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From: GREGOR Brian J 
Sent: Friday, April 18, 2003 10:37 AM 
Subject: R Training Course: Week 1, Lesson 1 
 
Hello, 
 
Welcome to the first installment of this email class on learning to use R for 
data analysis and modeling. Ben Stabler and I will be your instructors. You’ve 
either requested or were chosen to receive these emails. Over the next seven 
weeks, you will receive an email each working day with a short lesson. You 
should be able to read through each lesson and run a few examples in about 
fifteen minutes (at least that’s our goal). 
 
WEEK #1, LESSON #1: INSTALLING AND SETTING UP R 
 
~~~~~~~ Step 1: R Gateway on the Internet ~~~~~~~ 
The first thing you should do is go to and bookmark the R Project web site 
(http://www.r-project.org/). This is your main gateway to R resources. Along the 
left border of the web page you will see various links about R. The main ones to 
pay attention to are the download and the documentation links. 
 
The download link is named CRAN. This stands for Comprehensive R Archive 
Network. If you click on it, you will be shown a list of CRAN mirrors, which are 
basically servers which have all of the R files. You can click on any one of 
these, but the idea is to use one that is close by. When you’ve done this, you 
will be shown a page that has two sections at the top, one saying "Precompiled 
Binary Distributions" and the other saying "Source Code for all Platforms". You 
will want to get the precompiled binary distribution. Before you click on the 
link, see the notes just below. 
 
****Note**** I apologize to our Linux friends at Metro. I don’t know enough 
about installing Linux binaries to describe the process. I believe you have all 
the help you need there though. 
****Note**** The folks at TPAU don’t need to download anything. We have put a 
copy of the "rw1070.exe" file in the R directory of the 6420only drive. 
 
~~~~~~~ Step 2: Download Binary File ~~~~~~~  
When you click on the "Windows (95 and later)" link, you will be shown a page 
with three links. Click on "base". That will get you to the page with a link to 
download the base R distribution. If you click on "rw1070.exe", you will then 
get a dialog box asking whether you want to open or save the file. Click on 
"Save" and then use the file browser dialog box to point to a convenient 
location to save the file to (e.g. C:\Temp). 
 
~~~~~~~ Step 3: Install the Program ~~~~~~~  
The file you’ve downloaded is an installer program. It will begin installing R 
if you double-click its icon (or right-click, open). Note that you can do this 
yourself because the program does not write to the system registry. (**** Note 
to TPAUers **** If you have any questions about this, talk to Ben or me.) Here 
are some notes on the installation dialogs you will see: 
1. License: The license you are asked to accept is the GNU General Public 
License. This is good. It basically says that you are free to use and modify the 
program as you wish and to distribute it to whomever you wish to. However, if 
you distribute it, you must also distribute the source code, and if you modify 
it and distribute it, you must include the source code for your modifications. 



2. Installation Directory: By default, it will install in the "C:\Program 
Files\R\rw1062" directory. I suggest you change this to "C:\Program Files\R\rw". 
I’ll explain the reason for this at the end. 
3. Component Selection: You are safe going with the default component selection. 
You could also install the "Source Package Installation Files" if you envision 
yourself developing packages in the future. 
4. Start Menu Folder: I accept the default. 
5. Select Additional Tasks: I accept the default. 
 
~~~~~~~ Step 4: Final Setup Steps to Make R Most Usable ~~~~~~~  
You can start an R session by double-clicking on the R icon on your desktop or 
by using the start menu. Before you start using R, though, I have a few 
suggestions that will make it easier for you to use R.  
 
The first thing to do is to change some of the startup parameters for R. You can 
do this in the desktop shortcut that was created. If you right-click on the 
shortcut and then highlight and click on the "properties" menu item, you will 
get a tabbed dialog box with the properties for the shortcut. Click on the 
"Shortcut" tab and note the "Target" input box. It should say "C:\Program 
Files\R\rw\bin\Rgui.exe" if you installed the program according to my 
suggestions. Put the cursor at the end of this line, add a space and then type 
"--internet2" (without the quotes). Add another space and then type "--max-mem-
size=400000000" (without the quotes). The first addition allows R to connect to 
the internet. This is necessary if you want to get additional R packages over 
the internet. The second addition increases the amount of memory that is 
available to R from the default of 256Mb. This is the setting I use on my 
computer (400Mb on a 512Mb computer). 
 
The second change involves the "Start in" dialog box. Don’t make any changes 
just yet to this. For now, click the "OK" button. To understand the point of the 
second change, there’s some basic things you should know about working with R. 
As you work in R, it keeps track of all the objects that you are working with. 
(Objects are data, functions, etc.) It also keeps track of all the commands you 
type into R. When you quit R, it saves these as two files named ".RData" and 
".RHistory" in the working directory. If you start R now, and type "getwd()" 
(without the quotes) at the prompt and then press the Enter key, it should reply 
"C:\\Program Files\\R\\rw". (**** Note **** The reason why the double 
backslashes has to do with the fact that DOS uses the "escape" symbol to 
separate directory names. This symbol is used for other purposes as well. For 
example, "\t" means a tab. So in order to distinguish the use of "\" as a 
directory separator, it is necessary to type "\\")  
 
I find it helpful to set up a separate folder for each analysis project I’m 
working on. I paste a copy of the desktop shortcut into that folder. Then I open 
properties dialog for that copy and type in the path for that folder in the 
"Start in" input line. Then when I start R using that shortcut, it will set the 
working directory to that folder. When I quit working, it will save the ".RData" 
and ".RHistory" files there. 
 
~~~~~~~ Step 5: Goodbye ~~~~~~~  
Now here’s the reason why I suggested that you rename the installation 
directory. By renaming the directory, you’ve made your shortcuts more generic. 
If you install a new R version in this same directory, all of the shortcuts 
you’ve created will continue to work. If you had used the default, then at best 
the shortcuts would start an older version of R and at worst would not start 
anything if you deleted the old version. 
 



That should get you up and running for now. On Monday, Ben will lead you around 
the R interface and explain how you use this program. 
 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 
 
 
From: GREGOR Brian J 
Sent: Friday, April 18, 2003 11:31 AM 
Subject: R Lesson 
 
Peter brought to my attention that not everyone in the unit has 512Mb of memory 
in their computers. If you edit the shortcut as I suggested to increase the 
memory that R can use, your computer will crash when you start R. (At least 
that’s what happened to Peter.) You can check how much memory you have by right-
clicking on "My Computer" and selecting the "Properties" menu item. The amount 
of memory you have in bytes is at the bottom of the "General" tab. If you don’t 
change the memory allocation in the shortcut, this will not be an issue. Unless 
you are working with very large datasets, you won’t need to allocate more memory 
to R anyway. 
 
Brian 
 
 
From: GREGOR Brian J 
Sent: Friday, April 18, 2003 12:07 PM 
Subject: Lesson Correction 
 
Here is a correction to today’s lesson. 
 
I had recommended that you add "--max-mem-size=400000000". You do not need to do 
this.  I was doing this with an earlier version of R and did not realize that 
newer versions now default to 1Gb or the maximum amount of memory available.  
Thanks to Peter for discovering this problem. 
 
Brian 



From: STABLER Benjamin 
Sent: Monday, April 21, 2003 8:40 AM 
Subject: R Training Course: Week 2, Lesson 1 
 
Welcome to lesson 2 of the R class on learning to use R for data analysis and 
modeling.   
 
WEEK 2, LESSON #1: USING R 
 
~~~~~~~ Step 1: R Programs ~~~~~~~ 
 
R is a "programming environment for data analysis and graphics," which basically 
means that it is a programming language in addition to an application such as 
Excel or SPSS.  There are three interfaces to R: 
 
 1) RGui - The most "Windows" like interface to R.  It has some menus and allows 
for easy copying and pasting and printing.  This is the interface that Brian and 
I most often use.  There are a few limitations to RGui but those are mostly in 
its interaction with other programs. 
 2) Rterm - The "DOS" or "UNIX" interface to R.  It is strictly command line and 
is not very integrated with Windows.  This is also the interface for the Linux 
version of R. 
 3) Rcmd - The additional tools interface to R.  It is used to run various 
advanced tools that can be used with R.  These includes such tools as BATCH (to 
run R in batch mode), COMPILE (to compile files for use with R), SHLIB (to build 
shared libraries (code) for dynamic loading), INSTALL (to install add-on 
packages), and REMOVE (to remove add-on packages).  Rcmd is for advanced R 
sessions and is not currently in the lesson plan. 
 
All three (two for Linux users) of these interfaces should be in your R 
installation folder.  Windows users should start with RGui. 
 
~~~~~~~ Step 2: Entering Expressions ~~~~~~~ 
 
Start up R by clicking the R shortcut on your desktop, the shortcut in your 
project folder, or by typing R at the Linux prompt.  You will see the R start-up 
message followed by the ">" character.  The ">" character is the R prompt that 
signifies that R is ready for input.  The prompt is where you enter expressions 
for R to evaluate.  Entering expressions is easy in R.  In addition to all the 
great stuff R can do, R can be a simple calculator.  Type 5 + 3 and then press 
enter.  R should return [1] 8.  Ignore the [1] for now.   R is really smart 
though, so if you type c(5, 6) + 3 you get [1] 8 9.  R knows to add 3 to each 
number in the vector.  The c( ) function takes any number of numbers or strings 
and combines or concatenates them into a vector. 
 
You can also assign the results of an expression to a named object.  The 
assignment operator "<-" will assign the result of the calculation to an object, 
which you refer to by name.  For example, type x <- 5 and then press enter.  
Then type x and press enter.  R returns [1] 5.  So we have assigned the number 5 
to the R object named "x."  You can enter multiple operators on one line as 
well.  For example, type y <- 3 * 4 + x and then press enter.  Then type y and 
press enter and R returns [1] 17.  You now have an object named x and an object 
name y in your workspace, which R will ask to save when you close R.  You also 
have the option of saving the commands you entered at the prompt (such as y <- 3 
* 4 + x). 
 
~~~~~~~ Step 3: The Workspace ~~~~~~~ 



 
All the objects (such as a vector consisting of 5 numbers - say 1,2,3,4,5) that 
you create will be stored in the workspace by default.  After you create R 
objects you can recall them since they are stored in the workspace.  When you 
exit R, it prompts you to save the workspace.  If you enter "yes" then R creates 
two files in the directory that you defined as the "Start In" folder for the R 
shortcut.  The .Rdata file is a collection of R objects that were in the 
workspace and the .Rhistory file is a text file of every line you typed at the 
">" prompt.  When you start R again, it automatically loads the .Rdata file and 
the .Rhistory file so that all the objects you had in the workspace and all the 
commands you typed earlier are available.  To see your history of commands 
simply press the up arrow and R will display the next one with each press of the 
key.  You can also type history( x ) where x is equal to number of commands to 
display. 
 
One other important function to note is the ls( ) function.  The ls( ) function 
returns a listing of all the objects in the workspace.  So in our example above 
ls( ) returns [1] "x" "y".  This is a nice way to get the name of an object you 
created. 
 
~~~~~~~ Step 4: Menu Commands ~~~~~~~ 
 
In addition to the standard Windows menu commands, RGui has the load/save 
workspace and history commands, the packages commands, and the help commands.  
The load/save workspace and history commands are similar to what R does when it 
asks you if you want to save your workspace and when it loads the workspace upon 
startup.  These commands can be very helpful in saving your workspace as a 
backup to another location or loading that backup from a location other than 
that specified by your "Start In" location. 
 
The packages commands allow you to install packages (such as collections of R 
code, functions, data, and faster C++ functions) that others have written.  
Since R is an open source project, there are lots of additional packages 
available that extend R.  These can be downloaded from CRAN (Comprehensive R 
Archive Network) by using the packages menu in RGui.  For details on the 
packages see the CRAN website. 
 
The help menu consists of many different routes for obtaining help.  I recommend 
the "HTML Help" option since it links to an HTML index page that has a search 
function and hyperlinks to related R commands.   
 
~~~~~~~ Step 6: Using a Text Editor ~~~~~~~ 
 
Finally, we thought it would be a good idea to mention a few tips on using a 
text editor in conjunction with R.  Soon you will be writing multiple line R 
expressions that are not easy to recall.  Thus you might want to have a working 
text document open in another program where you write your R code.  Then when 
you are satisfied with the code, copy and paste it into RGui and R will execute 
it.  A number of text editors will do, but one with syntax highlighting for the 
R language is preferred.  At http://cran.us.r-project.org/other-software.html is 
a few links to editors with R syntax highlighting.  Syntax highlighting is when 
a text editor colors your code in a certain way depending on categorized words.  
For example, I created an Ultra Edit syntax highlighting file that you can get 
on the link above that colors functions blue, strings red, comments green and 
braces bright blue.  Brian likes j-edit, which is open source and written in 
Java.  There is also Emacs, WinEdt, and Kate.  TPAU people should probably 
install Ultra Edit as their R text editor. 



 
That is all for this lesson, I hope it is not too long.  Tomorrow Brian will 
write about the R environment. 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 



From: GREGOR Brian J 
Sent: Tuesday, April 22, 2003 9:37 AM 
Subject: R Lesson, Week 2, Lesson2 
 
WEEK 2, LESSON #2: THE R ENVIRONMENT 
 
We’ve already acquainted you with some aspects of the R environment. To recap: 
 
    There are several programs that you can use to run R, but most likely you 
will use Rgui. 
     
    When you type something at the prompt and then press the enter key, R will 
evaluate what you have typed. 
     
    You create objects in the R workspace by assigning them to a name with the 
’<-’ operator. These objects are now in memory and can be summoned by typing 
their names. 
     
    You can list all of the objects in the workspace by typing ls(). 
     
    You can save all of the objects in the workspace by using the menus command 
’File\Save Workspace’. These objects are saved in a file called ’.RData’ in the 
current directory. When you quit R, it will automatically ask you whether you 
want to save the workspace. 
     
    R also keeps track of all of the commands that you type. This command 
history is saved in the ’.Rhistory’ when you exit. You can also save it at any 
time using the ’File\Save History’ menu item. When you are working, you can use 
the up and down arrows to scroll through recent history. 
     
Now here are a few more aspects of the R environment to be aware of. 
 
When you start up R, it will automatically reload the ’.Rdata’ file into the 
workspace. All of the objects you created in your last session should be there 
providing that you saved it on exiting, and you are in the same directory where 
you saved them. (If you put a shortcut to Rgui in the folder where you are doing 
your analysis and change the shortcut ’Start in’ property to that folder, you 
should have no problems with misplacing data.) 
 
Your workspace is the first place that R will look for objects. If R does not 
find an object in the workspace, it proceeds through a search path of places to 
look for it. You can see these places by typing ’search()’ at the prompt. Here’s 
what I get when I type this. 
 
".GlobalEnv"      "package:methods" "package:ctest"   "package:mva"     
"package:modreg" "package:nls"     "package:ts"      "Autoloads"   
"package:base" 
 
The first item you see is ’.GlobalEnv’, which is another name for the workspace. 
What you mostly see are a bunch of names starting with ’package’. Packages are 
libraries of objects that are loaded into memory. These are most often functions 
and data. ’Autoloads’ is a reference to on demand loading of a library. This is 
a way to specify that a library is to be loaded if a certain object is 
requested.  
 
When you refer to an object, R will work its way through the search path in the 
order listed to find it. If same name is used for two different objects, R will 



give you the first object with that name. This means you could unintentionally 
hide an existing object if you create an object with the same name. For example, 
if you type ’pi’ at the command prompt, you will get the value 3.141593. Now if 
you type ’pi <- 3’ and then type ’pi’ at the command prompt, you will get the 
value 3. The real value of pi is still there, but to get it, you have to skip 
your workspace (".GlobalEnv"). This can be done with the ’get()’ function. Type 
’get("pi", pos=2)’ and you will get the correct value because you told ’get()’ 
to start the search at the second spot in the search path. (Note that ’get()’ 
expects the object name to be in quotes.) It’s best, though, to try not to use 
the name of an object in any loaded package. 
 
You can find out what is in a loaded package with the ’ls()’ function. For 
example, if you type ’ls("package:mva")’, you will get the following: 
 
"as.dendrogram"      "as.dist"            "as.hclust"          "biplot"             
"cancor"             "cmdscale"           "cophenetic"         "cutree"             
"dist"               "factanal"           "format.dist"        "hclust"             
"heatmap"            "kmeans"             "loadings"           
"order.dendrogram"   "plclust"            "plot.hclust"        "prcomp"             
"princomp"           
"princomp.formula"   "promax"             "rect.hclust"        "reorder"            
"reorder.dendrogram" "screeplot"          "varimax"   
 
You’d get the same result if you typed ’ls(pos=4)’ because "package:mva" is in 
the fourth position in the search path. When you type ’ls()’ without anything in 
the parentheses, R gives you the contents of the first position in the search 
path which is your workspace. 
 
Many libraries of useful functions and data came with your R installation. These 
can be loaded with the ’library(some_package_name)’ command. If you just type 
’library()’ at the command prompt, a window will pop up which lists the 
available libraries and short description of each. If for example, you wanted to 
read in an SPSS dataset, you would type ’library(foreign)’ at the command 
prompt. If you then type ’search()’ you would find that the foreign package was 
loaded at the second position in the search path. 
 
Additional libraries are available over the internet. You can view what’s 
available and install them with the menu command ’Packages\Install package(s) 
from CRAN ..’. This will connect to CRAN and produce a window containing a list 
of all the libraries that are available. You then can use standard windows 
selection methods to choose one or more of them to load. Then click on OK and 
they will be installed. Finally you may answer ’y’ to the question at the 
command prompt "Delete downloaded files (y/N)?". 
 
There are a few additional useful functions to cover this lesson. 
 
You can remove an object from the workspace with the ’rm(some_object_name)’ 
function. So if you type ’ls()’ now you should see the name of the object ’pi’ 
which we created earlier. Typing ’rm(pi)’ or ’rm("pi")’ will remove it. The real 
pi is still there and will now be revealed if you type its name. 
You can remove all objects from the workspace with the ’Misc\Remove all objects’ 
menu command. 
 
