difference is clearly related to the tariff’s 
magnitude, and higher values would further increase deployment. A lower feed-in tariff level 
would lead to substantially lower deployment than the reference case, 79% lower for our 
$0.07/kWh  feed-in tariff scenario. Due to the declining value of PV with increased penetration, 
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the time-varying rate scenario leads to a reduction in cumulative PV deployment of 22% in 2050 
compared with the reference scenario; as indicated earlier, time-varying rate structures actually 
increase PV deployment through about 2030.  
 
Both fixed-charge scenarios reduce PV deployment in 2050: a $10/month charge applied to 
residential customers reduces total cumulative deployment by 14%, and a $50/month charge 
reduces deployment by 61%. Partial net metering, where PV generation exported to the grid 
(i.e., not consumed on site) is compensated at a calculated avoided-cost rate, reduces 
deployment by 31% because in this analysis the assumed avoided cost from PV is lower than 
the average retail rate, reducing average compensation and increasing the customer’s PV 
payback time. 
 

 
Figure 8. Change in modeled cumulative national PV deployment by 2050 for various rate 
design and compensation mechanism scenarios, relative to the reference scenario  (with rate 
feedback effects included) 
 
The distributions of PV deployment differences (compared with the reference scenario) across 
U.S. states vary substantially by scenario (Figure 9). For the two fixed-charge scenarios, the 
range is relatively small, primarily reflecting differences in the average residential retail rate and 
average annual customer load across states.  For example, states with large annual average 
customer loads or high average retail rates will see a smaller impact from a given increase in 
fixed customer charges.  The flat rate scenario increases deployment relative to the reference 
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California conducted by Navigant (Navigant 2007). The technical potential for WECC assumes 

that 50% of customers could add PV and that typical system sizes are 4 kW for residential and 50 

kW for commercial customers (WECC 2015).  

 

The willingness-to-adopt curve is a relationship between the customer economics of PV (often 

represented by the simple payback period) and the ultimate market share that could be achieved 

with enough time (as a percentage of the technical potential). The willingness-to-adopt curves 

used in the utility forecasts are shown in Figure 4. The willingness-to-adopt curves used by PAC 

were developed by Navigant through previous research based on customer surveys, historical 

program data, and industry interviews. The curve used by the CEC for PG&E’s forecast is from a 

customer-adoption model (SolarSim) in an Arizona PV study by R.W. Beck (2009), which 

averages curves from Navigant and curves developed based on heat pump adoption (Kastovich et 

al. 1982).
15

 PSE references the same curve used by PG&E, though it ultimately develops its own 

curve, citing concern that PSE customers may have different preferences.
16

 The WECC curves 

have the same functional form found in NREL’s SolarDS model. The simple payback period 

accounts for the cost of purchasing a PV system, the bill savings (which depend on PV 

performance and retail rates), and incentives. 

 

 
Note: Dashed gray lines (WECC) are for existing buildings, and dotted gray lines are for new buildings. 

Figure 4. Willingness-to-Adopt Curves Used in Utility Customer-Adoption Models 

To develop an annual adoption rate, PAC, PG&E, and WECC use a diffusion curve to estimate 

the fraction of the ultimate market share that would be achieved in each year, depending on time 

since PV was introduced into the market (Figure 5). PAC uses the Fisher-Pry curve, while PG&E 

and WECC use the Bass diffusion curve, described below in Text Box 1. For the PG&E forecast, 

                                                
15

 PAC’s payback period accounts for state-specific rebates and retail rates. 
16

 To develop the willingness-to-adopt curve, Cadmus Group estimated the payback period for historical years and 

the market share as a percentage of the technical potential from historical adoption. It then fit a curve to this 

historical data as the basis for the willingness-to-adopt curve. One limitation of this approach is that it ignores the 

diffusion component that is included in the PAC and PG&E forecasts. HECO used a similar fitting process in the 

customer-adoption forecast used in their 2016 PSIP.  
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► The Bass diffusion model and Fisher-Pry model are two common 

choices that produce the characteristic “S-Curve” in adoption.

Diffusion of Technology Impacts: 

Time to Achieve Ultimate Market Share

Source: Meade and Islam (2006)
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► Precedent for S-curve in diffusion of other technologies

► Highly variable time to saturation, but typically measured in decades.

