Disinfecting Your System

Advanced Small Water System Course

Health

PUBLIC HEALTH DIVISION
Center for Health Protection, Drinking Water Services

Reasons To Disinfect

An example scenario...

- E. coli positive sample in distribution system
- Source of contamination identified
- Boil water notice is immediately delivered to customers
- Entire water system is disinfected \& flushed
- Follow-up sampling verified problem as corrected
- Customers notified that drinking water is again safe

Why Disinfect?

To inactivate pathogens (i.e., protozoa, bacteria \& viruses) that may cause illness or effect human health

Microbiological indicators that may require disinfection:

- Total coliform or E. coli
in distribution system
- Total coliform or E. coli in source water

Adenovirus photo credit:

E. coli photo credit: photobucket

Health

Water System Facilities To Disinfect

- Source Water - Wells, springs
- Storage Facilities - Reservoirs, cisterns, pressure tanks
- Distribution System - Transmission lines
- Wetted System Components - New or repaired pipes, fittings, valves \& pumps

Options for Chlorination

- One-time event
- Shock chlorination
- Target dose and exposure time is considered
- Continuous application
- Persistent coliform bacteria
- Chlorine equipment is permanently installed
- Requires state approval

Events Requiring Disinfection

Disinfection is recommended after:

- Confirmed presence of total coliform or E. coli
- Construction of a new well
- Maintenance activities
- After broken pipe repair
- Biofilm or biological growth
- Others?

Calculating Well Volume

- Well total depth \& static water level are needed.
- Determine the static water level by:
- Taking a current measurement
- Using a recent measurement
- SWL can vary seasonally
- Using the well log/driller's report
- Apply total depth for worst-case

Measuring Static Water Level

- Borrow or rent equipment from:
- Water Resources Department
- Environmental consultants
- Drillers
- Laboratories
- Search web for resources

```
How to Measure the Water Level in a Well
(using an electric water level meter)
```


Oregon Department of Water Resources:
http://www.oregon.gov/owrd/gw/docs/water level booklet.pdf
Oregon State University Extension Service:
http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/19007/ec1368.pdf
PUBLIC HEALTH DIVISION \mathfrak{f}
Center For Health Protection, Drinking Water Services

Measuring Static Water Level

PUBLIC HEALTH DIVISION न्フ
Center For Health Protection, Drinking Water Services

Go slow to avoid getting water level meter stuck in the well.

Health

Measuring Static Water Level

PUBLIC HEALTH DIVISION
Center For Health Protection, Drinking Water Services

Well Log Information

```
NOTICE TO WATER WELL CONTRACTOR
    The original and first copy of this reqorta corem are to be filed with the (G)
```



```
        SALEM, OREGON 97310
        within 30 days from the date
            of well completion.
                            AUG r1979 (Please type or print)
                                WATER RESOURCEE DEPT of well completion. WATER RESOUFCE \({ }^{\text {Do }}\) D ET writ
```

State well No. $36 \operatorname{sos}(1 w-2)$
State Permit No. \qquad
(1) OWNER: \quad GIF\% GOFER

Name;
Address:
-
(2) TYPE OF WORK (check):

New Well Deepening \square Reconditioning \square Abandon \square If abandonment, describe material and procedure in Item 12.
Rotary

OF WELL
Driven \square \square Jetted \square \square Bored \square
CASING INSTALLED
" Diam. from ..."O
(4) PROPOSED USE (check):

Welded 950
" Diam. from
ft. toft. Gage
" Diam. from
ft. to \qquad ft. Gage

Bearing and distance from section or subdivision corner

(11) WATER LEVEL: Completed well.

Depth at which water was first found Static level ft. below land surface. Date 7_{m+0}^{3}
Artesian pressure
lbs. per square inch. Date

Depth drilled $/ 80 \quad \begin{aligned} & \text { ft. Depth of completed well } / 8^{2} 0\end{aligned}$
Formation: Describe color, texture, grain size and structure of materials; and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each change in position of Static Water Level and indicate principal water-bearing strata.