It’s also worthwhile to know that you can save individual objects in the 
workspace with the ’save()’ function, not just the entire workspace. If for 
example you type ’mph.to.fps <- 1.47’ and then type ’save(mph.to.fps, 
file="speed_convert")’, this object will be saved to the current directory with 



the file name ’speed_convert’. Note that the object name is not in quotes but 
the file name is. You can reload that object with the command 
’load("speed_convert")’. This will recreate the ’mph.to.fps’ object in the 
workspace. Again, please note the quotes around the file name. More than one 
object can be saved with the ’save()’ command. To do this, you should know 
something about lists, a topic for later this week. 
 
That’s it for this lesson. Here’s a summary of the functions we covered this 
time: 
 
 ’search()’ shows the search path R follows to find an object name. 
  
 ’get(pos=)’ allows you specify where you want to retrieve an object from 
in the search path. 
  
 ’ls(some_package_name)’ allows you to look at the contents of a library 
that has been loaded. 
  
 ’library()’ lists all the libraries that are available on your computer. 
  
 ’library(some_library_name)’ loads a library into the workspace. 
  
 The menu command ’Packages\Install package(s) from CRAN ..’ allows you to 
get other libraries. 
  
 ’rm(some_object_name)’ removes an object from the workspace. 
  
 ’save(some_object_name, file="some_file_name")’ will save a workspace 
object to disk. 
  
 ’load("some_file_name")’ will retrieve a saved object. 



From: STABLER Benjamin 
Sent: Wednesday, April 23, 2003 10:12 AM 
Subject: R Week 2 Lesson 3, Vectors and Matrices 
 
WEEK 2, LESSON #3: VECTORS AND MATRICES 
 
DATA TYPES 
 
R recognizes several types of data. Numbers and character strings are the most 
familiar of these, but it also recognizes logical (or Boolean), complex and NULL 
types.  Logical data types are often used for program control and subsetting 
matrices (and other data structures) in R.  TRUE and FALSE are how R represents 
logicals.  Note that there are no quotes around the words since they are not 
character types, but logical types.  If we assign to x the word “TRUE” ( 'x <- 
“TRUE”' ), R will create x as a character type object.  The 'typeof( )' function 
will return “character” for our x object.  To assign the logical type value TRUE 
to x we just type x <- TRUE.  Then 'typeof( x )' returns “logical”.  It is a 
subtle difference but can be important when your code expects a logical type 
value as opposed to a character type value. 
 
NULL data types represent nothing. This is different than 0 or an empty 
character string ("").  You can assign NULL to an object by typing ‘x <- NULL’. 
 
Complex data types represent complex numbers. 
 
All of these data types can have a special value, NA, which represents a missing 
value. This is a useful value because R will keep track of the effect of missing 
values in computations. For example, adding a number to a NA results in a NA. 
NAs can also cause a lot of trouble in your analysis. If, for example, you take 
the mean of a set of numbers which includes one or more NAs, the result will be 
NA, unless you tell the 'mean()' function to ignore them. A very important 
function to remember for testing if NAs exist in your data is the 'is.na( )' 
function.  For example if you type 'y <- c(2,4,NA)' and then type 'is.na( y )', 
you will get an answer of FALSE FALSE TRUE. Watch out for NAs! 
 
VECTORS 
 
Data types can be organized into several different data structures.  The 
simplest data structure is the vector, which is collection of numbers.  To 
create a vector we can use the 'c( )' function.  For example: 'myvector <- c(2, 
4, 67, 1, 1, 443)'.  If we want to view what myvector looks like we just need to 
type myvector at the R prompt.  This is the same as using the 'print( )' 
function with the R object as the input to the function – 'print( myvector ).'   
 
In addition to creating vectors with the 'c( )' function, we can create vectors 
with the : (colon) operator.  The colon operator creates a sequence of integers 
from start:end.  For example: 5:10 will return 5 6 7 8 9 10.  The colon operator 
is a simplification of the 'seq()' function, which has the form 'seq(from, to, 
by)'. If you type 'seq(1, 10, 2)' for example, you will make a vector of odd 
numbers from 1 to 9. 
 
The 'rep()' function creates vectors of repeating number sequences. For example, 
'rep(1:3, 3)' will return 1 2 3 1 2 3 1 2 3. 
 
All R operators and functions are vectorized. This means that R will operate on 
each element of a vector. For example, typing '5*c(3,4,5)' will return '15 20 
25'.  This is one of the strengths of R. There is no need to loop through each 



element of the vector and multiply the element by 5. Try this with different 
operators. (You can find out about what operators are available by typing 
’help(Arithmetic)’.) Finally, the vector data structure is the foundation of all 
R data structures, and is often used to build more complex data structures such 
as matrices. 
 
MATRICES 
 
A matrix is a two-dimensional data structure with each element being of the same 
type.  You can think of a matrix as a table of cells, with each cell having the 
same type of data (such as numeric or character).  For example: 
 
 2 4 6 
 5 7 9 
 1 2 3 
 
is a 3 row by 3 column matrix.  Matrices are easy to create in R with the 
‘matrix( )’ function.  The ‘matrix( )’ function usually takes three arguments: 
 
1) the data to fill the matrix with 
2) the number of rows  
3) the number of columns 
 
Therefore, we could create the matrix above with the following command: 
‘matrix(c(2,5,1,4,7,2,6,9,3),3,3)’.  There are a couple of things to note about 
the previous command.  First, you can use a vector of data to fill the matrix, 
and second, that the matrix was filled in column major order (i.e. it filled the 
first column from top to bottom then the second column from top to bottom and so 
on).  We could simplify our matrix function call by assigning the vector to an 
object before using it to fill the matrix.  ‘mydata <- c(2,5,1,4,7,2,6,9,3)’ 
then ‘matrix(Mydata, 3, 3)’ will create our matrix. 
 
Often you will want to fill the matrix in row-major order instead of column-
major order.  There are two ways to do this.  The first is to add the byrow=T 
argument to the ‘matrix( )’ function, so we would type ‘matrix(mydata, 3, 3, 
byrow=T)’.  The second is to transpose the matrix after the matrix has been 
created.  The ‘t( )’ function will transpose a matrix – so try ‘t( maxtrix( 
mydata, 3, 3) )’.  We should probably brake down our statement into the sub-
statements ‘mymatrix <- matrix(mydata, 3, 3)’ and ‘mytmatrix <- t( mymatrix )’.  
The final result should be: 
 
 2 5 1 
 4 7 2 
 6 9 3 
 
As I mentioned earlier, all the elements of the matrix must be the same data 
type.  As a result, ‘matrix( c(2, 2, “hello”, 3), 2, 2)’ will not keep the 
numbers as numbers.  Instead, R will demote the numbers to characters, which it 
signifies by putting quotes around them.   
 
In addition to using the matrix function to create a matrix, you can also use 
the ‘rbind( )’ and ‘cbind( )’ functions to create matrices.  The ‘rbind( )’ 
function will row-bind any number of vectors into a matrix, while the ‘cbind( )’ 
function will column-bind them.  Therefore we could use rbind to create the 
matrix above with the following code: ‘rbind( c(2,5,1), c(4,7,2), c(6,9,3) ).’ 
 
DIMENSIONS 



 
The R language includes a number of functions that return the dimensions of a 
data structure.  The ‘length( )’ function returns the number of elements in a 
vector or the number of elements (cells) in a matrix.  Because R is an object-
oriented language, it knows how to find the length of a named object such as 
myvector, regardless if it is a vector, matrix, or a more complex data 
structure.  Object-oriented programming can be a little intimidating, but don’t 
worry, R handles all the object-oriented stuff behind the scenes, so all you 
have to do is type ‘length( myobject )’ and R returns the length of the object.   
 
Unlike vectors, which don’t really have dimensions (okay, maybe they have one 
dimension), matrices have two dimensions.  The R function ‘dim( )’ will return 
the dimensions of a matrix.  So in our example above, ‘dim( mymatrix )’ returns 
3 3.  If you try to ‘dim( a vector )’, R returns NULL, meaning that there is no 
dimension defined for vectors.   
 
Well that should be enough R for today’s lesson.  Tomorrow Brian will introduce 
you to the more complex and very powerful list data structure.  But before we 
close, here is a list of all the functions used today. 
 
FUNCTIONS 
 
c( ) – create a vector 
print( ) – print an object  
: (colon) operator – create a sequence vector 
seq( ) – create a more complex sequence vector 
rep( ) – replicate a number or vector as many times as specified 
matrix( ) – create a matrix 
t( ) – transpose a matrix 
rbind( ) – row-bind vectors 
cbind( ) – column-bind vectors 
length( ) – return the length of a vector (or matrix) 
dim( ) – return the dimensions of a matrix 
typeof( ) – return the data type of the object 
is.na( ) – test for NAs 
mean( ) – return the mean of a numeric vector 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 



From: GREGOR Brian J 
Sent: Thursday, April 24, 2003 9:07 AM 
Subject: R Week 2 Lesson 4, Lists 
 
WEEK 2, LESSON #4: LISTS 
 
Let’s start with a note about object and value names. R is case sensitive. 
’true’ is not the same as ’TRUE’. We who are used of working in the DOS/Windows 
world get accustomed to the sloppy way that names are handled. R comes from the 
UNIX world which is more particular about naming. 
 
Yesterday you learned about data types and the vector and matrix data 
structures.  *** At least you should have learned it yesterday if you had been 
following the program, instead of doing other things and just waiting for some 
"convenient time" to read your R tutorial ;-) *** These data structures and the 
operators and functions that know how to operate on them offer some very 
powerful computational capabilities. One limitation of these structures, 
however, is that they require all their elements to have the same data type. If 
you try to combine types like this, ’c(3, 4, "a", 2)’, R will coerce all the 
values into one type; characters in this case. Another limitation for matrices 
is that all the rows/columns have to be the same length. You can’t for example 
’rbind(c(1, 2, 3, 4), c(1, 2, 3))’ and get what you want. R will recycle the 
second vector to make it as long as the first so you get this: 
 
     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
[2,]    1    2    3    1 
Warning message:  
number of columns of result 
        not a multiple of vector length (arg 2) in: rbind(c(1, 2, 3, 4), c(1, 2, 
3))  
 
LISTS TO THE RESCUE 
 
Lists provide a data structure which allows you to combine different types and 
sizes of data. In fact, you can include any type of object in a list. For 
example, you can include a vector, a matrix, a function, and a list in a list. 
This often comes in very handy for keeping data about something together. The 
small urban area modeling code, for example, keeps the results of trip 
production calculations in a list. The first part of the list contains a set of 
matrices of trip productions by trip purpose and hour. The second part contains 
a set of matrices of trip productions by special generator and hour. The third 
part contains a vector of summary data. 
 
You can create a list with the ’list()’ function. You use the function in the 
same way that you use the ’c()’ function. Entering ’list("Wednesday", c(1, 2, 
3), matrix(1:9, 3, 3))’ at the prompt generates the following: 
 
[[1]] 
[1] "Wednesday" 
 
[[2]] 
[1] 1 2 3 
 
[[3]] 
     [,1] [,2] [,3] 
[1,]    1    4    7 



[2,]    2    5    8 
[3,]    3    6    9 
 
Notice that each part (element) of the list is preceded with a number inside 
doubled brackets. This is how R references elements of a list. You can also name 
elements of the list when you make it. For example ’list(day="Wednesday", 
hours=c(1, 2, 3), trips=matrix(1:9, 3, 3))’ returns: 
 
$day 
[1] "Wednesday" 
 
$hours 
[1] 1 2 3 
 
$trips 
     [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 
 
You can then use these names to extract parts of the list. If you had assigned 
this list to the name "travel", for example, then entering ’travel$trips’ at the 
prompt would give you: 
 
     [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 
 
This naming feature is not unique to the ’list()’ function. The ’c()’ function 
also allows you to name elements of vectors. 
 
Our friend ’c()’ also can be used for concatenating elements into lists. For 
example, we could add a vector of names to the "travel" list we created by 
typing ’travel <- c(travel, list(persons=c("Ted", "Ed", "Fred", "Ned"))). This 
will make the vector of person names the fourth element of the list named 
persons. Note that this command uses the function ’list()’ within it. This binds 
the whole persons vector together as an element of the list. If we had not used 
this function, then each element of the persons vector would have been added as 
a separate element of the list. Try entering ’c(travel, places=c("here", 
"there", "everywhere")) 
 
That’s it for your short introduction to lists. Ben will continue tomorrow with 
presentation on a special type of list, the dataframe. Then next week we will 
cover a variety of functions about how to manipulate lists. 



From: STABLER Benjamin 
Sent: Friday, April 25, 2003 8:56 AM 
Subject: R Week 2 Lesson 5, Data Frames 
 
WEEK 2, LESSON #5: DATA FRAMES 
 
As Brian introduced yesterday, lists are a data structure that supports 
different types and sizes of data.  An example list might look something like: 
 
[[1]] 
[1] "Wednesday" 
 
[[2]] 
[1] 1 2 3 
 
[[3]] 
     [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 
 
The list data structure is very useful, but does have its limitations.  The 
major limitation of lists is that data elements across the list have no 
relationship.  A couple of examples might better illustrate this point.  In out 
list above, there is no relationship between the "2" in the second list element 
[[2]] and column two (numbers 4 5 6) [,2] in the third list element [[3]].  If 
for example we had a very simple list, say: 
 
[[1]] 
[1] "Oregon" "Washington" "California" 
 
[[2]] 
[1] "Salem" "Olympia" "Sacramento" 
 
[[3]] 
[1] 3500000 6000000 34000000 
 
and we wanted to get the approximate population of each state (list element 
[[3]]) by entering the state’s name, we would run into some trouble with lists.  
This is where data frames, a special type (or class) of lists, is extremely 
handy.   
 
DATA FRAMES 
 
A data frame is very similar to a spreadsheet.  It consists of any number of 
rows and columns of data.  It supports different types of data in each column 
(unlike matrices) but also recognizes that there are relationships across the 
rows (unlike lists, which don’t really have rows).  Let’s get a simple data 
frame from the data that comes with R.  The ’data( )’ function will load a R 
dataset into the workspace.  Type ’data( airquality )’ to load the air quality 
dataset into R.  Then type ’airquality’ at the prompt to see the dataset.  You 
will probably need to scroll up to see the beginning (or top rows) of the data 
frame.   
 
If we type ’str( airquality )’, R will return the structure of the airquality 
object, which looks like: 
 



‘data.frame’:   153 obs. of  6 variables: 
 $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ... 
 $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ... 
 $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ... 
 $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ... 
 $ Month  : int  5 5 5 5 5 5 5 5 5 5 ... 
 $ Day    : int  1 2 3 4 5 6 7 8 9 10 ... 
 
This tells us that the airquality object is a data frame with 153 observations 
or rows of 6 variables or columns.  It also lists the name of each column (or 
field), the data type (int for integer, num for numeric) and a few sample 
values.   
 
Data frames are great for storing data and for reading in existing data that is 
in spreadsheet form.  There are R functions that will read Access, Excel, DBF, 
CSV, and other formats into data frames.  But for all the good things about data 
frames there is one main thing to look out for when working with them.  All the 
columns of data must have the same length of values.  So you cannot have one 
column of length 10 and another of length 11.  Accidentally changing the lengths 
of the columns is an easy way to corrupt your data frame.   
 
CREATING DATA FRAMES 
 
The easiest way to create a data frame is to use the ’data.frame( )’ function.  
The data.frame function takes any number of vectors as its arguments.  For 
example:  
 
X <- c(4,5)     
Y <- c(1,9) 
Z <- data.frame(X,Y) 
 
Z then looks like this: 
 
  X Y 
1 4 1 
2 5 9 
 
Notice that it took the X and Y vectors and made them into columns.  R also 
numbered the rows 1 and 2 and named the columns with the name of the vector used 
to create it.  If we had tried to create a data frame with a vector of length 2 
and a vector of length 3 R would return the following error: "Error in 
data.frame( c(9, 9), c(3, 4, 5)) : arguments imply differing number of rows: 2, 
3" 
 
You can reference a column of a data frame by name using the ’$’ dollar sign.  
We could get the “Temp” column of the airquality data frame by typing 
'airquality$Temp', which will return all the values of the temp column.  You can 
perform operations on just the “Temp” column of the airquality data frame if you 
like.  For example: ‘mean(airquality$Temp)’ will return the mean (77.88) of the 
temperature column.   
 
Lastly, it is easy to create a new column in a data frame.  If we wanted to get 
the sum of each record in data frame “airquality”, and then save it as another 
column named "total", we would type: 'airquality$total <- rowSums(airquality)'  
The 'rowSums( )' function will sum each row of a data frame or matrix and return 
a vector.  So rowSums(airquality) returns the sum of each row, which we then 
assigned to airquality$total (our new column named total).   



 
That’s all the R for this week.  Enjoy the weekend. 
 
FUNCTIONS 
 
data( ) - Load a sample R dataset 
data.frame( ) - Create a data frame object 
$ - Reference a column of a data frame 
mean( ) – Calculate the mean of a numeric vector 
rowSums( ) - Sum each row of a data frame or matrix 
 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
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From: GREGOR Brian J 
Sent: Monday, April 28, 2003 12:22 PM 
Subject: R Week 3 Lesson 1, Importing, Exporting and Editing Data 
 
R Week 3 Lesson 1, Importing, Exporting and Editing Data 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Now that we’re past the preliminaries, we’ll get into some more useful and fun 
stuff. Today I’ll explain how to get data into R, how to export it from R so 
that I can be brought into another application, and how to use R’s data editor. 
At the conclusion of today’s lesson, you should be able to start using R to do 
some of your work. 
 
SIMPLE DATA IMPORT 
 
The most common way to important data into R is to use one of the functions that 
reads text files. Most applications like Excel can save files as text files. 
These can then be read into R. To show you how it is done, I’ll step you through 
the process of saving an Excel file as a text file and opening the text file in 
R. I’ve attached an Excel file to this email for your use in this exercise. 
 
