A Multiple Measures Approach to Demonstrating Content Knowledge Guidance Information (Revised November 2020)

<u>Rationale</u>

- Utilizing multiple measures in assessment is a strengths-based approach that will allow candidates to demonstrate the knowledge and skills required to be effective in the classroom.
- Utilizing multiple measures as an assessment policy supports efforts to diversify the teaching profession and helps provide all students with the teachers they need to learn and be successful.
- ✤ A multiple measures approach models for teacher candidates an approach to assessment that will be applicable in their practice.

Proposed model for demonstrating content knowledge required for licensure

All candidates recommended for licensure¹ will need to complete one of the following four options in demonstrating their content knowledge preparation for the classroom.

(1) Option one: subject matter test (per current policy)

- Requirement: Take and pass the TPSC-approved content test based on the established cut score.
- Documentation: Candidate submits passing score to TPSC; EPP notates successful completion on Program Completion Report (PCR).

(2) Option two: program completion (per current policy)

- Requirement: Candidate completes TSPC approved program at EPP (available only for those endorsements for which there is no TSPC-approved test or in addition to any required test).
- > Documentation: EPP notates satisfactory completion of program on PCR.

(3) Option three: undergraduate or graduate degree in the endorsement area

Requirement: Candidate completes an undergraduate or graduate degree from an accredited higher education institution² (or the equivalent, thereof, as determined by the Executive Director or Director of Licensure)³ in a major approved by TSPC⁴ as consistent with the content requirements of the endorsement area (as specified in TSPC rules⁵). The degree must include a minimum of 30 semester hours (45 quarter hours) in the major,⁶ with a 2.75 or higher GPA⁷ in that coursework. (See Appendix One below.)

Math:

Spanish:

• Spanish prefix courses.

¹ EPPs may determine the applicability of multiple measures options, including prior to matriculation (as part of the admissions process) or after candidate completion *only* for programs into which the candidate matriculated. ² One of the recognized <u>nationally accredited bodies</u>.

³ Requests can be made via email to the TSPC Director of Program Approval (<u>Wayne.Strickland@Oregon.gov</u>).

⁴ Approved majors are those for which the title of the major matches the title of the endorsement or license name, as provided in OAR Division 220 and/or 420. If the title of the major does not match the endorsement or license name, contact the TSPC Director of Program Approval (<u>Wayne.Strickland@Oregon.gov</u>) for guidance. ⁵ See OAR Division 220 and/or 420.

⁶ This includes courses that would be acceptable in the major, offered by the college or university, for the requested endorsement area. *Examples:*

[•] Math prefix courses (non-remedial);

[•] Other courses, such as Physics, Engineering, etc., *only* if those courses would be counted by the institution for the math major. If the institution does not have a major in the area review the candidate's undergraduate institution for the appropriate major. If there is no such major at that institution, compare the course against one of Oregon's public institutions for their major to see if the course would be accepted.

⁷ To calculate the GPA, include only the courses within the major. Do not include remedial courses.

Methods or education foundations courses are allowed to be included in the GPA computation

- Documentation: Candidate submits official transcript(s) to TPSC;⁸ EPP verifies completion of appropriate degree/credit hour/GPA requirements and notates on PCR. For major equivalency, EPP submits recommendation to TSPC for approval.⁹
- > Coursework may be completed at any time prior to EPP recommendation for licensure.

(4) Option four: subject matter test with supplemental data

- Requirement: Candidate scores 70 points or greater on the TSPC-approved content preparation matrix (Appendix Two). The matrix includes individual scores on the TSPCapproved content subject matter test, GPA in non-remedial level courses consistent with the endorsement area,¹⁰ and data from a TSPC-approved EPP assessment of content knowledge demonstrated in the clinical experience.¹¹ (See Appendix Two).
- Documentation: EPP verifies score on TSPC-approved test, GPA in content courses consistent with the endorsement,¹² and data from at least six applications of the EPP's clinical assessment instrument, approved by TSPC as a rigorous assessment of content knowledge (see the next two bullets). Results are notated on PCR.¹³
- The EPP university supervisor and the Cooperating Teacher must each complete at least two and an EPP faculty member at least one of the clinical assessment instruments, and each of the six assessments must be from a different observation period.
- The EPP clinical assessment instrument must be approved by the Executive Director¹⁴ prior to its utilization for demonstration of subject matter competency. The Executive Director will evaluate the assessment for content and construct validity as it relates to demonstration of subject matter knowledge within the endorsement area, and the EPP will be required to demonstrate the reliability of the assessment.¹⁵ The Executive Director may utilize an industry specific validity and reliability tool, such as the CAEP Evaluation Framework for EPP-Created Assessments, in making this determination. Proprietary instruments utilized by the EPP for this purpose will be similarly evaluated. The decision of the Executive Director whether to approve the instrument will be final.

