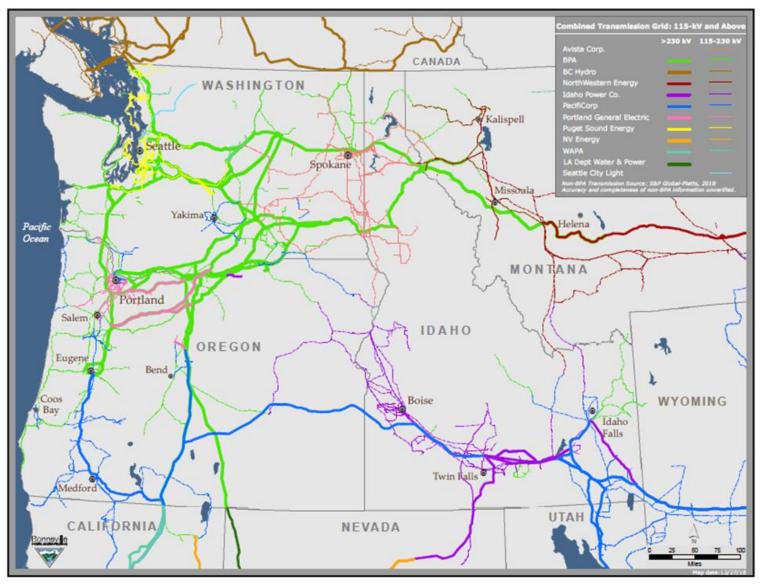

Regional Transmission Landscape

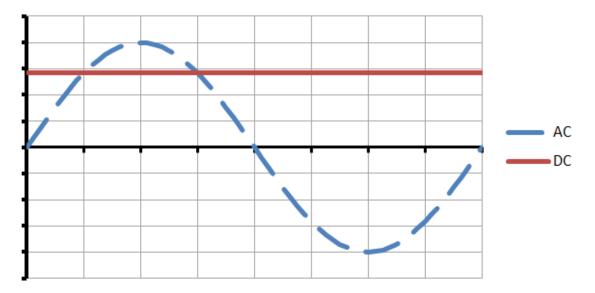
Ravi Aggarwal January 17, 2019

Topics

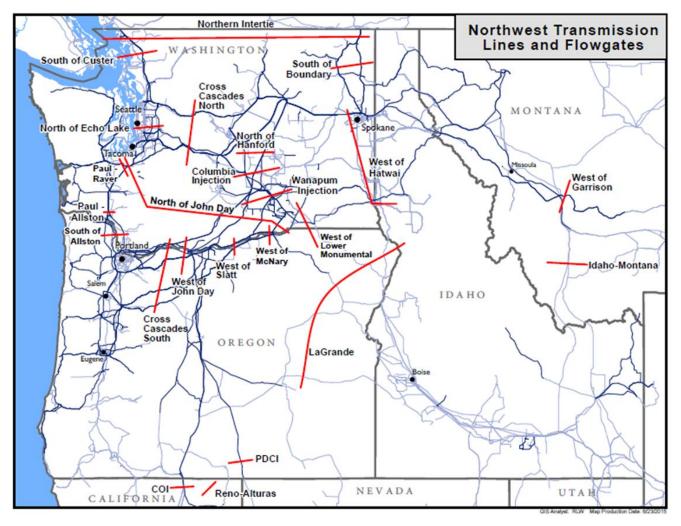

- Electric Utility System Fundamentals
- Key Entities (Responsibilities/Roles)
- Western & Pacific Northwest Landscape
- Challenges and Opportunities

Electric Transmission Overview

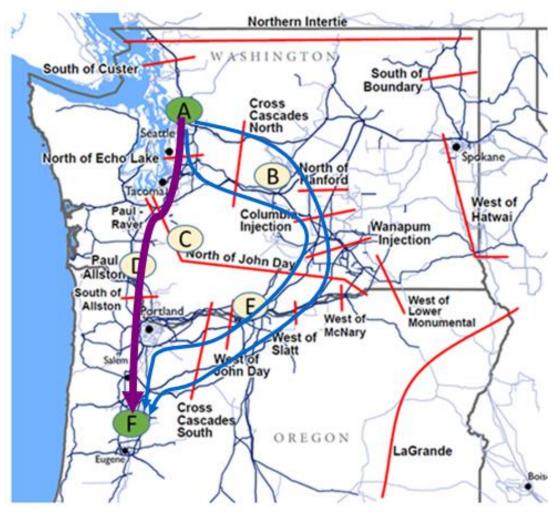
- Transmission enables end-users to access cost-effective, clean, and diverse supply sources
- Transmission is necessary and important for keeping the lights on and getting to a low carbon energy future