Step 1: Save the Excel file as text. Place the "zoning.xls" in the directory 
that you’ll be working from. Now go to the ’File\Save As’ menu item and in the 
’Save as type’ drop down list box choose ’CSV (Comma delimited)(*.csv)’. You’ll 
see that Excel kept the same file name but changed the extension to ’csv’. Now 
click ’Save’. (Don’t worry about the warning that says Excel can save multiple 
sheets because you only have one.) 
 
Step 2: Import the text file into R. Now start R in the folder where you saved 
your file. Then enter ’zoning <- read.csv("zoning.csv")’ at the prompt. This 
will read the table into the object called ’zoning’. The ’read.csv()’ function 
reads a text file in "comma-separated values" format. The table you read in is 
fairly large, so you probably will not want to look at the whole thing. You can 
look at the upper left corner of it by entering ’zoning[1:20,1:5]’. This shows 
the first 20 rows and first five columns of the table. (Well be explaining the 
syntax for subsetting portions of tables and matrices in a couple of days.) Note 
that the first line that is printed contains the column names. If you enter 
’str(zoning)’ at the prompt, you will see the structure of the data you 
imported. Note that it is a data.frame and that all but the first two columns 
are integers or other numbers.  
 
MORE FLEXIBLE BUT STILL FAIRLY SIMPLE DATA IMPORT 
 
The first two columns of the ’zoning’ table are factors. The default behavior of 
R is to convert character strings into factors when importing tables with 
read.csv. Factors are special vectors used to hold a categorical value. This is 
useful for statistical analysis, but not always what you want. 
 
If you don’t want your character data to be changed into a factor, or if you 
want to control some other aspects of how your data is imported, you can use the 
’read.table()’ function. This function is a little harder to use, but it is much 
more flexible. If you enter ’args(read.table)’ at the prompt, you can see the 
array of arguments (think of these as options) that the function can take. You 
should see the following: 
 
function (file, header = FALSE, sep = "", quote = "\"’", dec = ".",  
    row.names, col.names, as.is = FALSE, na.strings = "NA", colClasses = NA,  



    nrows = -1, skip = 0, check.names = TRUE, fill = !blank.lines.skip,  
    strip.white = FALSE, blank.lines.skip = TRUE, comment.char = "#")  
 
Here are some of the arguments that you are most likely to use: 
file        You have to have a file name of course (in quotations) 
header      Set to TRUE if the first row contains the column names 
sep         Identify the charater used to separate data. White space is the 
default 
colClasses  Identify the type of data for each column. 
nrows       Use to specify how many rows to read in 
skip        You can specify how many rows to skip before you read data 
 
Here’s an example of how you would use ’read.table()’. This uses the 
"example_tables.txt" attachment. If you open up this file in your text editor, 
you will see that it has to tables plus some header lines and some separating 
blank lines. We can use R to read in these two tables and specify the column 
data classes as follows: 
 
’table1 <- read.table("example_tables.txt", header=TRUE, sep="", 
colClasses=c("character", "character", "integer", "numeric", "numeric", 
"numeric"), nrows=19 ,skip=4)’ 
 
’table2 <- read.table("example_tables.txt", nrows=19, skip=27)’ 
 
You can now look at the tables by typing their names at the prompt. You can also 
look at their structures by typing ’str(table1)’ for example. Notice that the 
second table did not have ’header’, ’sep’ or ’colClasses’ arguments. When the 
arguments are not specified, the function uses the default values. These are 
shown by ’args(read.table)’. Also note that since there was no header, R labeled 
the columns ’V1, V2 ...’ 
 
EDITING DATA 
 
R also has some rudimentary capabilities for editing data in tables. If you type 
’edit(table1)’ at the prompt, a window with a spreadsheet look will open up with 
your data in it. You can now click in cells and change the values. Try changing 
some values. When you’re done, just click the close box. If you type ’table1’ at 
the prompt, you will see that your changes were recorded. 
 
EXPORTING DATA 
 
Now, say you want to save this table so that you can open it in a spreadsheet or 
other application. You can write it to a file with the ’write.table()’ function 
as follows: 
’write.table(table1, "new_table.csv", sep=",", row.names=FALSE, col.names=TRUE)’ 
You can specify any type of data separator with the ’sep=’ argument. In this 
case we specified the comma separator. You can then open this file in a text 
editor to see what was saved. You can also import it into Excel.  
 
*** Note *** If you save row.names and col.names, and then import the saved 
table into Excel, the column names will be shifted one cell to the left. You can 
test this with the following commands. ’rownames(table1) <- letters[1:19]’ 
’write.table(table1, "new_table2.csv", sep=",", row.names=TRUE, col.names=TRUE)’ 
 
Additional arguments can be specified for the ’write.table()’ function. The ones 
used in these examples are the ones that you will use most. 
 



OTHER IMPORT AND EXPORT OPTIONS 
 
With ’read.table()’ and ’write.table()’ you will be able to do most of the data 
importing and exporting you need to do, but that’s only the tip of the iceberg. 
There are many additional ways to read and write data to and from R. Many are 
built into R and additional ones are available in add-on packages. Here are 
three that you may want to investigate: 
 
    ’scan()’ is a lower level data import function that is even more flexible 
than ’read.table()’. 
 
    The ’foreign()’ library has functions for reading SPSS, SAS, Stata, Minitab 
and S data files. 
 
    The ’RODBC’ library has functions for making database connections, doing SQL 
queries and reading and writing database tables. These functions allow you to 
read and write to Excel and Access files. 
 
Check these out when you have the time. Ben and I would be happy to answer any 
data import/export questions you have. 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 



From: STABLER Benjamin 
Sent: Tuesday, April 29, 2003 8:58 AM 
Subject: R Week 3 Lesson 2, Naming Data and Extracting Portions 
 
WEEK 3, LESSON #2: NAMING DATA AND EXTRACTING PORTIONS 
 
NAMING ELEMENTS OF VECTORS AND MATRICES 
 
There are different ways to name elements of an object depending on the 
structure of the object.  For example, type ’x<-1:3’, followed by ’names(x) <- 
c("a","b","c")’, and then just ’names(x)’.  R will return "a" "b" "c".  If we 
just type ’x’, R will return the vector with the name of each element above the 
value of each element.  If we type ’str(x)’, R tells us that the vector is now 
an Named int (integer) instead of simply an int.   
 
In order to name the rows and columns of a matrix, R uses the rownames() and 
colnames() functions.  Type ’y<-matrix(1:25,5,5)’, followed by ’rownames(y) <- 
c("a1","a2","a3","a4","a5")’.  Before we assigned the our vector of "a"s 
concatenated to numbers as the rownames of object y, the matrix had no rownames.  
Try typing ’colnames(y)’ to see that there are no column names set for the y 
object.  The colnames of y can be set in the same manner as the rownames.  In 
fact you could assign the rownames of y to the colnames of y by typing 
’colnames(y) <- rownames(y)’. 
 
A shortcut to naming matrices is the dimnames() function.  The dimnames() 
function takes a list of two vectors (row and column names).  Type ’dimnames(y) 
<- list(1:5,1:5)’.  This will set the row names and column names of the y matrix 
to 1 2 3 4 5.   
 
Note that the number of elements in the names vector must be equal to the number 
of elements in the vector that is being named.  For vectors, if there are more 
names than numbers then R will return an error.  If there are more numbers than 
names then R will pad the remaining names with NA.  For matrices, the number of 
row names or column names must equal the number of elements in the dimension. 
 
LIST AND DATA FRAME NAMES 
 
First we will create a dummy list with the following command: ’z <- 
list(rep(11,5),seq(1:5))’.  Then let’s name the elements of the list with the 
names function by typing ’names(z) <- c("myrep","myseq")’.   
 
Data frame names are a little more complicated because data frames have two 
dimensions like matrices.  The rownames() and colnames() functions will assign 
names to data frames.  Let’s load the airquality data again by typing 
’data(airquality)’.  Now let’s change the colnames of the airquality dataset by 
typing ’colnames(airquality) <- 
c("col.1","col.2","col.3","col.4","col.5","col.6")’. 
 
This last command is rather longer, so it would be easier to use a function that 
would simply the process.  We are essentially repeating "col." six times 
followed by the numbers 1:6 in our naming convention.  The paste() function will 
paste strings and numbers together, recycling values if necessary.  Type 
’paste("col.",1:6,sep="") and see what R returns.  R returns the same thing as 
the vector of names we typed earlier.  The sep="" argument to paste tells R what 
kind of separator to use when pasting together the elements (in this case it is 
no space "").  Thus for the column names for the airquality data set we could 
have typed ’colnames(airquality) <- paste("col.",1:6,sep="")’. 



 
If you want to remove the names of an object, just set the names() or rownames() 
or colnames() of that object to NULL. 
 
EXTRACTING BY NAME 
 
Names help better manage your data, but the real value in naming data in R is 
for extraction.  If we wanted to get the "a3" row of our matrix named y, we 
would type into R ’y["a3",]’.  The square braces [ ] are R notation for 
extraction.  For vectors you simply put the name (or names) of the elements you 
want in the braces, such as ’x[c("b","c")]’.  You can put the name more than 
once and R will return the appropriate value each time - ’x[c("b","b","b")]’. 
 
For matrices and data frame, the syntax uses a comma to separate the rows from 
the columns.  ’y["a3","a1"]’ would extract the cell value for row "a3", column 
"a1", which is equal to 3.  Note that the rows come before the comma and the 
columns after the comma.  If you want all the rows or column then leave that 
part of the extraction blank, i.e. ’y["a3",] will return all the columns of row 
"a3".  And like vectors, you can extract multiple row or columns at once such as 
’airquality[,c("col.1","col.2")]’.   
 
Lists are a little bit tricky when it comes to extraction because they use two 
square braces instead of one.  In addition to the method discussed last week 
(the dollar sign $), you can use [["name""]].  To extract the "myseq" element of 
our z list, type ’z[["myseq"]]’.  Like the other data structures, you can 
reference multiple names as well.   
 
Extracting is key to programming in R.  Tomorrow Brian will introduce you to 
extracting using indexes and numbers, which is even more powerful than names.   
 
FUNCTIONS 
 
names() - name a vector or list 
rownames() - name the rows of a matrix or data frame 
colnames() - name the columns of a matrix or data frame 
dimnames() - name the rows and columns of a matrix or data frame 
paste() - paste together strings or numbers, recycling values if necessary 
[" "]  - extract elements of a vector by name 
[" ",] - extract rows of a matrix or data frame by name 
[," "] - extract columns of a matrix or data frame by name 
[[" "]] - extract an element of a list by name 
 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 



From: GREGOR Brian J 
Sent: Wednesday, April 30, 2003 9:54 AM 
Subject: R Week 3 Lesson 3, More on Subsetting Data 
 
R Week 3 Lesson 3, More on Subsetting Data 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Yesterday, Ben explained how names can be used to extract portions of vectors, 
matrices, lists and data frames. In today’s lesson, I explain how numerical and 
logical indices can be used to subset data. First let’s review the basic syntax 
for using brackets to subset data. 
some.vector[index] extracts the indexed position(s) of some.vector 
some.matrix[row.index, col.index] extracts the indexed rows and columns of 
some.matrix or data frame 
some.matrix[ , col.index] extracts all the rows for the indexed columns of 
some.matrix or data frame 
some.matrix[row.index, ] extracts all the columns for the indexed rows of 
some.matrix or data frame 
some.list[[index]] extracts the indexed element(s) of some.list 
 
Integer vectors and logical vectors or matrices may be used as indices. If an 
integer vector is used, the subsetting operation will extract data elements 
corresponding to the positions indicated by the indexing vector.  The easiest 
way to understand this is to see some examples. You can extract the vowels from 
the letters of the alphabet by using their positions as indices like this: 
’letters[c(1, 5, 9, 15, 21)]’. If we wanted to put the vowels in reverse order 
we would just reverse the order of the indices: ’letters[c(21, 15, 9, 5, 1)]’. 
To extract every other letter we could use a sequence of odd numbers as the 
indices: ’letters[seq(1, length(letters), 2)]’. To duplicate every other letter: 
’letters[rep(1:26, rep(c(1,2),13))]’ (Make sure you understand what’s happening 
with these last examples. ’seq()’ and ’rep()’ are important functions to know.) 
 
Subsetting matrices and data frames is done in the same way except that indices 
are needed for both the rows and columns. To see this let’s start by loading the 
now familiar air quality data set: ’data(airquality)’. To get the first 10 rows 
of the data, enter ’airquality[1:10,]’. To extract the third and forth columns 
of the data enter, ’airquality[,c(3,4)]’. To get every other row and every other 
column of the data enter, ’airquality[seq(1, nrow(airquality), 2), seq(1, 
ncol(airquality), 2)]’. (Note that the ’nrow()’ function counts the number of 
rows of a data frame or matrix and the ’ncol()’ function counts the number of 
columns.) 
 
You can also use logical vectors to subset data. Data will be extracted 
everywhere the vector value is TRUE. So if ’a <- 1:10’, then ’a[c(T, T, F, T, T, 
F, T, F, F, F)]’ results in ’1 2 4 5 7’. Note that if the logical vector is not 
the same length as the vector it is indexing, R will recycle it as necessary to 
make it the same length. The following example illustrates how you can use this 
recycling to extract every third row of the air quality data: 
’airquality[c(F,F,T),]’. Notice that the syntax is shorter and clearer than what 
was done using ’seq()’ above. 
 
You can use this capability to subset data based on logical conditions. For 
example if you enter ’a[a < 5]’, R will evaluate ’a < 5’ and create a logical 
vector which indicates which elements of ’a’ are less than 5. Then R will use 
this logical vector to select elements of ’a’. As another example, you can 
select all records of the air quality data where temperature is greater than 80 
degrees like this: ’airquality[airquality$Temp > 80, ]’. As a final example, 



here’s how you could eliminate all records having NA in any column: 
’airquality[!is.na(rowSums(airquality)),]’ In this example, since all the data 
is numeric, ’rowSums(airquality)’ yields a number except where any elements of a 
row are NA. ’is.na’ creates a logical vector identifying which of the results 
are NA (TRUE) and which are not (FALSE). The ’!’ symbol means not. It turns TRUE 
into FALSE and vise verse. 
 
Note R does not care where the indexing vector comes from (although you should). 
Don’t get stuck in the mode of thinking that your index to a table has to come 
from within the table. If you do, then you’ll unnecessarily expand tables 
(remember ’cbind()’) in order to associate your indexes with your data to be 
indexed. Indexes can come from anywhere. It does not matter to R. This 
flexibility allows you to simplify your calculations, but it also puts more 
responsibility on you to be aware of what you are doing. For example, if you use 
a logical vector that is not the same length as the vector you are subsetting, 
it will recycle and you may not get what you want. 
 
Numerical and logical indexing is one of the most important things to understand 
about R. I suggest that you spend some time trying these ideas and be sure to 
ask questions if you don’t understand. Here is a problem for you to try. Take 
the air quality data, split it in half by rows, and then interleave the two 
halves. Your output data frame would then have the 1st row of the 1st half 
followed by the 1st row of the 2nd half etc. There are several solutions to this 
problem. Mail yours back and we’ll post them later this week. 
 
 
From: GREGOR Brian J 
Sent: Friday, May 09, 2003 1:27 PM 
Subject: R Answer to Interleaving Problem 
 
I haven’t gotten any answers to this problem and I’ve heard that it is too hard. 
I thought I’d better send you answers before you get too frustrated. Remember, 
though, the drop out period for this course has passed so you’re stuck with this 
course whether you like the problems or not. You better start studying for the 
final exam ;-) 
 
You may have gone astray if you followed my instructions literally when I said 
"take the air quality data, split it in half by rows, and then interleave the 
two halves." You don’t have to literally split the data frame. The solution to 
this problem involves indexing. Really understanding what you can do with 
indexing is a very important part of unlocking the power of R.  
 
The first thing to realize is that you can reorder any data frame by using a 
vector with the right order as the row index for the data frame. Try this if you 
are having a hard time understanding what I just said: ’reversed.air <- 
airquality[153:1,]’. "153:1" generates a vector of the sequence from 153 down to 
one. When this is used as a row index, the first row of ’reversed.air’ is the 
153rd row of ’airquality’. The second row of ’reversed.air’ is the 152nd row of 
’airquality’ and so on. So by using an index that was reversed, we reversed the 
order of the data frame. 
 
What we need to do then is create the appropriate index vector to get the data 
frame in the desired row order. We need to choose the 1st row, followed by the 
78th row, followed by the 2nd row and so forth.  If you could somehow define 
"index <- c(1,78,2,79,3,80,4,81 ...)", then "airquality[index,]" would rearrange 
the rows of the air quality data frame in the desired order. The way I did this 
is to add two sequences: 1, 1, 2, 2, 3, 3, ..... and 0, 77, 0, 77, 0, 77 ....  



The first sequence can be generated with ’rep(1:77, each=2)’. The second 
sequence can be generated with ’rep(c(0,77), 77)’. If you add these two 
sequences together you have an index with the proper order: ’index <- rep(1:77, 
each=2) + rep(c(0,77), 77)’. You need to chop off the last value, however, to 
make the index the proper length: either ’index <- index[1:153]’ or ’index <- 
index[-154]’ will do the trick. Then with that index in hand you can get the 
airquality data in the desired order with ’airquality.result <- 
airquality[index,]’ 
 
You could generate the index in another way using a function from this 
Wednesday’s lesson. First enter ’index.matrix <- rbind(1:77,78:154)’. This 
creates a matrix where the indices are split into two rows of a matrix. Then if 
you enter ’index <- as.vector(index.matrix)’ you get a vector with the indices 
in the proper order. This occurs because  
’as.vector()’ converts a matrix to a vector in column major order. Finally, chop 
off the index vector to the proper length with ’index <- index[-154]’. 
 