Searching for Well Log

Calculating Well Volume

Well volume can be calculated using the following formulas:

$\begin{aligned} & V=3.14 \times r^{2} \times L \text {, or } \\ & V=d^{2} \times 0.785 \times L \end{aligned}$ Where: $\mathrm{V}=$ volume (ft^{3}) $r=$ radius (ft) $\mathrm{d}=$ diameter (ft) $\mathrm{L}=$ length or height(ft)	
All units of measure must be the same	Convert volume to gallons: 1 cubic foot $=7.48$ gallons
PUBLIC HEALTH DIVIIION Center For Health Protection, Drinking Water Sevvices	

Calculating Well Volume

- To determine volume, need to know the water length in well column:
- Total well depth = 100 feet
- Static water level = 35 feet
- Length or height = ? in feet

$$
=100^{\prime}
$$

Length $=100$ ft (total depth) $-35 \mathrm{ft}($ SWL $)=65 \mathrm{ft}$

Well Volume to Disinfect

Example: A 6-inch diameter well contains 65 feet of water.
What is the volume in gallons?

Main Diameter (inches)	Callons/ foot of length
2	0.16
4	0.65
6	1.5
8	2.6
10	4.1
12	5.9

Formula to use: (Length) x (Gallons/foot of length) = Gallons in well

$$
65 \mathrm{ft} \times 1.5 \mathrm{gal} / \mathrm{ft}=97.5 \text { or } 100 \text { gallons of water in well }
$$

Calculating Well Volume

Well Disinfection Technical Bulletin on the DWS website for calculating well volume

http://public.health.oregon.gov/HealthyEnvironments/Dr inkingWater/Operations/Documents/welldisinfection.pdf

Oregon Health Authority

For More Information Contact

Oregon Health Authority
Drinking Water Services (971) 673-0405

Type of Chlorine to Use

- Percent of available chlorine is generally shown on the product's label.
- 1% by weight is equal to $10,000 \mathrm{mg} / \mathrm{L}$, for example:
- 8% bleach would contain $80,000 \mathrm{mg} / \mathrm{L}$ chlorine
- Sodium hypochlorite (liquid)
- Strength varies from 5\%, 8\% (household bleach) to 12.5\% (industrial grade)

Sodium Hypochlorite (NaOCl)

Health

Type of Chlorine to Use

- Calcium hypochlorite (dry powder/pellet)
- Strength is usually 65\% available chlorine
- More commonly used for deep wells \& storage tanks
- Avoid using stabilized chlorine (e.g. dichlor, trichlor) for swimming pools and spas

Calcium Hypochlorite $\left(\mathrm{Ca}(\mathrm{OCl})_{2}\right)$

Health

Chlorine

- Chlorine loses its strength over time
- Bleach stored at about $70^{\circ} \mathrm{F}$ maintains strength noted on the product label for about 3 to 5 months
Half life of 12.5% sodium
hypochlorite at various temperatures

Degrees F	Number of Days
77°	220
87°	110
97°	55
107°	27

Certified products

- The National Sanitation Foundation certifies products for use in public drinking water
- Look for NSF logo - Recommended but not required if system is flushed before use
- When ordering chemicals ask for product that is safe for drinking water
- Go to www.wqa.org/ or other ANSIaccredited organizations to verify product as certified

Safety Considerations When Using Chlorine

- Chlorine bleach is a strong oxidant
- Highly corrosive
- Especially at levels >100 mg/L
- May cause skin \& eye irritation or damage
- Use goggles \& rubber gloves when handling
- Wear protective clothing

- Splash apron \& rubber boots
- Provide good ventilation in work space

Calculating Chlorine For Wells

- Wells are commonly chlorinated to:
- $50 \mathrm{mg} / \mathrm{L}$ (target dose) for
- 12 to 24 hours (exposure time).
- Decide on appropriate chlorine product to use
- Based on volume of water and desired target dose, calculate chlorine amount needed to achieve target dose.

