## EXHIBIT O

### WATER RESOURCES

OAR 345-021-0010(1)(o)

### TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.1</td>
<td>INTRODUCTION</td>
<td>O-1</td>
</tr>
<tr>
<td>O.2</td>
<td>WATER USE</td>
<td>O-1</td>
</tr>
<tr>
<td>O.2.1</td>
<td>Construction</td>
<td>O-1</td>
</tr>
<tr>
<td>O.2.2</td>
<td>Operations</td>
<td>O-1</td>
</tr>
<tr>
<td>O.3</td>
<td>SOURCES OF WATER DURING CONSTRUCTION</td>
<td>O-2</td>
</tr>
<tr>
<td>O.4</td>
<td>WATER LOSSES</td>
<td>O-3</td>
</tr>
<tr>
<td>O.4.1</td>
<td>Construction</td>
<td>O-3</td>
</tr>
<tr>
<td>O.4.2</td>
<td>Operations</td>
<td>O-3</td>
</tr>
<tr>
<td>O.5</td>
<td>WATER BALANCE DIAGRAM</td>
<td>O-3</td>
</tr>
<tr>
<td>O.6</td>
<td>PERMITS OR TRANSFERS REQUIRED</td>
<td>O-3</td>
</tr>
<tr>
<td>O.6.1</td>
<td>Construction</td>
<td>O-3</td>
</tr>
<tr>
<td>O.6.2</td>
<td>Operations</td>
<td>O-3</td>
</tr>
<tr>
<td>O.7</td>
<td>MITIGATION MEASURES</td>
<td>O-4</td>
</tr>
<tr>
<td>O.8</td>
<td>CONCLUSION</td>
<td>O-4</td>
</tr>
<tr>
<td>O.9</td>
<td>REFERENCE has to be realized</td>
<td>O-4</td>
</tr>
</tbody>
</table>

### ATTACHMENTS

- O-1 Water Availability Statement
- O-2 Water Right Certificate
O.1 INTRODUCTION

EC&R Development, LLC (Applicant) proposes to construct the Brush Canyon Wind Power Facility (Facility) in Wasco and Sherman counties, Oregon. The proposed Facility is expected to provide a nominal electric generating capacity of up to 535 megawatts (MW).

OAR 345-021-0010(1)(o) Information about anticipated water use during construction and operation of the proposed facility. The applicant shall include:

Response: The following subsections describe the source(s) and nature of water to be used during Facility construction, and measures proposed to minimize water use.

O.2 WATER USE

OAR 345-021-0010(1)(o)(A) A description of the use of water during construction and operation of the proposed facility.

Response:

O.2.1 Construction

During Facility construction, water will be delivered by truck from a municipality with an existing water right. Facility construction will require water use for a number of activities, including construction and maintenance of gravel roads, construction of concrete foundations, and dust control.

Up to approximately 30 million gallons of water will be needed during the approximate 14-month construction period. This number comprises an estimated 28 million gallons for road compaction and dust control and an estimated 2 million gallons for turbine foundations. The exact volume of water required is highly dependent on weather, the final construction schedule (for example, the need for dust control will be far greater in dry, windy summer conditions than at other times of year), and the stages of construction.

The daily average water use for dust control and road compaction is conservatively estimated at 100,000 gallons of water for an estimated duration of 8 months during the approximate 14-month construction period. The expected demand will not disrupt an existing water right or exceed the amount of water available nearby. The maximum water use for constructing turbine foundations is conservatively estimated at 2 million gallons if the Applicant selects the 2.4-MW turbines, which have the largest foundations and will require the most concrete (456 cubic yards).

O.2.2 Operations

During Facility operations, water will be supplied to the operations and maintenance (O&M) building from a new onsite well. The new well will not require a new water right, as the water usage will be less than 5,000 gallons per day. Water will be used mainly at the O&M building kitchen and bathroom facilities. The O&M building water demand will be at the level of a standard commercial office, and will consist of general office uses (e.g., sinks, toilets, showers). The Facility will not use any process water to generate electricity.