(5) Option five: holistic assessment of experiential record

In order to satisfy content knowledge requirements utilizing the Holistic Assessment, the candidate must demonstrate competency within a majority of the standards within each

⁸ Review the <u>Licensing FAQs</u> page for complete information about official transcripts.

⁹ This occurs through a verification statement on the Program Completion Report. TSPC may audit EPP records or evidence used to demonstrate competency within this multiple measures framework at any time.

¹⁰ To determine which courses to include as within the major, refer to the specific endorsement area(s) listed in Appendix One, which provides a summary of the endorsement areas' specific course competencies. These summaries are consistent with course competencies included in rule. Single-subject content area course competencies are provided in Division 220 in the section that details how to add the competency to an existing Preliminary Teaching License. Program-required area course competencies are provided in Division 420. Examples: Integrated Science = <u>OAR 584-220-0110 (3)(a)(B)</u> and Art = <u>OAR 584-220-0310 (3)-(4)</u>.

¹¹ Contact the TSPC Executive Director if questions remain after reviewing Appendix Two.

¹² The EPP must review official score reports for TSPC-approved tests and transcripts for the GPA. This information must be retained as part of the candidate's record.

 ¹³ This occurs through a verification statement on the Program Completion Report. TSPC may audit EPP records or evidence that are used to demonstrate competency within this multiple measures framework at any time.
 ¹⁴ All proposed assessments must be submitted to the TSPC Executive Director, regardless of their inclusion within

the program review process. Requests for instrument approval or assistance may be sent to the TSPC Executive Director (<u>Anthony.Rosilez@Oregon.gov</u>).

¹⁵ To demonstrate reliability, EPPs must provide the TSPC Executive Director (<u>Anthony.Rosilez@Oregon.gov</u>) with a complete training plan that describes how all those who use the multiple measures clinical assessment tool will be trained and how they will calibrate inter-rater reliability. Note: Once conducted, these efforts would likely not be required more than every other year.

theme of each domain of the endorsement. (See <u>Content Knowledge Matrix</u> for an example of a matrix for Integrated Science.)¹⁶ Sufficiency of knowledge within each standard is determined as follows:

- The candidate is not required to attempt the Commission adopted content exam in the endorsement area sought prior to utilizing this Holistic Assessment. However, an EPP may choose to require the exam for purposes of admissions, advising, or program completion.
- The candidate may demonstrate knowledge in each standard through a combination of coursework, verified work experience relevant to the endorsement, P-20 teaching experience, alternative academic learning, and/or cultural practice.¹⁷
- 3. Any coursework, experiences, or cultural practice utilized in this assessment must be directly related to the standard, as determined and verified by members of the EPP established Content Knowledge Evaluation Team, which includes the following:
 - Coursework or alternative academic learning experiences: University faculty within the applicable endorsement area;
 - Work experience or cultural practice: EPP program lead (or designated committee/assessment team), in consultation with subject area experts¹⁸;
 - Teaching experience: Fully licensed school/district level administrator or teacher with at least three year's full-time experience in public education (in the endorsement area, if a teacher).
- 4. Sample forms of proof could include:
 - Transcripts;
 - Letter from supervisor or elder, as appropriate, for work, teaching, internship, related camp experience, or cultural knowledge;
 - Certificate of completion from community course/online course; or other type of PDUs;
 - Portfolio artifacts demonstrating knowledge;
 - Essay describing their experience;
 - Oral presentation of experience to the review/assessment team.
- 5. Documentation:
 - Candidate collects artifacts and/or documentation relevant to each of the standards within the endorsement area, as defined above.
 - The candidate, with support of the EPP, creates a portfolio of documentation and evidence demonstrating competency within the majority of endorsement area standards within each theme of each domain.¹⁹
 - The candidate completes the Content Knowledge Matrix by noting the portfolio

¹⁶ When an EPP wishes to utilize this option, they are to contact Director of Program Approval Dr. Wayne Strickland, who will, in consultation with the Director of Licensure, provide a matrix appropriate for the endorsement area.