Calculating Chlorine Amount

Example 1: Formula to determine volume of chlorine bleach solution =
(target concentration in mg/L)(volume to be disinfected in gal) (chlorine concentration as \%)($10,000 \mathrm{mg} / \mathrm{L} / \%$)

- Target Concentration $=50 \mathrm{mg} / \mathrm{L}$
- Volume $=97.5$ gallons round up to 100 gallons
- Chlorine concentration $=8 \%$ (*Verify product strength)
- Bleach amount $=(50 \mathrm{mg} / \mathrm{L})(100 \mathrm{gal})=5,000=0.0625 \mathrm{gal}$ (8\%)(10,000 mg/L/\%) 80,000
- Convert to cups $=(0.0625 \mathrm{gal})(16 \mathrm{cups} / \mathrm{gal})=1 \mathrm{cup}$ $\mathrm{mg} / \mathrm{L}=$ milligrams per liter $=\mathrm{ppm}=$ parts per million

Calculating Chlorine Amount

Example 2: Calculate weight of calcium hypochlorite powder needed =
Using the Pounds Formula: (volume in MG) x ($8.34 \mathrm{lb} / \mathrm{gal}$) x (target concentration in mg / L)

- Volume $=5,000$ gallons/1 million $=0.005$ MG
- Target Concentration $=2 \mathrm{mg} / \mathrm{L}$
- Available chlorine $=65 \%$ or 0.65 (*Verify the available chlorine in product)
- Lbs of chlorine $=\frac{(0.005 \mathrm{MG}) \times(8.34 \mathrm{lb} / \mathrm{gal}) \times(2 \mathrm{mg} / \mathrm{L})}{0.65}$
$=0.128 \mathrm{lbs}$ or ~ 2 ounces
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter $=\mathrm{ppm}=$ parts per million

Need Help With Conversions?

Refer to the Basics for Small Water Systems in Oregon Manual

FACT SHEET 4.7 Basic Math: Common Calculations for Small Water Systems

Center For Health Protection, Drinking Water Services

Abbreviations:						
$\mathbf{f t}$	$=$	Feet	$\mathbf{l b}$	$=$	pounds	
gpd	$=$	gallons per day	$\mathbf{m g / L}$	$=$	milligrams per liter	
gpm	$=$	gallons per minute	$\mathbf{m L}$	$=$	milliliter	
MGD	$=$	million gallons per day	\mathbf{L}	$=$	liter	

Conversion Factors:		
	$=$	43,560 square feet
1 acre	$=$	43,560 cubic feet
1 acre foot	$=$	7.48 gallons
1 cubic foot	$=305$ meters	
1 foot	$=3.79$ liters	
I gallon	$=8.34$ pounds	
1 gallon of water	0.746 kilowatts	
1 horsepower	$=694$ gallons per minute	
1 million gallons per day	$=0.454$ kilograms $(454$ grams $)$	
1 pound	$=1000 \mathrm{~mL}$	
1 Liter	$=1000$ grams	
1 Liter of water	$=1000 \mathrm{~kg}$	
1 gram	$=1.31$ feet of water $($ head $)$	
1 pound per square inch (psi)	$=10,000 \mathrm{mg} / \mathrm{L}$	
1%	$=$	$($ Degrees Fahrenheit -32$)(5 / 9)$
Degrees Celsius	$=($ Degrees Celsius) $(9 / 5)+32$	
Degrees Fahrenheit	$=3.14$	
π		

Online Conversion Tools

- Use any number of online conversion tools by doing a search on "unit conversion", or
- Type the value to be converted into the search bar (e.g., "25 tablespoons to cups" yields a result of "25 US tablespoons = 1.5625 US cups").