Later on, we’ll show you a brute force method of solving the problem with a 
’for’ loop, but just to illustrate how to do it. It’s usually better to use the 
indexing power of R. 
 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 



From: STABLER Benjamin 
Sent: Thursday, May 01, 2003 9:21 AM 
Subject: R Week 3 Lesson 4, Functions to Describe Data 
 
R Week 3 Lesson 4, Functions to Describe Data 
 
Let’s begin by loading the now famous airquality data set ’data(airquality)’.  R 
has functions for all the standard descriptive statistics.  To begin, let’s look 
at: 
 
min() - calculates the minimum value of a vector(s) 
max() - calculates the maximum value of a vector(s) 
 
Both functions can take multiple vectors as arguments and both functions return 
the min or max of all the vectors input.  For example: 
'min(airquality$Wind,airquality$Temp)'.  Remember that most functions will 
return NA if there are any NAs in the data set.  In addition to the min() and 
max() function, there are the following functions: 
 
range() - returns the min and max of a vector(s) as a vector of length two 
mean() - returns the mean of a vectors(s) 
median() - returns the median of a vector(s) 
sum() - sum a vector(s) 
var() -  returns the variance of a vector(s) 
sd() - returns the standard deviation of a vector(s) 
 
All of the functions listed so far have the "na.rm" optional argument.  The 
default is set to FALSE, so R will NOT ignore NAs when calculating the function.  
But simply adding, for example: 'mean(airquality$Ozone, na.rm=T)', will ignore 
NAs in the calculation and thus return a number. 
 
There are many other functions for describing data, but one of the best is the 
summary() function.  The summary function takes any number of vectors, and will 
return the summary information for each column of a data frame or matrix if 
given as the argument.  For the Ozone vector of the airquality data frame, the 
summary function returns: 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   1.00   18.00   31.50   42.13   63.25  168.00   37.00 
 
For the first five columns of the airquality data set, summary returns: 
'summary(airquality[,1:5])' 
     Ozone           Solar.R           Wind             Temp           Month 
 Min.   :  1.00   Min.   :  7.0   Min.   : 1.700   Min.   :56.00   Min.:5.000 
 1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400   1st Qu.:72.00   1stQu.:6.000 
 Median : 31.50   Median :205.0   Median : 9.700   Median :79.00   Median:7.000 
 Mean   : 42.13   Mean   :185.9   Mean   : 9.958   Mean   :77.88   Mean:6.993 
 3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500   3rd Qu.:85.00   3rdQu.:8.000 
 Max.   :168.00   Max.   :334.0   Max.   :20.700   Max.   :97.00   Max.:9.000 
 NA's   : 37.00   NA's   :  7.0 
 
The NA's is a count of the number of NAs in the vector. 
 
The table() function will cross classify two or more vectors.  For example: 
'table(airquality$Temp,airquality$Month)' returns a matrix of the number of 
records for each value of airquality$Temp and airquality$Month.  Table is a 
great way to build contingency tables. 



 
Our final two functions are rowSums() and colSums(), which are pretty self 
explanatory.  rowSums() will sum each row of a matrix or data frame, while 
colSums() will sum each column.  For example, ’colSums(airquality)’ returns: 
 
Ozone Solar.R    Wind    Temp   Month     Day 
     NA      NA  1523.5 11916.0  1070.0  2418.0 
 
or colSums(airquality, na.rm=T): 
 
  Ozone Solar.R    Wind    Temp   Month     Day 
 4887.0 27146.0  1523.5 11916.0  1070.0  2418.0 
 
Remember that the results of all of these functions can be assigned to new 
objects and then indexed to extract values.  So ’column.totals <- 
colSums(airquality, na.rm=T)’ creates a new vector named column.totals that is 
the totals of airquality columns.  We could then ’rbind()’ the column.totals to 
the airquality data set in order to add the totals to the bottom of the data 
frame.  Try adding the column totals on your own. 
 
Functions 
 
min() - calculates the minimum value of a vector(s) 
max() - calculates the maximum value of a vector(s) 
range() - returns the min and max of the vector(s) as a vector of length two 
mean() - returns the mean of the vectors(s) 
median() - returns the median of the vector(s) 
sum() - sums the vector(s) 
var() -  returns the variance of the vector(s) 
sd() - returns the standard deviation of the vector(s) 
summary() - returns summary statistics for a vector(s) 
table() - create a cross-classification of multiple variables 
rowSums() - sum the rows of a data frame or matrix 
colSums() - sum the columns of a data frame or matrix 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 



From: GREGOR Brian J 
Sent: Monday, May 05, 2003 4:13 PM 
Subject: R Week 4 Lesson 1, Using the apply() and sweep() functions 
 
R Week 4 Lesson 1, Using the apply() and sweep() functions 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Well, most of you who responded suggested that we reduce the number of lessons 
per week. Three was suggested most often but some people suggested four. We will 
send you three or four a week, depending on the subject matter. This week we 
will cover a number of related functions that are useful for analyzing data. 
This will take four lessons. 
 
Much of the ease of use and power of the R language comes from its ability to 
operate on vectors and matrices element-wise. For example, if you have one 
matrix ’a <- matrix(1:100, 10, 10)’ and another matrix ’b <- matrix(1:3, 10, 
10)’ Now, you can add these matrices simply by entering ’a + b’. Many of R’s 
functions are set up to work this way (for example, ’paste("count #", 1:10, 
sep="")’). They are "vectorized". Over the course of this week, we will 
introduce you to several very powerful functions that allow you to vectorize 
most calculations. They permit you to operate on matrices, data frames, vectors 
and lists quickly and simply. 
 
The first of these functions is ’apply()’. This function allows you to 
sequentially apply a function to each row or column of a matrix or a data frame. 
(You may also use it on higher order arrays, but the usage is harder to 
understand so we will put that off for now.) I’ll introduce ’apply()’ with some 
examples. Start by loading a data set ’data(USPersonalExpenditure)’. This is a 
small data set so just enter ’USPersonalExpenditure’ to take a look at it. You 
learned before that you can sum the column with the colSums function like this 
’colSums(USPersonalExpenditure)’. Before the colSums function was available, you 
could do the same thing with the apply() function like this: 
’apply(USPersonalExpenditure, 2, sum)’.  
 
You read the arguments of apply() as follows: 
1st is the name of the matrix or data frame you are operating on. 
2nd is the dimension you are operating across. "1" is for rows and "2" is for 
columns. 
3rd is the name of the function you are applying. 
So apply() in this instance goes through the data extracting the first column 
vector and summing it, then moving to the second column vector and summing it, 
and so on.  
 
Here’s another example. If you wanted to get the range of values in each row, 
you would enter ’apply(USPersonalExpenditure, 1, range)’. 
 
You can even apply custom functions that you define in this manner. Here is an 
example of how you do this. Suppose that you wanted to compare the values in 
each column to the column maximums. This could be done as follows: 
’apply(USPersonalExpenditure, 2, function(x) x/max(x))’. With this, we are 
operating on the USPersonalExpenditure data by column as before. We are then 
telling apply() that we are defining the function to be applied with the 
’function(x)’ statement. Think of the "x" here as referring to the column that 
is being operated on. After ’function(x)’ is the formula for the calculation 
being done. So in this case the formula is taking the column vector and dividing 
by the maximum value in the vector. Since these calculations work on vectors, 
the result is a vector. The resulting vectors are bound together in a new table 
as you see from the results. 



 
As you can see, the apply function offers a lot of flexibility and power for 
operating on matrices. You may have notices, however, that the examples above 
operate just on the data that is in each column. What if we want to bring other 
data into the calculation. There are a couple of options for this. The first is 
to define a function in the ’apply()’ which references the other data. The 
second is to use the ’sweep()’ function.  
 
Let’s start off with an explanation of ’sweep()’ using an example. Suppose you 
wanted to compare the expenditures in the USPersonalExpenditure data frame in 
uninflated dollars. You would do the conversion by multiplying the values in 
each column by the corresponding deflator for that year. Start by making a 
vector of deflator values corresponding to the columns in USPersonalExpenditure: 
’deflators <- c("1940"=0.079, "1945"=0.102 , "1950"=0.136, "1955"=0.151, 
"1960"=0.167)’. To calculate the adjusted expenditures enter 
’sweep(USPersonalExpenditure, 2, deflators, "*")’. As with apply(), the first 
argument of sweep() is the matrix or data frame you are operating on and the 
second argument is the dimension you are operating on. The third argument is the 
vector of values that will be applied in the sweep. The last argument is the 
function or operator that will be used. Note that if you are specifying a single 
operator, as was done in this example, it has to be surrounded by quotes. 
 
The other way to do this is by defining a function in the apply statement that 
uses the deflators vector: ’apply(USPersonalExpenditure, 1, function(x) 
x*deflators)’. What this does is multiply each row of the matrix by the 
deflators vector. Notice, however, that the resulting matrix is transposed from 
the original (rows and columns are switched). To get the table back into the 
same form we have to transpose it: ’t(apply(USPersonalExpenditure, 1, 
function(x) x*deflators))’. 
 
Here’s another example of apply and sweep(). Load the air quality data set 
again: ’data(airquality)’. Now what we will do is standardize all the first four 
columns (Ozone, Solar.R, Wind, Temp) so that their mean value is zero and their 
values represent the number of standard deviations from the mean. So, first 
let’s calculate the means: ’air.mean <- apply(airquality[,1:4], 2, function(x) 
mean(x,na.rm=T))’. Then calculate the standard deviations: ’air.sd <- 
apply(airquality[,1:4], 2, function(x) sd(x, na.rm=T))’. Then we standardize 
with respect to the mean: ’air.mean.standard <- sweep(airquality[,1:4], 2, 
air.mean, "-")’. Finally, we can standardize with respect to the standard 
deviation: ’air.standardized <- sweep(air.mean.standard, 2, air.sd, "/")’. (Note 
that there is a function that will standardize a data frame for you called 
scale.)  
 
Enter the following to see that the standardization has occurred. Don’t worry 
about what the commands mean, we’ll cover that next week. 
’par(mfrow=c(2,2)); hist(air.standardized[,1], main="Ozone"); 
hist(air.standardized[,2], main="Solar.R"); hist(air.standardized[,3], 
main="Wind"); hist(air.standardized[,4], main="Temp"); par(mfrow=c(1,1))’ 
 
Well that covers today’s lesson. You will find that apply() and sweep() are very 
useful functions but take a while to understand well. If you can, take some time 
to work through some examples and try to use these commands to analyze your 
data. You will see this effort paying off in the future. To review: 
apply() allows you to apply a function by row or column of a matrix or data 
frame. 
sweep() allows you to operate on a matrix or data frame using a vector of values 
corresponding to the rows or columns. 



 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 



From: STABLER Benjamin 
Sent: Tuesday, May 06, 2003 11:48 AM 
Subject: R Week 4 Lesson 2, Using the lapply() and sapply() functions 
 
R Week 4 Lesson 2, Using the lapply() and sapply() functions 
 
LAPPLY 
 
Last week we learned that a list data structure can hold multiple data types, 
and is a great way to store data sets.  Let’s create a list from the state data 
that comes with R.  Start by loading the state data with ’data(state)’.  A 
’ls()’ returns: 
 
[1] "state.abb"      "state.area"     "state.center"   "state.division" 
[5] "state.name"     "state.region"   "state.x77"      
 
First we will create a list from the different vectors.  Then we will use the 
lapply() function to perform some calculations on the list.  We create a list 
with the list() command, so ’state <-list(state.abb, state.area, state.center, 
state.division, state.name, state.region, state.x77)’ will create a list of 
state data.  To see the structure of the state list type ’str(state)’, which 
returns: 
 
List of 7 
 $ : chr [1:50] "AL" "AK" "AZ" "AR" ... 
 $ : num [1:50]  51609 589757 113909  53104 158693 ... 
 $ :List of 2 
  ..$ x: num [1:50]  -86.8 -127.3 -111.6  -92.3 -119.8 ... 
  ..$ y: num [1:50] 32.6 49.3 34.2 34.7 36.5 ... 
 $ : Factor w/ 9 levels "New England",..: 4 9 8 5 9 8 1 3 3 3 ... 
 $ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ... 
 $ : Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2 ... 
 $ : num [1:50, 1:8]  3615   365  2212  2110 21198 ... 
  ..- attr(*, "dimnames")=List of 2 
  .. ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ... 
  .. ..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ... 
 
 
Remember that the elements of the list are not named unless you specifically 
name them when creating the list or afterwards with the names() function.  It is 
also important to remember that you can reference element of a list with the 
[[element number]] syntax. 
 
Now that we have a list, let’s lapply() a function to each element of the list.  
A simple summary() of each element of the list might be useful.  The lapply() 
function takes two arguments, the list to apply the function to and the function 
to apply to each element of the list.  Try ’lapply(state, summary)’.  This will 
return a summary of each element of the list in list form.  Notice that the 
summary is different for each element since each element is a different data 
type and/or structure.   
 
As with apply(), you can write your own functions to apply to a list by typing 
"function(x)" followed by the function definition for the function argument to 
the list.  For example: ’lapply(state, function(x) x[1])’.  This will return the 
1st element of each element of the list.  Notice that the 3rd element returned 
is a vector - that’s because the 3rd element of the state list is a list, so the 
1st element of the 3rd element of the state list is actually a vector.  The 



ability to store multiple complex data types and structures in a list is its 
main advantage, but it can also make the list difficult to understand.   
 
Now that we have the basics about lapply(), let’s use it to plot the center of 
each state along with the state abbreviation.  Let’s plot each state with 
’plot(state.center, pch=20)’.  As you can see, we get a plot that looks like the 
U.S.  We will learn about the plot() function next week.   
 
In order to label each point, we need to use the text() function.  The text() 
function adds text to a plot and requires the X and Y coordinate and the label.  
We already have the X and Y coordinate, since we plotted them, but we probably 
want to shift the label up and over a little so it doesn’t cover up the point.  
So we need to add 0.5 to both the X and Y of each point.  Since state.center is 
a list of X and Y, we can use the lapply function to apply a simple addition of 
0.5 to each element of each element of the list.  Type: ’label.xy <- 
lapply(state.center, function(x) x+0.5)’ to create a new list of X and Y points.  
Then all that is left is to add the text to the plot with ’text(label.xy, 
state.abb, col="blue")’.   
 
SAPPLY 
 
The sapply() function is very similar to the lapply() function except that it 
can apply the function to each element of a vector and it is also returns a 
vector instead of a list. If we type ’lapply(state.center, mean)’, R will return 
the mean of the X and the mean of Y coordinates as a list of length two.  But 
since the result is so simple, it would be better to return a vector of length 
two.  Type ’sapply(state.center, mean)’, and R will return a vector named X and 
Y.  This is preferred in this case since it saves us the additional line of code 
when using the lapply() to convert the list of X and Y to a vector. 
 
In addition to operating on lists, sapply() also operates on vectors.  For 
example type ’sapply(1:10, function(x) x^2)’, which will return the square of 
each element of the list.  This is essentially the same as simply typing 
(1:10)^2.  But sapply() allows more flexibility in that you can apply any custom 
function you write to each element of a vector.   
 
Both lapply() and sapply() are useful functions for iterating through a list 
without having to write a for or while loop.  These functions, in addition to 
the apply() and sweep() functions, can save you a lot of time in R.   
 
Functions: 
lapply() - apply a function to each element of a list and return a list 
plot() - plot x and y data 
text() - add text to a plot 
sapply() - apply a function to each element of a list or vector and return a 
vector 
 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 
 



From: GREGOR Brian J 
Sent: Wednesday, May 07, 2003 10:48 AM 
Subject: R Week 4 Lesson 3, tapply() and related functions 
 
R Week 4 Lesson 3, tapply() and related functions 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
Today I’ll cover the versatile tapply() function. You will find that the more 
you learn about this function, the more uses you will have for it. 
 
If you look at the help page for tapply(), you’ll see the purpose described as 
applying a function over a ragged array. What does this mean? Well we’ve seen 
arrays in the form of matrices, which are two dimensional arrays. With matrices, 
all rows are the same length and all columns are the same length. They’re not 
ragged. As you saw a couple of days ago, you can use the apply() function with 
matrices. (We did not cover how to use them with higher dimensional arrays.) You 
can also use apply() with data frames because they also are not ragged. Now 
suppose that you wanted to apply a function to parts of a data set that are not 
equal in length. Say you have Census data on households and you want to find the 
mean household income by the sex of the household head. An array of household 
income by sex would be a ragged array because the number of cases for each sex 
would not be equal. If you wanted to find the mean income by sex, you would use 
the tapply() function. 
 
Here’s an example of how this works. Start by loading the MASS library: 
’library(MASS)’. Then load the "UScereal" data set: ’data(UScereal)’. This data 
set contains nutritional information on a list of cereals. It also identifies 
the manufacturer of each cereal. We can compare the average sugar content of 
cereals by manufacturer using tapply() like this: ’tapply(UScereal$sugars, 
UScereal$mfr, mean)’ In this example, the first argument to tapply() is a vector 
of data we want to operate on. The second is the factor we’re using to group the 
data. The third is the function we are applying.  
 
If you wanted to see the means for several of the variables by manufacturer, you 
could do this using the combination of the apply() and tapply() functions like 
this: ’apply(UScereal[,c("fat", "sodium", "sugars")], 2, function(x) tapply(x, 
UScereal$mfr, mean))’. What’s done here is to take three columns of the data and 
then apply the tapply() function to each of them in turn, finding the mean by 
manufacturer. 
 
You are not limited to using a single grouping factor. If you want to use 
multiple factors, you enter them as a list in the second argument. We can see 
this with another example using the UScereal data. The data set also includes a 
code indicating whether the cereal is on the top, middle or bottom grocery shelf 
in the variable named "shelf". To see the mean sugar content by manufacturer and 
shelf enter ’tapply(UScereal$sugar, list(UScereal$mfr, UScereal$shelf), mean)’. 
 
You can do similar grouping analysis with the aggregate() function. One 
advantage of aggregate is that it allows you to specify several data vectors in 
the first argument. This avoids having to combine apply() and tapply(). To get 
the same table of average fat, sodium and sugars by manufacturer you enter this: 
’aggregate(UScereal[,c("fat", "sodium", "sugars")], list(UScereal$mfr), mean)’. 
Notice that you have to specify the grouping factor as a list even if it is just 
a single vector. You don’t need to do this with tapply(). 
 