Minimal water use is anticipated during Facility operations. Day-to-day water use primarily will occur at the O&M buildings, and will consist of standard commercial office use (sanitary purposes, sinks, dishwashers, and showers). On occasion, water will also be used for equipment washdown and hand washing, within the dedicated equipment maintenance portion of the O&M buildings. Conservatively assuming that 25 employees will use the O&M building daily, and based on the standard assumption for commercial office use of 50 gallons per person per day (estimated from the number and type of equipment located within the O&M building), the operational water use will be approximately...
1,250 gallons per day. A water right would not be required for the new well because the well would qualify for an exempt use under Oregon Revised Statute (ORS) 537.545(1)(f), intended for wells that use less than 5,000 gallons per day.

In the unlikely event that blade washing will occur during operations, additional water may be required. However, blade washing is not anticipated to occur during operations. Should site conditions change, and blade washing become necessary in accordance with manufacturer recommendation, a minimal amount of water will be used (up to approximately 50 gallons of water for each blade). The blade washwater will then infiltrate into the adjacent land, and will not discharge to surface waters. The washwater is not considered an industrial wastewater because the fiberglass blades will not introduce contamination into the washwater. The 1700-B General Water Pollution Control Facilities (WPCF) permit, which covers discharge washwater from vehicle, equipment, buildings, and pavement cleaning waters, exempts facilities from this permit requirement if fewer than eight pieces of equipment are washed each week, and the washwater is not discharged to a surface water, the stormwater system, or a dry well (DEQ WPCF Permit 1700-B, Schedule A3.a.iv). If implemented at the Facility, blade washing will be conducted at fewer than eight turbines blades per week, and as such no WPCF general 1700-B permit would be required.

O.3 SOURCES OF WATER DURING CONSTRUCTION

OAR 345-021-0010(1)(o)(B) A description of each source of water and the applicant’s estimate of the amount of water the facility will need during construction and during operation from each source under annual average and worst-case conditions.

Response: During Facility construction, water may be delivered by truck from the Deschutes Water Valley District in Madras, Oregon. The Deschutes Water Valley District has multiple existing water rights that allow it to provide the Applicant’s contractors with up to 30 million gallons for construction.

Attachment O-1 contains a water availability statement from the Deschutes Water Valley District, and Attachment O-2 contains one of the water right certificates, which allows for quasi-municipal uses. The water availability statement and water right certificate demonstrate a reasonable likelihood that the Applicant’s contractor can enter into agreement with the Deschutes Water Valley District for water. As an alternative, the Applicant may choose to obtain all or a portion of the water required for construction from individual landowners with existing water rights. The Applicant prefers to use local water sources if practicable given the traffic impacts and expense of trucking water in from more distant locations. For this reason, the Applicant is in the process of determining the availability and suitability of local municipal and private water rights. Possible municipal sources in the vicinity include the towns of Antelope and Shaniko and private water rights holders within and adjacent to the site boundary. Final selection of one or more water source will occur before construction.

Estimated water use during Facility construction represents a small fraction of the overall water use within Wasco and Sherman counties. According to OWRD (2008), the projected water demand in Wasco County for 2010 was approximately 92,400 acre-feet (33 billion gallons) per year, of which a projected 73,700 acre-feet (26 billion gallons) per year was estimated to be used for agricultural proposes. The projected water demand in Sherman County was estimated to be approximately 36,100 acre-feet (13 billion gallons) per year, of which a projected 35,200 acre-feet (12 billion gallons) per year was estimated to be used for agricultural proposes (OWRD, 2008). Facility water use during construction is not expected to impede the amount of water available for beneficial use within either county. In addition, water used during Facility construction will only occur from an existing water right, and is not anticipated to damage existing water rights within the vicinity, owing to the relatively short duration of water use during construction.
O.4 WATER LOSSES

**OAR 345-021-0010(1)(o)(C)** A description of each avenue of water loss or output from the facility site for the used described in (A), the applicant’s estimate of the amount of water in each avenue under annual average and worst-case conditions, and the final disposition of all wastewater.