Chlorine Sampling Methods

- Measure chlorine residual using DPD or other EPA approved method (Unless doing gross evaluation of chlorine levels)
- Check expiration dates on reagent packets

Unapproved methods

- Be familiar with instrument's range for drinking water
- Color wheels can fade over time

How to Measure Higher Concentrations

Using Dilution Method

- Achieve target dosage of $50 \mathrm{mg} / \mathrm{L}$ chlorine solution in a 5 gallon bucket
- Cut solution to $1: 25$ to get to $\mathbf{2 ~ m g} / \mathrm{L}$ (chlorine test kit's mid-range)
- 1 Tbsp:25 Tbsp = 1 Tbsp (solution) to 25 Tbsp (water)

High Dose Considerations

- It can raise pH which lowers chlorine effectiveness
- Can corrode \& damage equipment
- Takes more time to completely flush
- Disposing super-chlorinated water can be difficult
- Hazardous to wildlife
- Other safety considerations

- Adding excessive amounts of chlorine into a well is not a good idea

Disposal Of Chlorinated Water

- DEQ has requirements for discharging superchlorinated water (> $4 \mathrm{mg} / \mathrm{L}$ total chlorine residual)
- Regardless of volume, super-chlorinated water must not be discharged to surface waters or storm sewers.
- Non-discharge alternatives:

- Sanitary sewer disposal (connect to a sanitary sewer or haul to a sewage treatment plant)
- Land disposal or irrigation
- Discharging chlorinated water into on-site septic systems can cause damage by inactivate microbes

Disposal Of Chlorinated Water

Discharge Options when there is insufficient dilution and/or travel time:

- Dechlorinate to $0.1 \mathrm{mg} / \mathrm{L}$ residual chlorine or less if discharge is to a stream with flow less than 50 cubic feet per second (cfs). Test prior to discharge.
- Collect and hold water in a detention pond or tank
 and allow chlorine to dissipate into the air. Again, the maximum is $0.1 \mathrm{mg} / \mathrm{L}$ if discharging to a stream with flow less than 50 cfs. Test before discharging.
- Refer to DEQ Memorandum \& Decision Matrix on Chlorinated Water Discharges
http://www.deq.state.or.us/wq/pubs/bmps/chlorwaterdisp.pdf

Dechlorination

- Commercial products are available to dechlorinate potable water
- Chlorine is neutralized using Sodium sulfite, Sodium thiosulfate or Ascorbic Acid (Vitamin C)

Water System Disinfection

What components will require disinfection?

Scenario 1:

Scenario 2:

Water System Disinfection

What components will require disinfection?

Scenario 3:
Storage B

Well Chlorination Options

Option 1 - Bottom Up Injection

- Achieve $\mathbf{5 0} \mathbf{~ m g} / \mathrm{L}$ throughout water column
- Run tube into casing to bottom of well
- Withdraw tube while injecting chlorine solution

Option 2 - Down-Hole Method

- If bottom-up injection method is not feasible, dilute chlorine into at least 5 gallons of (warm) water and mix
- Make sure chlorine mixes thoroughly with dilution water
- Pour into well with a funnel through a plug or casing vent hole at the top of the sanitary seal

Disinfecting Through Well Caps

- Three common types of well caps:
- Turtle Back with or without access plug
- Sanitary well cap
- Other types?
- The right tools are needed to unbolt the well cap
- Use care when exposing wiring to prevent damage

Well Chlorination

- To mix solution within well, attach a hose to nearest downstream tap (before any unpressurized storage tanks).
- Recirculate water from tap back into well for at least 15 minutes.
- Note: When restricting the well pump's outflow through one hose (during recirculation), back pressure on the pump could cause damage or trip the pump off. If needed, use a buffer or surge tank and siphon it back into well in batches.

Example of how to recirculate water down a well

http://infohouse.p2ric.org/ref/20/19703.htm\#SHOCKCHLORINATE

Health

Well Chlorination

- Verify target dose \& let mixed disinfectant remain in the well for 12-24 hours.
- Flush by using a flow splitter and re-circulate half the water down the casing while pumping half to waste until no chlorine is detected. Be sure to flush inside well casing \& other internal components to prevent corrosion.