¹⁷ Cultural practice is defined as lived experiences within the community which, by tradition, heritage, social norm, or community involvement, provide a candidate with applied knowledge related to the endorsement field at such a level that demonstrates a working understanding of the particular content standard(s) assessed.

¹⁸ Subject matter experts include individuals with direct work or community leadership experience within the applicable content or endorsement area, as applicable to the type of experiences the candidate is presenting to meet the standards. For example: If the candidate is using work experience to meet the standard, the candidate's supervisor from that work experience would be appropriate. Cultural practice example: A tribal elder who is recognized within the community with extensive historical, vocational, or cultural experience relevant to the content or endorsement area. The EPP program lead verifies the sufficiency of the experience of work supervisors or subject area experts.

¹⁹ See the Content Knowledge Matrix for the appropriate domains, themes, and standards to be addressed.

item(s) applied to each of the standards within the appropriate cell of the matrix. $^{\rm 20}$

- The candidate provides the documentation and artifacts to the appropriate Evaluation Team member.²¹
- The Evaluation Team member verifies the experience or suggests other documentation or experiences needed in each of the standards within the endorsement area.
- Upon satisfaction of the required content knowledge verified by each team member, each team member signs the Content Knowledge Matrix, attesting the candidate has satisfied the content knowledge requirements of the standards for which the team member has evaluated documentation and artifacts.
- Once approved by *all* Evaluation Team members, the EPP documents satisfaction of content knowledge requirements on the Program Completion Report (TSPC) through the multiple measures process and provides the PCR to TSPC.
- The EPP maintains a copy of the signed Content Knowledge Matrix and the portfolio of the documentation and evidence supporting the signed Content Knowledge Matrix. The Content Knowledge Matrix and portfolio may be viewed by TSPC at TSPC's request and may be included within unit/program audits.
- 6. The Holistic Assessment of Content Knowledge recognizes that unique experiences of educators may positively contribute to K-12 student learning. To determine the appropriateness of the adopted assessment, the Commission will collect data on educator effectiveness. Therefore, any candidate utilizing the Holistic Assessment of Content Knowledge for licensure purposes shall authorize TSPC and the EPP from which the candidates completed teacher preparation to request and receive data on their performance and effectiveness on K-12 student learning for a period of no more than three years from their teaching assignment(s) subsequent to licensure. The candidate will assist TSPC and the EPP in obtaining the requested documentation from their employer.²²

Reporting²³

EPPs will include in their annual reports an analysis of the means by which their completers fulfill the requirements for demonstrating content knowledge. This analysis will include the instrument(s) used in the clinical field experience to assess content knowledge preparation. Per TSPC rule, EPPs must have all documentation of subject matter competency available for TSPC audit at any time.

Waiver

These options do not preclude or replace the current waiver authority of the Executive Director provided by OAR 584-200-0100:

(1) The Executive Director may waive, in part or in whole, the requirements for teaching, administrative and personnel service licenses if the applicant provides evidence of academic skills, experience and knowledge demonstrating mastery of the Commission-adopted standards for the license.

Multiple measures content guidance - revised November 2020 | Page 4

²⁰ Portfolio items (artifacts) are to be numbered and the numbers referenced in the appropriate cell of the Content Knowledge Matrix.

²¹ Portfolio items (artifacts) of coursework or alternative academic learning are to be reviewed by the university faculty member; work experience or cultural practice items are reviewed by the EPP program lead, in consultation with the subject area expert(s); teaching experience is reviewed by the appropriate licensed school educator.

²² This provision is suspended until such time as the SLDS (Statewide Longitudinal Data System) has been activated.

