

Grassy Mountain Gold Project

Cyanide Briefing

Adam Bonin

November 28, 2018

Topics

- 01 Cyanide in Gold Mining
- 02 Management & Sourcing
- 03 Transportation
- 04 Safety and Response
- 05 Fate and Risk

Cyanide in Gold Mining

Ore is crushed and ground, and any free gold is gravity-separated. Gold must then be separated from other minerals in ore through chemical means.

Cyanide is a negatively-charged ion (CN-) with triple bond

Cyanidation/leaching:

➤ Dilute sodium cyanide solution (approx. 25%) used to dissolve and separate gold from ore:

$$4Au + 8CN^{-} + O_{2} + 2H_{2}O = 4[Au(CN)_{2}]^{-} + 4OH^{-}$$

Cyanide Management - ICMC

International Cyanide Management Code (ICMC)

- Voluntary initiative for gold and silver mining industries, and producers and transporters of cyanide
- Focuses exclusively on the safe management of cyanide and cyanidation mill tailings and leach solutions.
- > Certified companies must be audited by an independent third party
- Objective improve the management of cyanide to protect human health and reduce environmental impacts.

Cyanide Management - ICMC

ICMC Principles and Standards of Practice:

- 1. **Production** encourage responsible manufacturing
- 2. Transportation protect communities and environment
- 3. Handling & Storage protect workers and environment
- 4. Operations properly manage cyanide solutions/waste streams
- 5. **Decommissioning** protective decommissioning plans
- 6. Worker Safety protect workers' health and safety from exposures
- Emergency Response protective response strategies & capabilities
- 8. Training cyanide management safety training
- 9. Dialogue engage in public consultation and disclosure

Cyanide Sourcing

Approximately 1.1 million metric tons produced annually

- ➤ Asia-Pacific lead producer followed by North America and Europe (China, US, South Korea)
- Approximately 6% used to for gold and silver processing

Sodium cyanide (NaCN) supplied as either briquettes or liquid

- ➤ Liquid moved by tanker truck or rail car offloaded into mine facility storage tanks
- Briquettes delivered in drums, plastic bags, boxes or other containers
 - Safely dissolved in high pH solution and stored

Cyanide Sourcing – Western US Supplier

One of the largest US sodium cyanide manufacturers based in Winnemucca, Nevada (since 1990)

Driver training modules provided on their website, for example:

- > Shipping containers proper actions for emergencies
- Liquid offloading

Applied Technology Laboratory in Reno

➤ Evaluate customers' samples for most effective cyanide detoxification method(s) to comply with permit standards

ICMC-certified

Cyanide Sourcing - Delivery

Solid-to-liquid systems (SLS) in ISO container units:

- > Transportation of solid sodium cyanide
- > Liquid sodium cyanide prepared in containers on site
- Minimal handling by mine personnel and higher safety standard

Liquid tanker:

- Quickly offloaded directly to storage tank; minimal handling
- > Tankers equipped with unique internal valves and safety features designed to prevent releases during accidents

Bag/Box:

One-metric ton boxes, lined and sealed to protect contents from exposure to the environment

Sodium Cyanide Hazards:

- Water-reactive
- Decomposes on contact with acids, acid salts, water, moisture, and carbon dioxide, producing highly toxic, flammable hydrogen cyanide gas
- > Containers can explode when heated or contaminated with water
- Non-combustible but hydrogen cyanide by-product is highlyflammable

Emergency Response:

- Spill First responders use SCBA with Level A protective suit when entering area with unknown contaminant concentration
 - Maintain Level A protection until monitoring results indicate concentration and necessary protection

Fire:

- Small fires use dry chemical, dry sand
- Large fires use water spray, fog, or alcohol-resistant foam
- Tank, rail car, or tank truck involved in fire isolate for 0.5 miles in all directions and consider evacuation
- Run-off from fire control may be corrosive control and dispose of effluent, if possible
- Decontamination individual and/or equipment safety
 - Decon corridor upwind and uphill of hot zone
 - Decon workers must also wear proper personal protective equipment (PPE)