Finally, here’s an example of how the power of tapply() can be applied to 
modeling. Often you need to collapse a zone-to-zone matrix to a district-to-



district matrix where each district is comprised of one or more zones. You may, 
for example, want to convert an origin-destination matrix for zones to an 
equivalent one at the district level. You can do this easily with the tapply(). 
For this example, define your zones as follows: ’zones <- 100:109’. Then define 
the corresponding districts like this: ’districts <- c(1,1,1,2,2,3,3,4,4,4)’. 
Finally, make a matrix of trips using the sample() function: ’od <- 
matrix(sample(1:10,100,replace=T),10,10)’. The sample function takes a random 
sample from the vector that is the first argument. The size of the sample is the 
second argument. The "replace=T" argument says that the sampling is with 
replacement. To collapse this zonal od matrix into a district od matrix enter 
the following:  
’tapply(as.vector(od), as.list(expand.grid(districts,districts)),sum)’.  
Voila. There’s your district od matrix like magic. If this was a matrix of zone-
to-zone travel times, you could convert it into a district to district travel 
times using the "mean" function rather than "sum".  
 
Here’s how the this statement works. The as.vector(od) converts the od matrix 
into a vector in column-major order (first column followed by second column and 
so on). The expand.grid(districts,districts) makes a data frame where each row 
is a combination of the factors which are the arguments. The first factor varies 
fastest followed by the second and so on. (If you find this description 
confusing, try the function out and see how it operates: 
’expand.grid(1:3,1:3,1:3)’) Notice that ’expand.grid(districts,districts)’ 
corresponds to the order of the od matrix when it is converted into a matrix. 
You can verify this by entering ’cbind(expand.grid(zones,zones),as.vector(od))’. 
You can see that the first column is the row zone. The second is the column zone 
and third is the value for that row and column. The data frame created by 
expand.grid() is converted into a list with as.list(). With the matrix converted 
to grid and the districts corresponding to zones put into a list of factors in 
the proper order, the tapply() function can then do it’s magic and create the 
district-to-district matrix. 
 
Here are the functions we covered today. 
tapply() takes a vector and a list of corresponding factors and applies a 
function to the vector indexed by each combination of factors. 
aggregate() does the same thing as tapply(). However, it can operate on a data 
frame as well as a vector. 
sample() creates a random sample given a sample size and a vector from which the 
sample is drawn 
as.vector() converts a matrix into a vector in column-major order. 
expand.grid() creates a data frame of every combination of the factors that are 
passed to it. 
as.list() converts a data frame into a list. Each column becomes an element of 
the list. 
 
That is it for this week. Please take some time to experiment with the various 
apply family functions you learned. Better yet, start using them in one of your 
data analysis projects. 
 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 
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R Week 5 Lesson 1: SORT, ORDER, SPLIT, UNIQUE and DUPLICATED 
 
Let’s start by loading the UScereal data set into our workspace. "library(MASS)" 
then "data(UScereal)".  Our first function is the sort() function. 
 
SORT 
 
The sort() function sorts a numeric vector in ascending or descending order. 
Type "sort(UScereal[,4])" to sort the UScereal$fat column.  Notice that the 
vector is returned in ascending order.  A good function to use with sort is 
rev(), which will reverse the order of a vector.  Try 
"rev(sort(c(2,4,5,6,3,2)))" to sort the vector in ascending order and then 
reverse the result. 
 
ORDER 
 
The order() function allows you to sort data frames as well as vectors. It works 
in a different way, however, that may take a bit of time to fully understand. 
While sort(x) will return x sorted in ascending order, order(x) will return a 
vector that gives the indexes of x in the order of the values of x. For example, 
if "x <- c(3,7,8,1,4,9,5,10,2,6)", here’s how x, and order(x) compare: 
 
x           3  7  8  1  4  9  5 10  2  6 
order(x)    4  9  1  5  7 10  2  3  6  8 
 
What order(x) is showing you is that the fourth element of x is the smallest, 
followed by the ninth element, the 1st element, and so on. Now if you enter 
"x[order(x)]" at the prompt, you will get x in sorted order because you are 
indexing "x" with the indices that place x in ascending order. 
 
Another example might help clarify the order() function.  For example: 
"sort(UScereal[,4])" returns the actual values in ascending order, while 
"order(UScereal[,4])" returns the position of element in order.  The first few 
elements of the UScereal[,4] vector are below for comparison. 
 
UScereal[,4] 
 [1] 3.0303030 3.0303030 0.0000000 2.6666667 0.0000000 2.6666667 
 
sort(UScereal[,4]) 
 [1] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 
 
order(UScereal[,4]) 
 [1]  3  5  8 14 15 16 
 
Notice that the third element of the USCereal[,4] vector is 0.  When we sort() 
the vector, this becomes the first element returned.  When we order() the 
vector, the element’s position (3) becomes the first element returned.  It is a 
subtle difference but is important because you can sort a data frame based on 
one of its columns using the order() function. Try 
"UScereal[order(UScereal$fat),]". This will return the UScereal data frame with 
the rows in order by the ’fat’ column. 
 
SPLIT 



 
The split() function can be used to split a vector, matrix or data frame by a 
corresponding factor.  Try: "split(c(1,2,3,4,5),c("a","a","b","b","b"))", which 
will return:  
 
$a 
[1] 1 2 
 
$b 
[1] 3 4 5 
 
Thus we split the c(1,2,3,4,5) by the vector of factors c("a","a","b","b","b"). 
 
In our cereal data set, try "x <- split(UScereal, UScereal$mfr)".  The x object 
we assigned our split result to is the UScereal data frame split into many data 
frames by the factors in the mfr column.  We can then apply functions to the 
resulting list of data frames with the lapply() function. For example: 
"lapply(x, function(x) mean(x[,2]))" will return the mean calories of all the 
cereals produced by manufacturer. 
 
UNIQUE & DUPLICATED 
 
Sometimes it is necessary to find the unique values of a data set.  The unique() 
function returns all the unique values of a vector.  Thus, 
"unique(UScereal[,4])" will return all the unique values of fat content.  The 
unique() function returns a vector, so you can then apply other functions to it 
if necessary.   
 
Related to unique() is the duplicated() function, which will return TRUE or 
FALSE for each element in a vector or matrix if that number is duplicated in the 
data set.  For example" "duplicated(c(1:5,5))" returns: 
 
[1] FALSE FALSE FALSE FALSE FALSE TRUE 
 
since the last two numbers of the vector supplied to duplicated() are 5.  Often 
duplicated() is used for indexing in conjunction with ! (not) to select those 
records of a vector containing duplicates that are not duplicated.   
 
That’s it for today.  Tomorrow I will cover merge(), match() and the %in% 
operator. 
 
FUNCTIONS 
 
sort() - sort a vector 
rev() - reverse a vector 
order() - order a vector (i.e. return the indexes of a vector in sorted order) 
split() - split a data set based on a factor 
unique() - find the unique values of a data set 
duplicated() - find the duplicated values of a data set 
 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 
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R Week 5 Lesson 2, MERGE, MATCH and %in% 
 
MERGE 
 
The merge() function is similar to a database join command.  It will merge all 
fields with duplicate names of the two data frames specified.  For an example, 
let’s try merging the Animals and mammals data frames from the MASS library.  
First, load the data sets with "library(MASS)" followed by "data(Animals)" and 
then "data(mammals)".  Now that we have the data frames in our workspace, type:  
"merge(Animals, mammals, by="row.names")".  R will return a merged data frame of 
all the matching animals in the Animals and mammals data sets.   
 
merge(Animals, mammals, by="row.names") 
          Row.names   body.x brain.x   body.y brain.y 
1  African elephant 6654.000  5712.0 6654.000  5712.0 
2    Asian elephant 2547.000  4603.0 2547.000  4603.0 
3               Cat    3.300    25.6    3.300    25.6 
4        Chimpanzee   52.160   440.0   52.160   440.0 
5               Cow  465.000   423.0  465.000   423.0 
6            Donkey  187.100   419.0  187.100   419.0 
7           Giraffe  529.000   680.0  529.000   680.0 
8              Goat   27.660   115.0   27.660   115.0 
9    Golden hamster    0.120     1.0    0.120     1.0 
10          Gorilla  207.000   406.0  207.000   406.0 
11        Grey wolf   36.330   119.5   36.330   119.5 
12       Guinea pig    1.040     5.5    1.040     5.5 
13            Horse  521.000   655.0  521.000   655.0 
14            Human   62.000  1320.0   62.000  1320.0 
15           Jaguar  100.000   157.0  100.000   157.0 
16         Kangaroo   35.000    56.0   35.000    56.0 
17            Mouse    0.023     0.4    0.023     0.4 
18              Pig  192.000   180.0  192.000   180.0 
19           Rabbit    2.500    12.1    2.500    12.1 
20              Rat    0.280     1.9    0.280     1.9 
21    Rhesus monkey    6.800   179.0    6.800   179.0 
22            Sheep   55.500   175.0   55.500   175.0 
 
Note that I specified by="row.names" to tell R to merge the data frames based on 
the row names.  You can also specify a column by referring to its name  as well.  
If the column is named something different in both data frames, then use by.x= 
and by.y=, with x referring to the first data frame to merge and y referring to 
the second.  It is important to note that the column name to be merged on is 
specified in quotes.  If the "by" argument is omitted then R will merge on all 
common column names.  For example, type "merge(Animals, Animals)" to merge one 
copy of the Animals data frame with another.  It looks like nothing happened, 
but really R merged all the fields with duplicate names (all the fields).  When 
column names are specified with by or by.x and by.y, R will not merge duplicated 
columns and returns both data frame versions of the duplicated column. 
 
MATCH 
 
The match() function returns a vector of the positions or indexes of the (first) 
match of the first argument in the second argument.  Type 



"match(rownames(Animals), rownames(mammals))" to try out the match function.  R 
returns: 
 
[1] NA  4  5  6  8 NA 19 21 22 NA 25 28 29 32 33 NA 35 36 38 39 43 44 45 46 52 
NA NA 56 
 
which tells us that the first row name of the Animals data frame is not in the 
row names of the mammals data frame and that the second row name in the Animals 
data frame is in the fourth position of the row names of the mammals data frame.  
We can verify this by looking at the rownames of each data frame: 
"rownames(Animals)" and "rownames(mammals)" will do this. 
 
> rownames(Animals) 
 [1] "Mountain beaver"  "Cow"              "Grey wolf"        "Goat" . . . 
 
> rownames(mammals) 
 [1] "Artic fox"                 "Owl monkey"                "Mountian beaver"           
 [4] "Cow"                       "Grey wolf"                 "Goat"     
 
It looks like the first row name of Animals is in the row names of mammals but 
actually it is not since there is a misspelling in the mammals version.  But the 
"Cow" row name matched correctly, since the second value returned by our match() 
is 4, which is the position of the row name in the mammals data set. 
 
Match is similar to merge, except that match returns the index of the matched 
value where as merge merges the data frames.  This is the same relationship as 
we had with sort() and order() - one returns the values in order while the other 
returns the indexes in order.  The match() function is great for appending new 
columns to data frames based on indexes of common fields. 
 
%in% 
 
A related operator to the match() function is %in%.  Before I describe the %in% 
operator let me write a few things about operators.  Operators such as + or - 
are really just functions written another way.  So sum(2,3) is the same as 2+3.  
The main difference is in how we write the function.  Try: ""+"(2,3)" and R will 
return 5 - note that we put the + inside quotes.  Other than the syntax 
difference, operators and functions work the same. 
 
The %in% binary operator (or function) will return TRUE or FALSE indicating if 
there is a match between the elements of two vectors.  The %in% operator is 
great for selecting data.  For example: "1:5%in%1:3" returns T T T F F since 4 
and 5 are not in the second data set.  We can use this to build an index 
(basically a query) of a data frame by creating a vector of indexes of the 
records we want.  For example, say you want to extract data from the Animals 
data set for the selected list of animals: "dinosaurs <- c("Dipliodocus", 
"Triceratops", "Brachiosaurus")". You could do this with 
"Animals[rownames(Animals) %in% dinosaurs,]".  This tells R to return all the 
rows of the Animals data set where the rownames are found in the dinosaurs 
vector. 
 
               body brain 
Dipliodocus   11700  50.0 
Triceratops    9400  70.0 
Brachiosaurus 87000 154.5 
 



The main difference between match() and %in% is that match() returns the 
position number of the match, where as %in% just returns TRUE or FALSE if there 
is a match.  The %in% operator is also faster than match(). 
 
HOMEWORK 
 
Since the last homework assignment went so well, let’s try another.  Type: 
"problem <- data.frame(1:100, 100:1, rep(letters[1:25], 4))" to create a problem 
data frame.  The problem is to find the sum of the numbers of the first two 
columns based on the letters.  So, for example, what is the total of the first 
two fields with the letter "a" in the third field?  There are many different 
ways to accomplish this.  One way that I can think of is "lapply( split( 
problem, problem[,3]), function(x) sum( x[,1:2]))".   
 
FUNCTIONS 
 
merge() - merge two data frames 
match() - return the index of each element of a vector in another vector 
%in% - is an element value of a vector an element value in another vector? 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
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R Week 5 Lesson 3, Beginning Statistical Analysis 
 
Last week you were introduced to a number of functions for describing and 
summarizing data. These included: 
min() and max() to calculate the minimum and maximum values of a vector; 
range() to calculate the lowest and highest values of a vector; 
mean() and median() to calculate the mean and median of a vector; 
var() and sd() to calculate the variance and standard deviation of a vector; 
summary() to show summary statistics; and 
table() to tabulate cases. 
 
This lesson starts off with additional uses of the table() function, shows how 
tapply() can be use to create tables of weighted data, and shows how continuous 
variables can be made into factors with cut(). Tomorrow’s lesson will introduce 
functions for carrying out significance tests and linear regression. 
 
As you may recall, table() produces multi-way classification tables. To see 
this, first load the MASS library: ’library(MASS)’. Then load the ’quine’ data 
set: ’data(quine)’. This is data from a study of school absences among 
Australian school children of different sex, ethnicity, age and learner group. 
To get a crosstab of sex and age you enter ’table(quine$Sex, quine$Age)’, 
resulting in: 
    F0 F1 F2 F3 
  F 10 32 19 19 
  M 17 14 21 14 
The rows are the factors corresponding to the first table() argument and the 
columns corresponding to the second argument. 
 
Likewise a three-way table would be produced by adding another data column 
argument: ’table(quine$Sex, quine$Age, quine$Lrn)’. Notice that this produces an 
array. An array extends the matrix concept to higher dimensions. In this case, 
it is a three dimensional array because we asked for a table of three variables. 
The rows and columns are sex and age respectively. Each table in the array 
corresponds to the learner group.  
 
Multi-way tables in this format can be hard to understand. The ftable() function 
helps by producing a "flat" table. Try this: ’ftable(quine$Sex, quine$Age, 
quine$Lrn)’. 
 
If you have assigned the results of table() to an object, you can use the 
margin.table() functions to compute the table margins. For example: ’quine.table 
<- table(quine$Sex, quine$Age)’; ’margin.table(quine.table,1)’ to get row 
margin; ’margin.table(quine.table,2)’ to get column margin. Note that you can 
also get these results by using the rowSums(), colSums() and apply() functions. 
 
Sometimes you will want to tabulate a value, rather than the number of cases (as 
table() does); for example, when tabulating population totals from a survey 
using expansion factors. Table will not work here, but tapply() will. You can 
test this with the quine data. Lets tabulate the number of days absent by sex 
and age: ’tapply(quine$Days, list(quine$Sex, quine$Age), sum)’. You could 
calculate the average days absent by each combination of sex and age by 
combining the previous calculations like this: ’tapply(quine$Days, 
list(quine$Sex, quine$Age), sum) / table(quine$Sex, quine$Age)’. 



 
To tabulate data, it’s often necessary to convert continuous data, such as 
income, into categorical data (factors). The ’cut()’ function is used for this. 
Let’s try this out on the ’UScereal’ data set: ’data(UScereal)’. Now let’s 
create categorical variables for fat content. First take a look at the 
distribution of fat content by cereal by entering ’hist(UScereal$fat)’. Then cut 
the data into categories using the breakpoints of 0-1, 1-2, 2-4, 4-10: ’fat <- 
cut(UScereal$fat, c(0,1,2,4,10), labels=c("low", "med", "high", "oh my"), 
include.lowest=TRUE)’. The first argument is the ’UScereal$fat’ vector that is 
to be converted. The second is a vector of all the break points including the 
minimum and maximum. The third is a vector of labels to be given to each 
category. If this is omitted, then the default labels will be the ranges in the 
following form: [0,1], (1,2], (2,4], (4,10] where parentheses indicate an open 
interval (e.g. greater than) and brackets indicate a closed interval (e.g. less 
than or equal to). The other option for labels is ’labels=FALSE’. If this is 
entered, the factor levels will be named with simple integer codes. The last 
argument, ’include.lowest=TRUE’, is necessary to have the function include the 
lowest values; zero in this case.  
 
The new ’fat’ variable is a factor (check this with ’str(fat)’). As such, it can 
be tabulated. For example, you can see a table of cereals by manufacturer and 
fat content by entering ’table(UScereal$mfr, fat)’. You can also now use this 
variable to see how average sugar content varies by fat content: 
’tapply(UScereal$sugar, fat, mean)’. 
 
Tomorrow we’ll continue our examination of cereals and other data using 
statistical measures. Here’s a summary of functions covered today. 
table() creates cross tabulations of categorical values (factors). 
ftable() also creates cross tabulations, but displays them in a flat vs. array 
format that makes multi-way tabulations easier to understand. 
margin.table() calculates the margins of a table. 
tapply() creates tables of continuous variables. 
cut() creates a factor variable from a continuous variable. 
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R Week 5 Lesson 4, Elementary Statistical Analysis 
 
Today we will pick up from where we left off and cover some basic statistical 
tests. So many statistical analyses are available with R that it would take 
books and years to cover them all. All I can hope to do here is get you started 
with a few functions and explain some syntax that is common to many statistical 
analyses. 
 