²³ Multiple measures assessments should be evaluated internally prior to a program completion report being submitted. If there was variation from the requirements in the framework or the appendix, the EPP shall seek prior approval.

The Executive Director reports waivers to the Commission which monitors the Executive Director's use of this waiver authority. OAR 584-200-0100(1)(c)

Appendix One: Undergraduate/graduate degree in endorsement area

Endorsement area ⁱ	Undergraduate/graduate major or degree	Transcript must include course(s) content in the area(s) noted (= number of courses required) ⁱⁱ				
Art	Any studio art degree (painting,	Studio art (3) ²⁴				
	drawing, sculpture, ceramics, etc.)	Foundations of art (1)				
		Historical/cultural context of art (1)				
		Aesthetics/art criticism (1)				
Biology	Biology	Ecology and environment (2)				
	Environmental Studies/Science	Genetics and evolution (2)				
	Or any other degree in the biological	Nature of science (1)				
	sciences (e.g. Biochemistry,	Biochemistry and cell biology (1)				
	Bioengineering, Genetics,	Biological unity and diversity (1)				
	Molecular Biology, Marine					
	Biology)					
Chemistry	Chemistry	Chemical reactions/energy/bonding (3)				
	Or any other degree in the chemical	Matter and atomic structure (1)				
	sciences (e.g. Chemical	Stoichiometry and solutions (1)				
	Engineering, Biochemistry)	Nature of science (1)				
English	English (including area/period studies)	Analysis/interpretation of literature (3)				
Language	Comparative Literature	Composition/writing (2)				
Arts	Creative writing	Literacy/language conventions (1)				
	Linguistics					
	Journalism					
	Humanities					
Health	Public/Community Health	Health promotion/risk reduction (2)				
	Kinesiology	Health advocacy/literacy (2)				
		Health over the lifespan (1)				
Integrated	Biology	Physical science (2)				
Science	Chemistry	Life science (2)				
	Physics	Earth/space science (2)				
	Integrated Physical Science, Life Science	Nature of science (1)				
	Earth Science (e.g. Marine Science ²⁵ ,					
	Geology, Meteorology, Astronomy)					

Single-subject area endorsement

²⁴ The number in parentheses refers to courses, not credits.
²⁵ This may also be referred to as Oceanography.

Endorsement	Undergraduate/graduate major or	Transcript must include course(s)
area ⁱ	degree	content in the area(s) noted
		(= number of courses required) ⁱⁱ
Mathematics	Mathematics	Patterns, algebra, and functions (2)
	Mathematics and Computer	Mathematical processes/number sense
	Science	(1)
	Statistics	Measurement and geometry (1)
		Trigonometry and calculus (1)
		Statistics/probability/ discrete
		mathematics (1)
Music	Music (studio, composition, theory)	Music methodology and performance (3)
	Music Education	Aural analysis skills (1)
		Music theory and composition (1)
		Music history and culture (1)
Physical	Kinesiology	Growth and motor development (2)
Education	Physical Education	The physical education program (2)
		Movement activities (1)
		Lifelong physical fitness (1)
Physics	Physics	Modern physics (3)
	Astronomy	Mechanics (1)
	Engineering	Electricity and magnetism (1)
		Nature of science (1)
Social	World History	US History (2)
Studies	US History	World/non-US history (2)
	Political Science	Geography/cultures (2)
	International Affairs/Policy	Government, economics, political
	Global Studies	science (1)
	Area studies (Asia, Middle East, etc.)	
	Ethnic studies	
	Anthropology/Sociology	
	Economics	
	Geography	
	Psychology	
World	Degree in specific language	n/a
Languages		

Multiple-subjects endorsement

Elementary/Multiple	An undergraduate degree in any academic content area, with the following course content/credit hours reflected on the candidate's transcript:					
Subjects						
	Humanities/language arts (4) Social sciences (2) Mathematics (4) Science (3) Art, health, fitness (2)					

ⁱ The Executive Director may later request Commission approval of course requirements for TSPC endorsements not included in this Appendix.

ⁱⁱ A course is generally defined as at least 3 semester or 4 quarter hours. In addition to the specific courses required herein, candidates must complete other courses in the endorsement area as needed to total 30 semester or 45 quarter hours. Courses which are used to meet the minimum course/credit hour requirement must be required as part of the major and must not be at the remedial level.

