

El Niño vs La Niña

(SST Patterns in the Tropical Pacific Ocean)

Courtesy: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/ensocycle.shtml

Sea Surface Temperatures (SSTs)

Animated (PowerPoint only) SSTs (top) / Anomalies (bottom)

El Niño Southern Oscillation (ENSO) Current Status and Forecast

- The March Southern Oscillation Index (SOI) increased to +0.4, reflecting strengthening trade winds across the tropical Pacific Ocean, which corresponds with weakening El Niño conditions.
- The January March Oceanic Niño Index (ONI) fell to +1.5°C, indicating cooling of the sea surface temperatures (SSTs) in the tropical Pacific. This index lags real-time SSTs, which show additional cooling.
- *NOAA's Climate Prediction Center (CPC) expects El Niño to transition to ENSO-neutral this spring and to La Niña this summer.

*Note: This forecast does not consider NOAA's ENSO forecast. It uses only historical and current ENSO conditions to find "analog years" that most-closely match the evolution of the current ENSO state.

Southern Oscillation Index (SOI)

SOI values from the top "analog years" compared

Month

SOI data courtesy https://www.cpc.ncep.noaa.gov/data/indices/soi

Oceanic Niño Index (ONI)

ONI values from the top "analog years" compared with the current period (2023-2024) Jan. – Mar. (1957-1958; 1965-1966; 1972-1973) 2024 ONI 2.5 $(+1.5^{\circ}C)$ Showed a 2.0 Strong weakening 1.5 Mode El Niño 1.0 2023-2024 0.5 1957-1958 **ENSO-Neutral** 0.0 -0.51965-1966 Weak -1.0**-**1972-1973 **Moderate** -1.5Jan. – Mar. Strong La Niña -2.0ONI analogs all reflected a -2.5OH EMP MY THE BOOM ON EMP MY THE BOOM weakening

3-Month Running Mean

The Pacific Decadal Oscillation (PDO) (Reflects SST "Phase" in the North Pacific Ocean)

Positive (Warm)
"Phase"

Negative (Cool)
"Phase"

Courtesy: http://research.jisao.washington.edu/pdo/img/pdo_warm_cool.jpg

North Pacific Ocean

(Poleward of 20°N Latitude)

PDO values from the top "analog years" compared

Month

PDO data courtesy https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat

SST Anomalies Comparison

March Analogs

March 2024

- The March analog composite (left) has a similar SST anomaly pattern ("fair match"), compared to that of March 2024 (right).
- Both charts reflect weakening El Niño (warm) conditions in the tropical Pacific Ocean.

El Niño & La Niña Impact Global Temperatures...

Global Temperature Trends Increase Error in Analog Forecasts!

May 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean IOAA Physical Sciences Laborator 70N 30N 10N

Upper-Air Anomalies

- A "split-flow" pattern should continue over the Pacific Northwest with mean ridging over the Rockies.
- Despite a weakening El Niño, analogs consistently maintained anomalous ridging over Oregon.

May 2024 Forecast

Temperatures

May 2024 Forecast Temperature Anomalies (°F) Based on 1958, 1966, 1973 Analog Years Versus 1991-2020 Average 3.1 2.9 4.0 3.9 3.0

Precipitation

- A cool 1966, with a western valley freeze late in the month, is more than countered by the relatively warm years of 1958 & 1973.
- 1958 had considerable thunderstorm activity statewide, but 1966 and 1973 were much drier. The blend skews dry.

June 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean 80N 5450 5550

Upper-Air Anomalies

- A "split-flow" jet stream pattern should continue across the Pacific Northwest with enhanced storm activity directed towards California.
- This is a relatively warm pattern, but prolonged extreme temperatures are not featured. Thundershower activity may be enhanced.

June 2024 Forecast

Temperatures

Precipitation

- Above-average temperatures with some "warm" spells (over 90°F in the interior) likely from mid-month on...
- Expect ample days with precipitation and an increased threat of thunderstorms statewide.