Steps After Flushing

- After a zero chlorine residual has been verified,
- Continue to pump well to waste for about 15 minutes.
- Next, collect coliform samples
- At least 2 samples spaced 30 minutes apart
- If samples are positive, repeat pump to waste and collect additional samples
- If samples are still positive, repeat chlorination and retest
- Additional corrective action may be needed. Consult with a well professional or circuit rider.

Newly constructed wells use solution strengths of up to $100 \mathrm{mg} / \mathrm{L}$ for 24 hours (AWWA Standard A100-06)

Water System Disinfection

- Wells, storage tanks \& piping may need to be separately disinfected.
- Coordinate timing for storage \& distribution system disinfection.
- Calculate volume of water in storage or use tank dimensions.

Rectangular Tank Volume Formula: \mathbf{V} (gal) $=\mathbf{L}(\mathrm{ft}) \times \mathbf{W}(\mathrm{ft}) \times \mathrm{H}(\mathrm{ft}) \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}$

- For H, use height to overflow
- To be conservative use total height

Cylindrical Tank Formula:
$\mathrm{V}(\mathrm{gal})=\mathrm{d}^{2}(\mathrm{ft}) \times 0.785 \times \mathrm{H}(\mathrm{ft}) \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}$

- Can also use formula, $\mathrm{V}=3.14 \times \mathrm{r}^{2} \times \mathrm{h}$

Calculating Volume Review

Rectangular Basin - Example

60' long, by 40 ' wide, by 10 ' deep (at overflow).
 What is the total volume this reservoir can hold in cubic feet?

$$
\begin{gathered}
\text { Formula: } \mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H} \\
60^{\prime} \times 40^{\prime} \times 10^{\prime}=24,000 \mathrm{ft}^{3}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Convert cubic feet to gallons: } \\
& 24,000 \mathrm{ft}^{3} \times 7.48 \text { gal/ft }{ }^{3} \\
& =179,520 \text { gal (round to } 180,000 \mathrm{gal} \text {) }
\end{aligned}
$$

Calculating Volume Review
 Cylindrical Basin - Example

A tank has a diameter of 40 feet and is 10 feet deep at the overflow. How many gallons can the tank hold?

Calculate the volume:
$\mathrm{d}^{2} \times 0.785 \times \mathrm{h}=$ Volume $\left(\mathrm{ft}^{3}\right)$
$40^{\prime} \times 40^{\prime} \times 0.785 \times 10^{\prime}=12,560 \mathrm{ft}^{3}$

Convert cubic feet to gallons:
$12,560 \mathrm{ft}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=93,949$ gallons

Storage Tank Chlorination

- Establish method exposure time
- AWWA exposure times are 3,6 \& 24 hours
- Exposure time depends on chlorine concentration and if chlorine can be added at time of filling storage to improve mixing.
- Combining time \& concentration is referred to as a method (per AWWA Standard C652-02).
- Longer exposure times are more conservative and may improve disinfection.

Refer to Storage Tank Chlorination Tool on DWS website

Storage Tank Chlorination Tool

Basics for Small Water Systems in Oregon: Storage Tank Chlorination				Options for Disinfec
Disinfection concentrations and times are based on AWWA Standard C652 for storage tanks cited in: OAR 333-061-0050 "Construction Standards" (10)(d) dated 19 Apr 2010, page 297				Method A. Filling the tank or reservoir with a $10 \mathrm{mg} / \mathrm{L}$ chlorine solution and allowing it to remain for $\mathbf{6}^{\boldsymbol{a}}$ or $\mathbf{2 4}$ hours (see Table).
				Method B. Filling the reservoir with a $\mathbf{5 0} \mathrm{mg} / \mathrm{L}$ chlorine solution and allowing it to stand for 6 hours (see Table).
Question: How much chlorine is added to a tank?				Method C. Spraying or brushing on a $200 \mathrm{mg} / \mathrm{L}$ chlorine solution and allowing it to remain for 3 hours (calculation not provided).
		infected =		gallons
(input tank volume above in yellow shaded ce)				
Chlorination Dose for Storage Tank of Volume Specified Above	Method A^{b}	Method B^{c}	Units	(Chlorine Concentration values [yellow, or grey, cells] can be changed for custom calculations)
Chlorine Concentration Method Exposure Time	10	50	mg / L	
	6^{a} or 24	6	hours	
Chlorine Source Material.				
Bleach 5\% Solution	0.10	0.50	gallons ${ }^{\text {d }}$	\sim Note that to achieve Method concentration
Bleach 8.25\% Solution	0.06	0.30	gallons ${ }^{\text {d }}$	add more chlorine than specified here.
Bleach 12.5\% Solution	0.04	0.20	gallons	Important: Measure chlorine concentration to confirm
Dry Chlorine (65\% by wt)	0.06	0.32	pounds	Method's target concentration. Test strips used in restaurant inspection (for detecting higher chlorine levels) may be useful, or dilute a sample to your test kit range
	0.029	0.147	kilograms	