Pacific NW Transmission Grid

Electric Utility System Fundamentals


- Supply must equal demand at all times
 Generation + Imports = Load + Exports
- Power flows are dictated by the laws of physics
 - Power automatically distributes based on electrical characteristics (path of least resistance)
 - Contract path (point A to point B) is an approximation
- Safety and reliability are the priorities
 - Electricity is an essential public service that needs to be very reliable
 - Safety-conscious decisions protect customers, employees, and the public
- Interconnected system benefits everyone
 - Increases system stability, reliability, and diversity across a large footprint

AC and DC Applications


- Alternating Current (AC)
 - Widespread high voltage power transmission and distribution technology because it is easier to transform between voltage levels
- Direct Current (DC)
 - Low voltage applications like consumer electronics, batteries, and solar PV
 - Limited to niche applications for high voltage transmission (several hundred miles without any connections in the middle)
 - Pacific Direct Current Intertie (PDCI) between The Dalles and Los Angeles

Flowgates and Paths

Flowgates and paths consist of one or more transmission facilities that are operated in a coordinated manner and are monitored for congestion management 7

Contracts vs. Physics

Example:

- A seller near Seattle wants to sell generation to a buyer with load near Eugene
- They enter a transmission service contract for the right to move power from a point of receipt (A) to a point of delivery (F)
- Physical power flow is more complicated. It automatically splits across multiple paths

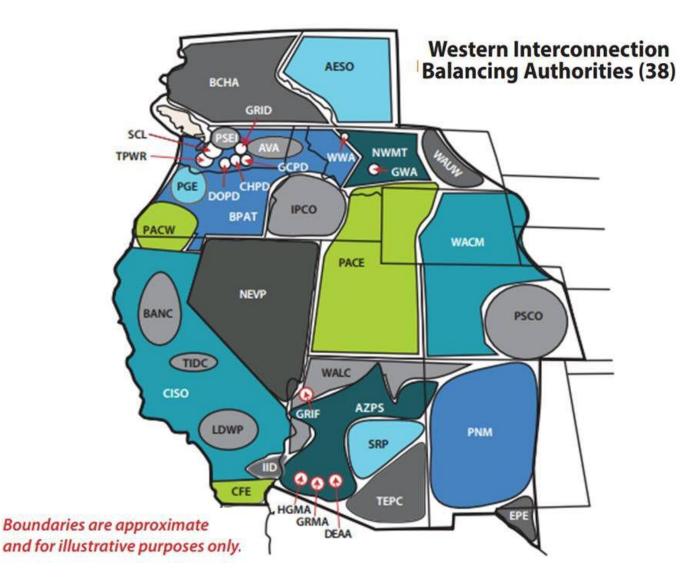
Key Entities: Roles and Responsibilities

Market Participants

- Federal power marketing administrations
 BPA & WAPA
- Load-serving entities (LSE) and integrated Utilities
 - Publicly-owned
 - Investor-owned
- Independent power producers (IPP) and independent transmission companies (ITC)
- End-users

Regulators

- Federal Energy Regulatory Commission (FERC)
 - Independent United States government agency that regulates the interstate transmission and pricing of electricity, natural gas, and oil
- Electric Reliability Organization (ERO)
 - Consists of North American Electric Reliability Corporation (NERC) and seven Regional Entities, including Western Electricity Coordinating Council (WECC)
 - Mission is to assure the effective and efficient reduction of risks to the reliability and security of the grid
- Public Utility Commissions
 - State agency charged with regulating investor-owned utilities and setting retail rates


Balancing Authorities

- Each Balancing Authority in the Western Interconnection ensures load / resource balance for its Balancing Authority Area in real time
- Operating reserves are capacity set aside to deal with unforeseen variation in load and resources
 - Providing reserves for variable resources (wind and solar) is an important consideration for renewable policy

