## Operator Math Sheet

## EQUIVALENTS

1 cubic ft. $=7.48$ gallons
1 gallon of water weighs 8.34 pounds
$1 \mathrm{mg} / \mathrm{L}=1 \mathrm{ppm}$
$1 \%=10,000 \mathrm{ppm}$ (or $10,000 \mathrm{mg} / \mathrm{L}$ )
$1 \mathrm{cu} . \mathrm{ft} . / \mathrm{sec}$. (cfs) $=449 \mathrm{gpm}$
1 MGD (million gals/day)= $694 \mathrm{gpm}=1.547 \mathrm{cfs}$
1 p.s.i. $=2.31$ feet of water

1 day = 1440 minutes
$\pi(\mathrm{Pi})=3.1416$
Radius of circle $=$ diameter $\div 2$
Circumference of circle $=\pi \times$ diameter
Centigrade $=($ Fahre nheit $-329 \times 0.55$
Fahrenheit $=($ Centigrade $\times 1.8)+32 \mp$
1 horsepower $=0.746$ kilowatts (or $550 \mathrm{ft}-\mathrm{lbs} / \mathrm{sec}$ )

## Area and Volume Formulas

## Rectangles

Area, sq. ft . $=$ length, $\mathrm{ft} . \mathrm{x}$ width, ft .

Volume, $\mathrm{cu} . \mathrm{ft} .=$ length, $\mathrm{ft} . \mathrm{x}$ width, $\mathrm{ft} . \mathrm{x}$ height, ft.
Volume, gal $=$ Volume, cu. $\mathrm{ft} \times 7.48 \mathrm{gal} / \mathrm{cu} . \mathrm{ft}$.

## Circles/Cylinders

Area, sq. ft . $=\pi \times$ radius, ft . $\times$ radius, ft . [also known as $\pi \mathrm{r}^{2}$ ]
Or $=$ diameter, ft. $\times$ diameter, ft. $\times 0.785$
Or $\quad=\frac{\mathrm{d}^{\prime \prime} \times \mathrm{d"} \times 0.785}{144 \mathrm{sq} . \mathrm{in} . / 1 \mathrm{sq} . \mathrm{ft}}$ [allows you to start with inches]
Volume, $\mathrm{cu} . \mathrm{ft} .=\pi \times$ radius, $\mathrm{ft} . \mathrm{x}$ radius, $\mathrm{ft} . \mathrm{x}$ height, ft .
Or (easier for a pipe) $=\frac{\mathrm{d}^{\prime \prime} \times \mathrm{d}^{\prime \prime} \times 0.785}{144} \times$ length, ft .

## GENERAL FORMULAS

Velocity, ft./sec. $=\frac{\text { flow, cu. ft. } / \mathrm{sec}}{\text { area }}$. Or, distance, ft

> \# of Days supply = total chemical in inventory, lbs. (or gal.) average use, lbs/day (or gal/day)

Flow, gpm $=$ Flow, $\mathrm{cu} . \mathrm{ft} . \times 7.48 \mathrm{gal} / \mathrm{cu} . \mathrm{ft}$.
Flow, cu. ft./sec. $=$ area, sq. ft. $x$ velocity, ft./sec
OR $=\frac{\mathrm{d} " \times \mathrm{d"} \times 0.785}{144} \times$ velocity, ft./sec.
$\%$ Stroke Setting = required feed, gpd $\times 100$ [Note: this formula assumes the stroke setting is proportional] max. feed, gpd

## Chlorine Formulas (the "Pounds Formula")

To solve for amount of Chemical Feed, Ibs./day = Flow, in MGD $\times$ Dosage or desired residual, $\mathrm{mg} / \mathrm{L} \times 8.34 \mathrm{lbs} . / \mathrm{gal}$.

$$
\text { or } \mathbf{A}=\mathbf{B} \times \mathbf{C} \times \mathbf{D}
$$

to get the answer in gallons, divide by $8.34 \mathrm{lbs} / \mathrm{gal}$
To solve for Flow of treated water, in MGD (millions of gallons/day, or gallons pumped per day divided by 1 million):

$$
B=\frac{A}{C \times D}
$$

To convert to MGD, divide gpd by 1 million, or move decimal 6 places to left:

- $100,000 \mathrm{gpd}=0.10 \mathrm{MGD}$
- $50,000 \mathrm{gpd}=0.05 \mathrm{MGD}$
- $10,000 \mathrm{gpd}=0.01 \mathrm{MGD}$

To solve for the Chlorine Dose, $\mathrm{mg} / \mathrm{L}=\underline{\text { chemical feed, } \mathrm{lbs} . / \text { day }}$


$$
\text { or } \mathbf{C}=\frac{\mathbf{A}}{\mathbf{B \times D}}
$$

By the way, this formula does not account for the chlorine demand of the water. At this scale, that could be minimal. "Chlorine demand" = how much chlorine gets used up by disinfecting the contents of the water.
The bound up chlorine is only detected if you measure "total chlorine" rather than "free chlorine".
Free Chlorine Residual, mg/L = chlorine dose, mg/L - chlorine demand, mg/L