First let’s start with using the ’t test’ to compare means of some of the data 
we’ve been working on. We do this with the ’t.test()’ function. To try this out, 
load the ’MASS’ library and the ’quine’ data. We’ll compare the mean number of 
days absent by various characteristics, starting with sex. The first example is 
of a one-sample test. Let’s assume for the purposes of this example that the 
population mean of days absent for girls is the mean in the quine data: 
’girl.mean <- mean(quine$Days[quine$Sex=="F"])’. Then to test whether the mean 
for boys is significantly different from this enter 
’t.test(quine$Days[quine$Sex=="M"], mu=girl.mean)’. The first argument is a 
vector of the data for boys and the second argument is the mean value that is 
the reference. The results of the t test are printed out at the prompt. It 
should look like this: 
 
        One Sample t-test 
 
data:  quine$Days[quine$Sex == "M"]  
t = 1.3331, df = 65, p-value = 0.1871 
alternative hypothesis: true mean is not equal to 15.225  
95 percent confidence interval: 
 13.86540 22.04369  
sample estimates: 
mean of x  
 17.95455  
 
You can see from the t statistic in the third line and the corresponding p-value 
that boy mean is not significantly different than the girl mean (t < 2, p > 
0.05). You can also see on following lines the 95% confidence interval and the 
boy mean. 
 
To show the one-sample test, I made the assumption that the girl population mean 
was equal to the sample mean. Because it’s not, we should use the two-sample t 
test. Here’s one way to do so: ’t.test(quine$Days[quine$Sex=="M"], 
quine$Days[quine$Sex=="F"])’. The syntax is similar, but instead of specifying a 
vector of data and a reference mean, you specify two data vectors. You can see 
that the t statistic is lower in this case, because the two-sample test is 
accounting for the sample variation of both means. 
 
The preceding example is not the simplest way of specifying a t test. R provides 
an alternative for specifying model formulas which looks like this: ’t.test(Days 
~ Sex, data=quine)’. You can read this as ’Days by Sex’ or ’Days as a function 
of Sex’ for the quine data. Model formulae simplify the specification of 
statistical models, tests and graphs and are commonly used in R. If you attach 
your data frame, the specification becomes even easier: ’attach(quine)’; 
’t.test(Days ~ Eth)’. 
 



Model formulae are also used in the specification of regression models. We’ll 
look at this with a simple linear regression. We’ll use the ’whiteside’ data set 
for this. Load the data set ’data(whiteside)’. This data set compares gas 
consumption in a house for different temperatures before and after the walls 
were insulated. Let’s first plot the data. (Don’t worry about the meaning of the 
plot commands just copy and paste them at the command prompt. We’ll explain what 
they mean next week.)  
 
opar <- par(mfrow = c(1,2)) # a graphic parameter call to plot two graphs in one 
window 
before <- subset(whiteside, Insul=="Before", select=c(Temp,Gas)) 
after <- subset(whiteside, Insul=="After", select=c(Temp,Gas)) 
plot(Gas~Temp, data=before, xlim=range(whiteside$Temp), 
ylim=range(whiteside$Gas), main="Before Insulation") 
abline(lm(Gas~Temp, data=before)) 
plot(Gas~Temp, data=after, xlim=range(whiteside$Temp), 
ylim=range(whiteside$Gas), main="After Insulation") 
abline(lm(Gas~Temp, data=after)) 
par <- opar # a graphic parameter call to set things back to previous conditions 
 
You can see from these plots that insulation appears to have reduced gas 
consumption. Now let’s estimate regression models for these two cases and 
compare them. The function to estimate a linear regression model is ’lm()’. As 
you see in the code above, that’s what we used to plot the trend lines in the 
before and after plots. If you enter ’lm(Gas~Temp, data=before)’ at the prompt, 
R reports the coefficients for the linear model: 
 
Call: 
lm(formula = Gas ~ Temp, data = before) 
 
Coefficients: 
(Intercept)         Temp   
     6.8538      -0.3932  
 
The first coefficient is the y intercept of the line and the second is the 
slope. 
 
You can also assign the results of the linear model to an object: ’before.model 
<- lm(Gas~Temp, data=before); after.model <- lm(Gas~Temp, data=after)’ This 
object can then be an argument for other functions. For example, the results of 
the linear models for before and after were arguments, individually, to the 
abline() function which took the intercept and slope information and drew a line 
on the plots. The object-oriented nature of R makes this sort of functionality 
possible. (Is R cool or not.) Summary is another function that can use a lm 
object. Try ’summary(before.model)’. You will see a number of summary statistics 
including the distribution of residual errors, the model coefficients, their 
standard errors, t statistic and corresponding probabilities. This is followed 
by residual standard errors, the squared correlation coefficient and the F 
statistic of overall significance. 
 
Correlations between variables can be calculated with the cor() function. For 
example, ’cor(before$Gas, before$Temp)’ gives a correlation coefficient of -
0.9714978, the square of which is the R-Squared value in the regression 
statistics. You can do multiple correlations on a data frame easily by 
specifying the data frame as the argument to correlation. For example, we could 
analyze multiple correlations between attribute of the UScereal data as follows. 



First load the data set: ’data(UScereal)’. Then enter ’cor(UScereal[,3:9])’ and 
you get a table of correlations between all the selected variables. 
 
          protein       fat    sodium     fibre       carbo      sugars     
shelf 
protein 1.0000000 0.4112661 0.5727222 0.8096397  0.54709029  0.18484845 
0.3963311 
fat     0.4112661 1.0000000 0.2595606 0.2260715  0.18285220  0.41567397 
0.3256975 
sodium  0.5727222 0.2595606 1.0000000 0.4954831  0.42356172  0.21124365 
0.2341275 
fibre   0.8096397 0.2260715 0.4954831 1.0000000  0.20307489  0.14891577 
0.3578429 
carbo   0.5470903 0.1828522 0.4235617 0.2030749  1.00000000 -0.04082599 
0.2604599 
sugars  0.1848484 0.4156740 0.2112437 0.1489158 -0.04082599  1.00000000 
0.2900511 
shelf   0.3963311 0.3256975 0.2341275 0.3578429  0.26045989  0.29005112 
1.0000000 
 
Here are a few references for more information on statistics using R: 
Some free sources on the web: 
"Simple R", John Verzani 
"Data Analysis and Graphics Using R - An Introduction", J.H. Maindonald 
Some books: 
"Introductory Statistics with R", Peter Dalgaard 
"Modern Applied Statistics with S-PLUS", W.N. Venables & B.D. Ripley 
 
Here are the functions we covered: 
t.test() does one-sample, two-sample and paired t tests. Tests can be specified 
in several ways including model formula. 
lm() does linear regression. If the results of lm() are assigned to an object, 
then other functions can be used to use or analyze the results. 
abline() plots the regression line. 
summary() gives a summary of the regression results. 
cor() computes the correlation coefficient for two vectors or, if given a data 
frame as an argument, the correlations between all pairs of variables. 
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R Week 6 Lesson 1, The plot() function 
 
It is now time to start visualizing some of that data you have been manipulating 
and analyzing.  The key function for visualizing data is plot().  The plot() 
function is a high-level function, which means that it can be used to start a 
plot (or graph).  Low-level functions such as lines(), which will be covered 
later, affect already existing plots.  Low-level plotting functions are a great 
way to add additional information to a plot (such as point labels and lines).  
But before we get into the more advanced parts of plotting in R, let’s start 
with the plot() function. 
 
The most significant two arguments to plot() are x and y, which represent 
vectors of the x points and y points that you want to plot.  For example, 
"plot(x=c(1,2,3,4,5), y=c(2,2,3,3,4))" will plot the following points: 
 
 x,y 
(1,2) 
(2,2) 
(3,3) 
(4,3) 
(5,4) 
 
Since this plot is pretty boring, let’s try plotting some more exciting data.  
Load the UScereal data set with "library(MASS)" followed by "data(UScereal)".  
Next type "plot(UScereal$sugars, UScereal$calories)" to see if there is a linear 
relationship between sugar content and calories. 
 
As you can see, R will figure out default x and y ranges for the plot area.  But 
you can specify these with the xlim and ylim arguments to plot().  Try 
"plot(UScereal$sugars, UScereal$calories, xlim=c(0,20), ylim=c(0,300))".  The 
xlim and ylim arguments expect a vector of length two which represents the lower 
and upper bounds.   
 
Let’s customize a few more of the plot settings with the main, xlab, ylab, and 
pch arguments.  The main argument is what you set to specify the plot title.  
The xlab and ylab arguments are the x and y labels, while pch is the plotting 
character to use.  Combining all of these into our previous plot function call 
we get: "plot(UScereal$sugars, UScereal$calories, xlim=c(0,20), ylim=c(0,300), 
main="Sugar v. Calories", xlab="Sugar Content", ylab="Calories", pch=20)".  The 
plot now has a nice title, axis labels, and the point symbol used is smaller and 
has a solid fill.  The range of values for pch is from 1 to 25 - I’ll let you 
explore what each one is on your own.   
 
At this point I think it is important to note a few things about plotting in R.  
Plotting commands can get rather long, and you don’t want to have to type things 
over and over again.  The best way to deal with this is write your R commands in 
a text editor and then copy and paste them into the R console.  It is also nice 
to refer back to previous plot code that you have written to remember what 
arguments to use.   
 
A final argument to plot() is the type argument.  The type argument specifies 
what type of plot to draw.  Choices for type include "p" for points, "l" for 
lines, "b" for both and "n" for no plotting.  Let’s use the "b" type plot with a 



new data set.  Load the airmiles data set with "data(airmiles)".  The airmiles 
data set is of type time series, which means that R knows the interval between 
points and the beginning and ending dates of the data.  We can plot the airmiles 
data with the following command: "plot(1937:1960, airmiles, type="b")".  There 
is an easier way to plot this data however.  Simply type "plot(airmiles)" and R 
will figure out the x-axis based on information stored in the time series data 
structure.  R’s object-oriented programming make things simplier for us again.   
 
As I mentioned earlier, low-level functions such as lines() can be used to add 
data to a plot.  Let’s plot the airmiles data as points with "plot(1937:1960, 
airmiles, type="p", pch=8)".  We can then use low-level function title() to add 
a title to the plot (this is the same as the main argument to plot).  For 
example: "title("Growth in Airmiles")".  We could connect the points that we 
drew using the lines() function.  Try: "lines(1937:1960, airmiles, col="red")".  
It draws lines between each point in the same order as the order of the x and y 
vectors.  The lines() function is one way to draw a model network in R. 
 
In addition to continuous data, R can plot factor or categorical data.  Try 
"plot(UScereal$shelf, UScereal$sugars, pch=16)" to see that R plotted the sugar 
content on the y-axis of the UScereal data set based on the cereal’s shelf in 
the grocery store.  Besides simple plots, R has a number of other plotting 
functions for specific purposes, such as plotting each column of a data frame on 
the same plot (see matplot()).   
 
Because R is a programming language in addition to a program, R provides 
tremendous flexibility in creating plots and even more complex graphics.  For a 
demonstration of the plotting capabilities of R, type: "demo(graphics)". 
 
Finally, the hist() function produces a histogram.  Try: 
"hist(UScereal$sugars)".  Many of the same arguments that can be passed to 
plot(), such as xlab, ylab, and col can also be passed to hist().     
 
FUNCTIONS 
 
plot() - plot x and y data 
hist() - create a histogram of a vector 
title() - add a title to an existing plot 
lines() - add lines to an existing plot 
 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 



From: GREGOR Brian J 
Sent: Wednesday, May 21, 2003 2:20 PM 
Subject: R Week 6 Lesson 2, Lower Level Plotting Functions 
 
 
R Week 6 Lesson 2, Lower Level Plotting Functions 
 
Yesterday, Ben described how you use the higher level plotting commands plot() 
and hist(). He also introduced a few lower level plotting commands: title() and 
lines(). As you gain more understanding about R graphics, you will find that you 
can use these lower level commands to plot almost any type of graph you wish to. 
You are not confined to the canned graph formats that Excel or other packages 
provide. I’ll get you started on building graphs from their elements. I’ll also 
introduce you to a few commands that allow you to interact with your graphs. 
 
Let’s start by loading some suitable data: ’library(MASS); data(hills)’. The 
hills data frame includes data on the distance(dist), elevation gain(climb) and 
time(time) for a number of mountain climbs in Great Britain. Next add another 
variable indicating the overall steepness of each climb:  
’hills$steep <- as.numeric(resid(lm(climb~dist, data=hills))>0)’. This statement 
first does a linear regression on climb vs. distance. The regression line shows 
the average slope. Climbs are steeper than average where the residuals of the 
regression are positive. This logical test is converted to a numeric vector 
(FALSE becomes 0 and TRUE becomes 1). Finally attach the data so that we can 
refer to the columns directly: ’attach(hills)’. 
 
Now we’ll build a graph of time vs. distance. Start by looking at the data to 
identify how to set up the graph axes. You can do this with ’summary(dist)’ and 
’summary(time)’. We’ll have the x axis run from 0 to 30 and the y axis run from 
0 to 200. Now plot an empty graph: ’plot(dist,time,type="n", xlab="", ylab="", 
xlim=c(0,30), ylim=c(0,200), axes=F)’. The type="n" argument tells R that 
nothing will be plotted. Assigning an empty string to xlab and ylab causes no x 
or y axis labels to be printed. Finally, the ’axes=F’ argument turns off 
printing of axes. So what you now have is a graphics window with nothing in it. 
However, the the coordinate system has been set up so that you can add elements 
to the graph and they will be put in their proper places.  
 
The x axis can be added with ’axis(1, at=seq(0,30,by=5))’ and the y axis with 
’axis(2, at=seq(0,200,by=20))’. The first argument to the axis() function 
identified which access to add. Axis numbering is as follows: 1 = bottom, 2 = 
left side, 3 = top, 4 = right side. The second argument to axis is a vector 
which identifies the values for the tick marks for the axis. In this case, the x 
axis has tick marks at 0, 5, 10, 15, 20, 35, 30. axis() can use an additional 
’labels’ argument which can be a vector of labels to place at each of the tick 
marks. If this argument is not used, R will print the ’at’ values. 
 
You can add a box around the whole plot area with ’box()’. You can specify the 
color and linetype of the box, but we’ll just use the default values of solid 
black. 
 
Now lets add data points and color them according to whether the climbs are more 
or less steep: 
’points(dist[steep==0], time[steep==0], pch=16, col="blue")’ 
’points(dist[steep==1], time[steep==1], pch=16, col="red")’ 
Note that the syntax of points is similar to that of plot. The x values come 
first and the y values second. Then other arguments can be used to specify 



various plotting characteristics. In this case, we plotted less steep climbs in 
blue and more steep in red. 
 
We can place titles with ’title(main="Climbing Time vs. Distance", xlab="miles", 
ylab="minutes")’. The arguments have the same meaning as for the plot() 
function. 
 
Next we’ll add a legend, but before we do this, I’ll show you how to identify 
the x and y coordinates of places in the graph. Enter ’locator(3)’ at the 
console and then click on three different points in the graph with your mouse. 
Notice that the console returns the x and y values of the places you clicked. 
This can be used for any number of purposes, but we’ll use it to place the 
legend. Enter ’legend.loc <- locator(1)’ and then click a place in the graph 
where you would like the upper left hand corner of the legend to be. The 
coordinates will be stored in ’legend.loc’. Now you can place the legend using 
these coordinates as follows: ’legend(legend.loc$x,legend.loc$y,legend=c("Less 
Steep", "Steep"), col=c("blue", "red"), pch=16)’. Notice that the first two 
arguments are the x and y coordinates of the legend box. The third argument 
specifies the legend labels. The fourth argument specifies the corresponding 
colors and the last argument specifies the character type. Look at the help page 
for ’legend’ to see the options that are available. 
 
You can identify data points on the graph with ’identify()’. Enter 
’identify(dist, time, rownames(hills), n=3)’, and then click next to three of 
the data points. If you click slightly off to any side of a dot, the label will 
be printed on that side. The first argument to ’identify’ is the vector of x 
values and the second argument is the vector of y values. The third argument is 
the corresponding vector of labels to be used. In this case the row names. The 
last argument specifies the number of points to be identified. If no value is 
given for this argument, you can keep on identifying points until you click on 
the ’stop locator’ menu item of the graphics window. 
 
We’ll finish up by adding an annotation to the graph. This will be a short bit 
of text and an arrow pointing from the text to one of the dots. Start by 
locating the dot the arrow will point to. Enter ’arrow.head <- locator(1)’ and 
click on the blue dot located at about 3.5 miles and 80 minutes. Then locate the 
text location by entering ’text.loc <- locator(1)’ and clicking in the empty 
area above the dot. Then enter ’text(text.loc$x, text.loc$y, "Not feeling 
well")’. Finally, enter ’arrows(text.loc$x, text.loc$y, arrow.head$x, 
arrow.head$y)’. The arguments to ’text’ in this example should be fairly self 
explanatory. Check the help page to see the options that are available. The 
first two arguments to the arrows function are the x and y coordinates of the 
arrow tail. The second two arguments are the x and y coordinates of the arrow 
head. This function also has a number of options such as the size and angle of 
the arrow head, the direction of the arrow, and whether it is to be single or 
double-headed. 
 
This may have seemed a lot of work to do a graph. If you have a simple graph, 
it’s best to use the higher level plot functions. The lower level functions are 
there to allow you to build custom graphs. In most cases, you would be defining 
a function which includes the command you want. You would then use this as your 
own higher-level plotting function. 
 
Here are the plotting commands we used today: 
plot() we used to set up a blank plot 
axis() draws an axis 
box() puts a box around the plot area 



points() adds points to a graph 
title() adds titles 
locator() returns the x and y values of mouse clicks in the graph area 
legend() adds a legend 
identify() identifies data points 
text() adds text to a graph 
arrow() allows you to draw arrows 



From: STABLER Benjamin 
Sent: Thursday, May 22, 2003 3:30 PM 
Subject: R Week 6 Lesson 3, par() and other graphical functions 
 
R Week 6 Lesson 3, par() and other graphical functions 
 
Start with "data(attitude)" to load the Chatterjee-Price Attitude data set.  
Today, we are going to experiment with the par() function, which sets global 
graphical parameters.  Simply type "par()", which returns a list of 68 items.  
These are the defaults for graphical parameters for plotting in R.  For example,  
par()$type is the setting for the default type of plot - "p" for points.  Let’s 
change one of the settings and see what happens.  Type "par(lty=3)" followed by 
"plot(attitude$complaints,attitude$ratings, type="l")".  R will plot a dotted 
line of the data, as opposed to the default solid line that we are use to.   
 