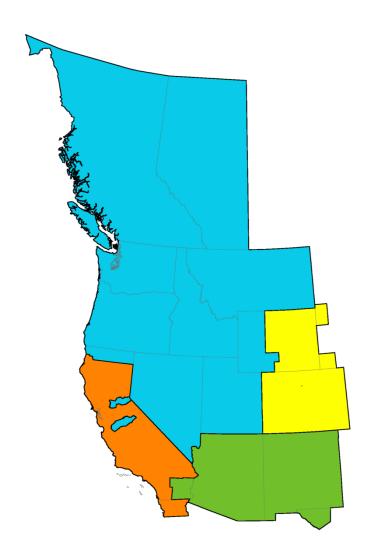


Figure 3. Generation-Domand Balance

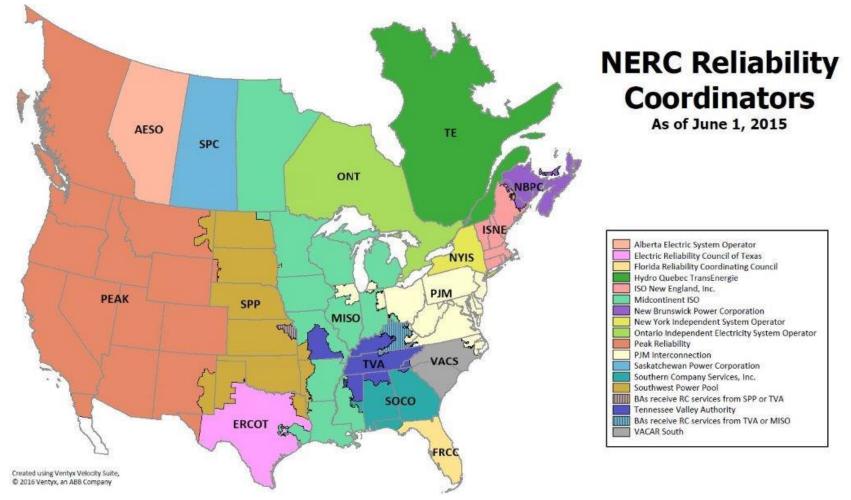
Balancing Authorities

Northwest Power Pool

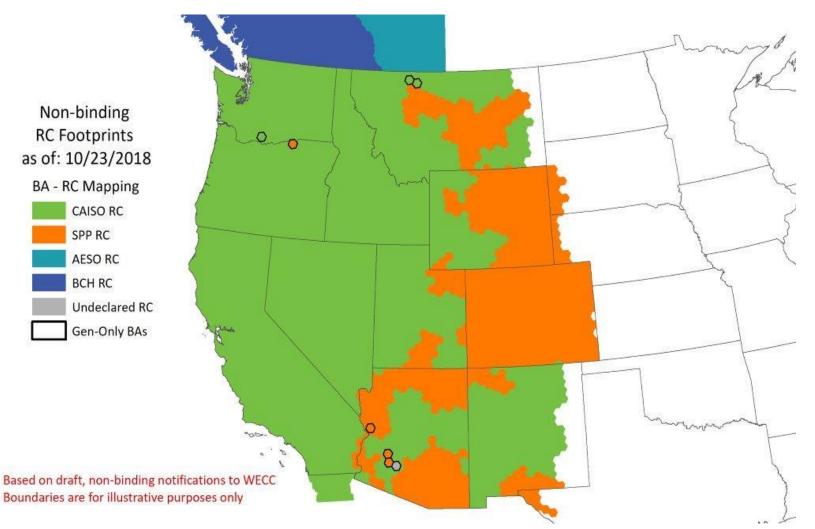
- Reserve sharing saves members an estimated \$1 billion per year by spreading contingency reserve requirements over a larger footprint
- Seasonal reliability assessments with members focused on meeting summer and winter peak loads

Northwest Power and Conservation Council

- The 1980 Northwest Power Act authorized the states of Idaho, Montana, Oregon, and Washington to form the Council
- The Act requires the Council to develop, with broad citizen participation, a regional power plan and fish and wildlife program
 - The Council develops a 20-year power plan, which it revises every five years, to ensure the Northwest of an efficient and reliable power supply
 - Prioritizes cost-effective energy efficiency, followed by cost-effective renewable resources
 - The plan guides BPA's resource decision-making, Council is required to approve any new BPA energy resource acquisition greater than 50 aMW
 - The Council's Fish and Wildlife program recommends projects for BPA to fund
- Wholesale power revenues from BPA fund the Council