Appendix Two: <u>Commission Approved Subject Matter Test Examination</u> with Supplemental data

Using this method, candidates must receive a combined total of 70 out of 100 possible points, utilizing the following matrix.

Commission Approved Subject Matter Test (40 points maximum)ⁱⁱⁱ

Points are provided for the highest single total test score received by the candidate as follows:

- 40 points: 80-99% of passing score
- 30 points: 70-80% of passing score
- 20 points: 60-70% of passing score

Grade Point Average in Content Area Courses (30 points maximum)

Candidates will be awarded points for their GPA in undergraduate or graduate level courses taken within the content area/subject of the sought endorsement as follows:

- 30 points: content GPA 3.3-4.0
- 20 points: content GPA 2.75-3.2
- 10 points: content GPA 2.50-2.74

Candidates are required to have a minimum of 20 semester hours or 30 quarter hours of non-remedial level coursework to calculate these points. In evaluating the number of units attempted and the GPA of this coursework, the candidate's entire post-secondary academic record shall be considered.²⁶ This may include courses taken after matriculation in the teacher education program and after the candidate's attempt(s) on the Commission approved subject matter examination. Note: content pedagogy courses are not included in this calculation.

Content Knowledge Demonstrated through Clinical Experiences (30 points maximum)

Candidates will be scored on their demonstration of content knowledge based on the key assessment(s) used by the EPP for this purpose. At least six iterations of the assessment must be included.

- 30 points: candidate scores at highest level of proficiency in at least 75% of the rubric elements, and at least proficient in the remaining, for all items related to content preparation.
- 20 points: candidate scores at the acceptable or sufficient level of proficiency in at least 90% of the rubric elements related to content preparation.
- 10 points: candidate scores at the acceptable level in at least 75% of all items related to content preparation.

At least two assessments must be completed by a cooperating teacher, two by the EPP supervisor, and one by an EPP faculty member.

²⁶ The GPA calculation shall include all courses in the candidate's academic record (except remedial level courses) for each of the competencies within the endorsement. The calculation would not include just the highest grades received to meet the minimum number of courses, but must include the grades of all courses within the competency area.

ⁱⁱⁱ This is a provisional exam score calculation. The Executive Director will study the impact of this factor and report to Commission by July 1, 2020 with recommended adjustments.

Holistic Assessment of Content Knowledge

Content Knowledge Matrix – Integrated Science

	ORELA DOMAINS	WAYS	TO DEMONS	CONTENT EXAMPLES			
1. 1	Themes Standards NATURE OF SCIENCE	Coursework	Alternative Academic Learning	Teaching Experience	Verified Work Experience	Cultural Practice	(Advisor should suggest examples of relevant artifacts.)
A P	rinciples of Scientific Inquiry					_	
1	Demonstrate knowledge of the principles and procedures for designing and carrying out scientific investigations.						
2	Recognize methods and criteria for collecting, organizing, analyzing, and presenting scientific data.						
3	Recognize the evidential basis of scientific claims						
4	Demonstrate knowledge of safety procedures and hazards associated with scientific investigations.						
5	Demonstrate knowledge of the materials, equipment, and technology used in the sciences.						
6	Apply basic mathematical procedures in analyzing and representing data and solving problems in the sciences.						
ΒH	istory and Nature of Science						
1	Demonstrate knowledge of the historical development of major scientific ideas, including contributions by men and women of diverse backgrounds.						
2	Demonstrate knowledge of current major theories, models, and concepts in physical science, life science, and Earth and space science.						