**Response:**

O.4.1 Construction

During construction, water loss primarily will occur through evaporation of water applied to road surfaces and incorporated into concrete foundations. The Facility is located in a dry and windy portion of Wasco and Sherman counties, and with relatively low rates of water application, all water used onsite will likely be lost within the Facility site boundary, primarily through evaporation. Direct discharges of water to streams, wetlands, rivers, or other water bodies will not occur. Because the majority of the water used during construction will likely be trucked onto the site, consuming both time and cost, the Applicant intends to use the minimum amount of water needed to provide adequate moisture to the roads.

O.4.2 Operations

During Facility operations, water use will be for sanitary purposes, with final discharge to an onsite septic field. Stormwater will infiltrate into adjacent land. An estimated average of 1,250 gallons of water per day will be disposed of through the septic system.

O.5 WATER BALANCE DIAGRAM

**OAR 345-021-0010(1)(o)(D)** For thermal power plants, a water balance diagram, including the source of cooling water and the estimated consumptive use of cooling water during operation, based on annual average conditions.

**Response:** The Facility is not a thermal power plant. This criterion is not applicable.

O.6 PERMITS OR TRANSFERS REQUIRED

**OAR 345-021-0010(1)(o)(E)** If the proposed facility would not need a groundwater permit, a surface water permit or a water right transfer, an explanation why no such permit or transfer is required for the construction and operation of the proposed facility.

**Response:**

O.6.1 Construction

Water for construction will either be delivered by truck from the Deschutes Water Valley District in Madras, Oregon, which has existing water rights, or obtained from nearby landowners who have existing water rights. No permit or transfer is required at the completion of Facility construction because the existing municipal water right allows use for purposes such as the construction of the Facility (OAR 690-300-0010(29).

O.6.2 Operations

During operations, water use will be minimal (less than 5,000 gallons per day). ORS 537.545(1)(f) allows exempt industrial or commercial uses up to 5,000 gallons per day. This amount includes water used for drinking, flushing toilets, using sinks, and other general industrial uses.

**OAR 345-021-0010(1)(o)(F)** If the proposed facility would need a groundwater permit, a surface water permit or a water right transfer, information to support a determination by the Council that the Water
Resources Department should issue the permit or transfer of a water use, including information in the form required by the Water Resources Department under OAR Chapter 690, Divisions 310 and 380.

Response: The Facility will not need a new groundwater permit, surface water permit, or water right transfer. This criterion is not applicable.

O.7 MITIGATION MEASURES

OAR 345-021-0010(1)(o)(G) A description of proposed actions to mitigate the adverse impacts of water use on affected resources.

Response: Wind generation facilities require very little water, particularly during the operations phase. Because construction and operation of the Facility will not create any significant impact on water resources, no mitigation is proposed.

O.8 CONCLUSION

Construction and operation of the Facility will require minimal amounts of water, as is typical for wind developments. Water use during operations will qualify as an exempt industrial use.

O.9 REFERENCE


March 13, 2012

Mike Greczyn
E. On Energy
1860 Blake St.
Suite 100
Denver, CO 80202

RE: Temporary water for Brush Canyon Wind Power Facility construction

Dear Mr. Greczyn:

Deschutes Valley Water District is a municipal corporation incorporated under Chapter 264 of the O.R.S for the purpose of delivering domestic water to any or all persons within and without the District boundaries that request it.

We have the capacity to satisfy your request for 30,000,000 gallons of water over a 14 month period. We look forward to coordinating with your water trucks regarding allowable fire hydrant locations and allowable water withdrawal rates.

Deschutes Valley Water District reserves the right to reject any or all applications for future water services when, in our opinion, additional services would jeopardize the sanitary water supply of our customers and/or if the applicant has not met the rules and regulations of the District.