Reliability Coordinator Responsibility

- The Reliability Coordinator (RC) maintains the highest level of responsibility for reliable operations of the bulk electric system with:
 - Clear decision-making authority to act and direct actions to preserve the integrity and reliability of the system
 - Wide area view that enables system monitoring beyond that of other operators
 - Operating tools, process and procedures to prevent or mitigate emergency operating situations

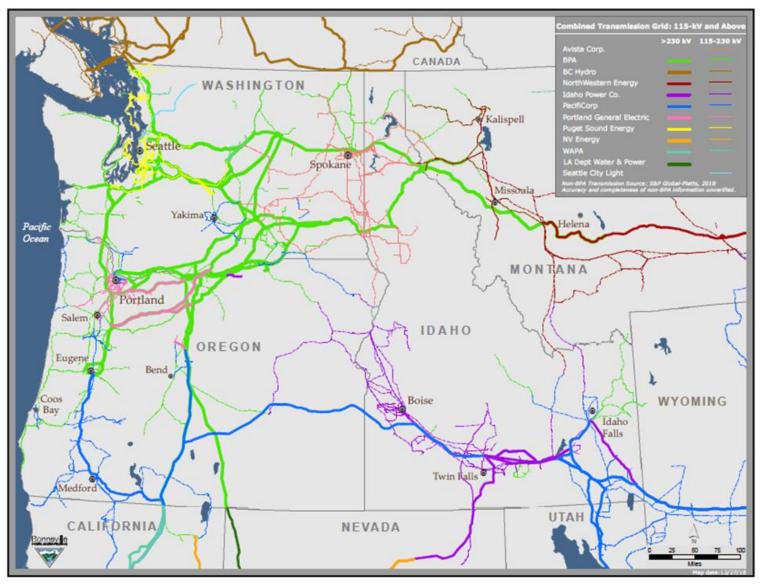

Reliability Coordinator Services

- Each RC is NERC certified and provides the same core services required by NERC standards
 - Outage coordination
 - Day-ahead operation planning and analysis
 - Real-time assessment
 - Real-time monitoring and analysis
 - System restoration coordination

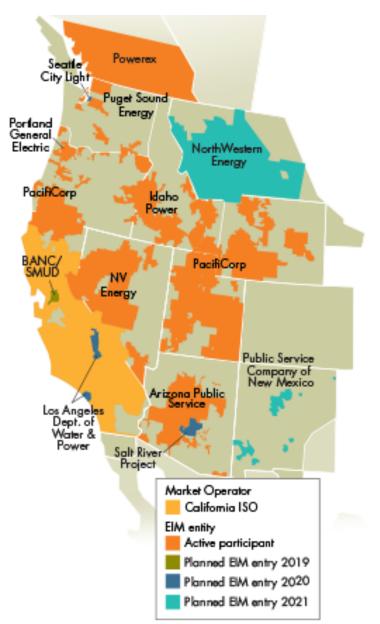
Reliability Coordinator Areas Today

Expected RC Areas by Dec. 2019

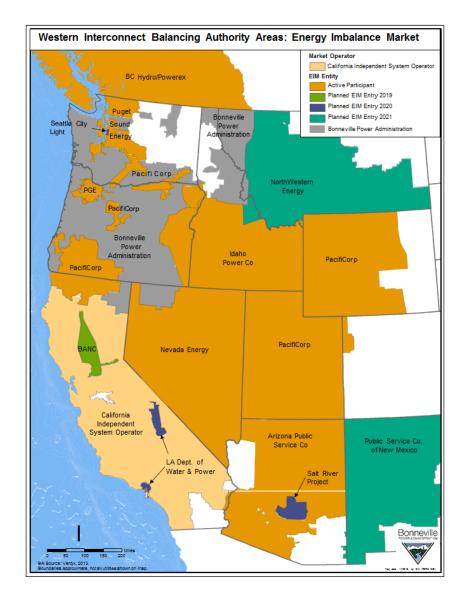
Regional Planning Organization (RPO)


- An RPO supports reliability of the grid and facilitates efficient expansion
- Coordination within a region & between regions
 - FERC Orders 890 and 1000