July 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean IOAA Physical Sciences Laborator 30N

Upper-Air Anomalies

- The analog composite shows anomalous ridging centered along the B.C. Coast with some downstream troughing over the Pac NW.
- An El Niño-driven "split-flow" pattern should persist over the west coast of North America despite a likely transition to ENSO-neutral.

July 2024 Forecast

Temperatures

July 2024 Forecast Temperature Anomalies (°F) Based on 1958, 1966, 1973 Analog Years Versus 1991-2020 Average 0.8 -0.3 -0.6 -0.8

Precipitation

- Analog years straddled either side of average temperatures with 1966 being the coolest and 1958 the warmest.
- A wet 1966 skews the precipitation to near or above normal, despite both 1958 & 1973 being drier than average (lowers forecast confidence).

May – July 2024 Forecast

Mean Upper-Air Pattern

NCEP/NCAR Reanalysis 500mb Geopotential Height (m) Composite Mean 30N 120W 110W 100W

Upper-Air Anomalies

- Expect a continuation of a "split-flow" jet stream pattern along the U.S. West Coast (an El Niño signature).
- This pattern favors relatively warm weather across Oregon but can also prove quite volatile during the late-spring/early-summer period.

May – July 2024 Forecast

Temperatures

May 2024 - July 2024 Forecast Temperature Anomalies (°F) Based on 1958, 1966, 1973 Analog Years Versus 1991-2020 Average 1.5 1.4 1.2

Precipitation

- Above-average temperatures indicated for the period. Heightened chance of extremes, in both directions, in May (1966 analog).
- Precipitation near or slightly below average. Heightened chance of latespring thundershower activity (1958 analog).

Forecast Highlights

- This forecast is based on weather that occurred during the (1958; 1966; 1973) analog years (no changes to the analogs from last month).
- A pervasive "split-flow" jet stream pattern should continue along the west coast of North America, even though El Niño is rapidly weakening.
- Relatively "warm & dry" weather is favored, but analog years also exhibited counter-trend periods with more-volatile weather.
- May of 1966 had extreme temperatures in both directions. There was widespread thunderstorm activity in May & June of 1958. 1973 was mostly moderate but also had quite-warm temperatures in mid-May.

Disclaimer: This forecast is not associated with NOAA's CPC (see "Forecasting Methods..." at: https://oda.direct/Weather) nor the official CPC "Three-Month Outlooks," which are available at: https://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=1

Peak Spring Snowpacks Near-to-Above Average (end of March 2024)

Drought Improvement (over the past 3 months)

Courtesy: National Drought Mitigation Center (NDMC)

https://droughtmonitor.unl.edu/

Forecast Resources

■ ODA Seasonal Climate Forecast Home:

https://www.oregon.gov/ODA/programs/NaturalResources/Pages/Weather.aspx

CPC Official US Three-Month Forecasts (Graphics):

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=01

□ CPC US 30-Day & 90-Day Forecasts (Discussions):

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/fxus07.html

- CPC Weekly & Monthly ENSO Discussions:
- https://www.cpc.ncep.noaa.gov/products/analysis monitoring/enso advisory
- Australian Government Climate Model Summary:

http://www.bom.gov.au/climate/model-summary/#region=NINO34&tabs=Overview

Australian Government ENSO Wrap-Up:

http://www.bom.gov.au/climate/enso

■ IRI ENSO Quick Look:

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

Water Supply / Fire-Potential Outlook

CPC U.S. Seasonal Drought Outlook:

https://www.cpc.ncep.noaa.gov/products/expert_assessment/season_drought.png

■ NRCS Snow Water Equivalent Oregon Map:

https://www.wcc.nrcs.usda.gov/ftpref/data/water/wcs/gis/maps/or_swepctnormal_update.pdf

■ NRCS/USDA Snow Water Equivalent Products:

https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack/

■ NDMC U.S. Drought Monitor:

https://droughtmonitor.unl.edu/

■ NIDIS North American Drought Portal:

https://www.drought.gov/nadm/content/percent-average-precipitation

■ WRCC WestWideDroughtTracker:

https://www.wrcc.dri.edu/wwdt/

■ NWCC Northwest Interagency Coordination Center (video)

https://gacc.nifc.gov/nwcc/predict/outlook.aspx