Respectfully,

Edson Pugh, P.E.
General Manager
ATTACHMENT O-2

Water Right Certificate
To Appropriate the Public Waters of the State of Oregon

I, Deschutes Valley Water District, do hereby make application for a permit to appropriate the following described public waters of the State of Oregon, SUBJECT TO EXISTING RIGHTS:

If the applicant is a corporation, give date and place of incorporation

Municipal Corporation, Inc. July 1919

1. The source of the proposed appropriation is __________, a tributary of __________. (Name of stream)

2. The amount of water which the applicant intends to apply to beneficial use is 14,379 cubic feet per second. (If water is to be used from more than one source, give quantity from each)

3. The use to which the water is to be applied is __________. (Irrigation, power, mining, manufacturing, domestic supplies, etc.)

year needs and 20 - 40 year needs for __________. (If water is to be used for more than one purpose, give purpose of each use)

4. The point of diversion is located __________ ft. N. and __________ W. from the E. corner of __________ Sec. 33, Tp. 128, R. __________, W. M., in the county of __________. (Section or subdivision)

(If there is more than one point of diversion, each must be described. If separate sheet is necessary)

5. The __________ ft. length, terminating in the __________ Sec. Tp. R. __________, W. M., the proposed location being shown throughout on the accompanying map.

DESCRIPTION OF WORKS

6. (a) Height of dam: feet, length on top: feet, length at bottom: feet; material to be used and character of construction: (Loose rock, concrete, masonry, rock and brush, timber and, etc., way to carry over or around dam)

(b) Description of headgate

(Timber, concrete, etc., number and size of openings)

(c) If water is to be pumped give general description: Two - 700 HP., 2000 G.P.M., pump. (Size and type of pump)

and motor installations in combination with existing turbine and pumping equipment

(Size and type of engine or motor to be used, total head water is to be lifted, etc.)
Canal System or Pipe Line—

7. (a) Give dimensions at each point of canal where materially changed in size, stating miles from headgate. At headgate: width on top (at water line) __________________________ feet; width on bottom __________________________ feet; depth of water __________________________ feet; grade __________________________ feet fall per one thousand feet.
(b) At __________________________ miles from headgate: width on top (at water line) __________________________ feet; width on bottom __________________________ feet; depth of water __________________________ feet; grade __________________________ feet fall per one thousand feet.
(c) Length of pipe, __________________________ ft.; size at intake, __________________________ in.; size at __________________________ ft. from intake __________________________ in.; size at place of use __________________________ in.; difference in elevation between intake and place of use, __________________________ ft. Is grade uniform? Yes (generally). Estimated capacity, __________________________ cu. ft. (4000 gpm) 8.912 sec. ft.

8. Location of area to be irrigated, or place of use __________________________ sq. miles. (See attached map)

<table>
<thead>
<tr>
<th>Township North or South</th>
<th>Range E. or W. of Rio Grande Meridian</th>
<th>Section</th>
<th>Forty-acre Tract</th>
<th>Number Acres To Be Irrigated</th>
</tr>
</thead>
</table>

(If more space required, attach separate sheet)

(a) Character of soil

(b) Kind of crops raised

Power or Mining Purposes—

9. (a) Total amount of power to be developed __________________________ theoretical horsepower.
(b) Quantity of water to be used for power __________________________ sec. ft.
(c) Total fall to be utilized __________________________ feet.
(d) The nature of the works by means of which the power is to be developed __________________________

(e) Such works to be located in __________________________ of Sec. __________________________ (Legal subdivision)

Tp. __________________________ R. __________________________, W. M.

(f) Is water to be returned to any stream? Yes (No)

(g) If so, name stream and locate point of return __________________________, Sec. __________________________, Tp. __________________________, R. __________________________, W. M.

(h) The use to which power is to be applied is __________________________

(i) The nature of the mines to be served __________________________
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td>8th</td>
<td>9th</td>
<td>10th</td>
</tr>
<tr>
<td>11th</td>
<td>12th</td>
<td>13th</td>
<td>14th</td>
<td>15th</td>
<td>16th</td>
<td>17th</td>
<td>18th</td>
<td>19th</td>
<td>20th</td>
</tr>
<tr>
<td>21st</td>
<td>22nd</td>
<td>23rd</td>
<td>24th</td>
<td>25th</td>
<td>26th</td>
<td>27th</td>
<td>28th</td>
<td>29th</td>
<td>30th</td>
</tr>
<tr>
<td>31st</td>
<td>32nd</td>
<td>33rd</td>
<td>34th</td>
<td>35th</td>
<td>36th</td>
<td>37th</td>
<td>38th</td>
<td>39th</td>
<td>40th</td>
</tr>
<tr>
<td>41st</td>
<td>42nd</td>
<td>43rd</td>
<td>44th</td>
<td>45th</td>
<td>46th</td>
<td>47th</td>
<td>48th</td>
<td>49th</td>
<td>50th</td>
</tr>
<tr>
<td>51st</td>
<td>52nd</td>
<td>53rd</td>
<td>54th</td>
<td>55th</td>
<td>56th</td>
<td>57th</td>
<td>58th</td>
<td>59th</td>
<td>60th</td>
</tr>
</tbody>
</table>