Federal Motor Carrier Safety Administration (FMCSA)

- > Routine random inspections at truck stops and weigh-ins
- > Compile and report compliance/non-compliance and accidents

Cyanide Accidents – A Recent Reportable:

- ➤ Sodium cyanide released on major highway in West Memphis, Tennessee in January 2017
- "...always want to treat it as a worse case scenario and then you can digress from there," West Memphis Fire Department.
- Carrier servicing 49 states for 30+ years with satisfactory safety record
- Granular form of sodium cyanide was well-packaged and protected so no release or exposures

Emergency Monitoring and Emergency Contingencies:

- ➤ Including facility workers and local responders and law enforcement individuals
- Hydrogen cyanide gas monitoring instruments with alarms (elevated concentrations and evacuation level alarms at facility and local fire department)
- Cyanide site-specific objectives and action plan

Residual Cyanide Fate

Detoxification:

- ➤ For example, sulfur dioxide and air (WAD cyanide → cyanate)
- ➤ Thiosufate emerging technology
- Remaining cyanide in tailings storage facility (TSF)

Weak-acid dissociable cyanide (WAD):

- Weak or moderately stable metal complexes (copper, iron, nickel, and zinc)
- ICMC standard = 50 mg/L WAD cyanide; Oregon's standard = 30 mg/L WAD

Hydrogen cyanide, HCN:

Toxic but not persistent (volatilization, photodegradation [e.g., iron complexed cyanides], biodegradation, oxidation, hydrolysis)

Residual Cyanide Fate

Soil:

- Primarily lost via volatilization and biodegradation (bacteria can be inhibited at elevated concentrations)
- > Less mobile when absorbed by clays, biological solids, and sediments

Air:

> HCN is a gas with slow degradation rate in the atmosphere (Half-life 1-3 yrs)

Surface Water:

Volatilization primary process for cyanide loss (especially at lower pH)

Groundwater:

- May persist in groundwater
- Biodegradation limited

Toxicity and Risk – Human Health

Human Health Risk:

- > Facility workers, inspectors, agency personnel, trespassers
- > Free cyanides most toxic
- Potential exposure routes:
 - Ingestion, inhalation, absorption (eyes, skin)
- Acute toxicity due to hypoxia

EPA MCL 0.2 mg/L:

> Level in drinking water below which there is no known expected health risk

Toxicity and Risk - Wildlife

Ecological Risk:

- > Free cyanide most toxic
 - Aquatic organisms most sensitive (diet):
 - Chronic (sublethal [reproduction, growth]): 0.005 0.007 mg/L
 - Acute (lethal): 0.02 0.076 mg/L
 - o Birds:
 - Sensitive receptor category; primarily ingestion via drinking
 - Sensitivity physiological or access issue? Waterfowl attracted to open water such as in TSF supernatant pond
 - o Mammals:
 - Sensitive to acute exposures
 - Chronic exposures to sublethal concentrations not shown to cause adverse effects; rapidly detoxified and excreted

Risk Reduction

- Primary protective mechanism minimize WAD cyanide concentration
 - Detoxification
 - Natural processes (metal-cyanide dissociation, volatilization)
- > Proper PPE and robust handler training and safety compliance
- Monitoring and emergency contingencies (including facility workers, local responders, law enforcement individuals)
 - Hydrogen cyanide gas monitoring
 - Cyanide site specific objectives and action plan

Risk Reduction

- Habitat modification
 - Prevent foodweb in supernatant (less ingestion risk but bathing can still occur)
 - Reduce TSF open water area
 - Reduce attractiveness of surrounding landscape
 - Wetland mitigation sites
- > Wildlife exclusion
 - o Fencing, netting
- > Wildlife deterrents
 - Hazing (munitions), bird deterrent balls
- > Wildlife monitoring protocols

Thank you

For more information

Adam Bonin Project Manager

Portland Office: +1 503 575 3317

www.cardno.com