http://public.health.oregon.gov/HealthyEnvironments/DrinkingWater/Operations/Documents/ShockChloroCalc.xIs
PUBLIC HEALTH DIVISION
Center For Health Protection, Drinking Water Services

Storage Tank Chlorination Tool

- Enter Volume to be disinfected.
- Chlorine Source Material values automatically change to achieve target chlorine dose based on volume entered.
- Chlorine concentrations are calculated as a function of the method.
- Amount of chlorine material needed is in red text.

Basics for Small Water Systems in Oregon: Storage Tank Chlorination				0
Disinfection concentrations and times are based on AWWA Standard C652 for storage tanks cited in: OAR 333-061-0050 "Construction Standards" (10)(d) dated 19 Apr 2010, page 297				
Question: How much chlorine is added to a tank?				
Volume to be disinfected $=500$ (input tank volume above in yellow shaded c				
Chlorination Dose for Storage Tank of Volume Specified Above	Method A^{b}	$\begin{gathered} \text { Method } \\ \text { B }^{c} \end{gathered}$	Units	
Chlorine Concentration Method Exposure Time	$6^{\text {a }}$ or 24	50 6	mg / L hours	
Chlorine Source Material.				
Bleach 5\% Solution	0.10	0.50	gallons ${ }^{\text {d }}$	
Bleach 8.25\% Solution	0.06	0.30	gallons ${ }^{\text {d }}$	
Bleach 12.5\% Solution	0.04	0.20	gallons	
Dry Chlorine (65\% by wt)	0.06	0.32	pounds	
	0.029	0.147	kilograms	

Storage Tank Chlorination Tool

- The target dose is either 10 or $50 \mathrm{mg} / \mathrm{L}$, unless the method is spray application at $200 \mathrm{mg} / \mathrm{L}$.
- Wait the full duration of method disinfection time listed in the spreadsheet.

Chlorination Dose for Storage Tank of Volume Specified Above	Method \mathbf{A}^{b}	Method \mathbf{B}^{c}	Units	
Chlorine Concentration Method Exposure Time	6^{a} or 24	50	mg / L hours	
Chlorine Source Material...				
Bleach 5\% Solution	0.10	0.50	gallons d	
Bleach 8.25\% Solution	0.06	0.30	gallons d	
Bleach 12.5\% Solution	0.04	0.20	gallons	
Dry Chlorine (65\% by wt)	0.06	0.32	pounds	

[^0]
Storage Tank Chlorination Example

- Only one storage tank holding 10,000 gallons.
- The target dose is $50 \mathrm{mg} / \mathrm{L}$ \& a 6-hour time frame will be used (Method B) to minimize service interruption.
- How much normal (5\%) household bleach is needed to disinfect the storage tank?

Storage Tank Chlorination Example

- Only one storage tank holding 10,000 gallons.
- The target dose is $50 \mathrm{mg} / \mathrm{L}$ \& a 6 -hour time frame will be used (Method B) to minimize service interruption.
- How much normal (5\%) household bleach is needed to disinfect the storage tank?