► Parameter fit (time-to-saturation) is sensitive to observed data; initial 

studies typically benchmarked to other regions/technologies

Diffusion Curves for DPV Forecasts Are Often 

Based on Fits to Data, and Can Vary Widely 

Market Penetration of Selected Technologies 1900 - 2008
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Propensity to Adopt Accounts for 

Factors Like Customer Demographics

Method Description

Predictive Factors Used

Location of 
existing load or 
population

Location of 
existing DPV

Detailed 
customer
characteristics 

Proportional to 
Load 

Assumes DPV is distributed in 
proportion to load or 
population

X

Proportional to 
Existing DPV

Assumes DPV grows in 
proportion to existing DPV X

Propensity to 
Adopt

Predicts customer adoption 
based on factors like customer 
demographics or customer 
load 

X X X
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Predicting the Location of DPV 

Adoption Using Propensity to Adopt 
 

C - 39 

 

FIGURE 3-8   
PG&E SERVICE AREA – SCENARIO 1 - ESTIMATED PV INSTALLED IN 2020 AND 2025 

Source: PG&E 2015 DRP
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► Residential Customers:

◼ Home ownership

◼ Electricity usage

◼ Income 

◼ Credit

◼ Building characteristics (area, 

number of stories)

► Non-Residential Customers:

◼ Property ownership

◼ Electricity usage

◼ Retail rate

◼ Business type (NAICS) 

◼ Building characteristics (area, 

number of stories)

Factors Considered in PG&E’s Propensity 

to Adopt Metric

► Propensity to adopt metric is then used to allocate system forecast 

down to customers.  

Source: PG&E presentation to DRPWG (4/2017)
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Additional Challenges: Removing DER from 

Historical Load to Create Accurate Load Forecasts

► PJM recently adjusted load 

forecasting methodology to better 

account for behind-the-meter PV

► Original approach used the 

observed load to forecast future 

load, without adjusting for effect of 

behind-the-meter DPV on the 

observed load

◼ Load reductions from behind-the-

meter DPV were being attributed to 

new end uses in the load forecasting 

model

► Revised approach removes estimate 

of historical PV before forecasting 

load, then adds back in forecast of 

DPV to new net load forecast

Historical observed 
load (embeds DPV)

Combined load 
forecast and DPV 
forecast

Historical DPV
Forecast  DPV

Actual load        
(w/o DPV)

Load forecast 
(w/o DPV)

Historical

Additional detail: Falin (2015)
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Public Tools Coming Soon to Develop Forecasts

 NREL is funded by U.S. DOE to open-
source the dGen DER customer 
adoption model

 Working with planning staff from all 
seven ISO/RTOs to develop joint 
forecasts, develop capacity, and 
improve methodology

 Beta Model release in July 2020
Full model in September 2020 

http://www.nrel.gov/analysis/dgen

 Looking for additional partners for 
2020 - 2021

Projected DPV penetration rate by 
ISO/RTO for 2038

(Sigrin 2020 - Under Review)

http://www.nrel.gov/analysis/dgen
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Open-Sourcing the dGen Model

The Resilient Planning for DERs (RiDER) project has four objectives:

► Open-source the dGen model so that utilities, PUCs, state energy offices, 

etc. can easily develop customized DER adoption scenarios themselves

► Develop scenario-based forecasts of DER adoption to facilitate long-term 

planning and load forecast. Download the data yourself, or use the 

interactive web application

► Advance the state-of-art and standardize methodologies for forecasting, 

as  this is quickly becoming an essential part of energy planning

► Improve capabilities at ISO/RTOs to incorporate DERs into their market 

modeling 
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Key Questions for Regulators About DER 

Forecasts 

► What are the primary factors that drive your forecast of DER adoption?  

How do you consider customer economics and factors that might affect 

customer economics within the forecasting horizon?

► How do you account for the tendency for adoption of technologies to 

follow an S-shaped curve?

► How does your forecast compare to forecasts from third parties for the 

same region?

► How do you account for factors that might be uncertain such as 

availability of future incentives, technology cost, or customer choice?

► Do you use a top-down method to forecast DER adoption at the system 

level?  If so, how do you allocate that forecast down to the distribution 

level?  Do you account for differences in customer demographics?  



May 12, 2020 23May 12, 2020 23

Questions?

Ben Sigrin

Benjamin.Sigrin@NREL.gov

https://www.nrel.gov/analysis/dgen/

mailto:Benjamin.Sigrin@NREL.gov
https://www.nrel.gov/analysis/dgen/
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