Western & Pacific NW Landscape


- Traditional power flow patterns
 - High E->W flows in winter across Cascades to serve local load
 - High N->S flows in spring and summer through WA and OR to CA related to exports, but S->N from CA is very rare
 - Flows respond to hydro, wind, and solar availability
- Emerging patterns
 - High exports to CA around sunset have pushed peak N->S flows to a couple hours later in recent years
 - S->N transfers of surplus solar expected (duck curve)
 - More bidirectional transfers between coastal and mountain states to take advantage of load / resource diversity

Pacific NW Transmission Grid


Western Energy Imbalance Market (EIM)

- Voluntary market that optimizes sub-hourly economic dispatch of participating resources for balancing supply and demand every five minutes
- Transmission and reliability constraints are honored
- Every participant must enter the trading hour fully balanced
- Larger footprint allows for resource diversity
- CAISO is the market operator

EIM with BPA

 BPA is currently determining how and under what conditions it could join the EIM, with a potential implementation date of April 2022

Challenges and Opportunities

- Safety and reliability
- Keeping costs low while meeting public policy objectives to reduce emissions
- Coal generation replacement
- Path to zero emissions
- Congestion management

Safety and Reliability

- The transmission system is planned and operated so that it can withstand the impacts of normal equipment outages without interrupting service to end-users
 - Prevention of all outages is not possible
- Multiple layers of defenses keep the public and workers safe
 - Detect and isolate short circuits quickly
 - Manage flows within system operating limits
 - Standards, best practices, training

Transmission Reliability Standards

- NERC and WECC Standards define specific performance requirements for the high voltage transmission system
 - Interruption of firm demand is only permitted as a corrective action in limited circumstances
- Transmission providers must annually demonstrate that their system can reliably serve projected loads and resources through the next ten years

Resource Adequacy vs. Transmission Reliability

- Resource Adequacy: demonstrate that there will be <u>enough resources</u> to serve loads
 - Address uncertainties in both supply and demand (weather, outages, growth, etc.)
- Transmission reliability: demonstrate that resources <u>can be delivered</u> to load under expected conditions (peak and off-peak)

Stress test

Keeping Customer Costs Low

- Scale solution to match need
 - Remedial action schemes (RAS)
 - Power flow control devices
 - Distributed energy resources (EE, DR, etc.)
 - Efficient redispatch
 - Conditional Firm transmission service
 - Transmission reinforcements
- Joint ownership by multiple utilities has been successful for decades
 - California Oregon Intertie (COI)

Load Changes

- Load growth
 - Energy efficiency and shifts in the economy have offset demand growth in WA and OR over the last decade
 - Data center loads are attracted to the PNW's reliable, low cost electricity supply (hundreds of MW can show up at a rural location)
- Loads and resources connected through a power electronics interface can behave differently during disturbances than the traditional devices that they replace
 - Coordination between stakeholders (utilities, plant operators, equipment manufacturers) is important to prevent unintended operations
 - Inverter connected resources (solar PV, batteries, newer wind turbines) are a growing share of resource mix
 - Loads with a power electronic interface (computers, LED lights, variable speed drives) are a growing share of demand

Coal Generation Replacement

- Coal generation is being retired due to a combination of public policy and economic considerations
 - Boardman and Centralia Unit 1 by the end of 2020
 - Colstrip 1 & 2 by July 2022
 - Centralia Unit 2 by the end of 2025
 - Other plants in Mountain states within the next 10-15 years
- Multiple challenges and opportunities associated with replacing capacity, energy, and essential reliability services attributes while reducing emissions
 - Location of resources impacts transmission flows
 - Availability and cost of transmission impacts resource choices
 - Variable resources replacing dispatchable resources
 - Optimize transmission capacity utilization

Path to Zero Emissions in the PNW

- Wind, solar PV, and battery energy storage costs have dropped significantly in the last 5 years
- PNW winter peak load and resource characteristics present a challenge to get to 100% zero emissions
 - Two daily load peaks in winter (morning before sunrise, evening after sunset)
 - Will a cost-effective and scalable technology that can efficiently store days or weeks of energy emerge?
- Dispatchable resources still needed for flexibility and capacity
 - Explore opportunities to make load more dispatchable
- Effective coordination within the region and with other regions

Congestion Management

- Congestion occurs when demand for transmission across a path exceeds available capacity

 Outages can cause or exacerbate congestion
- Transmission providers curtail transmission schedules by priority order and on a pro-rata basis when needed to keep flows within limits
 - Non-firm is curtailed before firm
 - Conditional firm can be curtailed at a lower priority under defined system conditions or for a specified number of hours per year