	3	Identify unifying themes, principles, and relationships that connect the different branches of the sciences.			
	4	Demonstrate knowledge of the nature of			
		science as a system of inquiry.			
С	ST	EM Relationships			
	1	Analyze the interrelationships between			
		science, technology, engineering,			
		mathematics, and society.			
	2	Demonstrate scientific literacy in evaluating			
		scientific research and the coverage of			
		science in the media.			
	3	Analyze social, economic, and ethical issues			
		associated with technological and scientific			
		developments.			
Ρ	PHYSICAL SCIENCE				
Α	Pr	operties of Matter			Geology: stories of land
	1	Analyze various historical and contemporary			and water formation,
		models of atomic structure and the			places where medicines
		supporting evidence for these models.			grow place as related to
	2	Demonstrate knowledge of the quantum			building study of
		theory of matter and energy (e.g., atomic			patrogluphs
		structure, chemical bonding).			
	3	Analyze the characteristics of elements,			Oceanography: fish life
		compounds, and mixtures, including colloids,			cycle, estuary, fishing,
		suspensions, and solutions.			harvest, tidal, navigation,
	4	Analyze the colligative properties of solutions			hunting, migration and
		(e.g., freezing point, boiling point, osmotic			climate, water quality,
L		pressure, vapor pressure).			climate change.
	5	Demonstrate knowledge of the organization			
		of the periodic table and its usefulness in			
		predicting the physical and chemical			
		properties and relative reactivity of given			
		elements.			

	6	Apply methods used to determine the chemical and physical properties of unknown substances.			
	7	Demonstrate knowledge of the basic principles of the kinetic molecular theory and the distinguishing characteristics of the four states of matter.			
	8	Demonstrate knowledge of the behavior of ideal gases, including the relationships between pressure, temperature, and volume.			
	9	Demonstrate knowledge of the characteristics of radioactive materials.			
В	Cł	nemical Bonding, Reactions & Stoichiometry			
	1	Demonstrate knowledge of chemical formulas and the International Union of Pure and Applied Chemistry (IUPAC) rules of nomenclature.			
	2	Analyze different types of chemical bonds and intermolecular forces and their effect on the properties of matter.			
	3	Apply knowledge of stoichiometry and the mole concept in balancing chemical equations and solving problems involving the mass relationships of reactants and products.			
	4	Analyze chemical reactions, including acid- base reactions and oxidation-reduction reactions, in terms of the properties of reactants and products.			
	5	Demonstrate knowledge of factors that affect reaction rates, including the introduction of catalysts and changes in concentration or temperature.			
	6	Demonstrate knowledge of the concept of chemical equilibrium, the factors that influence chemical equilibrium, and Le Châtelier's principle.			

C	C Er	nergy Transformations in Physical & Chemical			
	Sy	vstems			
	1	Analyze phase changes, phase diagrams, and			
		heating and cooling curves.			
	2	Analyze factors that affect the solubility of a			
		substance and the rate at which substances			
		dissolve.			
	3	Demonstrate knowledge of the laws of			
		thermodynamics and the principles of			
		calorimetry, including solving basic			
		calorimetry problems.			
	4	Analyze energy changes involved in phase			
		diluting solutions			
-		diluting solutions.			
-	1	Demonstrate knowledge of Newton's three			
	1	laws of motion in a variety of situations and			
		the limitations of Newton's laws at high			
		sneeds			
	2	Analyze motion in terms of concepts of			
	-	displacement, velocity, and acceleration.			
	3	Analyze free body diagrams and vector			
		properties to solve problems involving			
		multiple forces in one and two dimensions.			
	4	Demonstrate knowledge of Newton's law of			
		gravitation and its applications.			
	5	Analyze the types and uses of simple			
		machines and their principles of operation.			
	6	Demonstrate knowledge of work, the			
		conservation of energy, and different forms			
		of energy (e.g., potential, kinetic, thermal).			
	7	Analyze the transfer of energy through			
	_	convection, conduction, and radiation.			
E	C	naracteristics & Properties of Waves			
	1	Analyze the properties of waves (e.g., speed,			
		frequency, wavelength).			