Answer:

Add 10 gallons of normal household (5\%) bleach to the storage tank \& mix by recirculating. Measure the chlorine concentration. If the solution mixed in tank measures a bit low (e.g. $45 \mathrm{mg} / \mathrm{L}$), add about 10% of original dose, or 1 gallon of bleach \& mix again. If concentration is now > than $50 \mathrm{mg} / \mathrm{L}$, start clock on the 6 -hour interval.

Storage \& Distribution Chlorination

- Flush storage volume through distribution until chlorine concentration is achieved \& detected at distribution taps.
- Once contact time has been met in distribution (12-24 hours) begin flushing entire system.
- Flushing may need to be done in multiple phases depending on source yield \& distribution volume (refilling storage with hauled water may be necessary).

Storage \& Distribution Chlorination

Continued...

- After zero chlorine residual is verified at all distribution taps, collect a representative number of coliform samples using sites designated in the coliform sampling plan.
- Repeat disinfection process as needed if any samples are coliform positive.

Potential Disinfection Complications

- Chlorination process is not an exact science.
- Dosage calculations will address worst case scenario.
- High-volume, unidirectional flushing alone may resolve the problem.
- Determining extent of bacteria colonization can be difficult
- Heterotrophic plate counts (HPC) may help determine this
- Each situation may have mechanical \& electrical challenges:
- Overloading well pumps
- Overriding storage tank float switches
- Inadequate taps \& valves for effective recirculation
- Other issues?

Resources Available On DWS Website

Helpful Links

- How to disinfect a well:
http://public.health.oregon.gov/HealthyEnvironments/DrinkingWater/ Operations/Documents/welldisinfection.pdf
- Shock Chlorination for Storage Tank, Well and Distribution System Procedure and Volume Calculation:
http://public.health.oregon.gov/HealthyEnvironments/DrinkingWater/ Operations/Pages/shockchlorination.aspx
- Basics for Small Water Systems in Oregon - Unit 4 http://public.health.oregon.gov/HealthyEnvironments/DrinkingWater/ OperatorCertification/SmallWaterSystems/Documents/BasicsForSma IIPWS.pdf
- American Water Works Association: http://www.awwa.org/

Exercise \& Discussion

Class Exercise (Part 1):

Calculate system volumes for your water system

PUBLIC HEALTH DIVISION
Center For Health Protection, Drinking Water Services

Class Exercise (Part 2):
 Design Your Own Disinfection Process

1. Determine chlorine amount needed based on your system's volume.
2. Develop a strategy in steps (e.g. add chlorine to well \& then batch dose from the reservoir into distribution, etc.).
3. Plan the public notification process.

- Customers must be informed of timelines \& water use restrictions to protect their health.
- Dishes and household cleaning are about the only things you can do with shock chlorinated water.
- Notify customers when it's all over.

4. Document chlorination events.

- What worked \& ways to improve the process

Summary

1. Chlorination is effective to address microbial contamination.
2. Know volumes of wells, storage tanks and distribution piping to calculate amount of bleach needed for effective dosages.
3. Evaluate public health risk and customer service needs when determining your method- exposure time and target dose.
4. How will you notify customers?

- when contamination is confirmed
- when superchlorinating the water system
- when the issue is resolved

5. Record system volumes and chlorine calculations for future reference in your operating procedures.
6. Before shock chlorinating, consult with your regulator!

[^0]: Options for Disinfection by Chlorination:
 Method A. Filling the tank or reservoir with a $10 \mathrm{mg} / \mathrm{L}$ chlorine solution and allowing it to remain for $\mathbf{6}^{a}$ or $\mathbf{2 4}$ hours (see Table).

 Method B. Filling the reservoir with a $\mathbf{5 0} \mathbf{~ m g} / \mathrm{L}$ chlorine solution and allowing it to stand for 6 hours (see Table).

 Method C. Spraying or brushing on a $200 \mathrm{mg} / \mathrm{L}$ chlorine solution and allowing it to remain for 3 hours (calculation not provided).