The par parameters are the same as those used in the plotting functions describe 
earlier this week.  So when you set "lwd=2" (line width equal to 2), you set the 
graphical parameter "lwd" to 2.  As an argument to a plot() function or a low-
level function such as lines(), the setting was only temporary.  When you set 
these with par(parameter = new value)" you change them until you restart R or 
set the graphical parameters back to the defaults (more on this later).   
 
We can set parameters with the following syntax: "par(parameter = new value)".  
The best way to learn the par commands is to refer to the help page for par(). 
Type "?par" to load the par help page in your Internet browser.  Different 
parameters include plot type, background color, margin sizes, colors, font 
sizes, line widths, axis settings, symbol sizes, and plotting window settings 
such as mfrow and mfcol. 
 
The mfrow and mfcol graphical parameters are very useful.  To show you what they 
do type "par(mfrow=c(2,3))".  Then copy and paste the following lines to R. 
 
plot(attitude$rating,attitude$complaints) 
plot(attitude$rating,attitude$privileges) 
plot(attitude$rating,attitude$learning) 
plot(attitude$rating,attitude$raises) 
plot(attitude$rating,attitude$critical) 
plot(attitude$rating,attitude$advance) 
 
As you can tell, mfrow split the plotting window into a matrix of 2x3 plotting 
windows and plotted each plot in its own frame.  The only difference between 
mfrow and mfcol is the order that R moves from one frame to the next - mfrow is 
in row major order while mfcol is in column major order.  When we get to 
programming in R, we will see a better way to plot these six plots.  This plot 
of rating versus the other six variables is rather useful, but it might be even 
better to plot every variable against every other variable.  In R this is easy. 
Type "plot(attitude)" to produce a 6x6 matrix to visualize the relationships.  
Our six plots from earlier as now just the first column of this more complicated 
plot.  Again, it is that object-oriented nature of R making things easier.   
 
There are alternatives to mfcol and mfrow.  The layout() function allows more 
flexibility in splitting up the plotting region as does split.screen().  A 
totally different, and much more complex, environment for plotting in R is 
represented by Trellis graphics.  The lattice package is where R stores the 
Trellis graphics functions.  It is built on a different graphical model called 
grid and is often incompatible with traditional R plot() and par() graphics.  If 
you are looking for a more consistent graphical "style" and/or advanced 



conditioning plots then Trellis is for you.  Otherwise, R’s traditional plotting 
environment should work. 
 
Sometimes while experimenting with different par settings you realize that you 
want to revert back to the defaults.  This is easy to in R since everything is 
stored as an object.  par() is just a list so it can be assigned to an object by 
just typing "opar <- par()". Then use "par(opar)" to set the values of par to 
the values of the opar list.   
 
All graphical data must be sent to a graphical device.  When you plot() some 
data, the default device opened by R is a window.  A window is simply the plot 
window that we have been using in this lesson.  A new window with no data can be 
created with "windows()".  But other graphical devices can receive data.  Type 
"pdf("test.pdf")" to open a pdf file in the working directory that will receive 
all R graphical output until told otherwise.  Type 
"plot(attitude$rating,attitude$advance)" and notice that R does not open a 
plotting window.  Instead it sent the plot to the PDF file.  R will save each 
new plot to a new page in the pdf file.  The dev.list() and dev.off() functions 
can be used to list all currently active devices and to close the device number 
returned by dev.list.  Graphical windows can be saved to various format by using 
the File drop down menu in the graphical window or by using the savePlot() 
function.  The savePlot() function takes three arguments: 1) the filename to 
save to, 2) the file type (pdf, jpg, wmf, bmp, ps) and 3) the device to save 
(the default being the current device). 
 
That should be enough for today.  Tomorrow Brian is going to present some more 
specialized plotting functions such as barplot(), matplot(), and dotchart(). 
 
Functions 
 
par() - to review or set graphical parameters 
pdf() - to create a pdf file for graphical output 
savePlot() - to save a plot window to file 
windows() - to create a new graphical window 
dev.list() - to list the active graphical devices 
dev.off() - to close a graphical device 
 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 
 



From: GREGOR Brian J 
Sent: Thursday, May 29, 2003 3:00 PM 
Subject: R Week 7 Lesson 1, More High Level Graphing Functions 
 
R Week 7 Lesson 1, More High Level Graphing Functions 
 
In this last plotting lesson, I will cover a variety of handy plotting 
functions. These include curve(), matplot(), barplot(), dotchart(), stripplot(), 
and boxplot() 
 
curve() allows you to plot expressions or other functions that return numerical 
results. Here’s an example: ’curve(-0.02*x^3 + 0.4*x^2 - 3*x, from=0, to=10, 
n=100)’. The first argument is the expression that is to be graphed. The second 
and third arguments are the lower and upper x values. These could be specified 
with the xlim argument instead. ’curve(-0.02*x^3 + 0.4*x^2 - 3*x, xlim=c(0,10), 
n=100)’ gives the same result. The fourth argument gives the number of points to 
plot. If you want to add a curve to an existing plot, you use the ’add’ argument 
like this: ’curve(-0.02*x^3 + 0.5*x^2 - 3*x, from=0, to=10, n=30, add=T, 
type="b", pch=1, col=’red’)’. Notice that this last example also used ’pch’ and 
’col’ arguments to specify the plotting character and color. 
 
matplot() allows you to plot a whole matrix of values. For this example, lets 
plot the same polynomial expression as above, but vary the coefficient on the 
squared term from 0.1 to 0.5. We can make a matrix of values using the ’outer()’ 
function:  
’poly.mat <- outer(seq(1,10,by=0.5), seq(0.1,0.5,by=0.1), function(x,y) -
0.02*x^3 + y*x^2 - 3*x)’ 
Then we can plot all the respective curves with matplot() like so: 
’matplot(seq(1,10,by=0.5), poly.mat)’. The first argument is the vector of x 
values. The second argument is a matrix of y values. matplot() plots each of the 
columns in turn. As you see from this plot, the default behavior of matplot is 
to plot points using numbers; each in a different color. By using the type="l" 
argument, the plot is changed to a line plot: ’matplot(seq(1,10,by=0.5), 
poly.mat, type="l")’. 
 
Now load some data to display in the next set of charts:’data(airquality) ; 
data(VADeaths)’. 
 
barplot() will plot either a vector of values as a single set of bars, or a 
matrix of values with stacked bars or side-by-side bars. Let’s start with 
plotting a single set of bars using the air quality data. We’ll plot mean 
temperature by month: ’barplot(tapply(airquality$Temp, airquality$Month, 
mean))’. Notice how the tapply() function is used to calculate the vector of 
means. Barplot then makes the plot from this vector. We can add the axis labels 
and title as follows: ’barplot(tapply(airquality$Temp, airquality$Month, mean), 
names.arg=c("May", "June", "July", "August", "September"), ylab="Degrees 
Fahrenheit", main="Mean NYC Temperatures")’. You can easily change the 
orientation of the bars by using the ’horiz=T’ argument. 
 
Now we’ll plot the VADeaths data to show how barplot() handles multiple data 
series. VADeaths is a matrix of death rates in the state of Virginia by age 
(rows) and sex and location (columns). ’barplot(VADeaths)’ produces stacked 
barplots with each column being one grouping. Side-by-side bars can be shown by 
using the ’beside=T’ argument: ’barplot(VADeaths, beside=T)’. A legend will 
automatically be added with the ’legend.text’ argument: ’barplot(VADeaths, 
beside=T, legend.text=c("50-54", "55-59", "60-64", "65-69", "70-74"), 
col=rainbow(5))’.  



 
Notice also that the plotting colors can be changed. In this case, five colors 
were chosen from the rainbow palette. You could instead specify a vector of 
colors such as ’c("salmon", "springgreen", "tomato", "skyblue", "violetred")’ 
from R’s large selection of colors. You can get a list of all the available 
color names by entering ’colors()’.  
 
If you want to have some fun, install the RColorBrewer package from CRAN and 
load the library. This package contains a number of nice color palettes for 
graphing and mapping. Then enter: ’barplot(VADeaths, beside=T, 
legend.text=c("50-54", "55-59", "60-64", "65-69", "70-74"), col=brewer.pal(5, 
"Pastel1"))’ 
 
dotchart() provides an alternative to barplot() that may be a preferred way of 
showing data in some instances. You can test this out with ’dotchart(VADeaths)’. 
For me, this presentation of the data is less cluttered than the barplot of the 
same data. 
 
Sometimes it’s easier to see patterns in data by ordering it as well. For 
example, we could order the dotchart categories in the order of their mean 
values. This is easy to do in R: 
’dotchart(VADeaths[,order(apply(VADeaths,2,mean))])’. The apply statement 
calculates the mean values for each column. By feeding that to the order() 
function, you get the indexes to use to put the columns of the VADeath data in 
the order you want for graphing. 
 
stripchart() is a one-dimensional scatterplot for categorical data. For example, 
we can show the distribution of the New York City temperature data by month as 
follows: ’stripchart(airquality$Temp~airquality$Month, pch=20)’. Notice that 
stripchart() allows you to use model formula notation. Here we’re plotting 
temperature as a function of the month. If you have a lot of data, some of the 
points may be hidden by others. The default behavior of stripchart() is to 
"overplot" coincident data points. You can see all the points by specifying 
their display method as "jitter" or "stack". Try the following examples to see 
what these do. 
’stripchart(airquality$Temp~airquality$Month, method="jitter", pch=20)’ 
’stripchart(airquality$Temp~airquality$Month, method="stack", pch=20)’ 
 
Data distributions can also be compared using boxplot(). This function also 
allows you to use model formulae as well: 
’boxplot(airquality$Temp~airquality$Month)’ This shows boxplots of the 
temperature distributions for each month. The boxes show the interquartile range 
with the line across the middle showing the median values. The "whiskers" on 
either side of the box encompass all data points within some specified distance 
of the interquartile range. The default value is 1.5 times the interquartile 
range. Points beyond the whiskers are plotted individually. (If you’re not 
familiar with boxplots, it may help you to enter ’tapply(airquality$Temp, 
airquality$Month, summary)’ and compare the results with the plot.) You can add 
a notches to the boxplots to facilitate comparison of medians with the notch=T 
argument. 
 
That should get you going with plotting data. Here are the functions we covered: 
curve() plots mathematical expressions 
matplot() plots matrices. Each column is a data series. 
barplot() plots bar plots 
dotchart() is an alternative to barplot() 
stripchart() plots one-dimensional scatterplots of data organized by category 



boxplot() provides another way to plot data distributions organized by category 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 



From: STABLER Benjamin 
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R Week 7 Lesson 2, Writing Your Own Functions 
 
So far we have pretty much been using R’s built-in functions.  These include 
such functions as rowSums() and mean().  Today we will write our own functions, 
which is probably the most productive aspect of R.  Many of the built-in R 
functions such as mean.default() (which is the function that R usually uses when 
you call the mean() function) are also written in R, so once you understand how 
to write your own functions, you will be able to deconstruct many of R’s built-
in functions.  Let’s start with a simple function by typing: 
 
myexp <- function(x, y) { 
 result <- x^y 
 result 
} 
 
The purpose of our "myexp" function is to exponentiate x to the y power.  So 
myexp(2,3) will return 8.  But first let’s discuss function definition. 
 
1) Function definitions are almost always more than one line.  This is really 
the first time in the course that we have introduced multiple line expressions.  
In order to extend an expression to multiple lines, you need to use "{" and "}" 
(curly braces).  These tell R that the expression does not end on this line, but 
rather it extends until the next curly brace.  R assumes that an expression ends 
when it comes across a new line, but this can be overridden by curly braces.   
 
2) Functions are defined with the "function" function.  The "function" function 
takes the arguments of the function in parentheses, separated by commas.  This 
is the same as when we call R functions such as plot(x,y), except that this time 
we get to decide what to call the arguments and what order to put them in.  Thus 
"myexp" could have been defined as follows: 
 
myexp <- function(base, exponent) { 
 result <- base^exponent 
 result 
} 
 
3) The function definition is assigned to an R object.  This object is created 
with the name of our user defined function.  So we can then call our function by 
name: "myexp(2,3)". 
 
4) Functions return a single object.  As a result, the last line of a function 
definition should be the object that you want the function to return.  In our 
function above, we calculated x^y and assigned the result to "result".  As you 
know, when you assign the results of a calculation to an object, R does not show 
you the results.  Functions are similar in this way in that the assignment takes 
place within the function environment and in order to show you the results of 
the function you must explicitly ask R to return the result.   
 
5) Actually, functions return the last unevaluated expression - which is often 
just an object as I described in point four.  What this means is that our 
exponent function could be simplified to: 
 
myexp <- function(base, exponent) { 



 base^exponent 
} 
 
Since "base^exponent" is the last expression of the function, R will return the 
resulting value of that expression, which is the same as the value for "result" 
in our previous function definition.  This is similar to inputting expressions 
at the R prompt since 2^3 will automatically return 8.  If we had written our 
function like: 
 
myexp <- function(base, exponent) { 
 result <- base^exponent 
} 
 
Then R would not return result since the expression was evaluated and assigned 
to the result object, which only exists within the function environment.   
 
6) As item four and five hinted at, calculations within functions work in their 
own environment.  When you type x <- 5 at the prompt in R, R evaluates that 
expression in the global environment.  But when you put x <- 5 inside a 
function, R evaluates the expression within a local function environment.  Each 
time a function is called, it creates its own environment to work in.  So try 
typing the following: 
 
x <- 2 
 
myx <- function(y) { 
 x <- y 
 x 
} 
 
myx(5) 
 
x 
 
For the last line R returns 2 for x since that is the value of x within the 
global environment, which is where x is defined.  We sent the myx function the 
value of 5 for y and then R evaluates the insides of the function within a 
separate "local" environment for the function.  So 5 is then assigned to a new x 
inside the myx environment.  But when we finish the function, we terminate the 
local function environment and all calculations within it are lost.  Function 
environments are temporary. 
 
7) Default values can be specified in function definitions.  So we could rewrite 
our function as: 
 
myexp <- function(x, y=2) { 
 result <- x^y 
 result 
} 
 
Notice the =2 after the y in the function definition.  This tells R that if no 
value is supplied for the y in the function call, then use the value of 2.  So 
"myexp(5)" will return 25.  This is a nice way to set defaults in functions.  
For example, I wrote a function to plot a model network in R that has a centroid 
connectors argument with the default set to FALSE.  That way R will not plot 
centroid connectors, but if the user wants them then they can easily be plotted 
by changing the value to TRUE. 



 
8) As I mentioned earlier, functions usually return a single object.  So if you 
want to return multiple objects, then just put all the objects in a list object 
and then return the list.   
 
9) Finally, just as with R’s built-in functions, you can assign the results of a 
function to an object.  So "newvalue <- myexp(5)"  will set newvalue to 25. 
 
The only function covered today is the function() function. 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 



From: GREGOR Brian J 
Sent: Tuesday, June 03, 2003 10:18 AM 
Subject: R Week 8 Lesson 1, Building Programs 
 
R Week 8 Lesson 1, Building Programs 
 
Last week, Ben introduced you to defining functions. That is a very important 
element of building programs in R. Today I will introduce you another important 
part of building R programs: writing scripts. 
 
A R script is simply a text file of R commands that is brought into R with the 
source() function. R scripts are typically named with the ".R" extension. I’ve 
attached a script file "analyze_commute.R" to this email for use in this lesson. 
Save it to the directory you’re using for these lessons and then start your 
Rgui. To "source in" the script you just saved, you can enter 
’source("analyze_commute.R")’ at the command prompt. You can also use the menu 
command ’File/Source R Code’. You can then choose the file you want to source in 
using the file selection window that pops up. 
 
Now open the "analyze_commute.R" file in your text editor. If you haven’t 
installed a text editor which supports syntax highlighting for R, or if you 
haven’t activated syntax highlighting for R, I strongly suggest that you do so. 
It makes reading and writing R programs much easier. UltraEdit, the editor which 
most people in TPAU use, has an R syntax highlighting definition. You can also 
get syntax highlighting with jEdit and several other text editors. You can see 
what’s available at http://www.sciviews.org/_rgui/. 
 
The first thing to notice in this script is the use of the "#" symbol to 
designate comments. These can be place anywhere in a line. All text that follows 
a "#" is ignored by the R interpreter. If you comment your script liberally, you 
can document your analysis in the code itself. This is one of the big advantages 
of using R for analysis. People can see exactly what you have done and can 
replicate your analysis exactly.  Also notice that you can use blank lines in 
scripts to separate sections and make them easier to read. 
 
What this script does is open a connection to the Census 2000 county to county 
worker flow text file for Oregon on the internet. (Note: If the internet 
connection fails, check the "Target" property for the Rgui shortcut. It should 
include the "--internet2" option. This was covered in the first lesson on 
installing R.) This file contains records of the number of commutes from each 
Oregon County to every other county in the US (and to foreign countries). The 
script then reads that file into an R object and does some processing of the 
fields to get them into shape for the analysis. Then it extracts the records for 
instate commuting and does some analysis of them. Finally it saves the results 
as a tab-delimited text file.  
 