	2	Analyze the properties and propagation of sound waves			
-	3	Analyze the wave characteristics of the			
	Ŭ	electromagnetic spectrum.			
-	4	Analyze the effects of mirrors, lenses, and			
		prisms on the behavior of light.			
	5	Demonstrate knowledge of refraction,			
		reflection, and polarization of			
		electromagnetic waves.			
	6	Demonstrate knowledge of the Doppler			
		effect.			
	7	Demonstrate knowledge of the dual nature of			
		light and matter.			
F	El	ectricity & Magnetism			
	1	Analyze characteristics of electric charge,			
		electric force, static electricity, electric			
		current, and potential difference.			
	2	Analyze the operation of series and parallel			
		circuits and the relationship between electric			
		current, voltage, and resistance described by			
		Ohm's law.			
	3	Demonstrate knowledge of the			
		characteristics of permanent magnets and			
		magnetic fields.			
	4	Demonstrate knowledge of electromagnets			
		and principles and applications of			
		electromagnetism (e.g., transformers,			
		inductors, motors, generators).			
LI	FE S	SCIENCE			
Α	Cł	naracteristics, Organization & Processes of			Biology: life cycles,
	Ce	ells			agriculture, hunting, anatomy,
	1	Demonstrate knowledge of cell theory and its			Chemistry: Paint
		implications.			pollution/pesticide/poisoning
	2	Analyze the structure and function of			tea and food preservation.
		organelles in eukaryotic and prokaryotic cells.			tanning, soil
					improvement

	3	Demonstrate knowledge of the processes of			
		respiration and photosynthesis at the cellular			
		and molecular levels and the relationship			
		between them.			
	4	Recognize how the structure of specialized			
		cells relates to their different functions.			
	5	Demonstrate knowledge of mitosis, meiosis,			
		and the cell cycle.			
	6	Demonstrate knowledge of active and			
		passive transport across cell membranes.			
	7	Recognize the structure and function of			
		different biomolecules (e.g., lipids, proteins,			
		carbohydrates, nucleic acids).			
	8	Demonstrate knowledge of the role of			
		enzymes as catalysts in cellular reactions and			
		factors that affect enzyme function.			
В	Cla	assification & Characteristics of Organisms			
	1	Demonstrate knowledge of the role of			
		enzymes as catalysts in cellular reactions and			
		factors that affect enzyme function.			
	2	Recognize characteristics of the reproduction,			
		development, and life cycles of			
		representative organisms.			
	3	Demonstrate knowledge of the functions of			
		specialized structures and systems in protists,			
		plants, animals, and fungi.			
	4	Demonstrate knowledge of the structures			
		and functions of human body systems.			
	5	Analyze how organisms obtain, use, and store			
		matter and energy.			
	6	Analyze how organisms maintain			
		homeostasis and fight diseases.			
	7	Demonstrate knowledge of viruses and			
\square		prions.			
С	Сс	oncepts & Principles of Genetics and Evolution			

	1	Apply the basic principles of heredity, Mendelian genetics, and the use of Punnett			
		squares and the laws of probability.			
	2	Demonstrate knowledge of the nature of the			
		genetic code and the basic processes of DNA			
		replication and protein synthesis.			
	3	Recognize the methods and applications of			
		genetic engineering.			
	4	Analyze the principles and evidence of			
		biological evolution to explain how species			
		change over time.			
	5	Demonstrate knowledge of major events in			
		the history of life, mass extinctions and the			
		evolution of organisms, including humans.			
D	Cł	naracteristics of Biomes, Ecosystems &			
	Re	elationships of Organisms			
	1	Demonstrate knowledge of the			
		characteristics of terrestrial and aquatic			
		biomes, including representative species of			
		plants and animals that inhabit them.			
	2	Recognize strategies used by different			
		organisms to obtain the basic needs for life.			
	3	Analyze the relationships between producers,			
		consumers, and decomposers in a variety of			
		ecosystems.			
	4	Analyze the biotic and abiotic factors that			
		affect population dynamics in ecosystems,			
		including competition, resource availability,			
		and habitat requirements.			
	5	Analyze the cycling of matter and the flow of			
		energy through different types of			
		ecosystems.			
	6	Recognize the ways both human activities			
		and climate change affect ecosystems.			
E/	ART	H & SPACE SCIENCE			
Α	Pł	nysical Geology & History of Earth			