**Table Notes:**

- Table includes sections from 1 to 60.
- Each section is labeled with a number from 1 to 60.
- The table is organized in a grid format with 10 sections per row.
- There are no additional notes or explanations provided within the table.
<table>
<thead>
<tr>
<th>TWP</th>
<th>RANGE</th>
<th>NO.</th>
<th>PORTION</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1/4</td>
<td>20</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1/4</td>
<td>12</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8/16</td>
<td>ALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8/16</td>
<td>ALL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1/4</td>
<td>17</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1/4</td>
<td>13</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1/4</td>
<td>23</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8/16</td>
<td>ALL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Municipal or Domestic Supply—

(Culver, Metolius, Madras and the balance of the residents,

10. (a) To supply the city of (industry & manufacturing contained within the District) 200 sq. mile area of

Jefferson County, having a present population of 6,310. (service)

and an estimated population of 7,935 in 1992; 10,851 in 2012.

(b) If for domestic use state number of families to be supplied (1958-1992) 717. 1971-2012

Answer questions 11, 12, 13, and 14 in all cases

11. Estimated cost of proposed works, $2,469,000

12. Construction work will begin on or before 1982

13. Construction work will be completed on or before 1985

14. The water will be completely applied to the proposed use on or before 1985

Desculter Valley Wtr. Dist.

[Signature]

Remarks: Due to the size of the project, a three year or longer construction period will be required. First phase will include construction of the pump house structure, placement of the 700 hp motors, pumps, valves, electrical controls and switchgear, all to be located at Opal Springs. Second phase will include construction of the 20" dia. trunk transmission line from the pump house structure at Opal Springs with placement north-easterly through the intensified agricultural areas lying west of the City of Culver, Metolius and Madras. Cross connections will be made to the above City’s to improve present water demand requirements and to provide some cushion for projected future domestic, industrial and commercial needs. From the development that is now occurring it is realized by the D.V.W.D. that both immediate and long range planning is an absolute necessity if the D.V.W.D. is to keep pace with projected future water demand requirements and if the County’s successes in the next 0 - 20 - 40 years are to match those that have occurred over the past 40 years.

STATE OF OREGON,

County of Marion,

This is to certify that I have examined the foregoing application, together with the accompanying maps and data, and return the same for correction and completion.

In order to retain its priority, this application must be returned to the State Engineer, with corrections on or before March 24, 1972.

WITNESS my hand this 24th day of January, 1972.

CHRIK, L. WHEELER
STATE ENGINEER

By WAYNE J. OVERCASH
ASSISTANT
STATE OF OREGON,

County of Marion,

This is to certify that I have examined the foregoing application and do hereby grant the same, SUBJECT TO EXISTING RIGHTS and the following limitations and conditions:

The right herein granted is limited to the amount of water which can be applied to beneficial use and shall not exceed ___22.3___ cubic feet per second measured at the point of diversion from the stream, or its equivalent in case of rotation with other water users, from Opal Springs.

The use to which this water is to be applied is ___quasi-municipal___.

If for irrigation, this appropriation shall be limited to ___of one cubic foot per second or its equivalent for each acre irrigated___.

and shall be subject to such reasonable rotation system as may be ordered by the proper state officer.

The priority date of this permit is ___December 29, 1971___.

Actual construction work shall begin on or before ___March 13, 1974___ and shall thereafter be prosecuted with reasonable diligence and be completed on or before October 1, 1974.

Complete application of the water to the proposed use shall be made on or before October 1, 1975.

WITNESS my hand this 12th day of March, 1973.

[Signature]

STATE ENGINEER

B+C to 10-1-98

BC63