I won’t explain each command in the script because I’ve put the documentation in 
the file. Most of the commands have been covered in previous lessons. You can 
use the R help to look up the new commands. Email me if you have any questions.  
 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 
 



 
analyze_commute.R attachment 
---------------------------- 
 
# analyze_commute.R 
# This script downloads Census 2000 commuting data and performs a variety of 
analyses 
 
# Connect to the Census 2000 county to county commute file for Oregon by 
residence county 
# For file data documentation see 
http://www.census.gov/population/cen2000/commuting/coxcolayout.txt 
census.con <- 
url("http://www.census.gov/population/cen2000/commuting/2KRESCO_OR.txt") 
 
# Read downloaded file into a data.frame 
    # specify field widths (varies from Census documentation because a space is 

located between each field 
    census.width <- c(2,4,5,5,42,3,4,5,5,42,7) 
    # set field names 
    census.name <- c("res.state", "res.county", "res.msa", "res.pmsa", 

"res.name", "wrk.state", "wrk.county", "wrk.msa", "wrk.pmsa", "wrk.name", 
"count") 

    # set field types 
    census.type <- c("character", "character", "character", "character", 

"character", "character", "character", "character", "character", 
"character", "numeric") 

    # read in file 
    commute <- read.fwf(census.con, widths=census.width, col.names=census.name, 

colClasses=census.type) 
 
# Close the connection to the Census file 
close(census.con) 
 
# Format commute data frame 
commute$res.name <- gsub("^ +","", commute$res.name) #remove leading spaces from 
res.name 
commute$res.name <- gsub(" +$","", commute$res.name) #remove trailing spaces 
from res.name 
commute$wrk.name <- gsub("^ +","", commute$wrk.name) #remove leading spaces from 
wrk.name 
commute$wrk.name <- gsub(" +$","", commute$wrk.name) #remove trailing spaces 
from wrk.name 
commute$wrk.state <- substring(commute$wrk.state, 2, 3) #remove leading zero 
from wrk.state fips 
 
# Set up an index of county fips codes and names 
county.index <- commute[!duplicated(commute$res.name),c("res.county", 
"res.name")] # take the res.county and res.names fields only where res.name is 
not duplicated 
 
# Select the records of commutes within the state 
instate.commute <- commute[commute$wrk.state == unique(commute$res.state),] 
 
# Do some analysis of in state commuting 
 
    attach(instate.commute) 



 
    summary(count) # summary of intercounty commutes within Oregon 
    hist(count) # summary of intercounty commutes within Oregon 
 
    # Make a county to county origin and destination matrix 
    commute.od <- tapply(count, list(res.county, wrk.county), sum) # sum 

commutes by origin and destination combination 
    commute.od[is.na(commute.od)] <- 0  # NAs need to be converted to zeros 
    rownames(commute.od) <- colnames(commute.od) <- county.index$res.name  # 

name rows and columns with the county names 
 
    # Summarize OD matrix in several ways 
    commute.origins <- rowSums(commute.od) # compute computes by origin county 
    commute.destinations <- colSums(commute.od) # compute commutes by 

destination county 
    internal <- commute.od[row(commute.od)==col(commute.od)] # internal commutes 

are on the diagonal of of the od matrix 
    internal.pct <- 100 * internal / commute.origins # compute the internal 

percentage 
    internal.pct <- round(internal.pct, 1)  # round the internal percentage to 

the first decimal place 
    outflow <- commute.origins - internal # compute the number of commuters 

leaving the county 
    inflow <- commute.destinations - internal # compute the number of commuters 

entering the county 
 
    # Build a data frame of the results 
    commutes <- data.frame(cbind(origins=commute.origins, 

destinations=commute.destinations, internal, internal.pct, outflow, inflow))  
# put the results together 

 
    # Save the results table 
    write.table(commutes, "OR_Commutes.txt", row.names=T, col.names=T, sep="\t") 
 
    detach(instate.commute) 
 
 



From: STABLER Benjamin 
Sent: Wednesday, June 04, 2003 8:53 AM 
Subject: R Week 8 Lesson 2, Program Control 
 
R Week 8 Lesson 2, Program Control 
 
FOR 
 
A common program control mechanism is the for loop.  Essentially a for loop will 
execute an expression i number of times, with i usually being a counter object.  
Let’s look at a for loop in R. 
 
for (i in 1:10) { 
 print(letters[i]) 
} 
 
which returns the first ten letters of the alphabet.  The basic structure of the 
for loop is a) for, b) (name for each element in a vector), c) { expression to 
execute in curly braces if it extends over one line }.  So to put the code in 
words, it would be "for i in each value in one to ten, print letter at position 
i."  So R starts by setting i equal to the first value in the vector after the 
"in" in the condition, which is 1, and then prints letters[1].  It cycles 
through all the values in the 1:10 vector and then ends.  For loops are not 
functions though, so the i value at the end of the cycle (10 in this case) stays 
assigned in the global workspace.  For loops are a great way to automate 
repeative tasks.   
 
Unlike some other programming languages, R allows you to use an element value of 
a vector instead of just a counter number.  An example will make this clearer.  
The traditional way is: 
 
states <- c("Washington","Oregon","California","Arizona","New Mexico") 
for (i in 1:length(states)) { 
 print(states[i]) 
} 
 
while the more efficient way to write it in R is: 
 
states <- c("Washington","Oregon","California","Arizona","New Mexico") 
for (i in states) { 
 print(i) 
} 
 
Thus i in the second for loop is equal to the vector element (the state name in 
this example).  Sometimes you will use the new method and other times you will 
use the traditional method - it depends. 
 
WHILE 
 
Related to for() is the while() function.  The while() function will execute an 
expression as long as the conditional statement is met.  Let’s illustrate this 
with an example. 
 
x <- 1 
while ( x<5 )  { 
 print("hello there") 
 x <- x+1 



} 
 
As you can see, this little bit of code will print "hello there" four times.  At 
the start of each loop, the while condition is checked.  Each time the while 
loop is evaluated, R checks the value of x versus 5.  If x is less than 5 then 
it runs the code inside the curly braces.  If x is greater than or equal to 5 
then the loop is terminated.  Note that greater than or equal to is >= while 
less than or equal to is <=.  It is best to hand trace this loop if you are 
having any troblem figuring it out.   
 
IF and ELSE 
 
Conditional execution of statements can be very valuable.  In R, the if() else() 
functions provide conditioning.  Try: 
 
x <- 5 
if( x==5 ) { print("You got a match")  
 } else { print("sorry no match") } 
 
If x is equal to 5 then evaluate the first expression, else evaluate the second 
expression.  R will return "You got a match". 
 
There are a few things to note about the if() test.  1) To test if a value is 
equal to another value you use ==, not = (since = assigns).  2) It is best to 
put all your if() else() statements in curly braces so that R does not get 
confused.  The reason for this is the way that R parses code.  In other 
programming languages, you often have to end a line of code with a semicolon (to 
tell it that it has reached the end of a line).  But R just assumes a new line 
signifies the end of the expression.  This leads to trouble in if() else() 
situations because you will often want to write the TRUE and FALSE expressions 
on different lines.  The solution - curly braces.  Remember from our functions 
lesson that curly braces allows you to split expression across multiple lines.  
That means that it is best write your if() else() expression like the one above,  
 
i.e. if (condition) { TRUE expression 
 } else { FALSE expression } 
 
The key here is the closing curly brace of the TRUE expression is on the next 
line.  This lets R know that the entire if() statement is not yet done.  
Finally, else() statements are optional.  Furthermore, you can have mutiple 
if()s if necessary. 
 
IFELSE 
 
The ifelse() function is a more compact version of if() else() above.  The basic 
structure of ifelse() is ifelse( condition, true expression, false expression).   
 
BREAK 
 
The break() function will break out of a loop.  So for example, try: 
 
x <- 1 
while ( x<5 )  { 
 print("hello there") 
 if (x==3) break() 
 x <- x+1 
} 



 
Notice that R only printed three "hello there"s instead of four.  That is 
because R broke out of the loop when x was equal to three. 
 
NEXT 
 
The next() function is related to break() except that next will skip to the next 
cycle in a loop.  For example: 
 
for (i in 1:10) { 
 if(i==4) { next() } 
 print(letters[i]) 
} 
 
The result is that R does not print "d" since d is letters[4] and if i was equal 
to 4 then R skipped to the next cycle and did not finish evaluating the code 
that remained in cycle four. 
 
&, |, and ! 
 
The "and" (&), "or" (|) and "not" (!) operators are often used in conditional 
tests.  For example: 
 
x<-1 
y<-4 
if(x==1 & y==4) { print("hello") } 
if(x==1 & y==5) { print("goodbye") } 
if(x==1 | y==1) { print("hello") } 
if(x!=5) { print("goodbye") } 
 
As you can see, these operators, often called boolean operators, can be very 
useful in evaluating TRUE/FALSE conditions.   
 
FUNCTIONS 
 
for() - repeat the expression that follows i number of times 
while() - repeat the expression that follows as long as the condition is 
satisfied 
if() - execute the expression that follows if the condition is satisfied 
else() - execute the expression that follows - note this must come after an if() 
ifelse() - a compact form of if() and else()  
break() - terminate a loop / break out of a loop 
next() - skip to the next cycle in a loop 
& - and 
| - or 
! - not 
 
Benjamin Stabler 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
555 13th Street NE, Suite 2 
Salem, OR 97301  Ph: 503-986-4104 
 



From: GREGOR Brian J 
Sent: Friday, June 06, 2003 8:46 AM 
Subject: R Week 8 Lesson 3, Using Functions and Program Control to 
Automate Your Script 
 
R Week 8 Lesson 3, Using Functions and Program Control to Automate Your Script 
 
In this lesson you will see how writing functions and using some of the program 
control functions that Ben introduced can be used to generalize and add 
automation to a script. Specifically, I show you how the script I sent a couple 
of lessons ago can be modified so that it can retrieve and process the Census 
commuting files for any number of states. Moreover, the new script can retrieve 
either the table of commutes by residence or commutes by workplace. The results 
are contained in the script that is attached to this lesson. 
 
The first step in the process of generalizing the script was to convert most of 
it into functions. Then the functions could be called repeatedly for as many 
states as the analysis is desired for. Most of the script could be wrapped into 
one big function, but I decided to create two functions to separate the file 
reading and formatting from the analysis of instate commutes. This way the file 
reading function could be used in another application without needing to be 
changed. 
 
The first function is named "get.commute()". It takes two arguments, the state 
abbreviation and the type (RES = by residence, WRK = by workplace). Most of the 
function is like the previous script but there are some differences. Near the 
top of the function are a couple of "if" statements which check whether the 
argument values given to the function are valid. If they are not, program 
execution is stopped with the "stop()" function. The argument to this function 
is the text message to be displayed if the stop condition is triggered. 
 
After the "if" statements, you see how the "state" and "type" arguments to the 
function are used in two "paste" functions to build up the url that identifies 
the file to be downloaded. With these two lines of code, the file downloading 
procedure was generalized so that it can process a request for any state’s data. 
 
I’ll leave other changes in the script for you to identify and figure out what 
they do. 
 
The second function, "summarize.instate.commutes", takes the data frame created 
by the "get.commute" function, removes the out-of-state commute records and does 
most of the analysis carried out by the previous script. (I left out the 
summarization of counts and the creation of a histogram.) This function returns 
a list whose elements are an origin-destination matrix of instate commutes and a 
summary of instate commutes by origin. 
 
Following these function definitions are a few lines of script which control the 
process of getting the data for the desired states, analyzing it, and saving it. 
The first couple of lines define the vectors of states and types of commutes to 
be analyzed. The abbreviations of the states for which the data is to be pulled 
are contained in the "states" vector. The types of files to get are in the 
"types" vector. These are the only lines of script you need to change. Then the 
script has two nested for loops to cycle through each combination of state and 
type. The lines within the loops call the functions we defined using the state 
and type arguments coming from the for loop indexes and then save the results to 
files. 
 



Try this script out using different combinations of states and see how it works. 
 
That’s it for this lesson and for the structured part of this course. At this 
point you should know enough about R to use it in your work. From now on, you 
will receive occasional emails with more advanced topics and scripts. 
 
 
Brian Gregor, P.E. 
Transportation Planning Analysis Unit 
Oregon Department of Transportation 
Brian.J.GREGOR@odot.state.or.us 
(503) 986-4120 
 
 
# analyze_instate_commute.R 
# 6/5/03 
 
# This script downloads Census 2000 county to county commuting data for a list 
of states and then: 
# Creates and saves the data on instate commutes 
# Creates and saves an origin-destination matrix of the instate commutes 
# Summarizes the instate commutes and saves the results 
 
 
# Define function for retrieving a commuting file from the Census 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
get.commute <- function(state="OR", type="RES"){ 
 
 # Check for valid state and type codes 
 state.abb <- c("AK", "AL", "AR", "AZ", "CA", "CO", "CT", "DC", "DE", "FL", 
"GA", "HI", "IA", "ID", "IL", "IN", "KS", "KY", "LA", "MA", "MD", "ME", "MI", 
"MN", "MO", "MS", "MT", "NC", "ND", "NE", "NH", "NJ", "NM", "NV", "NY", "OH", 
"OK", "OR", "PA", "RI", "SC", "SD", "TN", "TX", "US", "UT", "VA", "VT", "WA", 
"WI", "WV", "WY") 
 types <- c("RES", "WRK") 
 if(!(state %in% state.abb)) stop("Must use valid state abbreviation") 
 if(!(type %in% types)) stop("Type must be RES or WRK") 
  
 # Make the file name and the url to get the data from 
 commute.file <- paste("2K", type, "CO_", state, ".txt", sep="") 
 url.file <- paste("http://www.census.gov/population/cen2000/commuting/", 
commute.file, sep="") 
  
 # Connect to the Census 2000 county to county commute file by residence or 
work place 
 # For file data documentation see 
http://www.census.gov/population/cen2000/commuting/coxcolayout.txt 
 census.con <- url(url.file) 
  
 # Read downloaded file into a data.frame 
 # specify field widths (varies from Census documentation because a space 
is located between each field 
 census.width <- c(2,4,5,5,42,3,4,5,5,42,7) 
 # set field names 
 census.name <- c("res.state", "res.county", "res.msa", "res.pmsa", 
"res.name", "wrk.state", "wrk.county", "wrk.msa", "wrk.pmsa", "wrk.name", 
"count") 



 # set field types 
 census.type <- c("character", "character", "character", "character", 
"character", "character", "character", "character", "character", "character", 
"numeric") 
 # read in file 
 commute <- read.fwf(census.con, widths=census.width, 
col.names=census.name, colClasses=census.type) 
 
 # Close the connection to the Census file 
 close(census.con) 
 
 # Format commute data frame 
 commute$res.county <- gsub("^ +","", commute$res.county) 
 #remove leading spaces from res.county 
 commute$res.msa <- gsub("^ +","", commute$res.msa) 
 #remove leading spaces from res.msa 
 commute$res.pmsa <- gsub("^ +","", commute$res.pmsa) 
 #remove leading spaces from res.pmsa 
 commute$res.name <- gsub("^ +","", commute$res.name) 
 #remove leading spaces from res.name 
 commute$res.name <- gsub(" +$","", commute$res.name) 
 #remove trailing spaces from res.name 
 commute$wrk.county <- gsub("^ +","", commute$wrk.county) 
 #remove leading spaces from wrk.county 
 commute$wrk.msa <- gsub("^ +","", commute$wrk.msa) 
 #remove leading spaces from wrk.msa 
 commute$wrk.pmsa <- gsub("^ +","", commute$wrk.pmsa) 
 #remove leading spaces from wrk.pmsa 
 commute$wrk.name <- gsub("^ +","", commute$wrk.name) 
 #remove leading spaces from wrk.name 
 commute$wrk.name <- gsub(" +$","", commute$wrk.name) 
 #remove trailing spaces from wrk.name 
 commute$wrk.state <- substring(commute$wrk.state, 2, 3) 
 #remove leading zero from wrk.state fips 
 
    # Return the result 
    commute 
 
    } 
 
 
# Define a function for creating a county to county origin destination matrix 
and summarizing commutes 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
summarize.instate.commutes <- function(x=commute){ 
     
 # Set up an index of county fips codes and names 
 county.index <- x[!duplicated(x$res.name),c("res.county", "res.name")] # 
take the res.county and res.names fields only where res.name is not duplicated 
 
 # Select the records of commutes within the state 
 x <- x[(x$wrk.state == x$res.state) & (x$wrk.county != "000"),] 
 
 # Make a county to county origin and destination matrix 
 commute.od <- tapply(x$count, list(x$res.county, x$wrk.county), sum) # sum 
commutes by origin and destination combination 



 commute.od[is.na(commute.od)] <- 0  # NAs need to be converted to zeros 
 county.index <- x[!duplicated(x$res.name),c("res.county", "res.name")] # 
take the res.county and res.names fields only where res.name is not duplicated 
 rownames(commute.od) <- colnames(commute.od) <- county.index$res.name  # 
name rows and columns with the county names 
 
 # Summarize OD matrix in several ways 
 commute.origins <- rowSums(commute.od) 
 # compute computes by origin county 
 commute.destinations <- colSums(commute.od) 
 # compute commutes by destination county 
 internal <- commute.od[row(commute.od)==col(commute.od)] 
 # internal commutes are on the diagonal of of the od matrix 
 internal.pct <- 100 * internal / commute.origins 
 # compute the internal percentage 
 internal.pct <- round(internal.pct, 1)  
 # round the internal percentage to the first decimal place 
 outflow <- commute.origins – internal 
 # compute the number of commuters leaving the county 
 inflow <- commute.destinations – internal 
 # compute the number of commuters entering the county 
 
 # Build a data frame of the results 
 commute.summary <- data.frame(cbind(origins=commute.origins, 
destinations=commute.destinations, internal, internal.pct, outflow, inflow))  # 
put the results together 
 rownames(commute.summary) <- county.index$res.name 
  
 # Return the OD matrix and results data frame as a list 
 list(OD=commute.od, smry=commute.summary) 
} 
 
 
# Call the functions and save the results for a list of states and types 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
states <- c("OR", "WA") 
types <- c("RES", "WRK") 
 
for(st in states){ 
 for(ty in types){ 
  commute <- get.commute(state=st, type=ty) 
  instate.summary <- summarize.instate.commutes(commute) 
  commute.file <- paste(st, ty, "_commutes.txt", sep="_") 
  write.table(commute, commute.file, row.names=F, col.names=T,  
  sep="\t") 
  od.file <- paste(st, ty, "instate_commute_od.txt", sep="_") 
  write.table(instate.summary$OD, od.file, row.names=T, col.names=T, 
  sep="\t") 
  summary.file <- paste(st, ty, "instate_commute_summary.txt",  
  sep="_") 
  write.table(instate.summary$smry, summary.file, row.names=T,  
  col.names=T, sep="\t") 
  rm(commute, instate.summary, commute.file, od.file, summary.file) 
 } 
} 
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