	1	Demonstrate knowledge of Earth's formation,			Meteorology: Climate
		history, and structure, as well as the			change, story, stories
		supporting geologic evidence.			related to elements,
	2	Analyze tectonic processes, the mechanisms			northern lights,
		driving plate movements, and the landforms			desertification, monsoon
		and geologic phenomena produced by			stories
		movement at plate boundaries.			Astronomy: Songs and
	3	Demonstrate knowledge of the processes			ceremonies, stories,
		involved in the rock cycle and of the			translation of time to place
		characteristics of igneous, metamorphic, and			(ex. moon related to time),
		sedimentary rocks.			star navigation, songs
	4	Analyze the constructive and destructive			
		processes that shape Earth's surface,			
		including weathering, erosion,			
		transportation, and deposition.			
	5	Recognize the characteristics and origins of			
		common rocks, minerals, and fossils, as well			
		as mineral, geothermal, and fossil fuel			
		resources.			
	6	Demonstrate knowledge of the effects of			
		continental glaciations during the Pleistocene			
		epoch and the characteristics of glacial			
		deposits.			
В	Cł	naracteristics of Hydrosphere, Weather &			
	Cli	imate			
	1	Analyze the physical processes driving the			
		hydrologic cycle (e.g., solar heating,			
		evaporation, condensation).			
	2	Identify the processes and characteristics of			
		marine and freshwater systems, including			
		oceans, rivers, lakes, glaciers, and			
		groundwater systems.			
	3	Analyze coastal processes, the formation of			
		barrier islands, and the characteristics of			
		deltas and estuaries.			

	4	Demonstrate knowledge of the structure and			
		characteristics of the different layers of the			
		atmosphere and the atmospheric and			
		geographic factors that produce different			
		types of weather, including hazardous			
		weather events.			
	5	Analyze weather conditions, maps, and data			
		to predict and explain weather events.			
	6	Demonstrate knowledge of the geographic			
		factors that control regional climate			
		conditions.			
	7	Analyze the causes and effects of current and			
		past changes in global climates on			
		ecosystems, the hydrosphere, coastal			
		processes, and agriculture.			
	8	Recognize the significance of interactions of			
		the ocean and the atmosphere.			
С	Cł	naracteristics of Solar System & Universe			
	1	Demonstrate knowledge of the formation of			
		the solar system and the characteristics of			
		planets, asteroids, comets, and planetary			
		satellites.			
	2	Demonstrate knowledge of the apparent			
		motion of objects in the sky and the celestial			
		sphere model.			
	3	Analyze the interactions of the sun, the			
		moon, and Earth and the effects of these			
		interactions on Earth systems.			
	4	Recognize the characteristics and evolution			
		of stars and galaxies, including theories on			
		the origin and nature of the universe.			
	5	Demonstrate knowledge of evidence			
		supporting the current understanding of the			
		solar system and universe and of the			
		technology and methods used to gather that			
		evidence.			

6	Demonstrate knowledge of the role of gravity			
	in the solar system and the universe.			

I certify that [candidate] has demonstrated sufficient mastery of content knowledge in Integrated Science preparation standards through *work experience and/or cultural practice* as notated in the above matrix and collected in an [name of EPP] approved portfolio: *Verified by EPP program lead (or designated committee/assessment team) in consultation with subject area experts.*

Signed:	Printed Name:	Title:	Date:
•			

I certify that [candidate] has demonstrated sufficient mastery of content knowledge in Integrated Science preparation standards through P-20 teaching experience as notated in the above matrix and collected in an [name of EPP] approved portfolio: Verified by a fully licensed school/district level administrator or teacher with at least three year's full-time experience in public education (in the endorsement area, if a teacher).

Signed:	Printed Name:	_Title:	Date:
---------	---------------	---------	-------

I certify that [candidate] has demonstrated sufficient mastery of content knowledge in Integrated Science preparation standards through *coursework and alternative academic learning* as notated in the above matrix and collected in an [name of EPP] approved portfolio. I further certify as [EPP] that the candidate has demonstrated competencies in content knowledge as required by this Holistic Assessment and will retain this form and the required portfolio. Verified by university faculty within endorsement area.

Signed:	Printed Name:	Title:	Date:
· · · · · · · · · · · · · · · · · · ·			·

As a condition of utilizing the Holistic Assessment of Content Knowledge for the puprose of licensure, I authorize TSPC and the EPP from which I completed teacher preparation to request and receive data on my performance and effectiveness on K-12 student learning for a period of no more than three years from my teaching assignment(s) subsequent to licensure. I will assist TSPC and the EPP in obtaining the requested documentation from their employer. *Completed and signed by the candidate.*